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Abstract

We examine the asymptotic behaviour of the zeros of sections of
the binomial expansion. That is, we consider the distribution of zeros

of Br,n(z) =
r

∑

k=0

(

n

k

)

z
k, where 1 ≤ r < n.

1 Preliminaries

A problem of great interest in the classical Complex Function Theory is the
following:

Given a function f(z) =
∞
∑

k=0

akz
k, analytic at z = 0, determine the asymptotic

distribution of the zeros of the partial sums sn(z) =
n

∑

k=0

akz
k.

Some contributors to this area include Jentzsch [6], who explored the problem
for a finite radius of convergence; Szegő [13], who explored the exponential
function ez; Rosenbloom [12], who discussed the angular distribution of ze-
ros using potential theory, and applied his work to sub-class of the confluent
hypergeometric functions; Erdős and Turán [4], who used minimization tech-
niques to discuss angular distributions of zeros; Newman and Rivlin [7, 8],
who related the work of Szegő to the Central Limit Theorem; Edrei, Saff and
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Varga [3], who gave a thorough analysis for the family of Mittag-Leffler func-
tions; Carpenter, Varga and Waldvogel [2], who refined the work of Szegő;
and Norfolk [9, 10], who refined the work of Rosenbloom on the confluent
hypergeometric functions and a related set of integral transforms.

In this paper, we will analyze the behaviour of the zeros of sections of the
binomial expansion, that is

Br,n(z) =
r

∑

k=0

(

n

k

)

zk , 1 ≤ r ≤ n . (1.1)

This investigation not only fits into the general theme of the works cited,
but also arises from matroid theory. Specifically (cf [14]), the univariate
reliability polynomial for the uniform matroid Ur,n is given by

Relr,n(q) = (1 − q)nBr,n

(

q

1 − q

)

=
r

∑

k=0

(

n

k

)

qk(1 − q)n−k , (1.2)

which can be written as Relr,n(q) = (1 − q)n−rHr,n(q), where

Hr,n(q) =
r

∑

k=0

(

n

k

)

qk(1 − q)r−k = (1 − q)rBr,n

(

q

1 − q

)

. (1.3)

Some special cases are easy to analyze, and may thus be dispensed with. In
particular,

1. B1,n(z) = 1 + nz, which has its only zero at z = − 1

n
.

2. Bn,n(z) = (1+z)n, which clearly has a zero of multiplicity n at z = −1.

3. Bn−1,n(z) = (1 + z)n − zn. Noting that this polynomial cannot have

positive zeros, we obtain the zeros z =
ωk

1 − ωk
, for 1 ≤ k ≤ n − 1,

where ω = exp
(

2πi

n

)

is the principal n-th root of unity, all of which

lie on the vertical line Re z = −1

2
.

In what follows, we will therefore focus on the cases 1 ≤ r < n− 1, and give
two collections of results. The first are concerned with bounding regions for
the zeros of Br,n(z), the rest with convergence results.
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We note that this problem was investigated independently by Ostrovskii
[11], who obtained many of the results that we present here. However, those
methods involved using a bilinear transformation to convert this problem to
an integral formulation. This choice of formulation makes the proofs more
involved and requires some additional constraints. By contrast, we claim
that our methods given here flow directly from the structure of the problem,
and yield additional results, in terms of additional bounds on the zeros, and
limiting cases. The paper [11] also gives a result on the spacing of the zeros
on the limit curve, using classical potential-theoretic methods. We do not
duplicate that result here, but give formulations in terms of specific points
on the curve.

The methods used generate a set of constants and related limit curves for
0 < α < 1, defined by

1

2
≤ Kα = αα(1 − α)1−α < 1 , (1.4)

Cα =

{

z :
|z|α

|1 + z| = Kα, |z| ≤ α

1 − α

}

, (1.5)

and

C ′
α =

{

z :
|z|α

|1 + z| = Kα,
α

1 − α
≤ |z|

}

. (1.6)

The properties of these curves are outlined in Lemma 3.1.

2 Main Results

As discussed above, we begin with a theorem on bounds of the zeros of
Br,n(z), and follow with results on convergence of those zeros.

Theorem 2.1 Let r, n be positive integers, with 1 ≤ r < n− 1, and let z∗ be

any zero of Br,n(z) =
r

∑

k=0

(

n

k

)

zk.

Then, z∗ lies in a region defined by the intersection of two circles and a plane
closed curve, to the right of a vertical line. Specifically,

|z∗| ≤ r

n + 1 − r
, (2.1)
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∣

∣

∣

∣

∣

z∗ − γ2

1 − γ2

∣

∣

∣

∣

∣

≤ γ

(1 − γ2)
, where γ =

r

n − 1
, (2.2)

Re z∗ > −1

2
, (2.3)

and z∗ lies exterior to the curve Cr/n, as defined in (1.4, 1.5).

Proof. We begin by considering the ratio of coefficients
(

n
k

)

(

n
k−1

) =
n − k + 1

k
, (2.4)

which is decreasing in k.

Hence, writing Br,n

(

r

n − r + 1
z
)

=
r

∑

k=0

akz
k, we have that

ak

ak−1

=
n − k + 1

k
· r

n − r + 1
≥ 1 .

That is, {ak}r
k=0 is non-decreasing, so by the Eneström-Kakeya Theorem

([5], p. 462), the zeros of this polynomial satisfy |z| ≤ 1. Hence, the zeros of

Br,n(z) satisfy |z| ≤ r

n − r + 1
.

For the second bounding circle, we defer to Wagner [14], where it is shown,
again using the Eneström-Kakeya Theorem, that the zeros of Hr,n(q) as given
in (1.3), lie in the annulus

1

n − r
≤ |q| ≤ r

n − 1
.

Since z = −1 is clearly not a zero of Br,n(z) for r < n, we may make the

substitution z =
q

1 − q
(or equivalently q =

z

1 + z
) in (1.3), which shows

immediately that Hr,n(q) = (1 + z)−rBr,n(z), from which
∣

∣

∣

∣

z

1 + z

∣

∣

∣

∣

≤ r

n − 1
=: γ . (2.5)

Writing this last inequality in terms of the real and imaginary parts of z
yields the claimed result.
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Noting that (2.5) implies that
∣

∣

∣

∣

z

1 + z

∣

∣

∣

∣

< 1, yields the half-plane Re z > −1

2
,

as claimed.

For the final bound, we mimic the analysis of Buckholtz [1] on the partial
sums of ez, and write

(1 + z)−nBr,n(z) = 1 − zr

(1 + z)n
· Rr,n(z) , (2.6)

where

Rr,n(z) =
n

∑

k=r+1

(

n

k

)

zk−r = zn−rBn−r−1,n

(

1

z

)

. (2.7)

For clarity, we set β =
r

n
. Inside and on the curve Cβ (1.4,1.5), we have

|z| <
β

1 − β
and

∣

∣

∣

∣

∣

zr

(1 + z)n

∣

∣

∣

∣

∣

≤ Kn
β , where Kβ is defined in (1.4). This, with

the upper bound of Lemma 3.3 yields

∣

∣

∣(1 + z)−nBr,n(z)
∣

∣

∣ ≥ 1 −
∣

∣

∣

∣

∣

zr

(1 + z)n

∣

∣

∣

∣

∣

· |Rr,n(z)| > 1 − Kn
β · K−n

β = 0 , (2.8)

which is the desired result. Q.E.D.

Note that the second bounding circle of this result, namely

∣

∣

∣

∣

∣

z − α2

1 − α2

∣

∣

∣

∣

∣

=
α

1 − α2
,

intersects the negative real axis at z = − α

1 + α
. This circle is contained in the

first, namely |z| =
α

1 − α
, and both meet at the common point z =

α

1 − α
.

The limiting case |z| =
α

1 − α
of the first bounding circle, and the bound-

ing half-plane Re z > −1/2 both appear in [11], with proofs that require
significantly more detailed derivations.

We now use these results, and the bounds in the proof, to discuss some
convergence results.
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Theorem 2.2 Suppose that 1 ≤ rj < nj − 1 for all j, that lim
j→∞

nj = ∞, and

that
lim
j→∞

rj

nj

= α, 0 < α < 1 .

Then, the zeros of {Brj ,nj
(z)}∞j=1 converge uniformly to the points of Cα.

Proof. For clarity, we let β =
r

n
, dispense with the subscript j, and write

Br,n(z) using (2.6). The zeros of Rr,n(z) then satisfy

zr

(1 + z)n
· Rr,n(z) = 1 .

Given that the polynomial can have no positive real zeros, we may take roots
with a cut along the positive real axis, and write the equation as

(

zβ

1 + z
· R1/n

r,n (z)

)n

= 1 . (2.9)

Using Theorem 2.1, Lemma 3.1 and Lemma 3.3, these zeros lie outside the

curve Cβ, and thus satisfy νβ < Xβ ≤ |z| ≤ β

1 − β
. Hence,

νr

n(r + 1)
≤ Kn

β Rr,n(z)
∑n

k=r+1

(

n
k

)

βk(1 − β)n−k
≤ 1 ,

for this region.

Consequently, R1/n
r,n (z) → K−1

β uniformly, from which the desired zeros are
asymptotically the solutions to

(

zβ

1 + z
· K−1

β

)n

= 1 . (2.10)

As described in Lemma 3.1, the function w = K−1
β

zβ

1 + z
maps the curve Cβ

(with the singular point zβ = β
1−β

deleted), onto the arc 0 < Arg w < 2πβ.
Thus, for n large, there exist points ζm, 1 ≤ m < r, for which

ζm

1 + ζm

· K−1
β = exp

(

2πmi

n

)

. (2.11)
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These points are clearly solutions to (2.10), are asymptotically dense on the
curve Cβ, and approximate the desired zeros of the polynomial. Taking limits
as β → α thus yields the desired result. Q.E.D.

We note that, thanks to (2.7), the non-trivial zeros of Rr,n(z) converge uni-
formly to all points which lie on the curve C ′

α, as defined in (1.6).

This result also appears in [11], using more elaborate asymptotics. The
analysis presented requires a deletion of a neighbourhood of the singular

point zα =
α

1 − α
. Comparison with the results of Lemma 3.3 shows that

this is not necessary with our methods.

The remaining results presented here do not appear in the literature.

The asymptotic expansions in the proof of Theorem 2.2 immediately give the
following result on the rate of convergence. We note that, as shown in [2] in
the case of the exponential function, this rate is best possible.

Theorem 2.3 Suppose that r, n are large, and 0 < δ <
r

n
< 1 − δ. Then,

given any zero z∗ of Br,n(z), there exists a constant c such that

|z∗ − ζ| ≤ c

|z∗ − r
n−r

| ·
ln n

n
.

Additionally, proximity to the singular point zr/n =
r

n − r
is of order O

(

1√
n

)

.

Proof. As before, we set β =
r

n
. As described in the proof of Theorem

2.2, the points ζm, as defined in (2.11), uniformly approximate the zeros of
the polynomial. Hence, given a zero z∗ of Br,n(z), we may choose k so that
|z∗ − ζk| = min |z∗ − ζj| is small.

Using the results of Lemma 3.3, we have the approximation

R1/n
r,n (z) · K−1

r/n = 1 + G(z) ·
(

ln n

n

)

.

where G(z) is uniformly bounded in the region containing the zeros.
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Expanding, using the equations (2.11) and (2.9) yields

z∗ − ζk ≈ ζk(1 + ζk)

β − (1 − β)ζk

· G(z∗)

(

ln n

n

)

, (2.12)

to first order. This not only gives the desired result, but shows that, as
expected, the rate of convergence is worst for those points closest to the

singular point zβ =
β

1 − β
.

To discuss the convergence at the singular point, we take an approach similar
to that used for the exponential function in [7, 8] and for the Mittag-Leffler

functions in [3]. For convenience, we set β =
r

n
, µ = nβ = r, and σ2 =

nβ(1 − β). Then,

fr,n(w) = (1 − β)nBr,n

(

βew/σ

1 − β

)

=
r

∑

k=0

(

n

k

)

βk(1 − β)n−kekw/σ ,

which is a truncated moment generating function for a binomial distribution
with mean µ and variance σ. Using the Central Limit Theorem,

fr,n(w) ≈ 1√
2πσ

∫ µ

−∞
e−

1

2(
t−µ

σ )+ tw
σ dt .

Making the substitution s =
t − µ − σw√

2σ
yields

e−µw/σ−w2/2fr,n(w) ≈ 1√
π

∫ −w/
√

2

−∞
e−s2

ds =
1

2
erfc

(

w√
2

)

,

the complementary error function. Thus, given the zero χ of erfc(z) which
is closest to the origin, there must exist a zero z∗ of Br,n(z) for which

z∗ ≈ βe
√

2χ/σ

1 − β
≈ β

1 − β
+

√

2β

(1 − β)3
· χ√

n
,

the desired result. Q.E.D.

The figures 1 and 2 show the zeros, bounding curve and bounding circles for
the cases r = 10, n = 30 and r = 30, n = 90 respectively. Since the ratio r/n
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is the same in both cases, they serve to illustrate both the rate of convergence
of the zeros to the limit curve, and the rate of convergence of the bounding
circles.

Figure 3 shows the zeros for the case r = 40, n = 80, as well as the curve
C1/2 and the points ζj of the proof of Theorem 2.3.

It should be noted at this point that, due to the structure of the coefficients
of these polynomials, direct computation of the zeros for significantly higher
degrees suffers due to numerical instability.

-0.5 0 0.5
-0.5

0

0.5

Figure 1: The bounding curves and zeros for r = 10, n = 30
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We conclude by considering the limiting cases α = 0 and α = 1. The trivial

result for α = 0, given the radius
r

n + 1 − r
of the bounding circle, is that

all zeros converge uniformly to 0 in this case. However, a slight modification
gives a much more interesting result.

Theorem 2.4 Suppose that lim
j→∞

rj = ∞ and that lim
j→∞

rj

nj

= 0.

Then, the limit points of the zeros of

{

Brj ,nj

(

rjz

nj − rj

)}∞

j=1

are precisely the

points of the Szegő curve |ze1−z| = 1, |z| ≤ 1.

Proof. As in the above, we dispense with the subscript j for clarity. With
the normalization, the results of Theorem 2.1 yield that the zeros of the
normalized polynomial above satisfy

1 =
(

r

n − r

)r

K−n
r/n

zr

(

1 + rz
n−r

)n h(z) and |z| ≤ 1 , (2.13)

where

h(z) =
n

∑

k=r+1

(

n

k

)

(

r

n

)k (

1 − r

n

)n−k

zk−r. (2.14)

Noting that
(

r

n − r

)r

K−n
r/n =

(

1 − r

n

)−n

,

we may use standard expansions to convert (2.13) to the form

1 = (ze1−z+g(z))rh(z) , (2.15)

where |g(z)| ≤ 3r

n
uniformly in the unit disk.

Considering points inside and on the curve |ze1−z| = e−3r/n, and noting that
|h(z)| ≤ h(1) < 1 on the unit disk, we may repeat the analysis of (2.8) to
deduce that the zeros are uniformly bounded away from zero by |z| ≥ η > 0.
This implies that we may repeat the bounding process of Lemma 3.3 to
deduce that h1/r(z) → 1 uniformly in η ≤ |z| ≤ 1, defining the roots by a
cut along the positive real axis. This establishes the desired result. Q.E.D.
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-0.5 0 0.5
-0.5

0

0.5

Figure 2: The bounding curves and zeros for r = 30, n = 90

0 0.5 1
-0.4

-0.2

0

0.2

0.4

Figure 3: The curve and zeros for r = 40, n = 80
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Finally, we consider the other limiting case.

Theorem 2.5 Suppose that lim
j→∞

rj = ∞ and lim
j→∞

rj

nj

= 1.

Then, the limit points of the zeros of the polynomials
{

Brj ,nj
(z)

}∞

j=1
are pre-

cisely the points of the line Re z = −1/2.

Proof. As in the previous proofs, we dispense with the subscript j, and write
the equation for the zeros as.

1 =
zr

(1 + z)n
Rr,n(z) .

We again use the bounds of Lemma 3.3 and obtain the desired result, using
the fact that lim

α→1−
Kα = 1. Q.E.D.

3 Technical Results

Here we give the properties and inequalities necessary for the main results,
beginning with the properties of the bounding curves.

Lemma 3.1 Fix 0 < α < 1, and let

Kα = αα(1 − α)1−α (3.1)

and

Cα =

{

z :
|z|α

|1 + z| = Kα, |z| ≤ α

1 − α

}

. (3.2)

Then,

1.
1

2
≤ Kα < 1, lim

α→0+
Kα = 1, lim

α→1−
Kα = 1.

2. Cα is a simple, smooth closed curve, symmetric with respect to the real

axis, starlike with respect to z = 0, which passes through z =
α

1 − α
.

3. The intersection of Cα with the negative real axis occurs at z = −Xα,where
1

2
> Xα ≥ να and ν = 0.278 · · · is the unique positive root of xe1+x = 1.
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4. |z| ≥ Xα for any z ∈ Cα.

Proof.

1. A simple calculation gives the limits. Taking derivatives yields

dKα

dα
= Kα ln

(

α

1 − α

)

,

which shows that Kα is decreasing on
(

0,
1

2

)

and increasing on
(

1

2
, 1

)

.

Calculating K1/2 directly gives the equality.

2. Clearly, the definition shows that Cα is closed and symmetric, and

direct calculation shows that it passes through the point z =
α

1 − α
.

We write z = reiθ, and set

cθ(r) =
|z|α

|1 + z| =
rα

√
1 + 2r cos θ + r2

. (3.3)

Clearly, cθ(0) = 0 and lim
r→∞

cθ(r) = 0.

For θ = 0, we have

c′0(r) =
rα−1

(1 + r)2
[α − (1 − α)r] ,

which shows that the given point is the only positive real value satis-
fying the equation.

For 0 < θ < π, we have

c′θ(r) = rα−1(1 + 2r cos θ + r2)−3/2[(α − 1)r2 + (2α − 1)r cos θ + α] .

Since α − 1 < 0, this derivative has exactly one positive root, which is
a maximum of the function. Further, a simple calculation shows that

cθ

(

α

1 − α

)

> Kα ,
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from which each such ray yields exactly one point on the curve, inside

the bounding circle, |z| =
α

1 − α
. Considering the defining function,

this value of r is clearly decreasing in 0 ≤ θ < π. Hence, the curve is
simple and starlike with respect to 0.

Finally, for θ = π, we have that

c′π(r) =
rα−1

(1 − r)2
[α + (1 − α)r] > 0

for 0 < r < 1, and lim
r→1−

cπ(r) = ∞, which gives exactly one solution in

this range.

That these points are the only solutions within the bounding circle can

be deduced from the fact that z ∈ Cα if and only if
1

z
∈ C ′

1−α.

Examining the function w = K−1
α

zα

1 + z
using arguments in the range

(0, 2π) shows that Cα maps onto the approriate arc of the unit circle
in the w-plane. This mapping is also one-to-one along the arc 0 <
Arg w < 2πα, since w′ 6= 0 on the cut plane. This fact is implicitly
used in the calculation of the rate of convergence.

3. The solution on the negative real axis is −t = −Xα, and satisfies

tα

1 − t
= Kα ,

which we write as

f(t) = tα + αα(1 − α)1−α(t − 1) = 0 . (3.4)

Now, f(t) is increasing, with f(0) < 0, f(Xα) = 0, and

f
(

1

2

)

=
(

1

2

)α

− 1

2
Kα >

1

2
(1 − Kα) > 0 ,

from which Xα <
1

2
follows immediately.
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To show that να < Xα, we consider

f(να) = αα(να − (1 − να)(1 − α)1−α) . (3.5)

and set
g(α) = ln((1 − να)(1 − α)1−α) , (3.6)

which satisfies g(0) = 0, g′(0) = −ν − 1 and

g′′(α) =
(να)2 + (ν − 2)(να) + 1 − ν2

(1 − α)(1 − να)2
> 0 . (3.7)

The last inequality follows since the quadratic in the numerator has
discriminant ν3(5ν−4) < 0, from Lemma 3.1, and so has no real zeros.

Hence,
eg(α) > e−(ν+1)α = eα ln ν = να ,

and thus, by (3.5), f(να) < 0 for 0 < α < 1, as desired. Q.E.D.

We continue with a lemma required for one of the bounds.

Lemma 3.2 Let f(z) =
∞
∑

k=0

bkz
k satisfy

b0 > b1 ≥ 0, bk ≥ 0, b1bk−1 − b0bk ≥ 0 for k ≥ 1 . (3.8)

Then, |f(z)| ≥ b0 − b1

b0 + b1

f(1) for |z| ≤ 1.

Proof. The conditions given imply that {bk} is strictly decreasing, unless

bk = 0 for k ≥ K. Let r =
b1

b0

< 1. Then, the conditions given show that

bk ≤ rbk−1 for k ≥ 1. Hence, f(z) is analytic for |z| <
1

r
, and in particular in

the closed unit disk. Applying the Eneström-Kakaya Theorem to the partial

sums pn(z) =
n

∑

k=0

bkz
k shows that all have their zeros in the region |z| > 1,

hence, by Hurwitz’ Theorem, f(z) cannot have any zeros inside the unit
disk. Thus, applying the Minimum Modulus Theorem, the minimum value
of |f(z)| for |z| ≤ 1 must occur on the boundary.
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For |z| = 1, we have

|(b0 − b1z)f(z)| =
∣

∣

∣b2
0 +

∑∞
k=1(b0bk − b1bk−1)z

k
∣

∣

∣

≥ b2
0 −

∑∞
k=1 |(b1bk−1 − b0bk)|

= b2
0 −

∑∞
k=1 b1bk−1 +

∑∞
k=1 b0bk

= b2
0 − b1f(1) + b0(f(1) − b0)

= (b0 − b1)f(1) .

(3.9)

Hence, we have

|f(z)| ≥ (b0 − b1)f(1)

|b0 − b1z|
≥ (b0 − b1)f(1)

b0 + b1

, (3.10)

the desired result. Q.E.D.

Finally, we have the estimates of the remainder term.

Lemma 3.3 Given integers 1 ≤ r < n, we set β =
r

n
, and consider the

remainder term

Rr,n(z) =
n

∑

k=r+1

(

n

k

)

zk−r . (3.11)

Then, for |z| ≤ β

1 − β
, we have

|Rr,n(z)| ≤ K−n
β

n
∑

k=r+1

(

n

k

)

βk(1 − β)n−k ≤ K−n
β (3.12)

and

|Rr,n(z)| ≥ |z|
r + 1

K−n
β

n
∑

k=r+1

(

n

k

)

βk(1 − β)n−k . (3.13)

Proof. Given that all coefficients are positive, we use the value of Kβ from
(1.4) and the bound on |z| to deduce that

|Rr,n(z)| ≤ Rr,n

(

β

1 − β

)

= K−n
β

n
∑

k=r+1

(

n

k

)

βk(1 − β)n−k .
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The latter sum is clearly bounded by 1, using the binomial expansion. In
fact, using the Central Limit Theorem, it is asymptotically 1/2 for large
r, n − r.

For the lower bound, we consider

g(z) =

(

1 − β

βz

)

Rr,n

(

βz

1 − β

)

=
n−r−1
∑

k=0

bkz
k ,

where

bk =

(

n

k + r + 1

) (

β

1 − β

)k

.

It is simple to show that g(z) satisfies the conditions of Lemma 3.2, that

b0 − b1

b0 + b1

=
2n − r

2r(n − r) + (2n − 3r)
≥ 1

r + 1
,

and finally that

g(1) =

(

1 − β

β

)

K−n
β

n
∑

k=r+1

(

n

k

)

βk(1 − β)n−k .

Rewriting Rr,n(z) in terms of g(z) yields the result. Q.E.D.

We would like to acknowledge Professor Alan Sokal, of New York University,
who suggested this problem, and deduced the form of the limit curves.
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