
FURTHER EXAMPLES WITH MOMENTS OF GAMMA

TYPE

SVANTE JANSON

This is an appendix to [20] containing further examples. See [20] for
notation and for examples and equations referred to below by numbers. See
also the further references in [20, Addendum].

This appendix will probably be extended with more examples in the fu-
ture.

Appendix B. Further examples

Example B.1 (Rayleigh distribution). The Rayleigh distribution R is

the chi distribution χ(2), with density xe−x
2/2. This is a special case of

Example 3.6, and we have

ERs = 2s/2Γ(s/2 + 1), −2 < Re s <∞. (B.1)

We have ρ+ =∞, ρ− = −2, γ = γ′ = 1/2, δ = 1/2, κ = 0, C1 = π1/2.

Example B.2 (Maxwell distribution). The Maxwell distribution M is

the chi distribution χ(3), with density (2/π)1/2x2e−x
2/2. This is a another

special case of Example 3.6, and we have

EM s =
2s/2

Γ(3/2)
Γ
(s

2
+

3

2

)
=

2s/2+1

√
π

Γ
(s

2
+

3

2

)
, −3 < Re s <∞. (B.2)

We have ρ+ =∞, ρ− = −3, γ = γ′ = 1/2, δ = 1, κ = 0, C1 =
√

2.

Example B.3 (Type-2 Beta distribution). The type-2 Beta distribution
[34, Chapter 4] has density

f(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1 + x)−(α+β), x > 0, (B.3)

for two parameters α, β > 0. A variable Xα,β with this distribution has
moments given by

EXs
α,β =

Γ(α+ s)Γ(β − s)
Γ(α)Γ(β)

, −α < Re s < β. (B.4)

A comparison with (3.1) shows that Xα,β
d
= Γα/Γ

′
β, with Γα and Γ′β inde-

pendent. In particular, see Example 3.7, the F distribution is of this type

(up to a constant factor): Fm,n
d
= (n/m)Xm/2,n/2.
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We have ρ+ = β, ρ− = −α, γ = 2, γ′ = 0, δ = α + β − 1, κ = 0,
C1 = 2π/(Γ(α)Γ(β)).

Note that 1 + Xα,β
d
= B−1

β,α, the inverse of a (usual) Beta distributed

variable, see Example 3.4. Thus 1+Xα,β also has moments of Gamma type,
with

E(Xα,β + 1)s = EB−sβ,α =
Γ(α+ β)Γ(β − s)
Γ(β)Γ(α+ β − s)

, Re s < β. (B.5)

Example B.4 (Cauchy distribution). The Cauchy distribution with den-
sity 1/(π(1 + x2)), −∞ < x < ∞, equals the t-distribution in Example 3.8
with n = 1. Hence, if X is a random variable with a Cauchy distribution,

then |X| d
= |T1|

d
= F

1/2
1,1 and |X| has moments of Gamma type

E |X|s =
1

π
Γ
(1

2
+
s

2

)
Γ
(1

2
− s

2

)
=

1

cos(πs/2)
, −1 < Re s < 1. (B.6)

Cf. Example 3.19, where A
d
= 2

π log |X|.
We have ρ+ = 1, ρ− = −1, γ = 1, γ′ = 0, δ = 0, κ = 0, C1 = 2.

Example B.5 (Beta product distribution). Dufresne [11] has shown
that if a, b, c, d are real, then there exists a probability distribution G(a, c; a+
b, c+ d) on (0, 1) with moments

EXs = C
Γ(a+ s)Γ(c+ s)

Γ(a+ b+ s)Γ(c+ d+ s)
(B.7)

(where necessarily C = Γ(a+ b)Γ(c+ d)/(Γ(a)Γ(c))), if and only if either

(i) a > 0, c > 0, b+ d > 0 and min(a+ b, c+ d) > min(a, c), or
(ii) (B.7) degenerates to EXs = CΓ(α + s)/Γ(α + β + s) with α > 0

and β ≥ 0, so X has a Beta distribution or X ≡ 1. (This degenerate
case occurs if b = 0, d = 0, a+ b = c or c+ d = a.)

We have ρ+ = ∞, ρ− = −min{a, c}, γ = γ′ = 0, δ = −b − d, κ = 0,
C1 = C.

The case when all a, b, c, d > 0 is just a product of two independent
Beta variables Ba,bBc,d, see Example 3.4, but there are also other possible
parameter values, for example (2, 5, 8,−1) given in [11].

Moreover, if we allow complex parameters a, b, c, d, there is exactly one
more case [11], viz. a > 0, c > 0, b+ d > 0 (entailing Im(b) = − Im(d)), and
Re(a + b) = Re(c + d). In particular, we may take a = c > 0 and d = b
for any complex b with Re b > 0. However, complex parameters are not
included in the class of distributions studied in [20], see Remark 11.3.

Example B.6 (Density of ISE). The ISE (integrated superbrownian ex-
cursion) is a random probability measure introduced by Aldous [2]. It was
shown in [6] that the ISE a.s. is absolutely continuous, and thus has a (ran-
dom) density fise(x), x ∈ (−∞,∞).

The ISE can be described as the occupation measure of the head of the
Brownian snake, see Le Gall [29, Chapter IV] or Le Gall and Weill [30] for
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details; see also [19, Section 4.1]. Thus fise(x) is the local time of the head
of the Brownian snake. Moreover, fise(x) arises for example as a limit of the
vertical profile of random trees, see [33], [5], [6], [8] and [10].

The distribution of fise(x) for a fixed x is given by a rather compli-

cated formula, see [5] and [6]; in the case x = 0 it simplifies and fise(0)
d
=

21/43−1S
−1/2
2/3 , where S2/3 is a positive 2/3-stable variable with Laplace trans-

form E e−tS2/3 = e−t
2/3

, see Example 3.10. Thus fise(0) has moments of
Gamma type with

E fise(0)s = 2s/43−s
Γ(3s/4 + 1)

Γ(s/2 + 1)
, −4/3 < Re s <∞, (B.8)

see [5] and [6]. We have ρ+ = ∞, ρ− = −4/3, γ = γ′ = 1/4, δ = 0,

κ = −3
4 log 2− 1

4 log 3, C1 =
√

3/2.

Example B.7 (Average ISE). The ISE in Example B.6 is a random prob-
ability measure µise; taking the expectation we obtain a deterministic prob-
ability measure Eµise, which is the distribution of a random variable X that
can be seen as a random point given by a random ISE. (This is, for example,
the limit distribution of the label of a random node in a random tree under
suitable assumptions and normalizations.) X has a symmetric distribution,
and |X| has moments of Gamma type with

E |X|s =
23s/4

√
π

Γ
(s

2
+

1

2

)
Γ
(s

4
+ 1
)
, −1 < Re s <∞, (B.9)

see [2] and [6]. We have ρ+ = ∞, ρ− = −1, γ = γ′ = 3/4, δ = 1/2,
κ = −1

4 log 2, C1 =
√
π.

Example B.8 (Blocks in a Stirling permutation). Let k ≥ 2 be a fixed
integer. It is shown in [22] that the number of blocks in a random k-Stirling
permutation of order n (see [22] for definitions) after suitable normalization
converges in distribution as n→∞ to a random variable ζ with moments
of Gamma type given by

E ζs = (s+ 1)!
Γ(1 + 1

k )

Γ(1 + s+1
k )

= Γ
(

1 +
1

k

) Γ(s+ 2)

Γ
(
s
k + k+1

k

) , −2 < Re s <∞.

(B.10)
As explained in [22], this is actually a special case of (9.1).

We have ρ+ = ∞, ρ− = −2, γ = γ′ = δ = (k − 1)/k, κ = 1
k log k,

C1 = k(k+2)/2kΓ((k + 1)/k).

Example B.9 (Distances in a sphere). Let X1 and X2 be two indepen-
dent random points, uniformly distributed in an n-dimensional ball of radius
a, and let D := |X1 − X2| be the distance between them. (Here n ≥ 1.)
Note that 0 ≤ D ≤ 2a, so D/2a ∈ [0, 1]. Hammersley [15] showed that the
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density function of D/2a is

fn(λ) =
2nΓ(n+ 1)λn−1

Γ
(

1
2n+ 1

2

)2 ∫ 1

λ
(1− z2)(n−1)/2 dz (B.11)

and as a consequence, for Re s > −n,

E(D/2a)s =
nΓ(n+ 1)

Γ
(

1
2n+ 1

2

) · Γ
(

1
2n+ 1

2s+ 1
2

)
(n+ s)Γ

(
n+ 1

2s+ 1
) (B.12)

and, equivalently,

EDs = C(2a)s
Γ(s+ n)Γ

(
1
2s+ 1

2n+ 1
2

)
Γ(s+ n+ 1)Γ

(
1
2s+ n+ 1

)
= C ′as

Γ(s+ n)

Γ
(

1
2s+ 1

2n+ 1
)
Γ
(

1
2s+ n+ 1

) (B.13)

with C = nΓ(n + 1)/Γ
(

1
2n + 1

2

)
and C ′ = π1/22−nC. (Hammersley [15]

did not specify the range of s, and presumably intended only positive and
perhaps integer values, but the formula follows by (B.11) for any s with
Re s > n. Alternatively, the result extends from positive s by Theorem 2.1.)
D thus has moments of Gamma type, with ρ+ = +∞, ρ− = −n, γ =

γ′ = 0, δ = −(n+ 3)/2, κ = log(2a), C1 = 2(n+1)/2C.
It follows from (B.13) that if Bn,1 and B(n+1)/2,(n+1)/2 are independent

Beta distributed variables, then E(D/2a)s = EBs
n,1B

s/2
(n+1)/2,(n+1)/2, see Ex-

ample 3.4, and thus

D
d
= 2aBn,1B

1/2
(n+1)/2,(n+1)/2. (B.14)

Cf. Remark 1.5. Note further that Bn,1
d
= U1/n where U ∼ U(0, 1) is

uniform, see Example 3.3, so we also have D
d
= 2aU1/nB

1/2
(n+1)/2,(n+1)/2.

Taking n = 2 and s = 1 in (B.13) we see that the average distance
between two random points in a circular disc of radius a is 128

45πa; this is an
old problem.

Further examples for a ball of diameter 1 (so a = 1/2): if n = 1, then
ED = 1/3 and ED2 = 1/6; if n = 2, then ED = 64/45π and ED2 = 1/4;
if n = 3, then ED = 18/35 and ED2 = 3/10.

For s = 2, ED2 = 2a2n/(n+ 2), as is easily seen directly.

Example B.10 (Preferential attachment random graph). Peköz, Röllin
and Ross [37] have, motivated by the study of vertex degrees in a prefer-
ential attachment random graph, studied a special case of the triangular
urn in Section 9 and obtained further results. (They obtain the random
variable Kα below, for α ∈ {1

2 , 1,
3
2 , 2, . . . }, as the limit in distribution, after

normalization, of the degree of a fixed vertex in one of two slightly different
random graphs.)
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In our notation, let Wα, for α ≥ 1/2, be the (limit) variable in Section
9.1 with a = 2, c = d = 1, w0 = 1 and b = 2α− 1. Then (9.1) yields

EW s
α = Γ(α)

Γ(s+ 1)

Γ(s/2 + α)
, Re s > −1. (B.15)

(Theorem 2.1 implies that the condition α ≥ 1/2 also is necessary for the
existence of such a random variable: α ∈ {0,−1,−2, . . . } is clearly impossi-
ble, since then Γ(α) =∞, and otherwise the function in (B.15) har ρ− ≤ −1
and ρ+ =∞, and if α < 1/2 it is 0 at s = −2α ∈ (ρ−, ρ+), which contradicts
Theorem 2.1.)

Peköz, Röllin and Ross [37] choose a different normalisation, so we define

Kα := (α/2)1/2Wα and obtain

EKs
α =

(α
2

)s/2 Γ(α)Γ(s+ 1)

Γ(s/2 + α)
, Re s > −1. (B.16)

In particular, Kα satifies the normalisation EK2
α = 1.

Kα has ρ+ = ∞, ρ− = −1 (except when α = 1/2; then ρ− = −2),

γ = γ′ = 1/2, δ = 1− α, κ = 1
2 logα, C1 = 2α−1/2Γ(α).

Peköz, Röllin and Ross [37] show, among other things, that the random
variable Kα has the density function

κα(s) = Γ(α)

√
2

απ
e−x

2/2αU
(
α− 1,

1

2
;
x2

2α

)
, x > 0, (B.17)

where U(a, b; z) denotes the confluent hypergeometric function of thesecond
kind; see e.g. [1, Chapter 13] or [28] (where it is denoted Ψ). This is a con-
siderably simpler formula than the power series expansion given in Theorem
9.1. It would be interesting to know whether the density in Theorem 9.1 can
be expressed using hypergeometric functions also for other triangular urns.

Note the special case α = 1/2; then (B.16) simplifies by the duplication
formula for the Gamma function to

EKs
1/2 = Γ(s/2 + 1), Re s > −2. (B.18)

showing that

K1/2
d
= T 1/2 d

= 2−1/2R, (B.19)

with T ∼ Exp(1), see Example 3.2, and R ∼ χ(2) (the Rayleigh distribu-
tion), see Examples 3.6 and B.1. The density function of K1/2 is thus

κ1/2(x) = 2xe−x
2
, x > 0. (B.20)

Example B.11 (The maximum of i.i.d. exponentials). Let (Ti)
∞
i=1

be i.i.d. exponential random variables with Ti ∼ Exp(1), and let Mn :=
max1≤i≤n Ti. Then e−Ti ∼ U(0, 1), and thus, since e−Mn := min1≤i≤n e

−Ti ,

P
(
e−Mn > x

)
= P

(
e−T1 > x

)n
= (1− x)n, 0 < x < 1, (B.21)

so e−Mn has the Beta distribution B(1, n).
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Hence, by Example 3.4,

E esMn = EB−s1,n =
Γ(n+ 1)Γ(1− s)

Γ(n+ 1− s)
, Re s < 1. (B.22)

Hence Mn has moment generating function of Gamma type. The special
case n = 1 gives M1 = T1 ∼ Exp(1) treated in Example 3.16.
Mn has ρ+ = 1, ρ− = −∞, γ = γ′ = 0, δ = −n, κ = 0, C1 = n!, cf.

Example 3.4 and Remark 2.8.
For an alternative proof of (B.22), note that if T(1) < · · · < T(n) = Mn

are T1, . . . , Tn arranged in increasing order, then it is a standard observa-
tion (e.g. by regarding T1, . . . , Tn as the first points in independent Poisson
processes) that T(1), T(2)−T(1), . . . T(n)−T(n−1) are independent exponential
variables with T(k)−T(k−1) ∼ Exp(1/(n−k+1)) (wih T(0) := 0), and hence,
for Re s < 1

E esMn =

n∏
k=1

1

1− s/(n− k + 1)
=

n∏
j=1

1

1− s/j
=

n∏
j=1

j

j − s

= Γ(n+ 1)
Γ(1− s)

Γ(n+ 1− s)
. (B.23)

Note further that, as n→∞,

E es(Mn−logn) = n−s
Γ(n+ 1)

Γ(n+ 1− s)
Γ(1− s)→ Γ(1− s), Re s < 1,

(B.24)

and thus

Mn − log n
d−→W, (B.25)

where W has the Gumbel distribution P(W ≤ x) = e−e
−x

which has moment
generating function E esW = Γ(1 − s), Re s < 1, see Example 3.19. Note
that it is also easy to prove (B.25) directly, since, for x ∈ R and n large
enough,

P(Mn − log n ≤ x) = P(T1 ≤ log n+ x)n =

(
1− e−x

n

)n
→ e−e

−x
. (B.26)

The decomposition

Mn =

n∑
k=1

(
T(k) − T(k−1)

) d
=

n∑
k=1

1

n− k + 1
Tk

d
=

n∑
j=1

1

j
Tj (B.27)

shows also that

EMn =
n∑
j=1

1

j
, (B.28)

the n:th harmonic number Hn. We have EW = −Γ′(1) = γ, Euler’s gamma,
and thus, since (B.24) implies convergence of all moments,

Hn − log n = E(Mn − log n)→ EW = γ, (B.29)



FURTHER EXAMPLES WITH MOMENTS OF GAMMA TYPE 7

a well-known result by Euler [12].
Moreover, it follows from (B.24), or from (B.25) and (B.29), that

Mn − EMn
d−→W − EW = W − γ, (B.30)

and thus by (B.27)
∞∑
j=1

1

j
(Tj − 1)

d
= W − γ, (B.31)

where the infinite sum converges in L2 and thus a.s. [23, Lemma 4.16].

Example B.12 (The largest values of i.i.d. exponentials). Generaliz-

ing Example B.11, let M
(m)
n be the m:th largest of the n i.i.d. exponential

random variables T1, . . . , Tn ∼ Exp(1); here 1 ≤ m ≤ n. (The special case
m = 1 gives Mn treated in Example B.11.)

Let Ui := e−Ti ∼ U(0, 1). Then e−M
(m)
n is the m:th smallest of the i.i.d.

uniform U1, . . . , Un, and thus e−M
(m)
n has the Beta distribution B(m,n −

m+ 1).
Hence, by Example 3.4,

E esM
(m)
n = EB−sm,n−m+1 =

Γ(n+ 1)Γ(m− s)
Γ(m)Γ(n+ 1− s)

, Re s < m. (B.32)

Thus M
(m)
n has moment generating function of Gamma type.

M
(m)
n has ρ+ = m, ρ− = −∞, γ = γ′ = 0, δ = −(n − m + 1), κ = 0,

C1 = n!/(m− 1)!, cf. Example 3.4 and Remark 2.8.
Alternatively, (B.32) can be obtained by the argument in (B.23). More-

over, by the lack of memory for the exponential distribution, Mn −M (m)
n is

independent of M
(m)
n and has the same distribution as Mm−1; thus Mn =

M
(m)
n +M ′m−1, where M ′m−1 is a copy of Mm−1 that is independent of M

(m)
n ;

this yields E esMn = E esM
(m)
n E esMm−1 , and (B.32) follows from (B.22).

As n→∞,

E es(M
(m)
n −logn) = n−s

Γ(n+ 1)

Γ(n+ 1− s)
· Γ(m− s)

Γ(m)
→ Γ(m− s)

Γ(m)
, Re s < m,

(B.33)

and thus

M (m)
n − log n

d−→W (m), (B.34)

where W (m) has the moment generating function of Gamma type

E esW
(m)

=
Γ(m− s)

Γ(m)
, Re s < m. (B.35)

Comparing with Example 3.1, we see that E esW (m)
= EΓ−sm = E e−s log Γm

and thus W (m) d
= − log Γm, where Γm has a Gamma distribution Γ(m).

W (m) has ρ+ = m, ρ− = −∞, γ = 1, γ′ = −1, δ = m − 1/2, κ = 0,
C1 =

√
2π/(m− 1)!, cf. Example 3.1 and Remark 2.8.



8 SVANTE JANSON

As in (B.27), there is a decomposition

M (m)
n =

n−m+1∑
k=1

(
T(k) − T(k−1)

) d
=

n−m+1∑
k=1

1

n− k + 1
Tk

d
=

n∑
j=m

1

j
Tj , (B.36)

which shows that

EMn =
n∑

j=m

1

j
= Hn −Hm−1. (B.37)

Since (B.33) implies convergence of all moments, this yields

EW (m) = lim
n→∞

E(M (m)
n − log n) = lim

n→∞

(
Hn −Hm−1 − log n

)
= γ −Hm−1.

(B.38)
Moreover, (B.36), (B.34) and (B.38) imply

∞∑
j=m

1

j
(Tj − 1)

d
= W (m) − EW (m) d

= W (m) − γ +Hm−1, (B.39)

where the infinite sum converges in L2 and thus a.s. [23, Lemma 4.16].
We can also study the joint distribution for several m. In particular,

(B.36) holds jointly for all m ≤ n, and thus (B.34) and (B.39) hold jointly
for all m.

Moreover, the conditional distribution of M
(m+1)
n given M

(1)
n , . . . ,M

(m)
n

equals the distribution of the maximum of n−m i.i.d. Exp(1) random vari-

ables, conditioned on this maximum being at most M
(m)
n . In particular,

M
(1)
n ,M

(2)
n , . . . ,M

(n)
n form a Markov chain. It is easy to see that this holds

also in the limit as n→∞. Thus W (1),W (2), . . . is a Markov chain, and the
conditional distribution of W (m+1) given W (1), . . . ,W (m) equals the distri-
bution of (W | W ≤ W (m)), where W is a Gumbel variabel independent of

W (m). Explicitly, for x ≤ y,

P
(
W (m+1) ≤ x |W (m) = y

)
= P(W ≤ x |W ≤ y) = exp

(
e−y − e−x

)
.

(B.40)
Note that this does not depend on m, so the Markov chain is homogeneous.

(The chain M
(1)
n , . . . ,M

(n)
n is not.)

This Markov chain was used by Fristedt [14] to describe the asymptotic
distribution of sizes the largest parts in a random partition (after suitable
normalization); the largest parts have the same asymptotic distribution as
the largest in a sequence of i.i.d. exponential random variables.

The Markov chain becomes simpler if we transform to e−W
(m)

. The con-

ditional distribution of e−M
(m+1)
n given e−M

(1)
n , . . . , e−M

(m)
n equals the distri-

bution of the minimum e−M
′
n−m of n−m independent uniform random vari-

ables conditioned on this minimum being at least e−M
(m)
n ; in the limit it fol-

lows that the conditional distribution of e−W
(m+1)

given e−W
(1)
, . . . , e−W

(m)

equals the distribution of
(
e−W

′ | e−W ′ ≥ e−W
(m))

, where W ′ is a copy
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of W independent of W (m). Since e−W
′ d

= e−W ∼ Exp(1), it follows that,

conditionally given W (1), . . . ,W (m),

e−W
(m+1) d

=
(
T | T ≥ e−W (m)) d

= T + e−W
(m)
, (B.41)

where T ∼ Exp(1) is independent of W (m). Consequently, the sequence

e−W
(1)
, e−W

(2)
, . . . has the same distribution as the sequence of partial sums

of the i.i.d. Exp(1) sequence T1, T2, . . . :(
e−W

(1)
, e−W

(2)
, . . .

) d
=
(
T1, T1 + T2, . . .

)
. (B.42)

In particular, this shows again that e−W
(m) ∼ Γ(m) and thus W (m) d

=
− log Γm.

The same asymptotic distributions W (m) appear for the largest variables
in many other situations, see e.g. [27, Sections 2.2–2.3].

Example B.13 (Logistic distribution). Let W̃ have the logistic distri-
bution with distribution function ex/(ex + 1), or equivalently

P(W̃ > x) =
1

ex + 1
, −∞ < x <∞. (B.43)

By differentiation, the density function is

ex

(ex + 1)2
=

1

(ex/2 + e−x/2)2
=

1

4 cosh2(x/2)
. (B.44)

If P̃1 has the shifted Pareto distribution with density (x + 1)−2, x > 0, see

Example 3.14, then P(P̃1 > ex) = (ex + 1)−1 = P(W̃ > x) and thus

W̃
d
= log P̃1. (B.45)

As a consequence, by Example 3.14, W̃ has moment generating function of
Gamma type with

E esW̃ = E P̃ s1 = Γ(1− s)Γ(1 + s) =
πs

sinπs
, −1 < Re s < 1. (B.46)

Equivalently, W̃ has the characteristic function

E eitW̃ = Γ(1− it)Γ(1 + it) =
πt

sinhπt
. (B.47)

We have ρ+ = 1, ρ− = −1, γ = 2, γ′ = 0, δ = 1, κ = 0, C1 = 2π.
One way the logistic distribution appears is as the symmetrization of the

Gumbel distribution. Let W and W ′ be i.i.d. with the Gumbel distribution
(3.26), see Examples 3.19, and consider W −W ′, which by (3.35) has the
moment generating function, for −1 < Re s < 1,

E es(W−W
′) = E esW E e−sW = Γ(1− s)Γ(1 + s) = E esW̃ . (B.48)

Hence,

W̃
d
= W −W ′. (B.49)
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By (B.49) and (B.31) we further have the representation

W̃
d
=
∑
j 6=0

1

j
(Tj − 1) =

∞∑
j=1

1

j
(Tj − T−j) (B.50)

where Tj , j ∈ Z, are i.i.d. with the distribution Exp(1). Since Tj − T−j has
the moment generating function

E es(Tj−T−j) = E esT1 E e−sT1 =
1

1− s
1

1 + s
=

1

1− s2
, −1 < Re s < 1,

(B.51)
(B.50) is equivalent to

πs

sinπs
=
∞∏
j=1

1

1− s2/j2
, (B.52)

which is a version of the product formula for sin [1, 4.3.89]

sin z = z

∞∏
j=1

(
1− z2

j2π2

)
. (B.53)

The random variable with the characteristic function t/ sinh t, and thus

the distribution of W̃/π, is studied by Pitman and Yor [38] (there denoted

Ŝ1); among other things, they give the following construction: Let B(t)
be a standard Brownian motion and let T be the stopping time when an
independent standard 3-dimensional Brownian motion hits the unit sphere
in R3. Then

B(T )
d
= W̃/π. (B.54)

The random variable W̃/π (or W̃ , depending on the choice of normaliza-
tion) appears also as the asymptotic distribution of the rank of a random
partition, see [9].

Example B.14 (Discriminants and Selberg’s integral formula). For
a vector (x1, . . . , xn) of real (or complex) numbers, define

∆(x1, . . . , xn) :=
∏

1≤i<j≤n
(xj − xi). (B.55)

Thus ∆(x1, . . . , xn)2 is the discriminant of the monic polynomial with roots
x1, . . . , xn. Furthermore, ∆(x1, . . . , xn) is the well-known value of the Van-

dermonde determinant det
(
xj−1
i

)n
i,j=1

(which apparently was never consid-

ered by Vandermonde, see [35]).
Selberg [39] proved the following integral formula, for n ≥ 2 and Reα > 0,

Reβ > 0, Re s > max{−1/n,−Reα/(n− 1),−Reβ/(n− 1)},∫ 1

0
· · ·
∫ 1

0
|∆(x1, . . . , xn)|2s

n∏
i=1

xα−1
i (1− xi)β−1 dx1 · · · dxn
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=
n∏
j=1

Γ
(
α+ (j − 1)s

)
Γ
(
β + (j − 1)s)Γ(1 + js

)
Γ
(
α+ β + (n+ j − 2)s

)
Γ(1 + s)

. (B.56)

(For applications of this formula, see e.g. [13] and [3].) This leads to the
following probabilistic interpretaions, see Lu and Richards [32].

For real α, β > 0, let X1, . . . , Xn be i.i.d. random variables with the
Beta distribution B(α, β); then (B.56) can equivalently be written as the
expectation

E |∆(X1, . . . , Xn)|2s

=
n∏
j=1

Γ(α+ β)Γ
(
α+ (j − 1)s

)
Γ
(
β + (j − 1)s

)
Γ(1 + js)

Γ(α)Γ(β)Γ
(
α+ β + (n+ j − 2)s

)
Γ(1 + s)

. (B.57)

for Re s > max{−1/n,−Reα/(n − 1),−Reβ/(n − 1)}. This shows that
∆(X1, . . . , Xn)2 has moments of Gamma type. We have γ = γ′ = 0, δ =
1 − α − β − n/2, ρ+ = ∞ and ρ− = max{−1/n,−α/(n − 1),−β/(n − 1)}
(for n ≥ 2).

Equivalently, (B.57) shows that the absolute value |∆(X1, . . . , Xn)| has
moments of Gamma type. In this case, see Remark 2.8, γ = γ′ = 0, δ =
1− α− β − n/2, ρ+ =∞ and ρ− = 2 max{−1/n,−α/(n− 1),−β/(n− 1)}
(for n ≥ 2).

Note that for n = 1, ∆(X1) = 1 is trivial, so the simplest non-trivial case
is n = 2, when (B.57) says that if X1, X2 ∼ B(α, β) are independent, then

E |X1 −X2|2s =
Γ(α+ β)2

Γ(α)Γ(β)
· Γ(α+ s)Γ(β + s)Γ(1 + 2s)

Γ(α+ β + s)Γ(α+ β + 2s)Γ(1 + s)
. (B.58)

We obtain further results by taking suitable limits above, cf. [3]. First,

note that if Xj ∼ B(α, β), then βXj
d−→ Yj ∼ Γ(α) as β →∞. (For example

by the method of moments, see (3.6) and (3.1).) By taking limits in (B.57),
using the facts that

∆(βX1, . . . , βXn) = βn(n−1)/2∆(X1, . . . , Xn) (B.59)

and

β−a
Γ(β + a)

Γ(β)
→ 1 as β →∞, for every fixed a, (B.60)

it follows that if Y1, . . . , Yn ∼ Γ(α) are i.i.d., then

E |∆(Y1, . . . , Yn)|2s =
n∏
j=2

Γ
(
α+ (j − 1)s

)
Γ(1 + js)

Γ(α)Γ(1 + s)
(B.61)

for Re s > max{−1/n,−α/(n − 1)}. Thus ∆(Y1, . . . , Yn)2 has moments of
Gamma type, with γ = γ′ = n2 − n, δ = (n − 1)(α − 1/2), ρ+ = ∞ and
ρ− = max{−1/n,−α/(n− 1)}. In particular, n = 2 yields

E |Y1 − Y2|2s =
Γ
(
α+ s

)
Γ(1 + 2s)

Γ(α)Γ(1 + s)
. (B.62)
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(For α = 1, when Y1, Y2 ∼ Exp(1), this is an immediate consequence of
the fact that |Y1 − Y2| ∼ Exp(1) by the lack of memory in the exponential
distribution.)

Secondly, taking β = α, if Xj ∼ B(α, α), then
√

8α(Xj − 1/2)
d−→ Zj ∼

N(0, 1) as α→∞. By taking limits in (B.57), using (B.59)–(B.60) and the
translation invariance

∆(X1 + a, . . . ,Xn + a) = ∆(X1, . . . , Xn), (B.63)

it follows that if Z1, . . . , Zn ∼ N(0, 1) are i.i.d., then

E |∆(Z1, . . . , Zn)|2s =
n∏
j=2

Γ(1 + js)

Γ(1 + s)
, Re s > −1/n. (B.64)

(This also follows by letting α → ∞ in (B.61), using (Yα − α)/
√
α

d−→
N(0, 1), which for integer α is just the central limit theorem for Γ(1) =
Exp(1).) Thus ∆(Z1, . . . , Zn)2 has moments of Gamma type, with γ = γ′ =
n(n− 1)/2, δ = 0, ρ+ =∞ and ρ− = −1. Using the multiplication formula
(A.5) for the Gamma function, (B.64) can be rewritten as

E |∆(Z1, . . . , Zn)|2s = (2π)−n(n−1)/4(n!)1/2
n∏
j=1

jjs
n∏
j=2

j−1∏
i=1

Γ(s+ i/j)

=
( n∏
j=1

jj
)s ∏

1≤i<j≤n

Γ(s+ i/j)

Γ(i/j)
, Re s > −1/n. (B.65)

The special case n = 2 now just yields

E |Z1 − Z2|2s =
Γ(1 + 2s)

Γ(1 + s)
=

22s

√
π

Γ(s+ 1/2), Re s > −1/2, (B.66)

which is immediate because Z1 − Z2 ∼ N(0, 2), see (3.9).
The formulas for the moment imply some factorization formulas. Thus,

a comparison between (B.64) and Example 3.10 shows the equality in dis-
tribution

∆(Z1, . . . , Zn)2 d
=

n∏
j=2

S−1
1/j , (B.67)

where S1/j is stable with index 1/j, and the variables are independent.
Similarly, (B.65) and (3.1) show the alternative factorization [32]

∆(Z1, . . . , Zn)2 d
=

n∏
j=1

jj
∏

1≤i<j≤n
Gij (B.68)

with Gij ∼ Γ(i/j) independent.
Similarly, (B.61), (B.64) and (3.1) yield

∆(Y1, . . . , Yn)2 d
= ∆(Z1, . . . , Zn)2

n∏
j=2

V j−1
j , (B.69)
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where Vj ∼ Γ(α) are independent of each other and Z1, . . . , Zn; by (B.68)
this leads to a factorization of ∆(Y1, . . . , Yn)2 into independent Gamma vari-
ables. Another such factorization is given by [32], where also similar factor-
izations of ∆(X1, . . . , Xn)2 with X ∼ B(α, β) are given for n ≤ 4.

Example B.15 (Symmetric stable variables). Consider a symmetric

stable random variable S̄α with characteristic function ϕ(t) := E eitS̄α =

e−|t|
α
, where 0 < α ≤ 2. (With this normalization, the Lévy measure has

density c|x|−α−1, where c =
(
−2Γ(−α) cos πα2

)−1
, see e.g. [21, Theorem

3.3].)
The (locally integrable function) |x|s−1, where 0 < Re s < 1, has the

Fourier transform, in distribution sense, cs|x|−s for a constant cs given by

cs = 2s
√
π

Γ
(
s
2

)
Γ
(

1−s
2

) , (B.70)

see e.g. [40, Theorem IV.4.1]; this means that if ψ is in the Schwartz class
S, then ∫ ∞

−∞
|t|s−1ψ̂(t) dt = cs

∫ ∞
−∞
|x|−sψ(x) dx, (B.71)

where we define the Fourier transform on S by ψ̂(x) :=
∫∞
−∞ e

ixtψ(t) dt.

(The fact that the Fourier transform is of this type follows by a simple
homogeneity argument, and the value of cs then can be found by considering
the special case α = 2 below.)

Since ϕ(t)→ 0 rapidly as |t| → ∞, S̄α has a bounded and infinitely differ-
entiable density function f(x); however, f is not in S. Thus we regularize.
Let η(x) be symmetric and infinitely differentiable with compact support and
η̂(0) =

∫∞
−∞ η(x) dx = 1, and define, for ε > 0, ηε(x) := ε−1η(x/ε), which

has the Fourier transform η̂ε(x) = η̂(εx). We then consider the product

fε(x) := f(x)η̂ε(x) = f(x)η̂(εx), whose Fourier transform is f̂ ∗ ηε = ϕ ∗ ηε;
the function fε belongs to S, and by applying (B.71) with ψ = fε and then
letting ε → 0, it follows that (B.71) holds with ψ(x) = f(x) too, and thus,
using (B.70)

E |S̄α|−s =

∫ ∞
−∞
|x|−sf(x) dx = c−1

s

∫ ∞
−∞
|t|s−1ϕ(t) dt

= 2c−1
s

∫ ∞
0

ts−1e−t
α

dt = 2c−1
s α−1

∫ ∞
0

us/α−1e−u du

= 2c−1
s α−1Γ(s/α) = 21−sπ−1/2 Γ

(
1−s

2

)
Γ
(
s
α

)
αΓ
(
s
2

) ,

= 2−sπ−1/2 Γ
(

1−s
2

)
Γ
(
1 + s

α

)
Γ
(
1 + s

2

) . (B.72)
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We have proved this for 0 < Re s < 1, but by analytic continuation, it
extends to −α < Re s < 1, and thus

E |S̄α|s = 2s
Γ
(

1+s
2

)
Γ
(
1− s

α

)
√
π Γ
(
1− s

2

) , −1 < Re s < α. (B.73)

Hence, S̄α has moments of Gamma type. We have ρ+ = α (except when
α = 2; then ρ+ = ∞) and ρ− = −1; furthermore, γ = 1/α, γ′ = 1 − 1/α,

δ = 0, κ = α−1 logα, C1 =
√

4/α.
In the special case α = 2, we have (with our choice of normalization)

S̄α
d
=
√

2N with N ∼ N(0, 1), and thus (B.73) is equivalent to (3.9). (As
said above, this yields a method to calculate cs.)

In the special case α = 1, S̄1 has a Cauchy distribution with density
1/(π(1 + x2)), see Example B.4. In this case (B.73) yields, using (A.3) and
(A.6),

E |S̄1|s = 2s
Γ
(

1+s
2

)
Γ
(
1− s

)
√
π Γ
(
1− s

2

) =
Γ
(

1+s
2

)
Γ
(

1−s
2

)
π

=
1

cos πs2
, −1 < Re s < 1.

(B.74)

This is the same as (B.6), and also as (3.13) with n = 1. Indeed, it is

well-known that T1
d
= S̄1, i.e., T1 has a Cauchy distribution.

Example B.16 (Products of Cauchy variables). Let X1, X2, . . . be
i.i.d. random variables with the Cauchy distribution in Example B.4, and

let Πk :=
∏k

1 Xi be the product of k such variables. (Note that Xi
d
= X−1

i ;

thus e.g. also Π2
d
= X1/X2.) It follows from Example B.4 that |Πk| has

moments of Gamma type

E |Πk|s =
1

πk
Γ
(1

2
+
s

2

)k
Γ
(1

2
− s

2

)k
=

1

cosk(πs/2)
, −1 < Re s < 1.

(B.75)
We have ρ+ = 1, ρ− = −1, γ = k, γ′ = 0, δ = 0, κ = 0, C1 = 2k.

The density of Π1 = X1 is 1/(π(1 + x2)), and the density of Π2 = X1X2

is
2 log |x|
π2(x2 − 1)

, −∞ < x <∞, (B.76)

see e.g. Pace [36]. Formulas for the density of Πk for any integer k ≥ 1 are
given by Bourgade, Fujita and Yor [4].

Example B.17 (Generalized hyperbolic secant distribution). The
distribution of the Lévy stochastic area A in Example 3.20 is also known
as the hyperbolic secant distribution, since both the density function and
the characteristic function are given by the hyperbolic secant 1/ cosh (up to
normalization constants). This distribution is infinitely divisible, and thus,

there exists a Lévy process Ĉt, t ≥ 0, such that Ĉ1 = A; consequently Ĉt
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has the characteristic function, cf. (3.36),

E eisĈt =
1

cosht s
, s ∈ R. (B.77)

The density is

2t−2

πΓ(t)

∣∣∣∣Γ( t+ ix

2

)∣∣∣∣2 , x ∈ R, (B.78)

see e.g. Pitman and Yor [38] where many further results are given.

When t = k is an integer, Ĉk is the sum of k independent copies of A, so
by Example 3.20, Ĉk has moment generating function of Gamma type, with

E esĈk = π−kΓ
(1

2
+
s

π

)k
Γ
(1

2
− s

π

)k
=

1

cosk s
, |Re s| < π

2
; (B.79)

we have ρ± = ±π/2, γ = 2k/π, γ′ = 0, δ = 0, κ = 0, C1 = 2k. On the

other hand, if t is not an integer, then Ĉt does not have moment generating
function of Gamma type, since the characteristic function (B.77) then cannot
be extended to a meromorphic function in C.

The density (B.78) is for t = 1

1

2 cosh πx
2

(B.80)

as stated in Example 3.20, and for t = 2
x

2 sinh πx
2

. (B.81)

Similarly, for every integer t = k ≥ 1, the density (B.78) is a polynomial in
x divided by cosh(πx/2) (k odd) or sinh(πx/2) (k even); see Harkness and
Harkness [16] for explicit formulas. See also [17] for an application.

Note that Ĉk
d
= 2

π log |Πk|, where Πk is the product of Cauchy variables in
Example B.16; this is an immediate consequence of the case k = 1 mentioned
in Example B.4.

As a curiosity, we remark also that the distribution of Ĉ2 is related to the
logistic distribution in Example B.13 in the sense that the density function
of one distribution equals, up to constant factors and a rescaling, the char-
acteristic function of the other, see (B.44), (B.47), (B.77), (B.81). In other
words, the two density functions are essentially the Fourier transforms of
each other.

Example B.18 (Lamperti variables). Let 0 < α < 1 and consider
Lα := Sα/S

′
α where Sα, S

′
α are two independent copies of the positive stable

variable in Example 3.10; thus E e−tSα = E e−tS′α = e−t
α
, t > 0. By (3.16),

Lα has moments of Gamma type, using (A.6),

ELsα = ESsα ES−sα =
Γ(1− s/α)Γ(1 + s/α)

Γ(1− s)Γ(1 + s)

=
Γ(s/α)Γ(1− s/α)

αΓ(s)Γ(1− s)
=

sin(πs)

α sin(πs/α)
, −α < Re s < α. (B.82)
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We have ρ± = ±α, γ = 2α−1 − 2, γ′ = δ = κ = 0, C1 = 1/α, cf. Remarks
2.8 and 2.10.

It is somewhat simpler to consider the power Lαα = M ′α/Mα where Mα,M
′
α

are i.i.d. with the Mittag-Leffler distribution in Example 3.11. By (B.82),
cf. (3.17),

E(Lαα)s =
Γ(1− s)Γ(1 + s)

Γ(1− αs)Γ(1 + αs)
=

sin(παs)

α sin(πs)
, −1 < Re s < 1. (B.83)

We now have ρ± = ±1, γ = 2− 2α, γ′ = δ = κ = 0, C1 = 1/α, cf. Remark
2.9.

The density of Lαα can be found by Fourier inversion, see e.g. [41, p. 445],
and can be written as

sin(πα)

πα

1

x2 + 2 cos(πα)x+ 1
, x > 0. (B.84)

Consequently, the density of Lα is

sin(πα)

π

xα−1

x2α + 2 cos(πα)xα + 1
, x > 0. (B.85)

The random variable Lα was studied (at least implicitly) by Lamperti
[26], and is therefore called a Lamperti variable by James [18], where also
further references are given.

In the special case α = 1/2, (B.83) simplifies to 1/ cos(πs/2), so L
1/2
1/2 is

the absolute value of a Cauchy variable, see Example B.4, which also follows
directly from (B.84).

Kotz and Ostrovskii [24] defined, for 0 < α < β ≤ 2, a random variable

Yα,β =
(
L
α/β
α/β

)1/α
= L

1/β
α/β. (The defined Yα,β by giving its density function;

that the definitions are equivalent follows from (B.84).) By (B.82) or (B.83),
Yα,β has moments of Gamma type

EY s
α,β = ELs/βα/β =

Γ(1 + s/α)Γ(1− s/α)

Γ(1 + s/β)Γ(1− s/β)
=
β sin(πs/β)

α sin(πs/α)
, −α < Re s < α.

(B.86)

We have ρ± = ±α, γ = 2α−1 − 2, γ′ = δ = κ = 0, C1 = 1/α.
James [18] also considers the more general Xα,θ := Sα/Sα,θ, for α > 0

and θ > −α, where Sα and Sα,θ are independent, Sα is a stable variable as

above, and Sα,θ has a distribution that is the same stable law tilted by x−θ,
see Remark 2.11. Thus Sα,θ has moments of Gamma type given by

ESsα,θ =
ESs−θα

ES−θα
=

Γ(1 + θ)

Γ(1 + θ/α)

Γ(1− s/α+ θ/α)

Γ(1− s+ θ)
, Re s < α+θ, (B.87)

and Xα,θ has moments of Gamma type given by, for −α− θ < Re s < α,

EXs
α,θ = ESsα ES−sα,θ =

Γ(1 + θ)

Γ(1 + θ/α)

Γ(1− s/α)Γ(1 + s/α+ θ/α)

Γ(1− s)Γ(1 + s+ θ)
. (B.88)
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We have ρ+ = α, ρ− = −α − θ, γ = 2(1/α − 1), γ′ = 0, δ = θ(1/α − 1),
κ = 0.

Example B.19 (A generalized exponential distribution). Let β > 0
and let Vβ be a positive random variable with the density function

1

Γ (1 + 1/β)
e−x

β
, x > 0. (B.89)

A simple change of variables verifies that this is a probability density func-
tion, and more generally that, for Re s > −1,

EV s
β =

1

Γ(1 + 1/β)

∫ ∞
0

xse−x
β

dx =
Γ(s/β + 1/β)

βΓ(1 + 1/β)
=

Γ(s/β + 1/β)

Γ(1/β)
.

(B.90)
Vβ thus has moments of Gamma type, with ρ+ =∞, ρ− = −1, γ = γ′ = 1/β,

δ = 1
β −

1
2 , κ = 1

β log 1
β .

Note that β = 1 gives the exponential distribution in Example 3.2. In
general, the distribution of Vβ can be seen as a tilted version of the Weibull
distribution in Example 3.7.

Example B.20 (Linnik distribution). The Linnik distribution [31] has
characteristic function

1

1 + |t|α
, (B.91)

where 0 < α ≤ 2. As shown by Devroye [7], a random variable Xα with this
distribution is easily constructed as

Xα := S̄αV
1/α

1 , (B.92)

where S̄α is the symmetric stable random variable in Example B.15, V1 has
the exponential distribution Exp(1), and these are independent.

By (B.73) and (3.2), for −min(α, 1) < Re s < α,

E |Xα|s = E |S̄α|s EV s/α
1 = 2s

Γ
(

1+s
2

)
Γ
(
1 + s

α

)
Γ
(
1− s

α

)
√
π Γ
(
1− s

2

) . (B.93)

Hence Xα has moments of Gamma type, with ρ+ = α, ρ− = −min(α, 1),
γ = 2/α, γ′ = 1, δ = 1/2, κ = 0, C1 =

√
2π.

More generally, Devroye [7] showed that if 0 < α ≤ 2 and β > 0, and S̄α
is as above and Yβ as in Example B.19 and independent of S̄α, then

Xα,β := S̄αV
β/α
β (B.94)

has characteristic function
1

(1 + |t|α)1/β
. (B.95)

(This implies that Xα = Xα,1, and more generally every Xα,β, is infinitely

divisible, and that there is a Lévy process X̂α,t, t ≥ 0, such that X̂α,t
d
=

Xα,1/t for all t > 0.)
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By (B.73) and (B.90), for −α/β < Re s < α,

E |Xα,β|s = E |S̄α|s EV sβ/α
β = 2s

Γ
(
s+1

2

)
Γ
(
1− s

α

)
Γ
(
s
α + 1

β

)
√
π Γ
(

1
β

)
Γ
(
1− s

2

) . (B.96)

Hence Xα,β has moments of Gamma type, with ρ+ = α, ρ− = −α/β,
γ = 2/α, γ′ = 1, δ = 1/β − 1/2, κ = 0.

Kotz and Ostrovskii [24] showed that Xα
d
= XβYα,β where Yα,β is as in

Example B.18 and independent of Xβ; this follows also directly from (B.86)
and (B.93). For the Linnik distribution see further [25].
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