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Abstract. We give a survey of basic results on the cut norm and cut
metric for graphons (and sometimes more general kernels), with empha-
sis on the equivalence problem. The main results are not new, but we
add various technical complements, and a new proof of the uniqueness
theorem by Borgs, Chayes and Lovász. We allow graphons on general
probability spaces whenever possible. We also give some new results for
{0,1}-valued graphons and for pure graphons.

1. Introduction

In the recent theory of graph limits, introduced by Lovász and Szegedy
[48] and further developed by e.g. Borgs, Chayes, Lovász, Sós and Veszter-
gombi [14, 15], a prominent role is played by graphons. These are symmetric
measurable functions W : Ω2 → [0, 1], where, in general, Ω is an arbitrary
probability space. The basic fact is that every graph limit can be repre-
sented by a graphon (where we further may choose Ω = [0, 1] if we like);
however, such representations of graph limits are far from unique, see e.g.,
[12, 13, 14, 24, 48]. (This representation is essentially equivalent to the repre-
sentation by Aldous and Hoover of exchangeable arrays of random variables,
see [43] for details of this representation and [4, 24] for the connection, which
is summarized in Appendix D.) See Appendix B for a very brief summary.

It turns out that for studying both convergence and equivalence of gra-
phons, a key tool is the cut metric [14]. The purpose of this paper is to give
a survey over basic, and often elementary, facts on the cut norm and cut
metric. Most results in this paper are not new, even when we do not give a
specific reference. (Most results are in at least one of [12, 13, 14, 24, 48].)
However, the results are sometimes difficult to find in the literature, since
they are spread out over several papers, with somewhat different versions
of the definitions and assumptions; moreover, some elementary results have
only been given implicitly and without proof before. Hence we try to collect
the results and proofs here, and state them in as general forms as we find
convenient. For example, we allow general probability spaces whenever pos-
sible. We thus add various technical complements to previous results. We
also give some new results, including some results on {0, 1}-valued graphons
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in Section 10, and some results on pure graphons leading to a new proof of
the uniqueness theorem by Borgs, Chayes and Lovász [13] in Section 9.

We include below for convenience some standard facts from measure
theory, sometimes repeating standard arguments. Some general references
(from different points of view) are [6, 19, 42, 54].

Remark 1.1. The basic idea of graph limits has been generalized to limits
of many other finite combinatorial objects such as weighted graphs, directed
graphs, multigraphs, bipartite graphs, hypergraphs, posets and permuta-
tions, see for example [4, 14, 15, 24, 26, 36, 40, 44, 51, 52]. Many results
below extend in a straightforward way to such extensions, but for simplicity
we leave such extensions to the reader and concentrate on the standard case.

2. The setting

Let (Ω,F , µ) be a probability space. (We will usually denote this space
simply by Ω or (Ω, µ), with F and perhaps µ being clear from the context.)
Often we take Ω to be [0, 1] (or (0, 1]) with µ = λ, the Lebesgue measure;
this is sometimes convenient, and it is often possible to reduce to this case;
in fact, in several papers on graph limits only this case is considered for
convenience. (See [38] for a general representation theorem.) However, it is
also often convenient to consider other Ω, and we will here be general and
allow arbitrary probability spaces.

Nevertheless, we will often consider [0, 1] or (0, 1]. Except when we ex-
plicitly say otherwise, we will always assume that these spaces are equipped
with the Borel σ-field B and the Lebesgue measure, which we denote by λ.
(We denote the Lebesgue σ-field by L; we will occasionally use it instead of
B, but not without saying so. Recall that L is the completion of B, see e.g.
[19].)

Remark 2.1. Our default use of B is important when we consider mappings
into [0, 1], but for functions defined on [0, 1] or [0, 1]2, it often does not matter
whether we use B or L, since every L-measurable function is a.e. equal to a
B-measurable one. In fact, it is sometimes more convenient to use L.

In a few cases, we will need some technical assumptions on Ω. We refer to
Appendix A for the definitions of atomless, Borel and Lebesgue probability
spaces.

We will study functions on Ω2, and various (semi)metrics on such func-
tions. Of course, Ω2 is itself a probability space, equipped with the product
measure µ2 := µ× µ and the product σ-field (or its completion; this makes
no difference for our purposes).

Remark 2.2. The definitions and many results can be extended to functions
of Ωr for arbitrary r ≥ 2, which is the setting for hypergraph limits; see e.g.
[10] and [26].

All subsets and all functions on Ω or Ω2 that we consider will tacitly
be assumed to be measurable. We will usually identify functions that are
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a.e. equal. This also means that functions only have to be defined a.e.
(In particular, this means that it does not make any significant difference
if we replace F by its completion; for example, on [0, 1] and [0, 1]2, with
Lebesgue measure, it does not matter whether we consider Borel or Lebesgue
measurable functions, cf. Remark 2.1. Moreover, in this case it does not
matter whether we take [0, 1], (0, 1] or (0, 1).)

The natural domain of definition for the various metrics we consider is
L1(Ω2), but we are really mainly interested in some subclasses.

Definition 2.3. A kernel on Ω is an integrable, symmetric function W :
Ω2 → [0,∞).

A standard kernel or graphon on Ω is a (measurable) symmetric function
W : Ω2 → [0, 1].

We let W =W(Ω) denote the set of all graphons on a given Ω.

We are mainly interested in the graphons (standard kernels), since they
correspond to graph limits. We use kernels when we find it more natural to
state results in this generality, but we will often consider just graphons for
convenience, leaving possible extensions to the reader.

Warning. The terminology varies between different authors and papers.
Kernel and graphon are used more or less interchangeably, with somewhat
different definitions in different papers. (This includes my own papers, where
again there is no consistency.) Apart from the two cases in the definition
above, one sometimes considers the intermediate case of arbitrary bounded
symmetric functions Ω2 → [0,∞). Moreover, sometimes one considers W
with arbitrary values in R, and not just W ≥ 0; for simplicity, we will not
consider this case here. (Extensions to these cases are typically straight-
forward when they are possible.)

Remark 2.4. For consistency we here require W to be measurable for the
product σ-field F ×F , but it makes no essential difference if we only require
W to be measurable for the completion of F × F , since every kernel of the
latter type is a.e. equal to an F × F-measurable kernel.

Remark 2.5. A kernel is said to be Borel if it is defined on a Borel space,
and Lebesguian if it is defined on a Lebesgue space, see Appendix A for
definitions. We sometimes have to restrict to such special kernels (which
include all common examples). Note that the difference between Borel and
Lebesguian kernels is very minor: A Lebesgue probability space is the same
as the completion of a Borel probability space. Hence, if W is a Borel kernel
defined on some (Borel) space (Ω,F , µ), then W can also be regarded as a

Lebesguian kernel defined on (Ω, F̂ , µ), where F̂ is the completion of F (for
µ). Conversely, if W is a Lesbeguian kernel defined on (Ω,F , µ), then F
is the completion of a sub-σ-field F0 such that (Ω,F0, µ) is a Borel space.
Hence W is a.e. equal to some F0 × F0-measurable function W0, which we
may be assume to be symmetric and with values in [0, 1]; thus W = W0

a.e. where W0 is a Borel kernel. Consequently, up to a.e. equivalence, the
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classes of Borel and Lebesgue kernels are the same, and it is a matter of
taste which version we choose when we introduce one of these restrictions.
Cf. Remark 2.1.

Remark 2.6. The definitions and results can be extended to the non-sym-
metric case, considering instead of W(Ω) the set of arbitrary (measurable)
functions Ω2 → [0, 1] or, more generally, Ω1 × Ω2 → [0, 1]. Such functions
(bigraphons) appear in the graph limit theory for bipartite graphs, see e.g.
[24] and [51].

Example 2.7. Let G be a (simple, undirected) graph. Then G defines
naturally a graphon WG, which forms a link between graphs and graphons
and is central in the graph limit theory, see e.g. [14]. In fact, there are two
natural versions, which we denote by WV

G and W I
G.

For the first version, we regard the vertex set V of G as a probability space
with each vertex having equal probability 1/|G|. We define the graphon
WV
G : V 2 → [0, 1] on this probability space by

WV
G(u, v) =

{
1 if u and v are adjacent,

0 otherwise.
(2.1)

In other words, WV
G equals (up to notation) the adjacency matrix of G.

For the second version we choose the probability space Ω = (0, 1]. Let
n := |G| and partition (0, 1] into n intervals Iin := ( i−1

n , in ]. We assume that
the vertices of G are labelled 1, . . . , n (or, equivalently, that V = {1, . . . , n}),
and define

W I
G(x, y) := WV

G(i, j) if x ∈ Iin, y ∈ Ijn. (2.2)

The graphons WV
G and W I

G are equivalent in the sense defined below, see
Example 6.8. Usually it does not matter which version we choose, and we
let WG denote any of them when the choice is irrelevant.

3. Step functions

Recall that a function f on Ω is simple or a step function if there is a finite
partition Ω =

⋃n
i=1Ai of Ω such that f is constant on each Ai. Similarly, we

say that a function W on Ω2 is a step function if there is a finite partition
Ω =

⋃n
i=1Ai of Ω such that W is constant on each Ai ×Aj . Step functions

are also said to be of finite type. If W is a kernel or graphon that also is a
step function, we call it a step kernel or step graphon.

When necessary, we may be more specific and say, for example, that W
is a P-step function, where P is the partition {Ai} above, or an n-step
function, when the number of parts Ai is (at most) n.

Step kernels (and graphons) are important mainly as a technical tool, see
several proofs below. However, they can also be studied for their own sake;
see Lovász and Sós [47], which can be seen as a study of step graphons,
although the results are stated in terms of the corresponding graph limits
and convergent sequences of graphs.



GRAPHONS, CUT NORM AND DISTANCE 5

Remark 3.1. Note that being a step function on Ω2 is stronger than being
a simple function on that space, which means constant on the sets of some
arbitrary partition of Ω2; it is important that we use product sets in the
definition of a step function on Ω2. See also Example 5.3 below.

Warning. Some authors use different terminology. For example, when
studying functions on [0, 1], step functions are sometimes defined as func-
tions constant on some finite set of intervals partitioning [0, 1], i.e., the parts
Ai are required to be intervals. We make no such assumption.

4. The cut norm

For functions in L1(Ω2) we have the usual L1 norm

‖W‖1 :=

∫
Ω2

|W |dµ2 (4.1)

and the corresponding metric ‖W1 −W2‖1.
For the graph limit theory, it turns out that another norm is more im-

portant. This is the cut norm ‖W‖� of W , which was introduced for a
different purpose by Frieze and Kannan [29], and given a central role in the
graph limit theory by Borgs, Chayes, Lovász, Sós and Vesztergombi [14].
(Its history actually goes back much further. For functions on [0, 1]2, the
version in (4.3) is the same as the Fréchet variation of the corresponding
distribution function F (x, y) :=

∫ x
0

∫ y
0 W , see Fréchet [28]; more generally,

‖W‖�,2 equals the Fréchet variation of the bimeasure on Ω2 corresponding
to W . See further e.g. Littlewood [46] (where also the discrete version is
considered), Clarkson and Adams [18] and Morse [53], and in particular
Blei [7] with further references.)

There are several versions of the cut norm, equivalent within constant
factors. Following [29] and [14], for W ∈ L1(Ω2) we define

‖W‖�,1 := sup
S,T

∣∣∣∫
S×T

W (x, y) dµ(x) dµ(y)
∣∣∣, (4.2)

where the supremum is taken over all pairs of measurable subsets of Ω.
Alternatively, one can take

‖W‖�,2 := sup
‖f‖∞,‖g‖∞≤1

∣∣∣∫
Ω2

W (x, y)f(x)g(y) dµ(x) dµ(y)
∣∣∣, (4.3)

taking the supremum over all (real-valued) functions f and g with values
in [−1, 1]. (We let ‖f‖∞ denote the norm in L∞ of f , i.e., the essential
supremum of |f |.) It is easily seen that in taking the supremum in (4.3)
one can restrict to functions f and g taking only the values ±1. Note that
(4.2) is equivalent to (4.3) with the supremum taken over only f and g with
values in {0, 1} (i.e., indicator functions); it follows that

‖W‖�,1 ≤ ‖W‖�,2 ≤ 4‖W‖�,1. (4.4)
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Thus the two norms ‖ · ‖�,1 and ‖ · ‖�,2 are equivalent, and it will almost
never matter which one we use. We shall write ‖ · ‖� for either norm, when
the choice of definition does not matter. For further, equivalent, versions of
the cut norm, see Appendix E.

We usually do not indicate Ω or µ explicitly in the notation; when nec-
essary we may add them as subscripts and write, for example, ‖ · ‖�,Ω,µ or
‖ · ‖�,Ω,µ,1.

Remark 4.1. Similarly, it is easily seen that (4.2) is equivalent to (4.3)
with the supremum taken over only f and g with values in [0, 1].

One advantage of the version ‖ · ‖�,2 is the simple “Banach module”
property: For any bounded functions h and k on Ω,

‖h(x)k(y)W (x, y)‖�,2 ≤ ‖h‖∞‖k‖∞‖W‖�,2. (4.5)

A similar advantage is seen in Lemma 4.5 below. (In both cases, using ‖·‖�,1
would introduce some constants.) On the other hand, ‖·‖�,1 is perhaps more
natural, and probably more familiar, in combinatorics.

Note that for either definition of the cut norm we have∣∣∣∫
Ω2

W
∣∣∣ ≤ ‖W‖� ≤ ‖W‖1. (4.6)

Remark 4.2. The definition (4.3) is natural for a functional analyst. This
norm is the dual of the projective tensor product norm in L∞(Ω)⊗̂L∞(Ω),
and is thus the injective tensor product norm in L1(Ω)⊗̌L1(Ω); equivalently,
it is equal to the operator norm of the corresponding integral operator
L∞(Ω) → L1(Ω). This contrasts nicely to the L1 norm on Ω2, which is
the projective tensor product norm in L1(Ω)⊗̂L1(Ω). (See e.g. [59].)

Remark 4.3. We may similarly define the cut norm of functions defined
on a product of two different spaces.

Remark 4.4. The one-dimensional version of the cut norm coincides with
the L1 norm. This is exact for ‖ · ‖�,2: If f is any integrable function of Ω,
then

‖f‖1 = sup
‖g‖∞≤1

∣∣∣∫
Ω
f(x)g(x) dµ(x)

∣∣∣. (4.7)

For the one-dimensional version of ‖ · ‖�,1, we may in analogy with (4.4)
lose a factor 2; we omit the details.

We define the marginals of a function W ∈ L1(Ω2) by

W
(1)

(x) :=

∫
Ω
W (x, y) dµ(y), (4.8)

W
(2)

(y) :=

∫
Ω
W (x, y) dµ(x). (4.9)

It a well-known consequence of Fubini’s theorem that ‖W (1)‖L1(Ω) ≤
‖W‖L1(Ω2) for any W ∈ L1(Ω2). This extends to the cut norm on Ω2,
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even though this norm is weaker. This is stated in the next lemma, which
can be seen as a consequence of Remark 4.4 and the fact taking marginals
(in any product, and in any dimension) does not increase the cut norm.

Lemma 4.5. If W ∈ L1(Ω2), then ‖W (1)‖L1(Ω), ‖W
(2)‖L1(Ω) ≤ ‖W‖�,2.

Proof. By symmetry, it suffices to consider W
(1)

. If f ∈ L∞(Ω), then∫
Ω
W

(1)
(x)f(x) dµ(x) =

∫
Ω2

W (x, y)f(x) dµ(x) dµ(y)

and the result follows from (4.3), letting g(y) = 1 and taking the supremum
over all f with ‖f‖∞ ≤ 1, using (4.7). (Or simply taking f(x) equal to the

sign of W
(1)

(x).) �

Remark 4.6. It is a standard fact that the step functions are dense in
L1(Ω) and L1(Ω2). As a consequence, they are dense also in the cut norm
in these spaces.

We finally note that the cut norm really is a norm if we, as usual, identify
functions that are equal a.e.

Lemma 4.7. If W ∈ L1(Ω2), then ‖W‖� = 0 ⇐⇒ W = 0 a.e.

Proof. Suppose that ‖W‖� = 0. Thus
∫
S×T W (x, y) = 0 for all subsets

S, T ⊆ Ω. It follows that
∫

Ω2 W (x, y)f(x, y) = 0 for every step function f

on Ω2.
Let g be any function on Ω2 with ‖g‖∞ ≤ 1. Since step functions are

dense in L1(Ω2), there exists a sequence gn of step functions such that
gn → g in L1(Ω2); by considering a subsequence we may further assume
that gn → g a.e., and by truncating each gn at ±1 that |gn| ≤ 1. By
dominated convergence,

∫
Ω2 Wgn →

∫
Ω2 Wg, but each

∫
Ω2 Wgn = 0 since gn

is a step function; hence
∫

Ω2 Wg = 0. If we choose g := sgn(W ), this shows
that

∫
Ω2 |W | = 0, and thus W = 0 a.e. �

5. Pull-backs and rearrangements

Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be two probability spaces.
A mapping ϕ : Ω1 → Ω2 is measure-preserving if it is measurable and

µ1(ϕ−1(A)) = µ2(A) for every A ∈ F2 (i.e., for every measurable A ⊆ Ω2).
A mapping ϕ : Ω1 → Ω2 is a measure-preserving bijection if ϕ is a bi-

jection of Ω1 onto Ω2, and both ϕ and ϕ−1 are measure-preserving. (In
other words, ϕ is an isomorphism between the measure spaces (Ω1,F1, µ1)
and (Ω2,F2, µ2) in category theory sense.) Equivalently, ϕ is a measure-
preserving bijection if and only if it is a bijection that is measure-preserving,
and further ϕ−1 is measurable (and then automatically measure-preserving).
Note that if Ω1 and Ω2 are Borel spaces, then measurability of ϕ−1 is au-
tomatic by Theorem A.6, so it suffices to check that ϕ is a bijection and
measure-preserving.
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Note that if ϕ : Ω1 → Ω2 is a measurable mapping, then ϕ⊗ϕ : Ω2
1 → Ω2

2

defined by ϕ ⊗ ϕ(x, y) = (ϕ(x), ϕ(y)) is a measurable mapping, and if ϕ is
measure-preserving or a measure-preserving bijection, then so is ϕ⊗ ϕ.

We define, for any functions f on Ω2 and W on Ω2
2, the pull-backs

fϕ(x) := f(ϕ(x)), (5.1)

Wϕ(x, y) := W (ϕ(x), ϕ(y)); (5.2)

these are functions on Ω1 and Ω2
1, respectively.

We will only consider measure-preserving ϕ. In the special case that ϕ is
a measure-preserving bijection, we say that fϕ and Wϕ are rearrangements
of f and W . (However, we will not assume that ϕ is injective or bijective
unless we say so explicitly.) We further say that W ′ is an a.e. rearrangement
of W if W ′ = Wϕ a.e. where Wϕ is a rearrangement of W . Note that the
relation “W1 is a rearrangement of W2” is symmetric and, moreover, an
equivalence relation, and similarly for a.e. rearrangements.

Remark 5.1. Note that if W is symmetric, then Wϕ is too by (5.2); recall
that this is the case we really are interested in.

If we want to study general W , for example in connection with bipartite
graphs as mentioned in Remark 2.6, it is often more natural to allow different
maps ϕ1 and ϕ2 acting on the two coordinates.

Remark 5.2. Instead of measure-preserving bijections, it may be conve-
nient to consider measure-preserving almost bijections, which are mappings
ϕ that are measure-preserving bijections Ω1 \ N1 → Ω2 \ N2 for some null
sets N1 and N2. This makes essentially no difference below, and we leave
the details to the reader. (See Theorem 8.6(vii) for a situation where almost
bijections occur.)

Example 5.3. A kernel is a step kernel if and only if it is a pull-back
Wϕ of some kernel defined on a finite probability space. (The same holds
for general functions Ω2 → R. Recall that step functions are the same as
functions of finite type.)

Remark 5.4. We take here the point of view that (Ω1, µ1) and (Ω2, µ2) are
given probability spaces, and we consider suitable maps between them. A
closely related idea is to take a probability space (Ω1, µ1) and a measurable
space Ω2 (without any particular measure). A measurable map ϕ : Ω1 →
Ω2 then maps the measure µ1 to a measure µϕ1 on Ω2 given by µϕ1 (A) :=
µ1(ϕ−1(A)) for all A ⊆ Ω2. Note that µϕ1 is the unique measure on Ω2 that
makes ϕ measure-preserving. This well-known construction (called push-
forward) can be seen as a dual to the pull-back above; note that measures
map forward, from Ω1 to Ω2, while functions map backward, from Ω2 to Ω1.

Note that, on the contrary, given a measurable map ϕ : Ω1 → Ω2 between
two measurable spaces, and a probability measure µ2 on Ω2, there is in
general no measure µ1 on Ω1 which makes ϕ measure-preserving. This is a
source of some of the technical difficulties in the theory.
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It is easy to see that the norms defined above are invariant under re-
arrangements, and more generally under pull-backs by measure-preserving
maps:

Lemma 5.5. If ϕ is measure-preserving, then, taking the norms in the
respective spaces, for any f ∈ L1(Ω) and W ∈ L1(Ω2),

‖fϕ‖1 = ‖f‖1, ‖Wϕ‖1 = ‖W‖1, (5.3)

‖Wϕ‖� = ‖W‖�. (5.4)

Proof. The equalities (5.3) are standard.
The cut norm equality (5.4) is obvious if ϕ is a measurable bijection. In

general, it seems simplest to first assume that W is a step function, so that
W is constant on each Ai×Aj for some partition Ω2 =

⋃n
1 Ai, say W = wij

on Ai×Aj . Then A′i := ϕ−1(Ai) defines a partition of Ω1, and Wϕ is a step
function constant on each A′i ×A′j , and equal to wij there.

Consider first ‖W‖�,2. In the definition (4.3), we may replace f by its
average on each Ai (i.e., by its conditional expectation given the partition)
without changing the integral, and similarly for g. This shows that it is
enough to consider f and g that are constant on each Ai, and we find

‖W‖�,2 = sup
∣∣∣∑
i,j

wijaibjµ2(Ai)µ2(Aj)
∣∣∣, (5.5)

taking the supremum over all real numbers ai and bj with |ai|, |bj | ≤ 1. Since
µ1(A′i) = µ2(Ai), the same argument shows that ‖Wϕ‖�,2 is given by the
same quantity, and thus (5.4) holds in this case.

For ‖ · ‖�,1 we argue for step functions in exactly the same way, using
Remark 4.1 and taking ai, bj ∈ [0, 1] in (5.5).

For a general W , let ε > 0 and let W1 be a step function on Ω2
2 such that

‖W −W1‖1 < ε. Then

‖W −W1‖� ≤ ‖W −W1‖1 < ε.

Further, ‖Wϕ
1 ‖� = ‖W1‖� by what we just have shown, and

‖Wϕ −Wϕ
1 ‖� ≤ ‖W

ϕ −Wϕ
1 ‖1 = ‖(W −W1)ϕ‖1 = ‖W −W1‖1 < ε.

The result ‖Wϕ‖� = ‖W‖� follows by some applications of the triangle
inequality. �

However, the distances ‖W1−W2‖1 and ‖W1−W2‖� between two kernels
are, in general, not invariant under rearrangements of just one of the kernels,
since, in general, ‖W−Wϕ‖ 6= 0 for a kernel W on a space Ω and a measure-
preserving bijection ϕ : Ω→ Ω. In the graph limit theory, we need a metric
space where all rearrangements are equivalent (and thus have distance 0 to
each other); we obtain this by taking the infimum over rearrangements.

Given two kernels W1, W2 on [0, 1], the cut metric of Borgs, Chayes,
Lovász, Sós and Vesztergombi [14] may be defined by

δ�(W1,W2) = inf
ϕ
‖W1 −Wϕ

2 ‖�, (5.6)



10 SVANTE JANSON

taking the infimum over all measure-preserving bijection ϕ : [0, 1] → [0, 1];
in other words, over all rearrangements Wϕ

2 of W2. (If we wish to specify
which version of the cut norm is involved, we write δ�,1 or δ�,2.) Borgs,
Chayes, Lovász, Sós and Vesztergombi [14] showed that for kernels on [0, 1],
there are several equivalent definitions of δ�, see Theorem 6.9 below. For
general probability spaces Ω, we have to use couplings between different
kernels instead of rearrangements, see the following section; it then further
is irrelevant whether the kernels are defined on the same probability space
or not.

On the other hand, if we restrict ourselves to [0, 1], we can do with a
special simple case of rearrangements. Following Borgs, Chayes, Lovász,
Sós and Vesztergombi [14], we define an n-step interval permutation to be
the map σ̃ defined for a permutation σ of {1, . . . , n} by taking the partition
(0, 1] =

⋃
Iin with Iin := ((i−1)/n, i/n] and mapping each Iin by translation

to Iσ(i),n. (For completeness we also let σ̃(0) = 0.) Evidently, σ̃ is a measure-
preserving bijection [0, 1] → [0, 1]. We shall see in Theorem 6.9 below that
it suffices to use such interval permutations in (5.6).

Example 5.6. To see one problem caused by using (5.6) for kernels on
a general probability space, let Ω be the two-point space {1, 2}, and let
µ{1} = 1

2 − ε, µ{2} = 1
2 + ε, for some small ε > 0. Let W1(x, y) :=

1{x = y = 1} and W2(x, y) := 1{x = y = 2}. On this probability space
there is no measure-preserving bijection except the identity, so (5.6) yields
‖W1−W2‖� = (1

2 + ε)2 > 1
4 , while the coupling definition (6.1) below yields

δ�(W1,W2) = 2ε.

6. Couplings and the cut metric

Given two probability spaces (Ω1, µ1), (Ω2, µ2), a coupling of these spaces
is a pair of measure preserving maps ϕi : Ω → Ωi, i = 1, 2, defined on a
common (but arbitrary) probability space (Ω, µ).

Remark 6.1. Couplings are more common in the context of two random
variables, say X1 and X2. These are often real-valued, but may more gen-
erally take values in any measurable spaces Ω1 and Ω2. A coupling of X1

and X2 then is a pair (X ′1, X
′
2) of random variables defined on a common

probability space such that X ′1
d
= X1 and X ′2

d
= X2. This is the same as a

coupling of the two probability spaces (Ω1, µ1) and (Ω2, µ2) according to our
definition above, where µ1 is the distribution of X1 and µ2 the distribution
of X2.

The general definition of the cut metric, for kernels defined on arbitrary
probability spaces (possibly different ones), is as follows.

Given kernels Wi on Ωi, i = 1, 2, or more generally any functions Wi ∈
L1(Ω2

i ), we define the cut metric by

δ�(W1,W2) = inf ‖Wϕ1
1 −W

ϕ2
2 ‖�, (6.1)
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where the infimum is taken over all couplings (ϕ1, ϕ2) : Ω→ (Ω1,Ω2) of Ω1

and Ω2 (with Ω arbitrary), and Wϕi
i is the pull-back defined in (5.2).

We similarly define

δ1(W1,W2) = inf ‖Wϕ1
1 −W

ϕ2
2 ‖L1(Ω2), (6.2)

again taking the infimum over all couplings (ϕ1, ϕ2) of Ω1 and Ω2.

Remark 6.2. It is not obvious that the definition (6.1) agrees with (5.6)
for kernels on [0, 1], but, as shown in [14], this is the case; see Theorem 6.9
below. Note, in somewhat greater generality, that if W1 and W2 are kernels
of probability spaces Ω1 and Ω2, and ϕ : Ω1 → Ω2 is measure-preserving,
then (ι, ϕ) is a coupling defined on Ω1. (We let here and below ι denote the
identity map in any space.) Hence, we always have δ�(W1,W2) ≤ ‖W1 −
Wϕ

2 ‖�.

Note that δ� and δ1 really are pseudometrics rather than metrics, since
δ�(W1,W2) = 0 and δ1(W1,W2) = 0 in many cases with W1 6= W2, for
example if W1 = Wϕ

2 for a measure preserving ϕ (use the coupling (ι, ϕ)
in (6.1), see Remark 6.2). Nevertheless, it is customary to call this pseu-
dometric the cut metric. We will return to the important problem of when
δ�(W1,W2) = 0 in Section 8.

It is obvious from the definition (6.1) that δ� and δ1 are non-negative and
symmetric, and δ�(W,W ) = δ1(W,W ) = 0 for every W . It is less obvious
that they really are subadditive, i.e., that the triangle inequality holds, so
we give a detailed proof in Lemma 6.5 below.

A coupling (ϕ1, ϕ2) of two probability spaces (Ω1, µ1) and (Ω2, µ2), with
ϕ1, ϕ2 defined on (Ω, µ), defines a map Φ := (ϕ1, ϕ2) : Ω→ Ω1 × Ω2, which
induces a unique measure µ̃ on Ω1×Ω2 such that Φ : (Ω, µ)→ (Ω1 × Ω2, µ̃)
is measure-preserving (see Remark 5.4). Let πi : Ω1 × Ω2 → Ωi be the
projection; then ϕi = πi ◦ Φ, i = 1, 2. Note that if A ⊆ Ωi, then

µ̃
(
π−1
i (A)

)
= µ

(
Φ−1

(
π−1
i (A)

))
= µ

(
ϕ−1
i (A)

)
= µi(A),

since Φ and ϕi are measure-preserving; thus πi : (Ω1 × Ω2, µ̃) → (Ωi, µi) is
measure-preserving. Hence, (π1, π2) is a coupling of (Ω1, µ1) and (Ω2, µ2).
If Wi ∈ L1(Ω2

i ), then Wϕi
i = (W πi

i )Φ and thus, using (5.4),

‖Wϕ1
1 −W

ϕ2
2 ‖� = ‖(W π1

1 −W
π2
2 )Φ‖� = ‖W π1

1 −W
π2
2 ‖�. (6.3)

Consequently, in (6.1) it suffices to consider couplings of the type (π1, π2)
defined on (Ω1 × Ω2, µ̃), where µ̃ is a probability measure such that π1 and
π2 are measure-preserving, i.e., such that µ̃ has the correct marginals µ1 and
µ2.

Before proving the triangle inequality, we prove a technical lemma and a
partial result.

Lemma 6.3. Let Ω1 and Ω2 be probability spaces and let W1 ∈ L1(Ω2
1) and

W2 ∈ L1(Ω2
2) be step functions with corresponding partitions Ω1 =

⋃I
i=1Ai

and Ω2 =
⋃J
j=1Bj. If (ϕ1, ϕ2) and (ϕ′1, ϕ

′
2) are two couplings of Ω1 and Ω2,
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defined on (Ω, µ) and (Ω′, µ′) respectively, such that µ
(
ϕ−1

1 (Ai)∩ϕ−1
2 (Bj)

)
=

µ′
(
ϕ′1
−1(Ai)∩ϕ′2−1(Bj)

)
for every i and j, then ‖Wϕ1

1 −W
ϕ2
2 ‖�,µ = ‖Wϕ′1

1 −
W

ϕ′2
2 ‖�,µ′ and, similarly, ‖Wϕ1

1 −W
ϕ2
2 ‖1,µ = ‖Wϕ′1

1 −W
ϕ′2
2 ‖1,µ′.

Proof. Recall that ‖Wϕ1
1 −W

ϕ2
2 ‖� is given by (4.3), in case of ‖·‖�,1 further

assuming f, g ≥ 0, see Remark 4.1. Since Wϕ1
1 −Wϕ2

2 is constant on each

set Cij := ϕ−1
1 (Ai)∩ϕ−1

2 (Bj), we may as in the proof of Lemma 5.5 average
f and g in (4.3) over each such set, so it suffices to consider f and g that
are constant on each set Cij . Consequently, if W1 = uik on Ai × Ak and
W2 = vjl on Bj ×Bl, then

‖Wϕ1
1 −W

ϕ2
2 ‖�,µ = max

(fij),(gkl)

∣∣∣∣∑
i,j,k,l

µ(Cij)µ(Ckl)(uik − vjl)fijgkl
∣∣∣∣, (6.4)

taking the maximum over all arrays (fij) and (gkl) of numbers in [0, 1] for
‖ · ‖�,1 and in [−1, 1] for ‖ · ‖�,2. This depends on the coupling only through
the numbers µ(Cij), and the result follows.

For the L1 norm we have immediately, with the same notation,

‖Wϕ1
1 −W

ϕ2
2 ‖1,µ =

∑
i,j,k,l

µ(Cij)µ(Ckl)
∣∣uik − vjl∣∣,

and the result follows. �

Lemma 6.4. Let Ω1 and Ω2 be probability spaces and W1,W
′
1 ∈ L1(Ω2

1)
and W2 ∈ L1(Ω2

2). Then δ�(W1,W2) ≤ δ�(W ′1,W2) + ‖W1 − W ′1‖� and,
similarly, δ1(W1,W2) ≤ δ1(W ′1,W2) + ‖W1 −W ′1‖1.

Proof. Let (ϕ1, ϕ2) be a coupling of Ω1 and Ω2. Then, using Lemma 5.5,

δ�(W1,W2) ≤ ‖Wϕ1
1 −W

ϕ2
2 ‖� ≤ ‖(W

′
1)ϕ1 −Wϕ2

2 ‖� + ‖Wϕ1
1 − (W ′1)ϕ1‖�

= ‖(W ′1)ϕ1 −Wϕ2
2 ‖� + ‖(W1 −W ′1)ϕ1‖�

= ‖(W ′1)ϕ1 −Wϕ2
2 ‖� + ‖W1 −W ′1‖�.

The result for δ� follows by taking the infimum over all couplings. The proof
for δ1 is the same. �

Lemma 6.5. Let, for i = 1, 2, 3, Ωi be a probability space and Wi ∈ L1(Ω2
i ).

Then δ�(W1,W3) ≤ δ�(W1,W2)+δ�(W2,W3) and, similarly, δ1(W1,W3) ≤
δ1(W1,W2) + δ1(W2,W3). Hence δ� and δ1 are (pseudo)metrics.

Proof. Roughly speaking, given a coupling of Ω1 and Ω2 and another cou-
pling of Ω2 and Ω3, we want to couple the couplings so that we can compare
pull-backs of W1 and W3. This simple idea, unfortunately, leads to tech-
nical difficulties in general, but it works easily if, for example, the spaces
are finite. We use therefore an approximation argument with step functions
which essentially reduces to the finite case.

Thus, suppose first that W1,W2,W3 are step functions with corresponding
partitions Ω1 =

⋃I
i=1Ai, Ω2 =

⋃J
j=1Bj , Ω3 =

⋃K
k=1Ck, and assume for
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simplicity that µ1(Ai), µ2(Bj) and µ3(Ck) are non-zero for all i, j, k. (µ`
denotes the measure on Ω`.)

We consider δ�; the proof for δ1 is the same. Let ε > 0. By the definition
of δ� and the comments just made (see (6.3)), there exist measures µ′ on
Ω1 × Ω2 and µ′′ on Ω2 × Ω3, with marginals µ` on Ω`, such that

‖W π1
1 −W

π2
2 ‖�,µ′ < δ�(W1,W2) + ε, (6.5)

‖W π2
2 −W

π3
3 ‖�,µ′′ < δ�(W2,W3) + ε. (6.6)

(We abuse notation a little by letting π` denote the projection onto Ω` from
any product space.)

Define a measure µ on Ω1 × Ω2 × Ω3 by, for E ⊆ Ω1 × Ω2 × Ω3,

µ(E) :=
∑
i,j,k

µ′(Ai ×Bj)µ′′(Bj × Ck)
µ2(Bj)

· µ1 × µ2 × µ3(E ∩ (Ai ×Bj × Ck))
µ1(Ai)µ2(Bj)µ3(Ck)

.

We have µ1(Ai) =
∑

j µ
′(Ai×Bj), µ2(Bj) =

∑
i µ
′(Ai×Bj) =

∑
k µ
′′(Bj ×

Ck), and µ3(Ck) =
∑

j µ
′′(Bj × Ck). It follows that the three mappings

π` : (Ω1 × Ω2 × Ω3, µ)→ (Ω`, µ`) are measure-preserving since, for example,
if F ⊆ Ω1, then π−1

1 (F ) = F × Ω2 × Ω3 and

µ
(
π−1

1 (F )
)

= µ(F × Ω2 × Ω3)

=
∑
i,j,k

µ′(Ai ×Bj)µ′′(Bj × Ck)
µ2(Bj)

·
µ1 × µ2 × µ3

(
(F ∩Ai)×Bj × Ck

)
µ1(Ai)µ2(Bj)µ3(Ck)

=
∑
i,j,k

µ′(Ai ×Bj)µ′′(Bj × Ck)
µ2(Bj)

· µ1(F ∩Ai)
µ1(Ai)

=
∑
i,j

µ′(Ai ×Bj)
µ1(F ∩Ai)
µ1(Ai)

=
∑
i

µ1(F ∩Ai) = µ1(F ).

In particular, µ is a probability measure.
The projections π12 : Ω1 × Ω2 × Ω3 → Ω1×Ω2 and π23 : Ω1 × Ω2 × Ω3 →

Ω2×Ω3 map µ to measures µ̃′ on Ω1×Ω2 and µ̃′′ on Ω2×Ω3. We have, for
any i and j,

µ̃′(Ai ×Bj) = µ(π−1
12 (Ai ×Bj)) = µ(Ai ×Bj × Ω3)

=
∑
k

µ′(Ai ×Bj)µ′′(Bj × Ck)
µ2(Bj)

· µ1 × µ2 × µ3(Ai ×Bj × Ck)
µ1(Ai)µ2(Bj)µ3(Ck)

=
∑
k

µ′(Ai ×Bj)µ′′(Bj × Ck)
µ2(Bj)

= µ′(Ai ×Bj).

Hence, by Lemma 6.3,

‖W π1
1 −W

π2
2 ‖�,Ω1×Ω2,µ̃′ = ‖W π1

1 −W
π2
2 ‖�,Ω1×Ω2,µ′ . (6.7)



14 SVANTE JANSON

Further, since π12 : (Ω1 × Ω2 × Ω3, µ)→ (Ω1×Ω2, µ̃
′) is measure-preserving,

Lemma 5.5 implies that (recall our generic use of π`)

‖W π1
1 −W

π2
2 ‖�,Ω1×Ω2×Ω3,µ = ‖W π1

1 −W
π2
2 ‖�,Ω1×Ω2,µ̃′ . (6.8)

Combining (6.5), (6.7) and (6.8), we find

‖W π1
1 −W

π2
2 ‖�,µ < δ�(W1,W2) + ε. (6.9)

Similarly,

‖W π2
2 −W

π3
3 ‖�,µ < δ�(W2,W3) + ε. (6.10)

We have reached our goal of finding suitable couplings on the same space,
viz. (Ω1 × Ω2 × Ω3, µ), and we can now use the triangle inequality for ‖ · ‖�
and deduce

δ�(W1,W3) ≤ ‖W π1
1 −W

π3
3 ‖�,µ ≤ ‖W

π1
1 −W

π2
2 ‖�,µ + ‖W π2

2 −W
π3
3 ‖�,µ

< δ�(W1,W2) + δ�(W2,W3) + 2ε.

Since ε > 0 is arbitrary, this implies the desired inequality δ�(W1,W3) ≤
δ�(W1,W2) + δ�(W2,W3) in the case of step functions.

In general, we approximate first each W` by a step function W ′` such that
‖W` − W ′`‖�,Ω`

< ε. (We may assume, as we did above, that all sets in
the partition have positive measures by removing any null sets in them,
redefining W ′` on a null set.) The result for step functions together with
several applications of Lemma 6.4 yield

δ�(W1,W3) ≤ δ�(W ′1,W
′
3) + 2ε ≤ δ�(W ′1,W

′
2) + δ�(W ′2,W

′
3) + 2ε

≤ δ�(W1,W2) + δ�(W2,W3) + 6ε.

The result δ�(W1,W2) ≤ δ�(W1,W2) + δ�(W2,W3) follows. �

Corollary 6.6. Let, for i = 1, 2, 3, Ωi be a probability space and Wi ∈
L1(Ω2

i ). If δ�(W1,W2) = 0, then δ�(W1,W3) = δ�(W2,W3). (The same
result holds for δ1.) �

Consider the class W∗ :=
⋃

ΩW(Ω) of all graphons (on any probability
space). We define a relation ∼= on this class (or on the even larger class⋃

Ω L
1(Ω2)) by

W1
∼= W2 if δ�(W1,W2) = 0. (6.11)

Corollary 6.6 shows that this is an equivalence relation, and that δ� is a

true metric on the quotient space Ŵ :=W∗/ ∼=. We say that two graphons
W1,W2 are equivalent if W1

∼= W2, i.e., if δ�(W1,W2) = 0. (We will see
in Theorem 8.10 below that δ1(W1,W2) = 0 defines the same equivalence
relation.)

It is a central fact in the graph limit theory [14] that this quotient space

Ŵ :=W∗/ ∼= is homeomorphic to (and thus can be identified with) the set

of graph limits; moreover, the metric space (Ŵ, δ�) is compact. (See also
[24].) The compactness is closely related to Szemerédi’s regularity lemma,
see [49].
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We will always regard Ŵ as a compact metric space equipped with the
metric δ�, except a few times when we explicitly use δ1 instead. Note that δ1

is a larger metric and thus gives a stronger topology. In particular, (Ŵ, δ1)
is not compact. (See Pikhurko [55] and Section 10. For example, if Gn is
the random graph G(n, 1/2), then WGn a.s. converges to 1/2 in δ�, but not
in δ1.)

Example 6.7. If W : Ω2 → [0, 1] is any graphon (or kernel) on a probability
space Ω, and ϕ : Ω′ → Ω is a measure-preserving map, then, as remarked
above, W is equivalent to its pull-back Wϕ.

Example 6.8. Let G be a graph with vertex set V = {1, . . . , n}, and
consider the graphons WV

G and W I
G defined in Example 2.7. Let ϕ : (0, 1]→

V be the map x 7→ dnxe. Then ϕ is measure-preserving and (2.2) defines
W I
G as the pull-back (WV

G)ϕ. Hence WV
G
∼= W I

G.

We can now prove, following [14], that the definition (5.6) agrees with
our definition (6.1) of the cut metric for [0, 1], and more generally for any
atomless Borel spaces. We include several related versions; note that (i) is
(6.1) and (v) is (5.6).

Theorem 6.9. Let W1 and W2 be two kernels defined on probability spaces
(Ω1, µ1) and (Ω2, µ2), respectively. Then the following are the same, and
thus all define δ�(W1,W2).

(i) For any Ω1 and Ω2,

inf
ϕ1,ϕ2

‖Wϕ1
1 −W

ϕ2
2 ‖�,Ω,µ,

where the infimum is over all couplings (pairs of measure-preserving
maps) ϕ1 : (Ω, µ)→ (Ω1, µ1) and ϕ2 : (Ω, µ)→ (Ω2, µ2).

(ii) For any Ω1 and Ω2,

inf
µ
‖W π1

1 −W
π2
2 ‖�,Ω1×Ω2,µ,

where πi : Ω1 × Ω2 → Ωi is the projection and the infimum is over
all measures µ on Ω1 × Ω2 having marginals µ1 and µ2.

(iii) For any Ω1 and Ω2, for δ�,2,

inf
µ

sup
‖f‖∞,‖g‖∞≤1

∣∣∣∫
(Ω1×Ω2)2

(
W1(x1, y1)−W2(x2, y2)

)
· f(x1, x2)g(y1, y2) dµ(x1, x2) dµ(y1, y2)

∣∣∣,
taking the infimum over all measures µ on Ω1 × Ω2 having marginals
µ1 and µ2; for δ�,1 we further restrict to f, g ≥ 0.

(iv) Provided Ω1 and Ω2 are atomless Borel spaces,

inf
ϕ
‖W1 −Wϕ

2 ‖�,

where the infimum is over all measure-preserving ϕ : Ω1 → Ω2.
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(v) Provided Ω1 and Ω2 are atomless Borel spaces,

inf
ϕ
‖W1 −Wϕ

2 ‖�,

where the infimum is over all measure-preserving bijections ϕ : Ω1 →
Ω2, i.e., over all rearrangements of W2 defined on Ω1.

(vi) Provided Ω1 = Ω2 = [0, 1],

inf
σ̃
‖W1 −W σ̃

2 ‖�,

where the infimum is over all interval permutations σ̃ : [0, 1]→ [0, 1],
defined by permutations σ of {1, . . . , n} with n arbitrary.

Proof. (i) ⇐⇒ (ii). We have shown this in (6.3) and the accompanying
argument.

(ii) ⇐⇒ (iii). Directly from the definition (4.3) (using Remark 4.1 for
δ�,1), writing x = (x1, x2) and y = (y1, y2). (The expression in (iii) is just
writing the definition explicitly in this case.)

For (iv) and (v), we first note that by Theorem A.7, Ω1 and Ω2 are iso-
morphic to [0, 1] (equipped with Lebesgue measure), i.e., there are measure-
preserving bijections ψj : [0, 1] → Ωj . It is evident that we may use these

maps to transfer the problem to the pull-backs Wψ1
1 and Wψ2

2 on [0, 1]. In
other words, we may in (iv) and (v) assume that Ω1 = Ω2 = [0, 1].

In this case, denote the quantities in (i)–(vi) by δ(i), . . . , δ(vi). We have
δ(i) ≤ δ(iv) ≤ δ(v) ≤ δ(vi), since we take infima over smaller and smaller sets
of maps. Further, we have shown that δ(i) = δ(ii) = δ(iii). To complete the
proof, it thus suffices to show that δ(vi) ≤ δ(ii).

Let ε > 0 and let IiN denote the interval ((i− 1)/N, i/N ], for 1 ≤ i ≤ N .
The set of step functions W : [0, 1]2 → R that correspond to partitions of
[0, 1] (or rather (0, 1], but the difference does not matter here) into m equally
long intervals I1m, . . . , Imm for m = 1, 2, . . . , is a dense subset of L1([0, 1]2).
Hence we may choose m > 0 and two such step functions W ′1 and W ′2 so
that ‖Wi −W ′i‖1 < ε, i = 1, 2. (We may first obtain such W ′i with different
m1 and m2, but we may then replace both by m := m1m2.) By Lemma 6.4
and its proof, which applies to all the versions δ(i), . . . , δ(vi), we have

δ∗(W1,W2)− 2ε ≤ δ∗(W ′1,W ′2) ≤ δ∗(W1,W2) + 2ε (6.12)

for every ∗ = (i), . . . , (vi).
Choose a probability measure µ on Ω1 × Ω2 = [0, 1]2 such that ‖W ′1π1 −

W ′2
π2‖� < δ(ii)(W

′
1,W

′
2) + ε. We may evaluate this cut norm by (6.4) (re-

placing Wi by W ′i ) and as asserted in Lemma 6.3, the cut norm depends only

on the numbers µ(Cij), where now Cij := π−1
1 (Iim)∩ π−1

2 (Ijm) = Iim× Ijm,
so we may assume that the coupling measure µ on [0, 1]2 on each square
Cij equals a constant factor λij times the Lebesgue measure. (Hence,
µ(Cij) = λij/m

2.) We adjust these factors so that every µ(Cij) is ratio-
nal; we may do this so that the marginals still are correct, i.e., for every i
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and j, ∑
l

µ(Cil) =
∑
l

µ(Clj) =
1

m
. (6.13)

The adjustment will change cut norm in (6.4) by an arbitrary small amount,
so we can do this and still have ‖W ′1π1 −W ′2π2‖� < δ(ii)(W

′
1,W

′
2) + ε.

We now have µ(Cij) = aij/N for some integers N and aij , 1 ≤ i, j ≤ m.
Let b := N/m. By (6.13), for every i and j,∑

j

aij =
∑
i

aij =
N

m
= b. (6.14)

Hence, b is an integer, and thus every interval Iim is a union
⋃bi
k=b(i−1)+1 IkN

of b intervals IkN of length 1/N . By (6.14), we may construct a permutation
σ of {1, . . . , N} such that σ maps exactly aij of the indices k ∈ [b(i−1)+1, bi]
into [b(j−1)+1, bj], for all i, j. Hence, λ(Iim∩ σ̃−1(Ijm)) = aij/N = µ(Cij).
Thus, Lemma 6.3 applies to the couplings (π1, π2) and (ι, σ̃) (defined on
[0, 1]); hence,

δ(vi)(W
′
1,W

′
2) ≤ ‖W ′1 −W ′2σ̃‖� = ‖W ′1π1 −W ′2π2‖� < δ(ii)(W

′
1,W

′
2) + ε.

Finally, (6.12) yields δ(vi)(W1,W2) < δ(ii)(W1,W2)+5ε, and the result follows
since ε is arbitrary. �

Remark 6.10. On spaces with atoms, the quantities δ(iv) and δ(v) defined in
(iv) and (v) are in general different from δ�, see Example 5.6. (In this case,
they are larger than δ�, see Remark 6.2.) Furthermore, for two general
probability spaces Ω1 and Ω2, it is possible that there are no measure-
preserving maps Ω1 → Ω2 at all, in which case the definitions in (iv) and
(v) are not appropriate; and even if we may interpret δ(iv) as a default value
1 (for graphons; for general kernels we would have to use ∞), in such cases,
δ(iv) is not even symmetric in general. (For an example, modify Example 5.6
by replacing W2 by a pull-back defined on [0, 1]; then there are measure-
preserving maps Ω2 → Ω1 but not conversely. We have δ(iv)(W2,W1) =
2ε < δ(iv)(W1,W2) = 1.)

Remark 6.11. In (iv), it suffices that Ω1 and Ω2 are Borel spaces such that
Ω1 is atomless. To see this, replace W2 by its pull-back W π

2 defined on the

atomless Borel space Ω̃2 := Ω2 × [0, 1], where π is the projection onto Ω2.

Remark 6.12. (iv) and (v) hold also for atomless Lebesgue spaces, since
then, for ` = 1, 2, Ω` = (Ω`,F`, µ`) is the completion of some Borel space
Ω0
` = (Ω`,F0

` , µ`), and we may replace W` by a kernel W 0
` on Ω0

` with
W` = W 0

` a.e., cf. Remark 2.5; note that every measure-preserving map
ϕ : Ω0

1 → Ω0
2 also is measure-preserving Ω1 → Ω2.

Remark 6.13. An obvious analogue of Theorem 6.9 holds for δ1. (In (iii),
the integral is

∫
(Ω1×Ω2)2

∣∣W1(x1, y1) −W2(x2, y2)
∣∣dµ(x1, x2) dµ(y1, y2), and

there are no f and g.) See Pikhurko [55] for some parts and related results.
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Remark 6.14. In probabilistic notation, see Remark 6.1, (iii) can be written
as

inf
(X′1,X

′
2)

sup
‖f‖∞,‖g‖∞≤1

∣∣∣E((W1(X ′1, X
′′
1 )−W2(X ′2, X

′′
2 )
)
f(X ′1, X

′
2)g(X ′′1 , X

′′
2 )
)∣∣∣,

where the infimum is taken over all couplings (X ′1, X
′
2) of two random vari-

ables X1 and X2 such that X` is Ω`-valued and has distribution µ`, and
(X ′′1 , X

′′
2 ) is an independent copy of (X ′1, X

′
2).

Corollary 6.15. Let Ω be an atomless Borel spaces, e.g. [0, 1], and let W be
a graphon on Ω. Then the equivalence class of all graphons on Ω equivalent
to W equals the closure of the orbit of W under measure-preserving bijections
(or maps); i.e.,

{W ′ ∈ W(Ω) : W ′ ∼= W} = {Wϕ : ϕ ∈ Smp} = {Wϕ : ϕ ∈ Smpb},
where Smp is the set of all measure-preserving ϕ : Ω → Ω, and Smpb is the
subset of all measure-preserving bijections. The closure may here be taken
either for the cut norm or for the L1 norm.

Proof. For the closure in cut norm, this follows from Theorem 6.9(iv) and
(v). By Remark 6.13, the same holds for the closure in L1 norm and the
equivalence class {W ′ ∈ W(Ω) : δ1(W ′,W ) = 0}. However, by Theorem 8.10
below, δ1 and δ� define the same equivalence classes. �

Remark 6.10 shows that the (equivalent) definitions in Theorem 6.9(i)–
(iii) are the only ones useful for general probability spaces. Another ad-
vantage of them is that, as shown by Bollobás and Riordan [12], the infima
are attained, at least for Borel spaces. (This is not true in general for the
versions in (iv)–(vi), not even in the special case when the infimum is 0, see
Example 8.1 below.)

Theorem 6.16. Let W1 and W2 be two kernels defined on Borel proba-
bility spaces (Ω1, µ1) and (Ω2, µ2), respectively. Then the infima in Theo-
rem 6.9(i)–(iii) are attained. In other words, there exists a probability mea-
sure µ on Ω1 × Ω2 with marginals µ1 and µ2, and thus a corresponding
coupling (π1, π2), such that δ�(W1,W2) = ‖W π1

1 −W
π2
2 ‖�,Ω1×Ω2,µ.

Proof. By Theorem A.4 and Remark A.5, every Borel measurable space is
either countable or isomorphic to the Cantor cube C := {0, 1}∞. Hence, we
may without loss of generality assume that each of the two spaces Ω` (where,
as in the rest of the proof, ` = 1, 2) is either a finite set, the countable set
{0}∪ {1/n : n ∈ N} or C, equipped with some probability measure µ`. Note
that in every case Ω` is a compact metric space.

For `1, `2 ∈ {1, 2}, Let A(Ω`1 × Ω`2) be the set of all step functions on
Ω`1 × Ω`2 corresponding to partitions Ω`m =

⋃
iAim where every part Aim

is clopen (closed and open) in Ω`m , m = 1, 2. (We extend here the definition
of step functions on Ω×Ω to products of two different spaces in the natural
way.) For the spaces we consider, A(Ω`1 ×Ω`2) is dense in L1(Ω`1 ×Ω`2 , µ)
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for any probability measure µ on the product. (This is the reason why we
replaced [0, 1] by the totally disconnected space C. It is possible to use [0, 1]
instead, with minor modifications, see [12].)

Denote the integral in Theorem 6.9(iii) by Φ(W1,W2, f, g, µ). By Theo-
rem 6.9, there exist probability measures νn on Ω1 × Ω2 such that

sup
‖f‖∞,‖g‖∞≤1

|Φ(W1,W2, f, g, νn)| < δ�(W1,W2) + 1/n. (6.15)

(For δ�,1, we tacitly assume that f, g ≥ 0.)
Since Ω1 and Ω2 are compact metric spaces, Ω1 × Ω2 is too. Hence, the

set of probability measures on Ω1 × Ω2 is compact and metrizable (see [6]),
so there exists a subsequence of (νn) that converges (in the usual weak
topology) to some probability measure ν on Ω1 × Ω2. We consider in the
sequel this subsequence only.

Let ε > 0. By the remarks above, we may find W ′` ∈ A(Ω2
` ) with ‖W` −

W ′`‖L1(Ω`×Ω`) < ε, and hence, assuming ‖f‖∞, ‖g‖∞ ≤ 1,

|Φ(W1,W2, f, g, ν)| ≤ |Φ(W ′1,W
′
2, f, g, ν)|+ ‖W1 −W ′1‖� + ‖W2 −W ′2‖�

≤ |Φ(W ′1,W
′
2, f, g, ν)|+ 2ε (6.16)

and similarly, for every n and every f, g with ‖f‖∞, ‖g‖∞ ≤ 1,

|Φ(W ′1,W
′
2, f, g, νn)| ≤ |Φ(W1,W2, f, g, νn)|+ 2ε. (6.17)

Since W ′1 and W ′2 are step functions, they are bounded, so there exists some
M with ‖W ′`‖∞ ≤ M . For any f and g with ‖f‖∞, ‖g‖∞ ≤ 1, we may
similarly find f ′ and g′ in A(Ω1 × Ω2), with ‖f‖∞, ‖g‖∞ ≤ 1, such that
‖f − f ′‖L1(ν), ‖g − g′‖L1(ν) ≤ ε/M . It follows that

|Φ(W ′1,W
′
2, f, g, ν)| ≤ |Φ(W ′1,W

′
2, f
′, g′, ν)|+ 4ε. (6.18)

Since W ′1,W
′
2, f
′, g′ all are step functions in the sets A, the integral

Φ(W ′1,W
′
2, f
′, g′, µ) can be written as a linear combination of integrals∫

Ai×Bj×Ak×Bm

dµ(x1, x2) dµ(y1, y2) = µ(Ai ×Bj)µ(Ak ×Bm),

where further the sets Ai, Bj , Ak, Bm are clopen. Hence each term, and thus
Φ(W ′1,W

′
2, f
′, g′, µ), is a continuous functional of µ; consequently,

Φ(W ′1,W
′
2, f
′, g′, νn)→ Φ(W ′1,W

′
2, f
′, g′, ν). (6.19)

By (6.17) and (6.15),

|Φ(W ′1,W
′
2, f
′, g′, νn)| < δ�(W1,W2) + 1/n+ 2ε, (6.20)

and thus (6.19) yields

|Φ(W ′1,W
′
2, f
′, g′, ν)| ≤ δ�(W1,W2) + 2ε (6.21)

and, by (6.16) and (6.18),

|Φ(W1,W2, f, g, ν)| ≤ |Φ(W ′1,W
′
2, f
′, g′, ν)|+ 6ε ≤ δ�(W1,W2) + 8ε. (6.22)



20 SVANTE JANSON

Since ε is arbitrary, we thus obtain |Φ(W1,W2, f, g, ν)| ≤ δ�(W1,W2), and

‖W1 −W2‖�,ν = sup
‖f‖∞,‖g‖∞≤1

|Φ(W1,W2, f, g, ν)| ≤ δ�(W1,W2), (6.23)

which shows that equality is attained in Theorem 6.9(ii)–(iii) by ν, and in
Theorem 6.9(i) by the coupling (π1, π2) defined on (Ω1 × Ω2, ν). �

The assumption that the spaces are Borel (or Lebesgue, see Remark 6.12)
really is essential here, even when the infimum δ�(W1,W2) = 0; in Exam-
ple 8.13 we will see an example of two equivalent kernels such that none of
the infima in Theorem 6.9 is attained.

7. Representation on [0, 1]

As said in the introduction, many papers consider only kernels or graphons
on [0, 1] = ([0, 1], λ). This is justified by the fact that every kernel [graphon]
is equivalent to such a kernel [graphon]. (See [38] for a generalization.)

Theorem 7.1. Every kernel [graphon] on a probability space (Ω,F , µ) is
equivalent to a kernel [graphon] on ([0, 1], λ).

Corollary 7.2. The quotient space Ŵ :=
⋃

ΩW(Ω)
/ ∼=, which as said

above can be identified with the space of graph limits, can as well be defined

Ŵ :=W([0, 1])/ ∼=.

Before proving Theorem 7.1, we prove a partial result.

Lemma 7.3. Every kernel [graphon] on a probability space (Ω,F , µ) is a
pull-back of a kernel [graphon] on some Borel probability space.

Proof. Let W : Ω2 → [0,∞) be a kernel. Since W is measurable, each set
Er := {(x, y) : W (x, y) < r}, where r ∈ R, belongs to F × F , and it follows
that there exists a countable subset Ar ⊆ F such that Er ∈ F(Ar)×F(Ar),
where F(Ar) is the σ-field generated by Ar. Hence, if F0 is the σ-field
generated by the countable set A :=

⋃
r∈QAr, then F0 ⊆ F and W is

F0 ×F0-measurable.
List the elements of A as {A1, A2, . . . }. (If A is finite, we for conve-

nience repeat some element.) Let C := {0, 1}∞ be the Cantor cube (see
Remark A.5) and define a map ϕ : Ω → C := {0, 1}∞ by ϕ(x) = (1{x ∈
Ai})∞i=1. Let ν be the probability measure on C that makes ϕ : Ω → C
measure-preserving, see Remark 5.4.

The σ-field on Ω generated by ϕ equals F0, and thus the σ-field on Ω×Ω
generated by (ϕ,ϕ) : Ω2 → C2 equals F0 × F0. Since W is measurable for
this σ-field, W equals V ◦ (ϕ,ϕ) = V ϕ for some measurable V : C2 → [0,∞).
Since W is symmetric, we may here replace V (x, y) by 1

2

(
V (x, y) +V (y, x)

)
and thus assume that also V is symmetric. Hence, V is a kernel on C and
W = V ϕ. If W is a graphon, we may assume that V : Ω2 → [0, 1], and thus
V too is a graphon. This proves the result with the Borel probability space
(C, ν). �
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Proof of Theorem 7.1. Let W be a kernel on some probability space Ω. By
Lemma 7.3, W ∼= V for some kernel V on a Borel probability space (Ω1, ν).
(With Ω1 = C in the proof above.) If ν is atomless, the result follows by
Theorem A.7. In general, let Ω2 := Ω× [0, 1], with product measure ν2. The
projection π : Ω2 → Ω1 is measure-preserving, so V ∼= V2 := V π. Moreover,
(Ω2, ν2) is an atomless Borel probability space, so by Theorem A.7 there

exists a measure-preserving bijection ψ : [0, 1] → Ω2. Hence U := V ψ
2 is a

kernel [graphon] on [0, 1] and U ∼= V2
∼= V ∼= W . �

Remark 7.4. If µ is atomless, we may by Lemma A.1 find an increasing
family of sets Br ⊆ Ω, r ∈ [0, 1], such that µ(Br) = r. In the construction in
the proof of Lemma 7.3, we may add each Br with rational r to the family
A. Then the measure ν on C is atomless, because if x were an atom, then
E := ϕ−1{x} would be a subset of Ω with µ(E) > 0 such that for each
rational r, either E ⊆ Br or E ∩ Br = ∅, but this leads to a contradiction
as in the proof of Lemma A.3. Consequently, we then can use Theorem A.7
directly to find a measure-preserving bijection ψ : [0, 1] → C, and a kernel

U := V ψ on [0, 1] such that W = V ϕ = Uψ
−1◦ϕ. Consequently, every kernel

on an atomless probability space (Ω, µ) is a pull-back of a kernel on [0, 1],
which combines and improves Lemma 7.3 and Theorem 7.1 in this case.
(Conversely, by Lemma A.3, no kernel on a space (Ω, µ) with atoms is a
pull-back of a kernel on [0, 1].)

8. Equivalence

We have seen that if W1 and W2 are two kernels on some probability
spaces Ω1 and Ω2, and W1 = Wϕ

2 (or just W1 = Wϕ
2 a.e.) for some measure-

preserving ϕ : Ω1 → Ω2, then W1
∼= W2. The converse does not hold, as

shown by the following standard examples [13].

Example 8.1. Let ϕ : [0, 1] → [0, 1] be given by ϕ(x) = 2x mod 1.
Take W1(x, y) = xy, and W2 := Wϕ

1 . Then W1 and W2 are graphons
on [0, 1], and δ�(W1,W2) = 0. However, there is no measure-preserving

ψ : [0, 1] → [0, 1] such that W1 = Wψ
2 a.e., and as a consequence, the in-

fima in Theorem 6.9(iv)–(vi) are not attained. (See Lemma 4.7.) In fact,

if such a ψ existed, then W1 = (Wϕ
1 )ψ = Wϕ◦ψ

1 a.e., which implies (e.g. by

considering the marginal
∫ 1

0 W (x, y) dy = x/2) that ϕ(ψ(x)) = x a.e., and

thus ψ(x) ∈ {x/2, x/2 + 1/2} a.e. However, if E := ψ−1([0, 1/2]), it follows
that for any a and b with 0 < a < b < 1, E ∩ [a, b] = ψ−1([a/2, b/2]), so
λ(E ∩ [a, b])/(b − a) = 1/2. In particular, for every x ∈ (0, 1), the density
limε→0 λ(E ∩ (x− ε, x+ ε))/2ε = 1/2. On the other hand, by the Lebesgue
density theorem, this density is 1 for a.e. x ∈ E and 0 for a.e. x /∈ E, a
contradiction.

Example 8.2. More generally, let ϕ : [0, 1]→ [0, 1] be given by ϕn(x) = nx
mod 1, and define Wn := Wϕn with the same W as in Example 8.1. If
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Wn = Wψ
m a.e., then mψ(x) ≡ nx mod 1 a.e. Let E := ψ−1(0, 1/m). Then,

for 0 < a < b < 1/m, ψ−1([a, b]) =
⋃n−1
j=0 E ∩ ([ma/n,mb/n] + j/n) (a.e.)

and thus, if ψ is measure-preserving,

b− a = λ
(
ψ−1([a, b])

)
=

n−1∑
j=0

λ

(
E ∩

[ma+ j

n
,
mb+ j

n

])
.

Divide by b− a, take a = x− ε and b = x+ ε, and let ε→ 0. The Lebesgue
differentiation theorem implies that for a.e. x ∈ (0, 1/m),

1 =
m

n

n−1∑
j=0

1
{mx+ j

n
∈ E

}
.

Since the sum is an integer for each x, this implies that n is a multiple of
m. Conversely, if n = m` for an integer `, then ϕn = ϕm ◦ ϕ`, and thus
Wn = (Wϕm)ϕ` = Wϕ`

m . Consequently, all Wn are equivalent (being pull-
backs of W1), and there exists a measure-preserving ψ : [0, 1] → [0, 1] such

that Wn = Wψ
m a.e. if and only if n is a multiple of m. In particular, W2

and W3 are equivalent, but neither of them is a pull-back of the other.

However, equivalence is characterized by sequences of pull-backs. We
begin with a simple result.

Theorem 8.3. Let W ′ and W ′′ be kernels defined of probability spaces Ω′

and Ω′′. Then W ′ ∼= W ′′, i.e. δ�(W ′,W ′′) = 0, if and only if there exists a
finite sequence of kernels Wi defined on probability spaces Ωi, i = 0, . . . , n,
with W0 = W ′ and Wn = W ′′, such that for each i ≥ 1, either Wi−1 = Wϕi

i

a.e. for some measure-preserving ϕi : Ωi−1 → Ωi, or Wi = Wψi
i−1 a.e. for

some measure-preserving ψi : Ωi → Ωi−1.

Proof. Suppose that W ′ ∼= W ′′. We show that we can construct such a se-
quence with n = 4. We thus take W0 := W ′ and W4 := W ′′. By Lemma 7.3,
we can find W1 and W3 on Borel probability spaces Ω1 and Ω3 such that

W0 = Wϕ1
1 and W4 = Wψ4

3 for some measure-preserving ϕ1 and ψ4. Then
W1
∼= W0

∼= W4
∼= W3, so δ�(W1,W3) = 0. By Theorem 6.16, there exists

a probability measure µ on Ω1 × Ω3 such that ‖W π1
1 −W

π3
3 ‖�,Ω1×Ω3,µ = 0,

where πi is the projection onto Ωi. Thus, by Lemma 4.7, W π1
1 = W π3

3
a.e. Hence, we can take Ω2 := (Ω1 × Ω3, µ), ψ2 := π2, ϕ3 := π3 and

W2 := Wψ2
1 = W π2

1 .
The converse is obvious by Example 6.7 and Corollary 6.6. �

Example 8.2 shows that we cannot in general do with a single pull-back
in Theorem 8.3. However, we can always do with a chain of length 2 in
Theorem 8.3. In fact, Borgs, Chayes and Lovász [13] proved the following,
more precise and much more difficult, result. (We will not use this theorem
later; the simpler Theorem 8.3 is sufficient for our applications.)
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Theorem 8.4. Let W1 and W2 be kernels defined of probability spaces Ω1

and Ω2. Then W1
∼= W2, i.e. δ�(W1,W2) = 0, if and only if there exists

a kernel W on some probability space Ω and measure-preserving maps ϕj :
Ωj → Ω such that Wj = Wϕj a.e., j = 1, 2.

We can always take Ω to be a Borel space. If Ω1 and Ω2 are atomless,
we may take Ω = [0, 1].

Proof. It suffices to prove the theorem for graphons W1 and W2; the general
case follows easily by considering the transformations W1/(1 + W1) and
W2/(1 +W2).

We give a proof in Section 9. (Except for the final statement, which is
shown below.) See also Borgs, Chayes and Lovász [13] for the long and
technical original proof. In their formulation, the space Ω is constructed
as a Lebesgue space, and the maps ϕj are only assumed to be measurable

from the completions (Ωj , F̂j , µj) of Ωj to Ω. However, this is easily seen
to be equivalent: If Ω is such a Lebesgue space, then Ω = (Ω,F , µ) is the
completion of some Borel space Ω0 = (Ω,F0, µ). We may replace W by
an a.e. equal kernel that is F0 × F0-measurable, i.e., a kernel on the Borel
space Ω0. Further, since every Borel measurable space is isomorphic to a
Borel subset of [0, 1], see Theorem A.4, the map ϕj : Ωj → Ω0 which is

F̂j-measurable, is a.e. equal to an Fj-measurable map ϕ′j . Replacing Ω by

Ω0 and ϕj by ϕ′j , we obtain the result as stated above, with Ω Borel.
For the final statement, suppose that Ω1 and Ω2 are atomless, and let W ,

ϕj and Ω be as in the first part of the theorem, with Ω Borel. Suppose that
Ω has atoms, i.e., points a ∈ Ω with µ{a} > 0. Replace each such point
a by a set Ia which is a copy of the interval [0, µ{a}] (with Borel σ-field
and Lebesgue measure), and let Ω′ be the resulting Borel probability space.
There is an obvious map π : Ω′ → Ω, mapping each Ia to a and being the
identity elsewhere, and we let W ′ := W π. For each atom a, and j = 1, 2,
let Aaj := ϕ−1

j (a) ⊆ Ωj . Then Aaj is an atomless measurable space, and

by Lemma A.2 (and scaling), there is a measure-preserving map Aaj → Ia.
Combining these maps and the original ϕj , we find a measure-preserving

map ϕ′j : Ωj → Ω′ such that ϕj = π ◦ϕ′j , and thus Wj = Wϕj = (W ′)ϕ
′
j a.e.

Finally, Ω′ is an atomless Borel probability space, and may thus be replaced
by [0, 1] by Theorem A.7. �

Remark 8.5. With a Lebesgue space Ω, it is both natural and necessary to
consider maps Ωj → Ω that are measurable with respect to the completion
of Ωj , as done in [13]. For example, if Ω1 = Ω2 = [0, 1] with the Borel σ-field
and W1(x, y) = W2(x, y) = xy, we can take Ω = [0, 1] and ϕj = ι, but if
we equip Ω with the Lebesgue σ-field, then ϕj is not measurable Ωj → Ω
(and cannot be modified on a null set to become measurable). This is just a
trivial technicality that is no real problem, and as seen in the proof above,
it can be avoided by using Borel spaces.
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Theorem 8.4 says that a pair of equivalent graphons always are pull-backs
of a single graphon. We may also try to go in the opposite direction and try
to find a common pull-back of two equivalent graphons. As shown by Borgs,
Chayes and Lovász [13], this is not always possible, see Example 8.13 below,
but it is possible for graphons defined on Borel or Lebesgue spaces. We state
this, in several versions, in the next theorem, together with conditions under
which W1 is a pull-back or rearrangement of W2. (Recall that Example 8.2
shows that this does not hold in general, not even for a nice Borel space like
[0, 1].)

If W is kernel defined on a probability space Ω, we say following [13] that
x1, x2 ∈ Ω are twins (for W ) if W (x1, y) = W (x2, y) for a.e. y ∈ Ω. We say
that W is almost twinfree if there exists a null set N ⊂ Ω such that there
are no twins x1, x2 ∈ Ω \N with x1 6= x2.

Various parts of the following theorem are given, at least for the standard
case of graphons on Ω1 = Ω2 = [0, 1], in Diaconis and Janson [24] (as a conse-
quence of Hoover’s equivalence theorem for representations of exchangeable
arrays [43, Theorem 7.28]), Bollobás and Riordan [12], and Borgs, Chayes
and Lovász [13]. A similar theorem in the related case of partial orders is
given in [40].

Theorem 8.6. Let W1 and W2 be kernels defined on Borel probability spaces
(Ω1, µ1) and (Ω2, µ2). Then the following are equivalent.

(i) W1
∼= W2.

(ii) There exist a coupling (ϕ1, ϕ2), i.e., two measure preserving maps
ϕj : Ω → Ωj, j = 1, 2, for some probability space Ω, such that
Wϕ1

1 = Wϕ2
2 a.e., i.e., W1

(
ϕ1(x), ϕ1(y)

)
= W2

(
ϕ2(x), ϕ2(y)

)
a.e.

(iii) There exist measure preserving maps ϕj : [0, 1]→ Ωj, j = 1, 2, such
that Wϕ1

1 = Wϕ2
2 a.e., i.e., W1

(
ϕ1(x), ϕ1(y)

)
= W2

(
ϕ2(x), ϕ2(y)

)
a.e. on [0, 1]2.

(iv) There exists a measure-preserving map ψ : Ω1× [0, 1]→ Ω2 such that

W π1
1 = Wψ

2 a.e., where π1 : Ω1 × [0, 1] → Ω1 is the projection, i.e.,
W1(x, y) = W2

(
ψ(x, t1), ψ(y, t2)

)
for a.e. x, y ∈ Ω1 and t1, t2 ∈ [0, 1].

(v) There exists a probability measure µ on Ω1 × Ω2 with marginals µ1

and µ2 such that W π1
1 = W π2

2 a.e. on (Ω1 × Ω2)2, i.e., W1(x1, y1) =
W2(x2, y2) for µ-a.e. (x1, x2), (y1, y2) ∈ Ω1 × Ω2.

If W2 is almost twinfree, then these are also equivalent to:

(vi) There exists a measure preserving map ϕ : Ω1 → Ω2 such that W1 =
Wϕ

2 a.e., i.e. W1(x, y) = W2

(
ϕ(x), ϕ(y)

)
a.e. on Ω2

1.

If both W1 and W2 are almost twinfree, then these are also equivalent to:

(vii) There exists a measure preserving map ϕ : Ω1 → Ω2 such that ϕ
is a bimeasurable bijection of Ω1 \ N1 onto Ω2 \ N2 for some null
sets N1 ⊂ Ω1 and N2 ⊂ Ω2, and W1 = Wϕ

2 a.e., i.e. W1(x, y) =
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W2

(
ϕ(x), ϕ(y)

)
a.e. on Ω2

1. If further (Ω2, µ2) is atomless, for ex-
ample if Ω2 = [0, 1], then we may take N1 = N2 = ∅, so W1 is a
rearrangement of W2 and vice versa.

The same results hold if Ω1 and Ω2 are Lebesgue spaces, provided in (iii)
[0, 1] is equipped with the Lebesgue σ-field, and in (iv) Ω1 × [0, 1] has the
completed σ-field.

Proof. We assume that Ω1 and Ω2 are Borel spaces. The Lebesgue space
case follows immediately from this case by replacing W1 and W2 by (a.e.
equal) Borel kernels, see Remark 2.5.

We may also, when convenient, assume that W1 and W2 are graphons by
using again the transformations W1/(1 +W1) and W2/(1 +W2).

First note that any of (iii)–(vii) is a special case of (ii), and that (ii)
implies W1

∼= Wϕ1
1
∼= Wϕ2

2
∼= W2; thus any of (ii)–(vii) implies (i). We turn

to the converses.
(i) =⇒ (ii),(v): Assume W1

∼= W2, i.e., δ�(W1,W2) = 0. First, by
Theorem 6.16, there exists a coupling (ϕ1, ϕ2) such that ‖Wϕ1

1 −W
ϕ2
2 ‖� =

δ�(W1,W2) = 0, and thus, by Lemma 4.7, Wϕ1
1 = Wϕ2

2 a.e. Consequently,
(ii) holds. Moreover, by the same theorem and Theorem 6.9(ii), we may
take this coupling (ϕ1, ϕ2) as the projections (π1, π2) for a suitable measure
µ on Ω1 × Ω2, which shows (v).

(v) =⇒ (iii): Since (Ω1 × Ω2, µ) is a Borel probability space, Theorem A.9
shows that there exists a measure-preserving map ψ : [0, 1]→ Ω1 × Ω2, and
then (π1 ◦ ψ, π2 ◦ ψ) is a coupling defined on Ω = [0, 1], which shows (iii).
(Alternatively, (i) =⇒ (iii) follows also easily by Theorem A.9 from the
special case Ω1 = Ω2 = [0, 1] showed in [24].)

(i) =⇒ (iv): By Theorem A.9, there exist measure preserving maps γj :
[0, 1] → Ωj , j = 1, 2. Then W γ1

1 and W γ2
2 are kernels on [0, 1], and W γ1

1
∼=

W1
∼= W2

∼= W γ2
2 . The equivalence (i) ⇐⇒ (iv) was shown (for graphons,

which suffices as remarked above) in [24] in the special case Ω1 = Ω2 = [0, 1],
based on [43, Theorem 7.28], and thus (iv) holds for W γ1

1 and W γ2
2 . In

other words, there exists a measure preserving function h : [0, 1]2 → [0, 1]
such that W γ1

1 (x, y) = W γ2
2

(
h(x, z1), h(y, z2)

)
for a.e. x, y, z1, z2 ∈ [0, 1].

By Lemma 8.9 below (applied to (Ω1, µ1) and γ1), there exists a measure
preserving map α : Ω1 × [0, 1]→ [0, 1] such that γ1(α(s, u)) = s a.e. Hence,
for a.e. x, y ∈ Ω1 and u1, u2, z1, z2 ∈ [0, 1],

W1(x, y) = W1

(
γ1 ◦ α(x, u1), γ1 ◦ α(y, u2)

)
= W γ1

1

(
α(x, u1), α(y, u2)

)
= W γ2

2

(
h(α(x, u1), z1), h(α(y, u2), z2)

)
= W2

(
γ2 ◦ h(α(x, u1), z1), γ2 ◦ h(α(y, u2), z2)

)
.

Finally, let β = (β1, β2) be a measure preserving map [0, 1] → [0, 1]2, and
define ψ(x, t) := γ2 ◦ h

(
α(x, β1(t)), β2(t)

)
.

(iv) =⇒ (vi): Since, for a.e. x, y, t1, t2, t
′
1,

W2

(
ψ(x, t1), ψ(y, t2)

)
= W1(x, y) = W2

(
ψ(x, t′1), ψ(y, t2)

)
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and ψ is measure preserving, it follows that for a.e. x, t1, t
′
1, ψ(x, t1) and

ψ(x, t′1) are twins for W2. If W2 is almost twin-free, with exceptional null
set N , then further ψ(x, t1), ψ(x, t′1) /∈ N for a.e. x, t1, t

′
1, since ψ is measure

preserving, and consequently ψ(x, t1) = ψ(x, t′1) for a.e. x, t1, t
′
1. It follows

that we can choose a fixed t′1 (almost every choice will do) such that ψ(x, t) =
ψ(x, t′1) for a.e. x, t. Define ϕ(x) := ψ(x, t′1). Then ψ(x, t) = ϕ(x) for a.e.
x, t, which in particular implies that ϕ is measure preserving, and (iv) yields
W1(x, y) = W2

(
ϕ(x), ϕ(y)

)
a.e.

(vi) =⇒ (vii): Let N ′ ⊂ Ω1 be a null set such that if x /∈ N ′, then
W1(x, y) = W2(ϕ(x), ϕ(y)) for a.e. y ∈ Ω1. If x, x′ ∈ Ω1 \ N ′ and ϕ(x) =
ϕ(x′), then x and x′ are twins for W1. Consequently, if W1 is almost twinfree
with exceptional null set N ′′, then ϕ is injective on Ω1 \ N1 with N1 :=
N ′∪N ′′. Since Ω1\N1 and Ω2 are Borel spaces, Theorem A.6 shows that the
injective map ϕ : Ω1 \N1 → Ω2 has measurable range and is a bimeasurable
bijection ϕ : Ω1 \N1 → Ω2 \N2 for some measurable set N2 ⊂ Ω2. Since ϕ
is measure preserving, µ2(N2) = 0.

If Ω2 has no atoms, we may take an uncountable null set N ′2 ⊂ Ω2 \N2.
Let N ′1 := ϕ−1(N ′2). Then N1∪N ′1 and N2∪N ′2 are uncountable Borel spaces
so they are isomorphic and there is a bimeasurable bijection η : N1 ∪N ′1 →
N2 ∪ N ′2. Redefine ϕ on N1 ∪ N ′1 so that ϕ = η there; then ϕ becomes a
bijection Ω1 → Ω2. �

Remark 8.7. A probabilistic reformulation of (ii), along the lines of Re-
mark 6.1, is that there exists a coupling (X,Y ) of random variables with
the distributions µ1 on Ω1 and µ2 on Ω2, such that if (X ′, Y ′) is an indepen-
dent copy of (X,Y ), then W1(X,X ′) = W2(Y, Y ′) a.s. Similarly, (v) says
that there exists a distribution (i.e., probability measure) µ on Ω1 × Ω2 with
marginals µ1 and µ2 such that if (X,Y ) and (X ′, Y ′) are independent with
the same distribution µ, then W1(X,X ′) = W2(Y, Y ′) a.s. [13].

Remark 8.8. In (iv), the seemingly superfluous variables t1 and t2 act as
extra randomization; (iv) thus yields a kind of “randomized pull-back” using
a “randomized measure-preserving map” ψ, even when no suitable measure-
preserving map as in (vi) exists. It is an instructive exercise to see how this
works for Example 8.1; we leave this to the reader.

The proof above uses the following consequence of the transfer theorem
[42, Theorem 6.10].

Lemma 8.9. Suppose that (Ω, µ) is a Borel probability space and that γ :
[0, 1] → Ω is a measure preserving function. Then there exists a measure
preserving function α : Ω× [0, 1]→ [0, 1] such that γ

(
α(s, y)

)
= s for µ×λ-

a.e. (s, y) ∈ Ω× [0, 1].

Proof. Let η : [0, 1] → [0, 1] and ξ̃ : Ω → Ω be the identity maps η(x) = x,

ξ̃(s) = s, and let ξ = γ : [0, 1] → Ω. Then (ξ, η) is a pair of random
variables, defined on the probability space ([0, 1], λ), with values in Ω and
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[0, 1], respectively; further, ξ̃ is a random variable defined on (Ω, µ) with

ξ̃
d
= ξ. By the transfer theorem [42, Theorem 6.10], there exists a measurable

function α : Ω×[0, 1]→ [0, 1] such that if η̃(s, y) := α(ξ̃(s), y) = α(s, y), then

(ξ̃, η̃) is a pair of random variables defined on Ω× [0, 1] with (ξ̃, η̃)
d
= (ξ, η).

Since ξ = γ(η), this implies ξ̃ = γ(η̃) a.e., and thus s = ξ̃(s) = γ
(
α(s, y)

)
a.e. �

There are several other, quite different, characterizations of equivalence.
We give several important conditions from [13], [14] and [24] that use the
homomorphism densities t(F,W ) and the random graphs G(n,W ) defined
in Appendix C and Appendix D.

Theorem 8.10. Let W and W ′ be two graphons (possibly defined on dif-
ferent probability spaces). Then the following are equivalent:

(i) W ∼= W ′.
(ii) δ�(W,W ′) = 0.
(iii) δ1(W,W ′) = 0.
(iv) t(F,W ) = t(F,W ′) for every simple graph F .
(v) t(F,W ) = t(F,W ′) for every loopless multigraph F .
(vi) The random graphs G(n,W ) and G(n,W ′) have the same distribu-

tion for every finite n.
(vii) The infinite random graphs G(∞,W ) and G(∞,W ′) have the same

distribution.

Proof. (i)⇐⇒ (ii): This is just our definition of ∼=.
(ii) =⇒ (iii): If δ�(W,W ′) = 0, let W0, . . . ,Wn be a chain of graphons as

in Theorem 8.3 (or Theorem 8.4). We have δ1(Wi,W
ϕ
i ) = 0 for any pull-

back of a graphon Wi, and thus δ1(Wi−1,Wi) = 0 for every i ≥ 1. Hence
δ1(W,W ′) = 0 by the triangle inequality Lemma 6.5.

(iii) =⇒ (ii): Trivial.
(ii) =⇒ (v): This is immediate from (C.1) for a pull-back, and the general

case follows again by Theorem 8.3.
(v) =⇒ (iv): Trivial.
(iv) ⇐⇒ (vi): The distribution of G(n,W ) is determined by the family

{t(F,W ) : |F | ≤ n} of homomorphism densities for all (simple) graphs F
with |F | ≤ n, and conversely, cf. Remark D.1.

(vi)⇐⇒ (vii): The distribution of G(∞,W ) is determined by the family
of distributions of the restrictions G(∞,W )|[n] to the first n vertices, for
n ≥ 1, and conversely. However, G(∞,W )|[n] = G(n,W ). See [24] for
details.

(iv) =⇒ (ii): See [14] or, for a different proof, [13]. (This is highly non-
trivial.) Alternatively, (vii) =⇒ (ii) follows from [43, Theorem 7.28], see [24,
Proof of Theorem 7.1]. �

Remark 8.11. One of the central results in [14] is that, for graphons
W1,W2, . . . and W , δ�(Wn,W ) → 0 if and only if t(F,Wn) → t(F,W ) for
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every (simple) graph F . (Taking Wn = WGn for a sequence of graphs with
|Gn| → ∞, this says in particular that Gn → W ⇐⇒ t(F,Gn) → t(F,W )
for every graph F , see Appendix B.) As pointed out in [12], this equivalence
is equivalent to the corresponding equivalence (ii)⇐⇒ (iv) in Theorem 8.10.

One way to see this is to define a new semimetric on the class W∗ of
graphons by

δt(W,W
′) :=

∞∑
n=1

2−n|t(Fn,W )− t(Fn,W ′)|,

where F1, F2, . . . is some (arbitrary but fixed) enumeration of all unlabelled
(simple) graphs. By Theorem 8.10, δt(W,W

′) = 0 ⇐⇒ W ∼= W ′ ⇐⇒
δ�(W,W ′) = 0, so δt is, just as δ�, a metric on the quotient space Ŵ. More-
over, the easy result Lemma C.2 that each W 7→ t(Fn,W ) is continuous for

δ� implies that δt is continuous on (Ŵ, δ�), so the topology on Ŵ defined
by δt is weaker than the topology defined by δ�. (Equivalently, the identity

map (Ŵ, δ�)→ (Ŵ, δt) is continuous.) However, since (Ŵ, δ�) is compact,
this implies that topologies are the same, i.e., that the metrics δ� and δt are

equivalent on Ŵ, which is the result we want. (This argument in [12] is essen-
tially the same, but stated somewhat differently. Another equivalent version

is to consider the mapping Ŵ → [0, 1]∞ given by W 7→ (t(Fn,W ))∞n=1, see
[24]; this map is continuous and, by Theorem 8.10, injective, so again by
compactness it is a homeomorphism onto some subset.) Note the importance

of the compactness of Ŵ in these arguments.

The distribution of a kernel W defined on a probability space (Ω, µ) is
the distribution of W regarded as a random variable defined on Ω2, i.e., the
push-forward of µ2 by W , or equivalently the probability measure on R that
makes W : Ω2 → R measure-preserving, see Remark 5.4.

Corollary 8.12. If W1 and W2 are two equivalent graphons, defined on two
probability spaces Ω1 and Ω2, then W1 and W2 have the same distributions.
In particular,

∫
Ω2

1
W k

1 =
∫

Ω2
2
W k

2 for every k ≥ 1.

Proof. The conclusion obviously holds ifW1 is a.e. equal to a pull-backWϕ
2 of

W2, or conversely. The general case follows by Theorem 8.3 (or Theorem 8.4)
and transitivity. Alternatively, we may use Theorem 8.10 and observe that∫
W k
` = t(Mk,W`) if Mk is the multigraph consisting of k parallel edges, see

Example C.1. �

Note that, for any k > 1, W →
∫

Ω2 W
k is not continuous in the cut norm,

see Example C.3.
Finally we give, as promised above, the counter-example by Borgs, Chayes

and Lovász [13], showing that the condition that the spaces are Borel (or
Lebesgue) is needed in Theorem 8.6.

Example 8.13. Let A ⊆ [0, 1] be a non-measurable set such that the outer
measure λ∗(A) = 1 and the inner measure λ∗(A) = 0. (Equivalently, every
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measurable set contained in A or in its complement has measure 0.) Let
LA := {B ∩ A : B ∈ L}, the trace of the Lebesgue σ-field on A. Then the
outer Lebesgue measure λ∗ is a probability measure on (A,LA), and the
injection ι : A → [0, 1] is measure-preserving. (See e.g. [19, Exercises 1.5.8
and 1.5.11].)

Let W (x, y) := xy. W is a graphon on [0, 1], so its pull-back W1 := W ι,
which equals the restriction of W to A×A, is a graphon on Ω1 := (A,LA, λ∗),
and W1

∼= W . The complement Ac := [0, 1] \A satisfies the same condition
as A, so we may also define Ω2 := (Ac,LAc , λ∗), and let W2

∼= W be the
restriction of W to Ac ×Ac.

Then W1
∼= W ∼= W2, so W1

∼= W2. However, suppose that (ϕ1, ϕ2) is a
coupling of Ω1 and Ω2, defined on some space Ω, such that Wϕ1

1 = Wϕ2
2 a.e.

Then the marginal Wϕ1
1

(1)
equals the pull-back (W1

(1)
)ϕ1 of the marginal

W
(1)
1 : Ω1 → [0, 1], but the marginal of W1 is

W
(1)
1 (x) = W

(1)
(x) :=

∫ 1

0
W (x, y) dy = x/2;

hence Wϕ1
1

(1)
(x) = ϕ1(x)/2 for all x ∈ Ω. Similarly, Wϕ2

2

(1)
(x) = ϕ2(x)/2

for all x ∈ Ω. Our assumption Wϕ1
1 = Wϕ2

2 a.e. implies that the marginals
are equal a.e., and thus ϕ1(x)/2 = ϕ2(x)/2 a.e.; consequently, ϕ1(x) = ϕ2(x)
for a.e. x ∈ Ω. This is a contradiction since for every x, ϕ1(x) ∈ A while
ϕ2(x) ∈ Ac.

Consequently, for every coupling (ϕ1, ϕ2) of Ω1 and Ω2 we have Wϕ1
1 6=

Wϕ2
2 on a set of positive measure and thus ‖Wϕ1

1 −W
ϕ2
2 ‖� > 0 by Lemma 4.7.

Hence, the infima in Theorem 6.9(i)–(iii) are not attained, and none of
Theorem 8.6(ii)–(vii) holds, although (i) does.

9. Pure graphons and a canonical version of a graphon

We present here a way to select an essentially unique, canonical choice
of graphon among all equivalent graphons corresponding to a graph limit;
more precisely we construct a graphon that is determined uniquely up to
a.e. rearrangements. This construction is based on Lovász and Szegedy [51],
although formulated somewhat differently. This will also lead to a new proof
of Theorem 8.4, a proof which we find simpler than the original one.

For convenience, we consider only graphons, although the construction
extends to general kernels with very few modifications.

Let W be a graphon on a probability space (Ω,F , µ). For each x ∈ Ω,
the section Wx is defined by

Wx(y) := W (x, y), y ∈ Ω. (9.1)

Thus Wx is a measurable function Ω → [0, 1], and in particular Wx ∈
L1(Ω,F , µ).

Let ψW : Ω → L1(Ω,F , µ) be the map defined by ψW (x) := Wx. By a
standard monotone class argument (using e.g. the version of the monotone



30 SVANTE JANSON

class theorem in [37, Theorem A.1]), see also [25, Lemma III.11.16], ψW :
Ω→ L1(Ω,F , µ) is measurable.

Let µW be the push-forward µψW of µ by ψW , i.e., the probability mea-
sure on L1(Ω,F , µ) that makes ψW : (Ω, µ) → (L1(Ω,F , µ), µW ) measure-
preserving, see Remark 5.4; explicitly,

µW (A) = µ(ψ−1
W (A)), A ⊆ L1(Ω,F , µ). (9.2)

Further, let ΩW be the support of µW , i.e.,

ΩW := {f ∈ L1(Ω,F , µ) : µW (U) > 0 for every neighbourhood U of f}.
(9.3)

ΩW is a subset of L1(Ω,F , µ), and we equip it with the induced metric,
given by the norm in L1(Ω,F , µ), and the Borel σ-field generated by the
metric topology.

Theorem 9.1. (i) ΩW is a complete separable metric space, µW is a prob-
ability measure on ΩW and ψW (x) ∈ ΩW for µ-a.e. x ∈ Ω. We can thus
regard ψW as a mapping Ω → ΩW (defined a.e.); then ψW : (Ω, µ) →
(ΩW , µW ) is measure-preserving.

(ii) µW has full support on ΩW , i.e., if U ⊆ ΩW is open and non-empty,
then µW (U) > 0.

(iii) The range of ψW is dense in ΩW . More precisely, ψW (Ω) ∩ ΩW =
{Wx : x ∈ Ω} ∩ ΩW is a dense subset of ΩW .

(iv) ΩW ⊆ {f ∈ L1(Ω,F , µ) : 0 ≤ f ≤ 1 a.e.}.
(v) There exists a graphon Ŵ on (ΩW , µW ) such that the pull-back

ŴψW = W a.e.; this graphon Ŵ is unique up to a.e. equality. In par-

ticular, W ∼= Ŵ .

Proof. Recall first that L1(Ω,F , µ) is a Banach space, and thus a complete
metric space. In many cases, L1(Ω,F , µ) is separable (for example if Ω =
[0, 1] or another Borel space); however, there are cases when L1(Ω,F , µ) is
non-separable, see Appendix G, and in order to be completely general, we
have to include some technical details on separability below; these can be
ignored when Ω is a Borel space (and at the first reading).

Recall also that if B is a Banach space, then L1(Ω,F , µ;B) is the Banach
space of functions f : Ω→ B that are measurable and essentially separably
valued, i.e., there exists a separable subspace B1 ⊆ B such that f(x) ∈ B1

for a.e. x, and further
∫

Ω ‖f‖B dµ <∞, see e.g. [25, Chapter III, in particular
Section III.6] or the summary in [37, Appendix C]. (Note that [25] uses a
definition of measurability which implicitly includes essential separability,
see [25, Lemma III.6.9].)

Returning to our setting, we remarked above that ψW : Ω→ L1(Ω,F , µ)
is measurable; furthermore it is bounded since ‖ψ(x)‖L1 = ‖Wx‖L1 ≤ 1,
and a monotone class argument (again using e.g. [37, Theorem A.1]) shows
that ψW is separably valued; thus ψW ∈ L1

(
Ω,F , µ;L1(Ω,F , µ)

)
. In fact,

see [25, III.11.16–17], the mapping W 7→ ψW extends to L1(Ω × Ω, µ × µ),
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and more generally to L1(Ω1 × Ω2,F1 × F2, µ1 × µ2) for a product of any
two probability spaces (or, more generally, σ-finite measure spaces), and this
yields an isometric isomorphism

L1(Ω1 × Ω2,F1 ×F2, µ1 × µ2) ∼= L1
(
Ω1,F1, µ1;L1(Ω2,F2, µ2)

)
. (9.4)

As just said, ψW is separably valued, i.e., there exists a separable subspace
B1 ⊆ B := L1(Ω,F , µ) such that ψW (x) ∈ B1 for all x ∈ Ω. We may replace
B1 by B1, and we may thus assume that B1 is a closed subspace of B, and
thus a Banach space. Then µW (B \B1) = µ(ψ−1

W (B \B1)) = µ(∅) = 0, and
it follows from (9.3) that ΩW = supp(µW ) ⊆ B1 and, more precisely,

ΩW := {f ∈ B1 : µW (U) > 0 for every open U ⊆ B1 with f ∈ U}. (9.5)

Let A be the family of all open subsets U of B1 such that µW (U) = 0. Then
(9.5) shows that ΩW = B1 \

⋃
U∈A U . The union

⋃
U∈A U is open, so this

shows that ΩW is a closed subset of B1, and thus a complete separable metric
space as asserted. Moreover, since B1 is separable, this union equals the
union of some countable subfamily; hence µW

(⋃
U∈A U

)
= 0 and µW (ΩW ) =

1, so µW is a probability measure on ΩW .
By the definition of µW , µW (ΩW ) = µ{x : ψW (x) ∈ ΩW }, so this also

shows that ψW (x) ∈ ΩW for µ-a.e. x. Thus we can modify ψW on a null
set in Ω so that ψW : Ω→ ΩW , and then ψW is measure-preserving by the
definition of µW .

This proves (i). Next, if U is an open subset of ΩW with µW (U) = 0,
then U = V ∩ ΩW for some open V ⊂ B1. Then µW (V ) = µW (U) = 0, and
thus V ∈ A, so V ⊆ B1 \ ΩW and U = V ∩ ΩW = ∅, which proves (ii).

If U ⊆ ΩW is open and nonempty, then µW (U) > 0 by (ii) and thus
ψ−1
W (U) 6= ∅ by (9.2); hence U ∩ ψ(ΩW ) 6= ∅, which shows (iii).
The set Q := {f ∈ L1(Ω,F , µ) : 0 ≤ f ≤ 1 a.e.} is a closed subset of

L1(Ω,F , µ). Since Wx(y) = W (x, y) ∈ [0, 1] for every x and y, it follows
that ψ(x) ∈ Q for every x, and (iii) implies (iv).

To show (v), let FW ⊆ F be the σ-field on Ω induced by ψW , i.e.,

FW :=
{
ψ−1
W (A) : A ⊆ L1(Ω,F , µ) is measurable

}
. (9.6)

By definition, ψW is measurable (Ω,FW , µ) → L1(Ω,F , µ), so we can
regard ψW as an element of, using (9.4),

L1
(
Ω,FW , µ;L1(Ω,F , µ)

) ∼= L1(Ω× Ω,FW ×F , µ× µ). (9.7)

This shows the existence of W1 ∈ L1(Ω × Ω,FW × F , µ × µ) such that
W1 = W a.e. Consequently, the conditional expectation

E(W | FW ×F) = E(W1 | FW ×F) = W1 = W a.e.

By symmetry, also E(W | F × FW ) = W a.e., and thus

E(W | FW ×FW ) = E(E(W | FW ×F) | F × FW ) = W a.e.

Hence, W = W2 a.e., where W2 : Ω2 → [0, 1] is FW × FW -measurable,

which implies that W2 = W̃ψW for some measurable W̃ : Ω2
W → [0, 1]; we
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can symmetrize W̃ to obtain the desired graphon Ŵ (x, y) := (W̃ (x, y) +

W̃ (y, x))/2.

If Ŵ1 : ΩW → [0, 1] is another graphon such that ŴψW
1 = W = ŴψW

µ× µ-a.e., then Ŵ1 = Ŵ µW × µW -a.e., by the definitions of pull-back and
µW .

Finally, W ∼= Ŵ since W is a.e. equal to a pull-back of Ŵ . �

Remark 9.2. Sine ΩW is a complete separable metric space, the probability
space (ΩW , µW ) is a Borel space, see Appendix A.2.

Following [51], but using our notations, we make the following definition:

Definition 9.3. A graphon W on Ω is pure if the mapping ψW is a bijection
Ω→ ΩW .

Note that ψW is injective ⇐⇒ W is twinfree (see Section 8). It follows
easily that a graphon is pure if and only if it is twinfree and the metric
r(x, y) := ‖W (x, ·) − W (y, ·)‖L1 on Ω is complete, and further µ has full
support in the metric space (Ω, r). (Then, automatically, (Ω, r) is separable.)
See further [51].

Remark 9.4. Let W,W ′ be graphons on the same probability space Ω
with W ′ = W a.e. Then Wx(y) = W ′x(y) for a.e. y, for a.e. x; in other
words, ψW (x) = ψW ′(x) for a.e. x. Consequently, µW = µW ′ , and thus also

ΩW = ΩW ′ . We have Ŵ ′
ψW

= Ŵ ′
ψW ′

= W ′ = W a.e., and thus Ŵ ′ = Ŵ
a.e. by the uniqueness statement in Theorem 9.1.

Note that if W is pure and W ′ = W a.e., then W ′ is not necessarily pure;
however, W ′ is pure if µ{y : W (x, y) 6= W ′(x, y)} = 0 for every x (and not
just for almost every x).

We let Ŵ denote the graphon constructed in Theorem 9.1. Note that Ŵ
is defined only up to a.e. equivalence, so we have some freedom in choosing

Ŵ . We will show (Lemma 9.6) that there is a choice of Ŵ that is a pure
graphon.

Lemma 9.5. Let W1 and W2 be two graphons defined on probability spaces
(Ω1, µ1) and (Ω2, µ2), respectively, and ϕ : Ω1 → Ω2 is a measure-preserving
mapping such that W1 = Wϕ

2 a.e. Then the pull-back map ϕ∗ : f 7→ fϕ is an

isometric measure-preserving bijection of ΩW2 onto ΩW1, and Ŵϕ∗

1 = Ŵ2

a.e.

Proof. By Remark 9.4, we may replace W1 by Wϕ
2 and thus assume W1 =

Wϕ
2 everywhere and not just a.e.
Since ϕ is measure-preserving, ϕ∗ is an isometric injection L1(Ω2, µ2) →

L1(Ω1, µ1).
If x ∈ Ω1, then the composition ϕ∗ ◦ ψW2 ◦ ϕ maps x ∈ Ω1 to

ϕ∗
(
ψW2(ϕ(x))

)
= ϕ∗

(
W2,ϕ(x)

)
=
(
W2,ϕ(x)

)ϕ
,
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which is the mapping

x′ 7→
(
W2,ϕ(x)

)ϕ
(x′) = W2

(
ϕ(x), ϕ(x′)

)
= Wϕ

2 (x, x′) = W1(x, x′) = W1,x(x′),

and thus

ϕ∗
(
ψW2(ϕ(x))

)
= W1,x = ψW1(x). (9.8)

In other words, ϕ∗ ◦ ψW2 ◦ ϕ = ψW1 . Since ψW1 , ψW2 and ϕ are measure-
preserving, it follows that for any A ⊆ L1(Ω1, µ1),

µW2

(
(ϕ∗)−1(A)

)
= µ2

(
ψ−1
W2

(
(ϕ∗)−1(A)

))
= µ1

(
ϕ−1

(
ψ−1
W2

(
(ϕ∗)−1(A)

)))
= µ1

(
ψ−1
W1

(A)
)

= µW1(A). (9.9)

Hence, ϕ∗ : L1(Ω2, µ2)→ L1(Ω1, µ1) is measure-preserving.
In particular, (9.9) shows that µW2

(
(ϕ∗)−1(ΩW1)

)
= µW1(ΩW1) = 1.

Moreover, (ϕ∗)−1(ΩW1) is closed in L1(Ω2, µ2) since ΩW1 is closed in L1(Ω1, µ1)
and ϕ∗ is continuous, and thus it follows, see (9.3), that

ΩW2 = supp(µW2) ⊆ (ϕ∗)−1(ΩW1).

In other words, ϕ∗ : ΩW2 → ΩW1 .
Next, since ϕ∗ is an isometry and ΩW2 is a complete metric space (by

Theorem 9.1(i)), ϕ∗(ΩW2) is a complete subset of the metric space ΩW1 , and
thus ϕ∗(ΩW2) is closed. By (9.9),

µW1

(
ϕ∗(ΩW2)

)
= µW2

(
(ϕ∗)−1(ϕ∗(ΩW2))

)
= µW2

(
ΩW2

)
= 1.

Thus by (9.3) again (or by Theorem 9.1(ii)),

ΩW1 = supp(µW1) ⊆ ϕ∗(ΩW2).

Hence ϕ∗ is a bijection ΩW2 → ΩW1 .
Finally, by (9.8), a.e. on Ω1 × Ω1,((

Ŵϕ∗

1

)ψW2
)ϕ

=
(
Ŵ1

)ϕ∗◦ψW2
◦ϕ

=
(
Ŵ1

)ψW1 = W1 =
(
W2

)ϕ
,

and thus
(
Ŵϕ∗

1

)ψW2 = W2 a.e. on Ω2 × Ω2. Consequently, Ŵϕ∗

1 = Ŵ2 a.e.
by the uniquness statement in Theorem 9.1(v). �

Lemma 9.6. For any graphon W , Ŵ in Theorem 9.1 can be chosen to be
a pure graphon on ΩW .

Proof. Let W be defined on Ω. The construction in Theorem 9.1 yields the

graphon Ŵ defined on ΩW ⊆ L1(Ω,F , µ). We repeat the construnction,

starting with Ŵ on ΩW , and obtain the graphon
̂̂
W on Ω

Ŵ
, where Ω

Ŵ
⊆

L1(ΩW , µW ). Since ψW : Ω → ΩW is measure-preserving and ŴψW =
W a.e. by Theorem 9.1, it follows by Lemma 9.5 that ψ∗W is an isometric
bijection of Ω

Ŵ
onto ΩW ; thus (ψ∗W )−1 is a bijection ΩW → Ω

Ŵ
.

We will show that we can modify Ŵ on a null set so that ψ
Ŵ

= (ψ∗W )−1.
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For a.e. x ∈ Ω, we have ψW (x) ∈ ΩW ⊆ L1(Ω,F , µ) and then ψ
Ŵ

(ψW (x))

is by (9.1) the function in L1(ΩW , µW ) given by

ψ
Ŵ

(ψW (x))(g) = Ŵ
(
ψW (x), g

)
, g ∈ ΩW .

Consequently, the pull-back map ψ∗W in Lemma 9.5 maps this to the function
on Ω given by, for a.e. x and y,

ψ∗W (ψ
Ŵ

(ψW (x)))(y) = ψ
Ŵ

(
ψW (x)

)(
ψW (y)

)
= Ŵ

(
ψW (x), ψW (y)

)
= ŴψW (x, y) = W (x, y) = ψW (x)(y);

thus ψ∗W (ψ
Ŵ

(ψW (x))) = ψW (x) for a.e. x ∈ Ω.
Let

A := {f ∈ ΩW : ψ∗W (ψ
Ŵ

(f)) = f}.
We have just shown that µ{x : ψW (x) ∈ A} = 1, so by (9.2) µW (A) = 1.
Thus, ψ∗W (ψ

Ŵ
) : ΩW → ΩW equals the identity map a.e.

Since ψ∗W is a bijection, ψ
Ŵ

= (ψ∗W )−1 on A ⊆ ΩW . The idea is to modify
ψ
Ŵ

on the null set ΩW \ A such that this equality holds everywhere. The

space Ω
Ŵ

is included in a separable subspace B1 ⊆ L1(ΩW , µW ), and by
Lemma G.1, there exists a measurable evaluation map Φ : B1 × ΩW → R
such that Φ(F, g) = F (g) for every F ∈ B1 and µW -a.e. g ∈ ΩW . Define

H(f, g) := Φ
(
(ψ∗W )−1(f), g

)
, f, g ∈ ΩW ;

then H : ΩW × ΩW → R is measurable and for every f ∈ ΩW ,

H(f, g) = (ψ∗W )−1(f)(g), for a.e. g ∈ ΩW . (9.10)

For every f ∈ ΩW , (ψ∗W )−1(f) ∈ Ω
Ŵ

, so by (9.10) and Theorem 9.1(iv),

0 ≤ H(f, g) ≤ 1 for a.e. g ∈ ΩW . Let H(f, g) := min
{

max{H(f, g), 0}, 1
}
∈

[0, 1]. Then, for every f ∈ ΩW , by (9.10),

H(f, g) = H(f, g) = (ψ∗W )−1(f)(g), for a.e. g ∈ ΩW . (9.11)

Thus H has the desired sections. We define a graphon Ŵ1 on ΩW by

Ŵ1(x, y) :=


Ŵ (f, g), f, g ∈ A;

H(f, g), f /∈ A, g ∈ A;

H(g, f), f ∈ A, g /∈ A;

0, f, g /∈ A.

(9.12)

Then Ŵ1 = Ŵ a.e., because µ(A) = 1, so we may replace Ŵ by Ŵ1 in

Theorem 9.1(v). Moreover, if f ∈ A then Ŵ1(f, g) = Ŵ (f, g) for a.e. g, and
thus ψ

Ŵ1
(f) = ψ

Ŵ
(f) = (ψ∗W )−1(f).

If f /∈ A, then Ŵ1(f, g) = H(f, g) = (ψ∗W )−1(f)(g) for a.e. g by (9.12)
and (9.11), and thus ψ

Ŵ1
(f) = (ψ∗W )−1(f) in this case too.

Consequently, ψ
Ŵ1

= (ψ∗W )−1 is a bijection ΩW → Ω
Ŵ

= Ω
Ŵ1

, where the

final equality is by Remark 9.4. �
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Theorem 9.7. Two graphons W1 and W2 are equivalent if and only if Ŵ1 is

an a.e. rearrangement of Ŵ2 by a measure-preserving bijection ΩW1 → ΩW2

that further can be taken to be an isometry.

In other words, W1
∼= W2 if and only if there is an isometric measure-

preserving bijection ϕ : ΩW1 → ΩW2 such that Ŵϕ
2 = Ŵ1 a.e.

Proof. Consider the class Wm of all graphons that are defined on a proba-
bility space that is also a metric space. Define W1 ≡ W2 if W1,W2 ∈ Wm

and W1 is a.e. equal to a rearrangement of W2 by an isometric measure-
preserving bijection; this is an equivalence relation on Wm. Lemma 9.5

shows that if W1 is a pullback of W2, then Ŵ1 ≡ Ŵ2.
If W1

∼= W2, then Theorem 8.3 yields a chain of pullbacks linking W1 and

W2, and thus Ŵ1 ≡ Ŵ2.

Conversely, if Ŵ1 equals a rearrangement of Ŵ2 a.e., then W1
∼= Ŵ1

∼=
Ŵ2
∼= W2 by Theorem 9.1(v). �

Corollary 9.8. If W1 and W2 are equivalent graphons, then ΩW1 and ΩW2

are isometric metric spaces. �

Theorem 9.9. Every graphon is equivalent to a pure graphon. Two pure
graphons W1 and W2 are equivalent if and only if they are a.e. rearrange-
ments of each other.

Proof. If W is a graphon, then W ∼= Ŵ for a pure graphon Ŵ by Theo-
rem 9.1(v) and Lemma 9.6.

If W1 is pure, then ψW1 is a bijection so W1 is an a.e. rearrangement of

Ŵ1 by Theorem 9.1(v). The same applies to W2, and if further W1
∼= W2,

then Ŵ1
∼= Ŵ2 and Theorem 9.7 yields that Ŵ1 is an a.e. rearrangement of

Ŵ2. Since being an a.e. rearrangement is an equivalence relation, this shows
that W1 is an a.e. rearrangement of W2, and conversely. �

Proof of Theorem 8.4. Suppose that W1
∼= W2. By Theorem 9.7, Ŵ1 is an

a.e. rearrangement of Ŵ2. Further, W1 is a.e. equal to a pull-back of Ŵ1

by Theorem 9.1, so by composition, W1 is a.e. equal to a pull-back of Ŵ2,
and so is W2 by Theorem 9.1 again. This proves Theorem 8.4 (except the
last sentence, which was shown in Section 8) for graphons, which suffices as

remarked earlier. Note that Ŵ2 is defined on ΩW2 , which by Remark 9.2 is
a Borel space. �

By Corollary 9.8, every graph limit Γ, i.e. every element of the quo-

tient space Ŵ, defines a complete separable metric space ΩW by taking any
graphon W that represents Γ; this metric space is uniquely defined up to
isometry. Hence metric and topological properties of ΩW are invariants of
graph limits. See Lovász and Szegedy [51] for some relations between such
properties of ΩW and combinatorial properties of the graph limit; it would
be interesting to find further such results.
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Example 9.10. A trivial example is that a graph limit is of finite type, i.e.
it can be represented by a step graphon, if and only if ΩW is a finite set, see
Example 5.3. Theorems 9.7 and 9.1 imply that every graphon equivalent to
a step graphon is a.e. equal to a step graphon.

Theorem 9.9 shows that we can regard pure graphons as the canonical
choices among all graphons representing a given graph limit. By considering
only pure graphons, equivalence boils down to a.e. equality and rearrange-

ments, and every graphon W has a pure version constructed as Ŵ . This is
theoretically pleasing. (Nevertheless, for many applications it is more con-
venient to use other graphons, for example defined on [0, 1], regardless of
whether they are pure or not.)

Remark 9.11. In this section, we have used mappings into L1(Ω, µ) and
have constructed ΩW as a subset of L1(Ω, µ). We could just as well use
L2(Ω, µ), or Lp(Ω, µ) for any p ∈ [1,∞). In fact, by Theorem 9.1(iv) ΩW ⊂
Lp(Ω, µ) and the different Lp-metrics are equivalent on ΩW by Hölder’s
inequality; it follows easily that the construction above yields the same space
ΩW for any Lp with 1 ≤ p <∞, with a different but equivalent metric and
thus the same topology.

9.1. The weak topology on ΩW . Since ΩW ⊂ L2(Ω, µ), the inner product
〈f, g〉 :=

∫
Ω fg dµ is defined and continuous on ΩW×ΩW . We define further,

again following Lovász and Szegedy [51] in principle but not in all details,

rW◦W (f, g) :=

∫
ΩW

|〈f − g, h〉| dµW (h), f, g ∈ ΩW . (9.13)

Since ψW : Ω→ ΩW is measure-preserving, and ψW (x) = Wx, this can also
be written

rW◦W (f, g) =

∫
Ω
|〈f − g,Wx〉| dµ(x). (9.14)

Since 〈f, g〉 is continuous and bounded on ΩW×ΩW , it follows by dominated
convergence that rW◦W (f, g) is continuous on ΩW × ΩW . We will soon see
(in Theorem 9.13) that it is a metric. We let rW denote the original metric
on ΩW , i.e. the L1-norm:

rW (f, g) := ‖f − g‖L1 :=

∫
Ω
|f(x)− g(x)|dµ(x). (9.15)

We have 0 ≤ Wx ≤ 1 and thus |〈f − g,Wx〉| ≤ ‖f − g‖L1 , so by (9.14) and
(9.15),

rW◦W (f, g) ≤ rW (f, g). (9.16)
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Remark 9.12. If W is pure, so ψW is a bijection, then rW◦W induces a
metric on Ω which we also denoted by rW◦W ; explicitly,

rW◦W (x, y) := rW◦W (Wx,Wy) =

∫
Ω
|〈Wx −Wy,Wz〉|dµ(z)

=

∫
Ω

∣∣∣∣∫
Ω

(
W (x, u)−W (y, u)

)
W (z, u) dµ(u)

∣∣∣∣ dµ(z)

=

∫
Ω

∣∣W ◦W (x, z)−W ◦W (y, z)
∣∣dµ(z)

= ‖W ◦W (x, ·)−W ◦W (y, ·)‖L1(Ω,µ)

where W ◦W (x, y) :=
∫

ΩW (x, u)W (u, y) dµ(u). Thus, if TW is the integral
operator with kernel W , then W ◦W is the kernel of the integral operator
TW ◦ TW , which explains the notation.

Recall that the weak topology σ = σL∞ on L1(Ω, µ) is the topology gen-
erated by the linear functionals f 7→ 〈f, h〉 =

∫
Ω fhdµ for h ∈ L∞(Ω, µ). In

general, if X and Y are two subsets of L1(Ω) such that
∫

Ω |fh| < ∞ when
f ∈ X and h ∈ Y , let (X,σY ) denote X with the weak topology generated
by the linear functionals f 7→ 〈f, h〉, h ∈ Y . Since the elements of ΩW

are uniformly bounded functions by Theorem 9.1(iv), it is well-known, see
Lemma F.1(i), that the weak topology on ΩW also is generated by f 7→ 〈f, h〉
for h ∈ L1(Ω, µ) (this is the weak∗ topology on L∞(Ω, µ) restricted to ΩW ),
or by the subset h ∈ Lp(Ω, µ) (this is the weak topology on Lq(Ω, µ), where
1/p+ 1/q = 1, restricted to the subset ΩW , cf. Remark 9.11). Thus,

(ΩW , σ) = (ΩW , σL∞) = (ΩW , σL1) = (ΩW , σL2). (9.17)

We let ΩW
σ

be the closure of ΩW in L1(Ω, µ) in the weak topology. It
follows by Theorem 9.1(iv) that ΩW

σ ⊆ {f ∈ L1(Ω, µ) : 0 ≤ f ≤ 1 a.e.},
and thus, by Lemma F.1(i) again,

(ΩW
σ
, σ) = (ΩW

σ
, σL∞) = (ΩW

σ
, σL1) = (ΩW

σ
, σL2). (9.18)

Moreover, the weak closure ΩW
σ

is the same as the weak closure of ΩW in
Lp(Ω, µ) for any p <∞, and the weak∗ closure in L∞(Ω, µ).

Recall also that two metrics r1 and r2 on the same space are equivalent
if they induce the same topology, i.e., if r1(xn, x) → 0 ⇐⇒ r2(xn, x) → 0
for any point x and sequence (xn) in the space; the metrics are uniformly
equivalent if r1(xn, yn)→ 0 ⇐⇒ r2(xn, yn)→ 0 for any sequences (xn) and
(yn).

Lovász and Szegedy [51] showed essentially the following.

Theorem 9.13. (i) rW◦W is a metric on ΩW and it defines the weak

topology σ on ΩW . The same holds on the weak closure ΩW
σ

.
(ii) The metric space (ΩW

σ
, rW◦W ) is compact. Thus (ΩW

σ
, rW◦W ) is

the completion of (ΩW , rW◦W ). In particular, ΩW
σ

= ΩW if and only if
(ΩW , rW◦W ) is complete.
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(iii) The inequality rW ≥ rW◦W holds, and thus the identity mapping
(ΩW , rW )→ (ΩW , rW◦W ) is uniformly continuous.

(iv) ΩW is compact if and only if the metrics rW and rW◦W are equiv-
alent on ΩW and further ΩW is weakly closed, ΩW

σ
= ΩW .

(v) The metrics rW and rW◦W are uniformly equivalent on ΩW if and
only if ΩW is compact for the norm topology given by rW .

It seems more difficult to characterize when rW and rW◦W are equivalent
on ΩW , see Examples 9.16–9.17 below.

Before proving the theorem, we introduce more notation. Using the fact
that ΩW ⊂ L2(Ω, µ) (cf. Remark 9.11), let A be the closed linear span of
ΩW in L2(Ω, µ), and let B be the unit ball of A; thus ΩW ⊆ B. We extend
the definition (9.13) of rW◦W to all f, g ∈ A.

Lemma 9.14. (i) rW◦W is a metric on A.
(ii) The metric rW◦W defines the weak topology σL2 on B. In other words,

(B, rW◦W ) = (B, σL2) as topological spaces.
(iii) The metric space (B, rW◦W ) is compact.

Proof. (i): Symmetry and the triangle inequality are immediate from the
definition (9.13). Suppose that rW◦W (f, g) = 0 for some f, g ∈ A. Since
h 7→ |〈f − g, h〉| is continuous on ΩW , and its integral rW◦W (f, g) is 0, it
follows from Theorem 9.1(ii) that 〈f − g, h〉 = 0 for every h ∈ ΩW . The set
{h ∈ L2 : 〈f − g, h〉 = 0} is a closed linear subspace of L2(Ω, µ), and thus it
contains A; i.e. 〈f − g, h〉 = 0 for every h ∈ A. In particular,∫

Ω
|f − g|2 dµ = 〈f − g, f − g〉 = 0.

Thus f − g = 0 a.e., i.e. f = g in A ⊆ L2. Hence rW◦W is a metric.
(ii): If h ∈ L2(Ω) and h2 ∈ A is the orthogonal projection of h, then

〈f, h〉 = 〈f, h2〉 for every f ∈ A. Consequently, σL2 = σA on A.
Let D be a countable dense subset of ΩW ; then D is total in A, and thus

A is a separable Hilbert space. It is a standard fact that the unit ball B of
A with the weak topology σA = σL2 then is a compact metric space. (It is
compact by the Banach–Alaoglu theorem [25, Theorem V.4.2], and metric
by [25, Theorem V.5.1]. Explicitly, σA = σD on B, by the same argument as
in the proof of Lemma F.1, and if D = {h1, h2, . . . }, we can define a metric
on (B, σL2) = (B, σA) by d(f, g) :=

∑
i 2−i|〈f − g, hi〉|.)

We next show that the identity map (B, σL2)→ (B, rW◦W ) is continuous.
Since, as just shown, (B, σL2) is metrizable, it suffices to consider sequential
continuity. Thus assume that fn, f ∈ B and fn → f in σL2 . Then 〈fn −
f, h〉 → 0 as n→∞ for every h ∈ ΩW ⊂ L2, and thus rW◦W (fn, f)→ 0 by
(9.13) and dominated convergence.

The identity map (B, σL2) → (B, rW◦W ) is thus a continuous bijection
of a compact space onto Hausdorff space, and it is thus a homeomorphism.
Consequently, (B, σL2) = (B, rW◦W ).
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(iii): A consequence of (ii) and its proof, where we showed that (B, σL2)
is compact. �

Proof of Theorem 9.13. (i): Since ΩW ⊆ B ⊂ A, it follows by Lemma 9.14

that ΩW
σ ⊆ B. Hence, using Lemma 9.14 again and (9.18), rW◦W is a

metric on ΩW
σ

and (ΩW
σ
, σ) = (ΩW

σ
, σL2) = (ΩW

σ
, rW◦W ).

(ii): An immediate consequence of Lemma 9.14, together with standard
facts on compact and complete metric spaces (see e.g. [27, Section 4.3]).

(iii): This is just (9.16).
(iv): If (ΩW , rW ) is compact, then the identity mapping (ΩW , rW ) →

(ΩW , rW◦W ), which is continuous by (iii), is a homeomorphism. The metrics
are thus equivalent. Furthermore, (ΩW , σ) = (ΩW , rW◦W ) is compact and
thus closed in the weak topology on L1(Ω, µ).

Conversely, if ΩW = ΩW
σ
, then (ΩW , rW◦W ) is compact by (ii), and if

further the metrics are equivalent, then (ΩW , rW ) is compact too.
(v): If (ΩW , rW ) is compact, then the metrics rW and rW◦W on ΩW are

equivalent as seen in the proof of (iv). Moreover, as is easily seen (e.g. [27,
Theorem 4.3.32]), two equivalent metrics on a compact metric space are
uniformly equivalent.

Conversely, if rW and rW◦W are uniformly equivalent, then (ΩW , rW◦W )

is a complete metric space, since (ΩW , rW ) is by Theorem 9.1; hence ΩW
σ

=
ΩW by (ii), and thus ΩW is compact by (ii) again. �

The following analogue of Corollary 9.8 shows that also the metric space
(ΩW , rW◦W ) and its completion, the compact metric space (ΩW

σ
, rW◦W ),

are invariants of graph limits.

Theorem 9.15. If W1 and W2 are equivalent graphons, then (ΩW1 , rW1◦W1)
and (ΩW2 , rW2◦W2) are isometric metric spaces, and so are the compact met-

ric spaces (ΩW1

σ
, rW1◦W1) and (ΩW2

σ
, rW2◦W2).

Proof. By Theorem 8.3, it suffices to prove this in the case when W1 is a
pull-back of W2 as in Lemma 9.5. In this case, for any f, g ∈ ΩW2 , using
(9.13) and the fact that f 7→ fϕ is a measure-preserving bijection of ΩW2

onto ΩW1 by Lemma 9.5,

rW1◦W1(fϕ, gϕ) =

∫
ΩW1

〈fϕ − gϕ, h〉dµW1(h)

=

∫
ΩW2

〈fϕ − gϕ, kϕ〉dµW2(k)

=

∫
ΩW2

〈f − g, k〉 dµW2(k)

= rW2◦W2(f, g);

thus the bijection f 7→ fϕ is an isometry also (ΩW2 , rW2◦W2)→ (ΩW1 , rW1◦W1).

This extends to an isometric bijection of (ΩW2

σ
, rW2◦W2) onto (ΩW1

σ
, rW1◦W1)

by Theorem 9.13(ii). �
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We say that a graphon W is compact if ΩW is a compact metric space with
the standard L1 metric rW , and weakly compact if (ΩW , σ) = (ΩW , rW◦W ) is
compact. By Corollary 9.8 and Theorem 9.15, the same then holds for every
equivalent graphon, so we may say that a graph limit is [weakly] compact if
some, and thus any, representing graphon is [weakly] compact.

Not every graphon is compact. Moreover, this can happen both with
(ΩW , σ) compact and (ΩW , σ) non-compact, as shown by the following ex-
amples (inspired by a similar example in [51]). Note that exactly one of the
two conditions in Theorem 9.13(iv) fails in each of the two examples.

Example 9.16. Let Ω := {0, 1}∞ =
{
x = (xi)

∞
0 : xi ∈ {0, 1}

}
(the Cantor

cube, which is homeomorphic to the Cantor set) with the product measure
µ := ν∞, where ν{0} = ν{1} = 1/2. We write Ω = Ω0 ∪ Ω1, where
Ωj := {x ∈ Ω : x0 = j}. Note that there is a measure-preserving map
[0, 1] → Ω given by the binary expansion, so the examples below can be
translated to examples on [0, 1] by taking pull-backs.

If F is a function Ω0 × Ω1 → [−1, 1], we define a graphon W on Ω by

W (x, y) :=


1
2 + 1

2F (x, y), x ∈ Ω0, y ∈ Ω1;
1
2 + 1

2F (y, x), x ∈ Ω1, y ∈ Ω0;
1
2 , x, y ∈ Ω0 or x, y ∈ Ω1.

Define Fx(y) = F (x, y) for x ∈ Ω0, y ∈ Ω1 and F̄x(y) = F (y, x) for
x ∈ Ω1, y ∈ Ω0; thus Fx ∈ L1(Ω1) for x ∈ Ω0 and F̄x ∈ L1(Ω0) for x ∈ Ω1.

Regard L1(Ω0) and L1(Ω1) as subspaces of L1(Ω) in the obvious way
(extending functions by 0). Define the maps Φ0 : Ω0 → L1(Ω1) and Φ1 :
Ω1 → L1(Ω0) by Φ0(x) = Fx and Φ1(x) = F̄x; then

ψW (x) = Wx = 1
2 + 1

2Φj(x), for x ∈ Ωj . (9.19)

Let µj be the push-forward of µ by Φj ; this is a measure on L1(Ω1−j) ⊂
L1(Ω) with total mass 1/2. Let Xj ⊂ L1(Ω1−j) ⊂ L1(Ω) be the support of
µj . It follows from (9.19) that the map f 7→ 1

2 + 1
2f is measure-preserving

(L1(Ω), µ0 + µ1)→ (L1(Ω), µW ), and thus

ΩW =
{

1
2 + 1

2f : f ∈ X0 ∪X1

}
. (9.20)

Define the functions hi : Ω1 → {−1, 1} by hi(x) = 2xi − 1, where x 7→ xi
is the i:th coordinate function. Let `(x) := inf{i : xi = 1} (defined a.e. on
Ω) and take

F (x, y) := h`(x)(y). (9.21)

(Thus W (x, y) = y`(x) for x ∈ Ω0, y ∈ Ω1.)

Then {Fx : x ∈ Ω0} = {hi : i ≥ 1}. The induced measure µ0 on L1(Ω1) is
thus a discrete measure with atoms hi (each with positive measure), so

X0 = suppµ0 = {hi : i ≥ 1} = {hi : i ≥ 1},

since {hi} is closed in L1(Ω1) because ‖hi − hj‖L1(Ω1) = 1/2 when i 6= j.



GRAPHONS, CUT NORM AND DISTANCE 41

If y, z ∈ Ω1, then

‖F̄y − F̄z‖L1 =

∫
Ω0

|F (x, y)− F (x, z)| dµ(x) =

∞∑
i=1

2−i−1|yi − zi|.

It is easily seen that this is a metric on Ω1 which defines the product topol-
ogy. Hence Φ1 : y 7→ F̄y is a homeomorphism of Ω1 onto {F̄y : y ∈ Ω1} ⊂
L1(Ω0), and consequently {F̄y : y ∈ Ω1} is a compact subset of L1. Since
further Φ1 : (Ω1, µ) → (L1(Ω), µ1) is measure-preserving, and µ has full
support on Ω1, it follows that X1 = suppµ1 = {F̄y : y ∈ Ω1} ∼= Ω1

∼= Ω
(where ∼= denotes homeomorphisms.) Note also that X0 and X1 are disjoint;
in fact, they have distance 1 in L1.

It follows that ΩW
∼= X0 ∪X1

∼= N∪Ω, i.e., ΩW is homeomeorphic to the
disjoint union of the Cantor cube (or Cantor set) and a sequence of discrete
points. Thus ΩW is not compact.

With the weak topology σ, we have (X1, σ) = (X1, rW ) because (X1, rW )
is compact. Moreover, the sequence (hi) is orthonormal in L1(Ω1, 2µ) (for
convenience normalizing the measure on Ω1), and thus hi → 0 weakly
in L2 as i → ∞. It follows by Lemma 9.14(ii) that rW◦W (hi, 0) → 0.
For the corresponding elements gi := 1

2 + 1
2hi ∈ Ω, see (9.20), we have

rW◦W (gi,
1
2) → 0. It follows that (ΩW , σ) consists of a compact set homeo-

morpic to Ω, and a sequence (gi) converging to 1
2 . Since 1

2 /∈ ΩW , it follows
that (ΩW , σ) = (ΩW , rW◦W ) is not compact; moreover, the identity map
(ΩW , rW ) → (ΩW , rW◦W ) is a homeomorphism, so (ΩW , σ) = (ΩW , rW ) ∼=
N ∪ Ω. Thus rW and rW◦W are equivalent on ΩW but not uniformly equiv-
alent. (Just as {1, 2, . . . } and {1, 1/2, 1/3, . . . }, both with the usual metric
on R, are equivalent but not uniformly so.)

The weak closure ΩW
σ

= ΩW ∪ {1
2} is the one-point compactification of

ΩW .

Example 9.17. We modify the preceding example by taking, instead of
(9.21),

F (x, y) :=

{
0, if x1 = x2 = 1,

h`(x)(y) otherwise.
(9.22)

The only significant difference from the preceding example is that now X0

also contains the function 0, and ΩW thus the function 1
2 ; note that hi → 0

weakly and thus in rW◦W but not in rW . In the norm topology. X0 =
{gi} ∪ {1

2} is still an infinite discrete set, and thus ΩW
∼= X0 ∪X1

∼= N ∪ Ω
as in Example 9.16. (We have added one isolated point to ΩW .)

In the weak topology, however, X0 now consists of a convergent sequence
and its limit point, and thus (X0, σ) is compact and homeomorphic to the
one-point compactification N of N (or, equivalently, to {1/n : n ∈ N} ∪ {0}
with the usual topology). Thus (ΩW , σ) ∼= X0 ∪X1

∼= N∪Ω. (Compared to
Example 9.16, we have added the point at infinity in the one-point compact-
ification.) In particular, (ΩW , rW◦W ) = (ΩW , σ) is compact but (ΩW , rW )
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is not, and the two topologies are different so the metrics are not equivalent.
The weak closure ΩW

σ
= ΩW .

10. Random-free graphons

Lovász and Szegedy [51] have studied the class of graph limits represented
by {0, 1}-valued graphons (and the corresponding graph properties); with a
slight variation of their terminology we call such graphons and graph limits
random-free (a reason for the name is given in Remark D.2):

Definition 10.1. A random-free graphon is a graphon W with values in
{0, 1} a.e.

By Corollary 8.12, every graphon equivalent to a random-free graphon
is random-free. Note that every graphon WG defined by a graph as in
Example 2.7 is random-free. (A reason for the name random-free is given in
Remark D.2.)

Example 10.2. It is shown by Diaconis, Holmes and Janson [22] that every
graph limit that is a limit of a sequence of threshold graphs can be repre-
sented by a graphon that is random-free (and has a monotonicity property,
studied further in [11]). Hence every representing graphon is random-free,
i.e., if Gn are threshold graphs and W is a graphon such that Gn → W ,
then W is random-free.

Example 10.3. It is shown by Diaconis, Holmes and Janson [23] that every
graph limit that is a limit of a sequence of interval graphs can be represented
by the graphon W (x, y) := 1{x ∩ y 6= ∅} on the space Ω := {[a, b] : 0 ≤
a ≤ b ≤ 1} of all closed subintervals of [0, 1], equipped with some Borel
probability measure µ. (Note that Ω and W are fixed, but µ varies.) Hence
every graphon representing an interval graph limit is random-free. (This
includes the threshold graph limits in Example 10.2 as a subset. The explicit
representations in [22] and [23] are different, however.)

Lemma 10.4. Let W be a graphon. Then the following are equivalent.

(i) W is random-free.
(ii)

∫
Ω2 W (1−W ) = 0.

(iii)
∫

Ω2 W
2 =

∫
Ω2 W .

Proof. This is trivial, noting thatW is random-free if and only ifW (1−W ) =
0 a.e., and that W (1−W ) ≥ 0 for every graphon. �

Recall that W 7→
∫

Ω2 W
2 is not continuous for δ�, see Example C.3; we

therefore cannot conclude that the set of random-free graphons is closed. In
fact, it is not; on the contrary, this set is dense in the space of all graphons.

Lemma 10.5. The set of random-free graphons is dense in the space of all
graphons. In other words, given any graphon W , on any probability space Ω,
there exists a sequence of random-free graphons Wn such that δ�(Wn,W )→
0.
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Proof. By Remark B.2, there exists a sequence (Gn) of graphs such that
δ�(WGn ,W )→ 0. Each WGn is random-free. �

In contrast, the set is closed in the stronger metric δ1. (See Pikhurko
[55].)

Lemma 10.6. The set of random-free graphons is closed in the space of all
graphons equipped with the metric δ1. In other words, if W and Wn are
graphons, on any probability spaces, such that δ1(Wn,W ) → 0, and every
Wn is random-free, then W is random-free.

Proof. Let F (x) := x(1 − x). Then F : [0, 1] → [0, 1] and |F ′(x)| ≤ 1 so
|F (x)−F (y)| ≤ |x−y| for x, y ∈ [0, 1]. It follows easily that if Wn and W are
graphons with δ1(Wn,W ) → 0, then δ1(F (Wn), F (W )) ≤ δ1(Wn,W ) → 0
and |

∫
F (Wn) −

∫
F (W )| → 0. Since Wn is random-free,

∫
F (Wn) = 0 by

Lemma 10.4 for each n, and thus
∫
F (W ) = 0. By Lemma 10.4 again, this

shows that W is random free. �

We continue to investigate the metric δ1 in connection with random-free
graphons.

Lemma 10.7. Let W1 and W2 be graphons on a probability space Ω, and
let W ′1 be a random-free n-step graphon on the same space. Then

‖W1 −W2‖L1(Ω2) ≤ n2‖W1 −W2‖� + 2‖W1 −W ′1‖L1(Ω2). (10.1)

Proof. Let {Ai}n1 be a partition of Ω such that W ′1 is constant 0 or 1 on each
Ai ×Aj .

If W ′1 = 0 on Ai ×Aj , then∫∫
Ai×Aj

|W ′1 −W2| =
∫∫

Ai×Aj

W2 ≤
∫∫

Ai×Aj

W1 + ‖W1 −W2‖�

=

∫∫
Ai×Aj

|W1 −W ′1|+ ‖W1 −W2‖�.

If W ′1 = 1 on Ai ×Aj , then∫∫
Ai×Aj

|W ′1 −W2| =
∫∫

Ai×Aj

(1−W2) ≤
∫∫

Ai×Aj

(1−W1) + ‖W1 −W2‖�

=

∫∫
Ai×Aj

|W1 −W ′1|+ ‖W1 −W2‖�.

Thus, in both cases
∫∫
Ai×Aj

|W ′1−W2| ≤
∫∫
Ai×Aj

|W1−W ′1|+‖W1−W2‖�,

and summing over all i and j yields

‖W ′1 −W2‖L1 ≤ ‖W1 −W ′1‖L1 + n2‖W1 −W2‖�.

The result follows by ‖W1 −W2‖L1 ≤ ‖W1 −W ′1‖L1 + ‖W ′1 −W2‖L1 . �
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Remark 10.8. In particular, if W1 is a random-free n-step graphon and
W2 an arbitrary graphon on the same probability space, then

‖W1 −W2‖L1 ≤ n2‖W1 −W2‖�. (10.2)

The constant n2 in Lemma 10.7 and (10.2) is good enough for our purposes,
but it is not the best possible, and it may easily be improved. In fact, an
inspection of the proof shows that if we let aij :=

∫
Ai×Aj

(W1−W2), then we

have simply estimated |aij | ≤ ‖W1 −W2‖� and thus
∑

i,j |aij | ≤ n2‖W1 −
W2‖�. To obtain a better estimate, we use an inequality by Littlewood [46],
see also [7] and [60, §6.2], which yields∑

i

(∑
j

|aij |2
)1/2

≤
√

3 sup
εi,ε′j=±1

∣∣∣∣∑
i

∑
j

εiε
′
jaij

∣∣∣∣ ≤ √3 ‖W1 −W2‖�,2.

(10.3)
Consequently, by the Cauchy–Schwarz inequality,

n∑
i=1

n∑
j=1

|aij | ≤
n∑
i=1

n1/2
( n∑
j=1

|aij |2
)1/2

≤
√

3
√
n ‖W1 −W2‖�,2, (10.4)

which shows that n2 in (10.1) and (10.2) can be replaced by
√

3n. Further-
more, the constant

√
3, which is implicit in [46], has been improved to

√
2

by Szarek [58]. (Szarek actually proved that
√

2 is the sharp constant in
Khinchin’s inequality, which implies Littlewood’s, see [7]. See also [32] for
related results.) Consequently, n2 in (10.1) and (10.2) can be replaced by√

2n.
This is, within a numerical constant, the best constant in these inequal-

ities, as shown by the following examples which all yield a lower bound of
order n1/2.

Example 10.9. Let W be a symmetric Hadamard matrix of order n (i.e.,
a matrix with ±1 entries and all rows ortogonal); such matrices exists at
least if n = 2k for some k. (Take tensor powers of

(
1 1
1 −1

)
.) We have

W = W+ − W− where W± are graphons on [n]. (We equip [n] with the
uniform probability distribution.)

Then ‖W‖L1 = 1, since |W | = 1. In order to estimate ‖W‖�,2, let f and g
be two functions [n]→ [−1, 1], see the definition (4.3). Write W = (wij)

n
i,j=1

and change notation to ai = f(i), bj = g(j); thus |ai|, |bj | ≤ 1.

Since W is a Hadamard matrix, the normalized matrix n−1/2W is orthog-
onal, and is thus an isometry as an operator in Rn (with the usual Euclidean
norm); hence, W has norm

√
n. Consequently,

∫
[n]2

W (x, y)f(x)g(y) dµ(x) dµ(y) = n−2
n∑

i,j=1

aiwijbj
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≤ n−2√n

(
n∑
i=1

a2
i

)1/2( n∑
i=1

b2j

)1/2

≤ n−1/2.

Hence ‖W‖�,2 ≤ n−1/2 while ‖W‖L1 = 1, and thus the best constant in
(10.2) is at least

√
n for n such that a symmetric Hadamard matrix exists,

and hence at least
√
n/2 for any n. See further [46] and [60, §6.3].

Example 10.10. Let q be a prime power with q ≡ 1 (mod 4) and consider
the Paley graph Pq, see [8, Section 13.2]; the vertex set of Pq is the finite
field Fq and there is an edge xy if x−y is a square in Fq. Let W1 := WPq and
W2 = 1/2; then W1 is a random-free q-step graphon, and ‖W1 −W2‖L1 =
1/2, since W1 −W2 = ±1/2 everywhere. By [8, Theorem 13.13] (and its

proof, or Lemma E.1 below), ‖W1−W2‖�,1 = O(q−1/2). Hence, the constant

in (10.2) is at least Ω(q1/2), for n = q of this type. Since primes of the type
4k + 1 are dense in the natural numbers, it follows again that the constant
is Ω(n1/2) for all n.

Example 10.11. We can use a random graph G = G(n, 1/2) and let W1 :=
WG and, again, W2 := 1/2. Thus ‖W1 − W2‖L1 = 1/2. (Note that the
Payley graph in Example 10.10 is an example of a quasirandom graph, so
the two examples are related.)

We use for convenience the version ‖ ‖�,4 of the cutnorm in Appendix E.
If S, T ⊂ [n] are disjoint, then n2

∫
S×T WG is the number of edges between

S and T , and has thus a binomial distribution Bi(st, 1/2) where s := |S|
and t := |T |. Hence, a Chernoff bound [41, Remark 2.5] shows that, for any
c > 0,

P
(∣∣∣∫

S×T
(W1 −W2)

∣∣∣ > cn−1/2
)

= P
(∣∣∣n2

∫
S×T

(WG − EWG)
∣∣∣ > cn3/2

)
≤ 2 exp

(
−2(cn3/2)2

st

)
≤ 2 exp

(
−2c2n3

n2/4

)
= 2 exp

(
−8c2n

)
,

since st ≤ s(n− s) ≤ n2/4. There are 3n pairs S, T of disjoint subsets, and
thus

P
(
‖W1 −W2‖�,4 > cn−1/2

)
≤ 2 · 3n exp

(
−8c2n

)
= 2 exp

(
(log 3− 8c2)n

)
.

Consequently, choosing for simplicity c = 1, so 8c2 > log 3, with high prob-
ability ‖W1 −W2‖�,4 ≤ n1/2, and thus by Lemma E.2

‖W1 −W2‖�,1 ≤ 4n−1/2 = 8n−1/2‖W1 −W2‖L1 ,

showing that the best constant in (10.2) is at least 1
8n

1/2 (for ‖ ‖�,1).

Pikhurko [55] showed that convergence to a graphon W in δ1 is equivalent
to convergence in δ� if W is random-free, but not otherwise. To show this,
we first show the corresponding result for ‖ ‖�.
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Lemma 10.12. Let W and W1,W2, . . . be graphons on a probability space
Ω, and assume that W is random-free. Then ‖Wn−W‖� → 0 as n→∞ if
and only if ‖Wn −W‖L1(Ω2) → 0.

Proof. Assume ‖Wn −W‖� → 0. W is the indicator 1A of a measurable
set A ⊆ Ω2. Any such set can be approximated in measure by a finite
disjoint union of rectangle sets

⋃
iAi×Bi, and we may assume that this set

is symmetric since A is; in other words, given any ε > 0, there exists a {0, 1}-
valued step graphon W ′ such that ‖W −W ′‖L1 < ε. Let the corresponding
partition have N = N(ε) parts. Lemma 10.7 then yields

‖W −Wn‖L1 ≤ N2‖W −Wn‖� + 2ε→ 2ε

as n→∞. Hence, lim supn→∞ ‖W −Wn‖L1 = 0.
The converse is obvious. �

Theorem 10.13 ([55]). Let W and W1,W2, . . . be graphons defined on
some probability spaces, and assume that W is random-free. Then δ�(Wn,W )→
0 as n→∞ if and only if δ1(Wn,W )→ 0.

Proof. Assume that δ�(W,Wn) → 0. By replacing the graphons by equiv-
alent ones, we may by Theorem 7.1 assume that all graphons are defined
on [0, 1]. By Theorem 6.9, we may then find measure-preserving bijections
ϕn : [0, 1]→ [0, 1] such that ‖W −Wϕn

n ‖� < δ�(W,Wn) + 1/n→ 0. Hence,
‖W −Wϕn

n ‖L1(Ω2) → 0 by Lemma 10.12, and thus δ1(W,Wn)→ 0.
The converse is obvious. �

As said above, it is here necessary that W is random-free [55], which is
seen from the following theorem.

Theorem 10.14. Let W be a graphon. Then W is random-free if and only
if δ1(WGn ,W )→ 0 for some sequence of graphs Gn.

Proof. There exists a sequence of graphs Gn with δ�(WGn ,W ) → 0 by
Remark B.2. If W is random-free, then δ1(WGn ,W )→ 0 by Theorem 10.13.

The converse follows by Lemma 10.6, since each WGn is random-free. �

Theorem 10.15. Let W be a graphon. Then the following are equivalent.

(i) W is random-free.
(ii)

∫
W 2
n →

∫
W 2 whenever (Wn) is a sequence of graphons such that

δ�(Wn,W )→ 0.
(iii) t(F,Wn) → t(F,W ) for every multigraph F whenever (Wn) is a

sequence of graphons such that δ�(Wn,W )→ 0.

Proof. (i) =⇒ (iii): If W is random-free and δ�(Wn,W ) → 0, then Theo-
rem 10.13 yields δ1(Wn,W ) → 0, and thus t(F,Wn) → t(F,W ) for every
multigraph F by Lemma C.4.

(iii) =⇒ (ii): Immediate by taking F to be a double edge, see Exam-
ple C.1.
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(ii) =⇒ (i): Take a sequence of graphs Gn such that Gn → W , see
Remark B.2; thus δ�(WGn ,W ) → 0. Hence

∫
WGn →

∫
W . Further, every

WGn is {0, 1}-valued, so W 2
Gn

= WGn ; hence∫
W 2
Gn

=

∫
WGn →

∫
W.

If (ii) holds, then also
∫
W 2
Gn
→
∫
W 2. Hence

∫
W 2 =

∫
W , so W is

random-free by Lemma 10.4. �

Finally, we mention two characterizations of random-free graphons in
terms of the finite or infinite random graph G(n,W ) defined in Appendix D.
First the finite case and entropy.

Theorem 10.16. Let W be a graphon. Then W is random-free if and only
if the entropy E(G(n,W )) = o(n2) as n→∞.

Proof. This is an immediate consequence of Theorem D.5, since h ≥ 0 and
thus the right-hand side of (D.1) vanishes if and only h(W (x, y)) = 0 a.e.,
which is equivalent to W (x, y) ∈ {0, 1} a.e. �

Problem 10.17. We may, as in [2, (15.30)], ask for the exact growth rate of
E(G(n,W )) for a random-free graphon W . It is easily seen that if W is a step
graphon, then E(G(n,W )) = O(n); we conjecture that the converse holds
too. As another example, for the “half graphon” W (x, y) = 1{x + y > 1}
on [0, 1], it can be shown (e.g. using [22, Corollary 6.6]) that E(G(n,W )) =
n log n+O(n).

We represent the infinite random graph G(∞,W ) by the family of indi-
cator variables Jij := 1{ij is an edge}, 1 ≤ i < j ≤ ∞. We define the shell
σ-field (or big tail σ-field) to be the intersection

S :=
∞⋂
n=1

σ{Jij : i < j, j ≥ n} (10.5)

of the σ-fields generated by all Jij where at least one index is “big”. Recall
that a random variable is a.s. S-measurable (or essentially S-measurable)
if it is a.s. equal to an S-measurable variable; equivalently, it is measurable

for the completion Ŝ of S.

Theorem 10.18. The following are equivalent for a graphon W :

(i) W is random-free.
(ii) The infinite random graph G(∞,W ) is a.s. S-measurable.
(iii) The indicator J12 := 1{12 is an edge in G(∞,W )} is a.s. S-mea-

surable.

Proof. This is the symmetric version of [1, Proposition 3.6], see also [2,
(14.15) and p. 133] and [21, (4.9)]. Since the details for the symmetric case
are not given in these references, we give some of them for completeness.
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First, note that we can write the definition of G(∞,W ) in Appendix D
as

Jij = 1{ξij ≤W (Xi, Xj)}, (10.6)

where ξij , for 1 ≤ i < j, and Xi, for i ≥ 1, all are independent, and Xi has
distribution µ on Ω while ξij is uniform on [0, 1].

(i) =⇒ (iii): IfW is random-free, then (10.6) simplifies to Jij = W (Xi, Xj).
Consider the array (J2i−1,2j)

∞
i,j=1 = (W (X2i−1, X2j)

∞
i,j=1, where the first in-

dex is odd and the second even; this is a separately exchangeable array, and
by [1, Proposition 3.6] (or as a simple consequence of [43, Proposition 7.31]),
it is a.s. S ′-measurable for the shell σ-field of this array. Since S ′ ⊆ S, (iii)
follows.

(iii) ⇐⇒ (ii): S is invariant under finite permutations, so the exchange-
ability implies that every Jij is S-measurable if J12 is. The converse is
trivial.

(iii) =⇒ (i): It follows from (10.5) and (10.6) that ξ12 is independent of
S. If (iii) holds, then J12 is thus independent of ξ12, which by (10.6) implies
that J12 = E(J12 | X1, X2) = W (X1, X2) a.s., so W is {0, 1}-valued a.e. �

Appendix A. Special probability spaces

A.1. Atoms. An atom in a probability space (Ω, µ) is a subset A with
µ(A) > 0 such that every subset B ⊆ A satisfies µ(B) = 0 or µ(B) = µ(A).

We say that Ω is atomless if there are no atoms.

Lemma A.1. If (Ω, µ) is an atomless probability space, then there exists a
family (Ar)r∈[0,1] of measurable sets such that µ(Ar) = r for every r ∈ [0, 1],
and further Ar ⊆ As if r < s (i.e., the family is increasing).

Proof. Consider families (Ar)r∈E with these properties, defined on some
arbitrary subset E of [0, 1]. By Zorn’s lemma, there exists a maximal family;
we claim that then E = [0, 1]. In fact, 0, 1 ∈ E, since we otherwise could
enlarge the family by defining A0 = ∅ or A1 = Ω. Further, E is closed, since
otherwise there would exists r /∈ E and a sequence rn ∈ E such that either
rn ↗ r or rn ↘ r; in the first case we can define Ar :=

⋃
nArn , and in the

second case Ar :=
⋂
nArn . Finally, if E 6= [0, 1], the complement [0, 1] \ E

thus is open, and thus a disjoint union of open intervals. Let (a, b) be one
of these intervals. Then a, b ∈ E, and Ab \Aa is a set of measure b− a > 0.
Since µ is atomless, there exists a subset C ⊆ Ab \Aa with 0 < µ(C) < b−a,
but in this case, the family could be extended by Aa+µ(C) := A ∪ C, so we
again contradict the maximality of the family. Hence E = [0, 1], which
completes the proof. �

We also give a reformulation in terms of a map to [0, 1].

Lemma A.2. If (Ω, µ) is an atomless probability space, then there exists a
measure-preserving map ϕ : Ω→ [0, 1].
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Proof. Let (Ar)r be as in Lemma A.1, and define ϕ(x) := inf{r ∈ [0, 1] : x ∈
Ar} (assuming as we may that A1 = Ω). �

Lemma A.3. If ϕ : Ω1 → Ω2 is measure-preserving and Ω2 is atomless,
then Ω1 is atomless too.

Proof. Let (Ar)r∈[0,1] be a family of subsets of Ω2 with the properties in

Lemma A.1. Then Br := ϕ−1(Ar) defines a family of subsets of Ω1 with
the same properties. Suppose that A ⊆ Ω1 is an atom. Then, for each r,
µ(A ∩ Br) = 0 or µ(A). Let r0 := sup{r : µ(A ∩ Br) = 0}, and take any
r− < r0 and r+ > r0. (If r0 = 0, take r− = 0, and if r0 = 1, take r+ = 1.)
Then µ(A ∩Br−) = 0 and µ(A ∩Br+) = µ(A), so

µ(A) = µ(A ∩Br+)− µ(A ∩Br−) = µ(A ∩ (Br+ \Br−))

≤ µ(Br+ \Br−) = r+ − r−.
This is a contradiction, since µ(A) > 0 while r+ − r− can be arbitrarily
small. �

In the opposite direction, there are typically many measure-preserving
maps from an atomless space Ω1 into a space with atoms. Simple examples
are the trivial map onto a one-point space, and the indicator function of
a subset B ⊆ Ω1 seen as a map (Ω1, µ) → ({0, 1}, ν), which is measure-
preserving if ν{1} = µ(B).

A.2. Borel spaces. To define Borel spaces, it is simplest to begin with
measurable spaces, without any particular measures.

We say that two measurable spaces (Ω,F) and (Ω′,F ′) are isomorphic
if there is a bimeasurable bijection ϕ : Ω → Ω′, i.e., a bijection such that
both ϕ and ϕ−1 are measurable. (Similarly, two probability spaces (Ω,F , µ)
and (Ω′,F ′, µ′) are isomorphic if there exists a bimeasurable bijection that
further is measure-preserving.)

A measurable space is Borel (also called standard [19] or Lusin [20]) if
it is isomorphic to a Borel subset of a Polish space (i.e., a complete metric
space) with its Borel σ-field. A probability space (Ω,F , µ) is Borel if (Ω,F)
is a Borel measurable space; equivalently, if it is isomorphic to a Borel subset
of a Polish space equipped with a Borel measure.

In fact, we do not need arbitrary Polish spaces here; the following theorem
shows that it suffices to consider subsets of [0, 1]. We tacitly assume that
[0, 1] and other Polish spaces are equipped with their Borel σ-fields.

Theorem A.4. The following are equivalent for a measurable space (Ω,F),
and thus each property characterizes Borel measurable spaces.

(i) (Ω,F) is isomorphic to a Borel subset of a Polish space.
(ii) (Ω,F) is isomorphic to a Polish space.
(iii) (Ω,F) is isomorphic to a Borel subset of [0, 1].
(iv) (Ω,F) is either countable (with all subsets measurable), or isomor-

phic to [0, 1].
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For a proof, see e.g. [19, Theorem 8.3.6] or [54, Theorem I.2.12]. An
essentially equivalent statement is that any two Borel measurable spaces
with the same cardinality are isomorphic.

Hence, a Borel probability space is either countable or isomorphic to [0, 1]
equipped with some Borel probability measure. Consequently we can, when
dealing with Borel spaces, restrict ourselves to [0, 1] without much loss of
generality (the countable case is typically simple), but for applications it is
convenient to allow general Borel spaces.

Remark A.5. Another simple Borel space is the Cantor cube C := {0, 1}∞
(which up to homeomorphism is the same as the usual Cantor set); this is
a compact metric space, and thus a Polish space. Since C is uncountable, it
is by Theorem A.4 isomorphic to [0, 1] as measurable spaces; consequently
we may replace [0, 1] by C in Theorem A.4.

One important property of Borel spaces is the following theorem by Ku-
ratowski, showing that a measurable bijection is bimeasurable, and thus an
isomorphism.

Theorem A.6. Let Ω and Ω′ be Borel measurable spaces. If f : Ω→ Ω′ is
a bijection that is measurable, then f−1 : Ω′ → Ω is measurable, and thus f
is an isomorphism.

More generally, if f : Ω → Ω′ is a measurable injection, then the image
f(Ω) is a measurable subset of Ω′ and f is an isomorphism of Ω onto f(Ω).

For a proof, see e.g. [19, Proposition 8.3.5 and Theorem 8.3.7]; see also
further results in [19, Sections 8.3 and 8.6].

Let us now add measures to the spaces. There is a version of Theorem A.4
for probability spaces. For simplicity we begin with the atomless case. Recall
that λ denotes the Lebegue measure.

Theorem A.7. If (Ω, µ) is an atomless Borel probability space, then there
exists a measure-preserving bijection of (Ω, µ) onto ([0, 1], λ).

In other words, all atomless Borel probability space are isomorphic, as
measure spaces.

Proof. Since Ω is atomless, every point has measure 0 and thus every count-
able subset has measure 0; in particular, Ω cannot be countable. By Theo-
rem A.4(iv), there exists a bimeasurable bijection ϕ1 of Ω onto [0, 1]. This
maps the measure µ onto some Borel measure ν on [0, 1].

Since ν has no atoms, x 7→ ν([0, x]) is a continuous non-decreasing map
of [0, 1] onto itself. We let ψ : [0, 1] → [0, 1] be its right-continuous inverse
defined by

ψ(t) := sup
{
x ∈ [0, 1] : ν([0, x]) ≤ t

}
. (A.1)

Then ν([0, ψ(t)]) = t for every t ∈ [0, 1], which implies that ψ is strictly
increasing. Hence, ψ is injective and measurable, and by Theorem A.6, ψ is
a bimeasurable bijection of [0, 1] onto some Borel subset B := ψ([0, 1]).
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It follows from (A.1) that, for all s, t ∈ [0, 1], ψ(t) ≥ s ⇐⇒ ν([0, s]) ≤ t,
and thus ψ−1([0, s)) = [0, ν([0, s])). Hence,

λ
(
ψ−1([0, s))

)
= ν

(
[0, s]

)
= ν

(
[0, s)

)
, s ∈ [0, 1],

which implies that λψ = ν (see Remark 5.4 for the notation), i.e., that
ψ : ([0, 1], λ)→ ([0, 1], ν) is measure-preserving.

Consequently, ψ is a measure-preserving bijection ψ : ([0, 1], λ)→ (B, ν).
Choose an uncountable null set N ⊆ [0, 1] (for example the Cantor set).
Then N ′ := ψ(N) is an uncountable null set in (B, ν). The restriction of
ψ to [0, 1] \ N is a measure-preserving bijection onto B \ N ′. Further, N
and N ′ ∪ Bc, where Bc := [0, 1] \ B, are both uncountable Borel subsets of
[0, 1], and thus by Theorem A.4, both are isomorphic as measurable spaces
to [0, 1], and thus to each other. Hence there exists a measurable bijection
ψ1 : N → N ′ ∪Bc.

Define ψ2 : [0, 1] → [0, 1] by ψ2(x) = ψ(x) when x /∈ N and ψ2(x) =
ψ1(x) when x ∈ N . Then ψ is a measure-preserving bijection ([0, 1], λ) →
([0, 1], ν). Consequently, ψ−1

2 ◦ ϕ is a measure-preserving bijection of (Ω, µ)
onto ([0, 1], λ). �

It is easy to handle atoms too. An atom in a Borel probability space is,
up to a null set, just a single point with a point mass; hence, a Borel space
is atomless if and only if it has no point masses, i.e. no point with positive
measure. In any Borel probability space there is at most a countable number
of point masses, and removing them we obtain an atomless Borel measure
space. This leads to the following characterization.

Theorem A.8. A probability space is Borel if and only if it is isomorphic,
by a measure-preserving bijection, to one of the following spaces.

(i) A countable set D = {xi}ni=1 (where n ≤ ∞), with all subsets mea-
surable and the discrete measure given by µ(A) =

∑
i:xi∈A pi, for

some pi ≥ 0. (Necessarily
∑

i pi = 1.)
(ii) The disjoint union D ∪ N , where D is as in (i) and N is a null

set given by any given uncountable Borel measurable space equipped
with zero measure. (We may choose for example N = [0, 1] with zero
measure, or the Cantor set with λ, which vanishes there.)

(iii) The disjoint union of a closed interval ([0, r], λ) with 0 < r ≤ 1 and a
countable set D as in (i) (possibly empty); in this case r+

∑
i pi = 1,

and we may further assume that each pi > 0.

Proof. If (Ω, µ) is a Borel probability space, let D := {x ∈ Ω : µ{x} > 0}
and Ω′ := Dc = Ω \ D. Then D is countable, and (Ω′, µ) is atomless.
Let r := µ(Ω′). If r > 0, then by Theorem A.4 and a scaling, (Ω′, µ) is
isomorphic to [0, r], which yields (iii). If r = 0, then Ω′ is a null set. If
further Ω′ is uncountable, then (Ω′, µ) = (Ω′, 0) is isomorphic to (N, 0) for
any uncountable Borel space by Theorem A.4(iv), which yields (ii). Finally,
if Ω′ is countable, then Ω is countable and (i) holds.
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The converse is obvious. �

Theorem A.9. If Ω is a Borel probability space, then there is a measure-
preserving map [0, 1]→ Ω.

Proof. It suffices to show this for the spaces in Theorem A.8(i)–(iii), and for
these it is easy to construct explicit maps. (For each x ∈ D, map a suitable
interval of length µ{x} to x; in (iii), map [0, r] onto itself by the identity
map.) �

A.3. Lebesgue spaces. A Lebesgue probability space is a probability space
that is the completion of a Borel probability space; equivalently (see Theo-
rem A.4), it is isomorphic to a Polish space (or, equivalently, a Borel subset
of a Polish space) equipped with the completion of a Borel measure.

Theorem A.8 leads directly to the following characterization.

Theorem A.10. A probability space is Lebesgue if and only if it is iso-
morphic, by a measure-preserving bijection, to one of the spaces given in
Theorem A.8, with the modifications that in (ii) all subsets of N are mea-
surable (with measure 0), and in (iii) the interval [0, r] is equipped with the
Lebesgue σ-field L. �

In other words, every Lebesgue probability space is, possibly ignoring
a null sets, isomorphic to either a countable discrete space, an interval
([0, r],L, λ), or a disjoint union of an interval and a countable discrete part.

Corollary A.11. An atomless Lebesgue space is isomorphic to ([0, 1],L, λ).

Proof. Immediate from either Theorem A.10 or Theorem A.4. �

Remark A.12. Lebesgue spaces were introduced by Rohlin [57] by a dif-
ferent, intrinsic, definition, see also Haezendonck [34]. The equivalence to
the definition above follows from [57, §2.4] or [34, Remark 2, p. 250].

Appendix B. Graph limits

As said in the introduction, graph limits were introduced by Lovász and
Szegedy [48] and further developed by Borgs, Chayes, Lovász, Sós and
Vesztergombi [14, 15]. The central idea in graph limit theory is to assign
limits to (some) sequences Gn of (unlabelled) graphs with |Gn| → ∞. Part
of the importance of this notion is the fact that several different definitions
of convergence turn out to be equivalent. One definition is the following,
which has the advantage that it easily is adapted to many other situations
such as hypergraphs, bipartite graphs, directed graphs, compactly decorated
graphs and posets, see [4, 14, 15, 24, 26, 36, 40, 44, 51, 52].

For each k ≤ |Gn|, let Gn[k] be the random induced subgraph of Gn
with k vertices obtained by selecting k (distinct) vertices v1, . . . , vk ∈ Gn at
random (uniformly); we regard Gn[k] as a labelled graph with the vertices
labelled 1, . . . , k; equivalently, we regard Gn[k] as a graph with vertex set
{1, . . . , k}.
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Definition B.1. A sequence of graphs (Gn) with |Gn| → ∞ converges if
for each fixed k, the distribution of the random graph Gn[k] converges as
n→∞.

In other words, for each k and each labelled graph G with |G| = k, we
require that limn→∞ P(Gn[k] = G) exists.

Given this notion of convergence, graph limits can be defined abstractly,
as equivalence classes of convergent sequences of graphs. Equivalently, one
can easily introduce a metric on the set of unlabelled finite graphs such that
the convergent sequences become the Cauchy sequences in the metric, and
then construct the completion of this metric space.

It turns out that the space of limits can be identified with the quotient

space Ŵ :=
⋃

ΩW(Ω)/ ∼= defined in Section 6, see Lovász and Szegedy [48]
and Borgs, Chayes, Lovász, Sós and Vesztergombi [14]. In other words, every
graph limit is represented by a graphon, but non-uniquely, since every equiv-
alent graphon represents the same graph limit. (Conversely, non-equivalent
graphons represent different graph limits.)

Moreover, convergence to graph limits can be described by the cut metric.
If (Gn) is a sequence of graphs with |Gn| → ∞, and W is a graphon, then Gn
converges to the graph limit represented by W if and only if δ�(WGn ,W )→
0, where WGn is as in Example 2.7. In this case we also say that (Gn)
converges to W , and write Gn → W (remembering the non-uniqueness of
W ).

Remark B.2. In particular, for every graphon W , there exist sequences
of graphs (Gn) such that Gn → W . (One construction of such Gn is the
random construction in Appendix D below.)

Convergence to graph limits can also be described by the homomorphism
densities defined in Appendix C: Gn →W if and only if t(F,Gn)→ t(F,W )
for every simple graph F .

For details and many other results, see Borgs, Chayes, Lovász, Sós and
Vesztergombi [14]; for further aspects, see e.g. Austin [4], Bollobás and Ri-
ordan [12], Borgs, Chayes, Lovász, Sós and Vesztergombi [15], Diaconis and
Janson [24], Lovász and Szegedy [51], and Appendix D below.

Appendix C. Homomorphism densities

Define, following [14] and [48], for a graphon (or, more generally, any
bounded symmetric function) W : Ω2 → [0, 1] and a simple graph F vith
vertex set V (F ) and edge set E(F ), the the homomorphism density

t(F,W ) :=

∫
ΩV (F )

∏
ij∈E(F )

W (xi, xj) dµ(x1) · · · dµ(x|F |). (C.1)
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If Xi are i.i.d. random variables with values in Ω and distribution µ, we can
write (C.1) as

t(F,W ) := E
∏

ij∈E(F )

W (Xi, Xj). (C.2)

The homomorphism densities can be defined for graphs too by t(F,G) :=
t(F,WG). It is easily seen that t(F,G) is the proportion of maps V (F ) →
V (G) that are graph homomorphisms (or, equivalently, the probability that
a random map V (F ) → V (G) is a graph homomorphism. (This explains
the name homomorphism density.)

The homomorhism denisities have a central place in the graph limit the-
ory. In particular, as shown in [14], Gn → W if and only if t(F,Gn) →
t(F,W ) for every simple graph F .

The definition (C.1) makes sense also for loopless multigraphs F , where
we allow repeated edges. (Loops are not allowed, since we want t(F,W ) =
t(F,W ′) when W = W ′ a.e., and this rules out a factor W (xi, xi) in (C.1).)

Example C.1. Let Mk be the multigraph with 2 vertices connected by k
parallel edges. Then t(Mk, F ) =

∫
Ω2 W

k.

We have seen in Theorem 8.10 that t(F,W ) = t(F,W ′) when W ∼= W ′,
for every multigraph F . In other words, the mapping W 7→ t(F,W ) yields

a well-defined mapping on the quotient space Ŵ := W∗/ ∼=, which is the
same as the space of graph limits, see Appendix B.

Lemma C.2. The mapping W 7→ t(F,W ) is continuous on (Ŵ, δ�) if and
only if F is a simple graph.

In other words, if δ�(Wn,W ) → 0, then t(F,Wn) → t(F,W ) for every
simple graph F . However, if F is a multigraph with parallel edges, then
δ�(W ′,W ) = 0 implies t(F,W ′) = t(F,W ), but δ�(Wn,W ) → 0 does not
imply t(F,Wn)→ t(F,W ).

Proof. It is easy to see that W 7→ t(F,W ) is continuous in δ� for every
simple F , see [14] or [48]; more precisely, for any graphons W and W ′,

|t(F,W )− t(F,W ′)| ≤ |E(F )| δ�(W,W ′). (C.3)

For the converse, suppose that the loopless multigraph F is not simple,
and let F ′ be the simple graph obtained by identifying parallel edges in F .
Thus V (F ′) = V (F ), but |E(F ′)| < |E(F )|.

Let W be the constant graphon 1/2 defined on [0, 1], and let Gn be a
sequence of graphs such that Gn → W . (See Remark B.2. Such sequences
are known as quasirandom, see [48]. For example, Gn can be a realization
of the random graph G(n, 1/2), see Appendix D.)

Let WGn be the graphon corresponding to Gn as in Example 2.7; we thus
have δ�(WGn ,W )→ 0. On the other hand, WGn is {0, 1}-valued, and thus
t(F,WGn) = t(F ′,WGn) by (C.1). Hence, using the already proved part of
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the lemma for F ′,

t(F,WGn) = t(F ′,WGn)→ t(F ′,W ) = 2−|E(F ′)| > 2−|E(F )| = t(F,W ). �

Example C.3. In particular, W 7→ t(K2,W ) =
∫

Ω2 W is continuous in the

cut metric, but W 7→ t(M2,W ) =
∫

Ω2 W
2, see Example C.1, is not. More

generally, W 7→
∫

Ω2 W
k is not continuous for any k > 1.

If we use the stronger metric δ1, we have continuity for multigraphs too.
(This metric is, however, much less useful.)

Lemma C.4. The mapping W 7→ t(F,W ) is continuous on (Ŵ, δ1) for
every loopless multigraph.

We omit the easy proof, similar to the proof for δ� and simple graphs in
[14] or [48].

Appendix D. Graphons and random graphs

LetW be a graphon, defined on some probability space Ω. For 1 ≤ n ≤ ∞,
let [n] = {i ∈ N : i ≤ n}; thus [n] = {1, . . . , n} if n is finite and [∞] = N.
We define a random graph G(n,W ) with vertex set [n] by first taking an
i.i.d. sequence {Xi}ni=1 of random points in Ω with the distribution µ, and
then, given this sequence, letting ij be an edge in G(n,W ) with probability
W (Xi, Xj); for a given sequence (Xi)i, this is done independently for all
pairs (i, j) ∈ [n]2 with i < j. (I.e., we first sample X1, X2, . . . at random,
and then toss a biased coin for each possible edge.)

The random graphs G(n,W ) thus generalize the standard random graphs
G(n, p) obtained by taking W = p constant. Note that we may construct
G(n,W ) for all n by first constructing G(∞,W ) and then taking the sub-
graph induced by the first n vertices.

This construction was introduced in graph limit theory in [48] and [14].
(For other uses, see e.g. [9] and [21].)

Remark D.1. If F is a labelled graph, then the homomorphism density
t(F,W ) in (C.1) equals the probability that F is a labelled subgraph of
G(∞,W ) (or of G(n,W ) for any n ≥ |F |).

In particular, this shows that the family
(
t(F,W )

)
F

and the distribution
of G(∞,W ) determine each other; see further Theorem 8.10 and [24].

Remark D.2. If W is a random-free graphon, i.e., W (x, y) ∈ {0, 1} a.e.,
then the construction of G(n,W ) simplifies. We sample i.i.d. X1, X2, . . . as
before, and draw an edge ij if and only if W (Xi, Xj) = 1; thus the sec-
ond random step in the construction disappears. (This explains the name
“random-free”; of course, G(n,W ) still is random, but it is now a determin-
istic function of the random Xi.)

The infinite random graph G(∞,W ) is an exchangeable random graph,
i.e., its distribution is invariant under permutations of the vertices, and
every exchangeable random graph is a mixture of such graphs, i.e., it can
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be obtained by this construction with a random W . This is an instance
of the representation theorem for exchangeable arrays by Aldous [1] and
Hoover [35], see also Kallenberg [43]. Moreover, by Theorem 8.10, if W ′ is
another graphon, then G(∞,W ) and G(∞,W ′) have the same distribution
if and only if W ∼= W ′. Consequently, the mapping W 7→ G(∞,W ) gives

a bijection between the set Ŵ = W∗/ ∼= of equivalence classes of graphons

and a subset X̂ of the set X of distributions of exchangeable infinite random

graphs; this subset X̂ is easily charaterized in several different ways, for
example as follows.

Lemma D.3. For an exchangeable infinite random graph G, the following

are equivalent, and thus all characterize L(G) ∈ X̂ .

(i) G
d
= G(∞,W ) for some graphon W .

(ii) The distribution L(G) is an extreme point in X .
(iii) G is ergodic: every property that is (a.s.) invariant under left-shift

(i.e., delete vertex 1 and its edges and relabel the remaining vertices
i 7→ i− 1) has probability 0 or 1.

(iv) Every property of G that is (a.s.) invariant under finite permutations
of the vertices has probability 0 or 1.

(v) For any two disjoint subsets of vertices V1 and V2, the induced sub-
graphs G|V1 and G|V2 are independent.

Proof. See [24] and [43]. �

D.1. Graph limits and random graphs. There is also a simple connec-
tion between graph limits and exchangeable infinite random graphs. By
Definition B.1, if (Gn) is a convergent sequence of graphs with |Gn| → ∞,
then for each k there exists a random graph G[k] on the vertex set [k] such

that Gn[k]
d−→ G[k]. The distributions of G[k] for different k are consistent,

so by Kolmogorov’s extension theorem, there exists a random infinite graph

G on [∞] such that G[k]
d
= G|[k], i.e., Gn[k]

d−→ G|[k]. Each Gn[k] has an

exchangeable distribution, and thus so has each G[k]; consequently, G is an
exchangeable infinite random graph; furthermore, it is easily seen that G

satisfies Lemma D.3(v), and thus its distribution belongs to X̂ . Thus every
graph limit can be represented by an exchangeable infinite random graph

with distribution in X̂ . Conversely, if G is any exchangeable infinite random

graph with a distribution in X̂ , then the induced subgraphs Gn := G|[n] a.s.

satisfy Gn[k]
d−→ G|[k] for every k, as can be seen from the limit theorem for

reverse martingales [24] or directly [48]; thus the sequence (Gn) converges
a.s., and its limit is represented by the infinite random graph G.

This yields a bijection between the set of graph limits and the set X̂ ,
characterized in Lemma D.3, of distributions of exchangeable infinite ran-
dom graphs.
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This connection between graph limits and (distributions of) exchange-
able infinite random graphs combines with the connection above between
(equivalence classes of) graphons and (distributions of) exchangeable infi-
nite random graphs to prove the central fact stated in Appendix B that there
is a bijection between graph limits and equivalence classes of graphons; see
further [4], [24], [44], [50].

In particular, for any graphon W , we have a.s. G(n,W )→W as n→∞,
in the sense of Appendix B [48], cf. Remark B.2.

Remark D.4. This method of proving the connection between graph limits
and graphons through the use of exchangeable infinite random graphs as an
intermediary generalizes immediately to several extensions of the theory, and
it may be used to find the correct analogue of graphons in new situations. See
for example [4] (hypergraphs) and [24] (bipartite graphs, directed graphs).

Another example is compact decorated graphs [52], which are graphs with
edges labelled by elements of a fixed second-countable compact space (i.e.,
a compact metrizable space [27, Theorem 4.2.8]) K; this includes several
interesting cases. K-decorated graph limits are defined as in Definition B.1,
now with K-decorated graphs. The arguments sketched above show that
there is a bijection between K-decorated graph limits and distributions of
exchangeable K-decorated infinite random graphs satisfying the properties
in Lemma D.3, and a further bijections to equivalence classes of graphons,
where the graphons now take their values in the space P(K) of Borel prob-
ability measures on K. (The representation theorem in [42] yields a rep-
resentation where the label of ij is f(Xi, Xj , ξij) for some fixed function
f : [0, 1]3 → X with Xi and ξjk uniform on [0, 1] and independent of each
other; it is easily seen that this leads to an equivalent representation by
P(K)-valued graphons W : [0, 1]2 → P(K).) For a different proof, see [52].
Many results in Sections 6–8 above extend to this case, but we leave that to
the reader.

In fact, the arguments above on the equivalences work for any Polish space
K, also non-compact; however, compactness implies that the resulting space
of decorated graph limits is compact, which is important for some results.

D.2. Entropy. If we regard G(n,W ) as a labelled random graph, we may
identify it with the collection (Jij)i<j of the

(
n
2

)
edge indicators Jij :=

1{ij is an edge}, 1 ≤ i < j ∈ [n]. For finite n, G(n,W ) is thus a dis-

crete random variable with 2(n2) possible outcomes. Recall that for any dis-
crete random variable Z, with outcomes (in any space) having probabilities
p1, p2, . . . , say, its entropy E(Z) is defined by

E(Z) := −
∑
i

pi log pi.

We also write E(Z1, . . . , Zn) for the entropy of a vector (Z1, . . . , Zn), and
E(Z | Z ′) for the entropy of the conditioned random variable (Z | Z ′).
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The following asymptotic calculation of the entropy ofG(n,W ) is a special
case of the symmetric version of the formula in [2, Remarks, p. 146]. Let

h(p) := −p log p− (1− p) log(1− p), p ∈ [0, 1];

thus the entropy of a {0, 1}-valued random variable Z ∈ Be(p) is h(p). Note
that h is continuous on [0, 1] with 0 ≤ h(p) ≤ log 2 and h(0) = h(1) = 0.

Theorem D.5. Let W be a graphon, defined on a probability space (Ω, µ).
Then, as n→∞,

E(G(n,W ))(
n
2

) →
∫∫

Ω2

h
(
W (x, y)

)
dµ(x) dµ(y). (D.1)

Proof. If we condition on X1, . . . , Xn, then Jij are independent and each
Jij ∈ Be(pij) with pij = W (Xi, Xj). Thus, using in the calculations here
and below some simple standard results on entropy,

E
(
G(n,W ) | X1, . . . , Xn

)
=
∑
i<j

E
(
Jij | X1, . . . , Xn

)
=
∑
i<j

E
(
Be(pij)

)
=
∑
i<j

h(pij) =
∑
i<j

h(W (Xi, Xj)).

Hence,

E
(
G(n,W )

)
≥ E E

(
G(n,W ) | X1, . . . , Xn

)
= E

∑
i<j

h(W (Xi, Xj))

=

(
n

2

)∫∫
Ω2

h
(
W (x, y)

)
dµ(x) dµ(y).

Thus the left-hand side of (D.1) is greater than or equal to the right-hand
side for every n ≥ 2.

To obtain a corresponding upper bound, we for convenience assume that
Ω = (0, 1], as we may by Theorem 7.1 (noting that

∫∫
h(W ) is preserved by

pull-backs, and thus by equivalence, see Theorem 8.3).
Fix an integer m and let Mi := dmXie. Thus Mi = k ⇐⇒ Xi ∈ Ikm.

We have

E
(
G(n,W )

)
≤ E

(
G(n,W ),M1, . . . ,Mn

)
= E(M1, . . . ,Mn) + E

(
E
(
G(n,W ) |M1, . . . ,Mn

))
. (D.2)

Since M1, . . . ,Mn are independent and uniformly distributed on {1, . . . ,m},

E(M1, . . . ,Mn) =
n∑
i=1

E(Mi) = n logm. (D.3)

Moreover,

E
(
G(n,W ) |M1, . . . ,Mn

)
≤
∑
i<j

E
(
Jij |M1, . . . ,Mn

)
=
∑
i<j

E
(
Jij |Mi,Mj

)
.

(D.4)
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Define, for k, l = 1, . . . ,m,

wm(k, l) := E
(
W (X1, X2) |M1 = k, M2 = l

)
= m2

∫
Ikm

∫
Ilm

W (x, y) dx dy,

the average of W over Ikm × Ilm, and let

Wm(x, y) := wm(k, l) if x ∈ Ikm, y ∈ Ilm.
ThusWm(Xi, Xj) equals the conditional expectation E

(
W (X1, X2) |M1,M2

)
.

Given Mi = k and Mj = l,

P(Jij = 1) = E
(
W (X1, X2) |M1 = k, M2 = l

)
= wm(k, l),

and thus
E
(
Jij |Mi = k, Mj = l

)
= h

(
wm(k, l)

)
.

Consequently,

E
(
E
(
Jij |Mi, Mj

))
= m−2

m∑
k,l=1

h
(
wm(k, l)

)
=

∫∫
[0,1]2

h
(
Wm(x, y)

)
dx dy.

(D.5)
Combining (D.2)–(D.5), we obtain

E(G(n,W )) ≤ n logm+

(
n

2

)∫∫
[0,1]2

h
(
Wm(x, y)

)
dx dy.

and thus, for every m ≥ 1,

lim sup
n→∞

(
n

2

)−1

E(G(n,W )) ≤
∫∫

[0,1]2
h
(
Wm(x, y)

)
dx dy.

Now let m → ∞. Then Wm(x, y) → W (x, y) a.e., and thus the right-hand
side tends to

∫∫
h(W ) by dominated convergence. �

Appendix E. Other versions of the cut norm

There are several other versions of the cut norm that are equivalent to
the versions in (4.2) and (4.3) within constant factors or, in Subsection E.3,
at least in a weaker sense.

E.1. Restrictions on the pairs of subsets. First, we may restrict the
subsets S and T of Ω in (4.2) in various ways. Borgs, Chayes, Lovász, Sós
and Vesztergombi [14, Section 7] give three versions where it is assumed that,
respectively, S = T , S and T are disjoint, and S and T are the complements
of each other, i.e.,

‖W‖�,3 := sup
S

∣∣∣∫
S×S

W (x, y) dµ(x) dµ(y)
∣∣∣, (E.1)

‖W‖�,4 := sup
S∩T=∅

∣∣∣∫
S×T

W (x, y) dµ(x) dµ(y)
∣∣∣, (E.2)

‖W‖�,5 := sup
S

∣∣∣∫
S×Sc

W (x, y) dµ(x) dµ(y)
∣∣∣. (E.3)
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These have natural combinatorial interpretations for graphs as follows.
For a graph G with vertex set V and edge set E, we define, for A,B ⊆ V ,

e(A,B) = eG(A,B) :=
∣∣{(x, y) ∈ A×B : {x, y} ∈ E

}∣∣ ; (E.4)

we also write eG(A) := eG(A,A). (Thus, if A and B are disjoint, then
e(A,B) is the number of edges between A and B. On the other hand, e(A)
is twice the number of edges in A.)

Lemma E.1. Let G1 and G2 be two graphs on the same vertex set V , and
let n := |V |. Then, for both versions WV

G and W I
G,

‖WG1 −WG2‖�,3 = n−2 max
A⊆V

∣∣eG1(A)− eG2(A)
∣∣, (E.5)

‖WG1 −WG2‖�,4 = n−2 max
A∩B=∅

∣∣eG1(A,B)− eG2(A,B)
∣∣, (E.6)

‖WG1 −WG2‖�,5 = n−2 max
A⊆V

∣∣eG1(A,Ac)− eG2(A,Ac)
∣∣. (E.7)

In particular, ‖WG1 −WG2‖�,5 measures directly the maximal difference
in size of cuts in G1 and G2, which explains the name “cut norm”.

Proof. For WV
G this is immediate, since for every S, T ⊆ Ω = V we have∫

S×T W
V
G`

= n−2eG`
(S, T ).

For W I
G, let

(
a

(`)
ij

)
ij

be the adjacency matrix of G`, so a
(`)
ij := 1

{
{i, j} ∈

E(G`)
}

. If S, T ⊆ [0, 1], let si := λ(S ∩ Iin), tj := λ(T ∩ Ijn). Then∫
S×T

(
WG1 −WG2

)
=

∣∣∣∣ n∑
i,j=1

sitj
(
a

(1)
ij − a

(2)
ij

)∣∣∣∣. (E.8)

It follows that

‖WG1 −WG2‖�,3 = sup
0≤si≤1/n

∣∣∣∣ n∑
i,j=1

sisj
(
a

(1)
ij − a

(2)
ij

)∣∣∣∣, (E.9)

‖WG1 −WG2‖�,4 = sup
0≤si≤1/n
0≤uj≤1

∣∣∣∣ n∑
i,j=1

siuj(1− sj)
(
a

(1)
ij − a

(2)
ij

)∣∣∣∣, (E.10)

‖WG1 −WG2‖�,5 = sup
0≤si≤1/n

∣∣∣∣ n∑
i,j=1

si(1− sj)
(
a

(1)
ij − a

(2)
ij

)∣∣∣∣. (E.11)

Since a
(1)
ii = a

(2)
ii = 0, the diagonal terms in these sums vanish, and thus the

sums are affine functions of each si and (for ‖ · ‖�,4) ui. Hence, the suprema
are attained when all si are either 0 or 1/n, and ui 0 or 1, i.e., when S and
T are unions S =

⋃
i∈A Iin and T =

⋃
j∈B Ijn for some A,B ⊆ V , but then∫

S×T W
I
G`

= n−2eG`
(A,B), so we obtain the same result as for WV

G . �

Lemma E.2 ([14]). If Ω is atomless and W ∈ L1(Ω2) is symmetric, then
the norms ‖W‖�,i, i = 1, ..., 5, are equivalent. More precisely,

‖W‖�,1 ≤ ‖W‖�,2 ≤ 4‖W‖�,1 for all Ω and W ; (E.12)
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1

2
‖W‖�,1 ≤ ‖W‖�,3 ≤ ‖W‖�,1 if W is symmetric; (E.13)

1

4
‖W‖�,1 ≤ ‖W‖�,4 ≤ ‖W‖�,1 if Ω is atomless; (E.14)

2

3
‖W‖�,4 ≤ ‖W‖�,5 ≤ ‖W‖�,4 if W is symmetric. (E.15)

Proof. The inequalities (E.12) were given in (4.4). For the others, the right-
hand sides are trivial.

For the left-hand sides, let W (S, T ) :=
∫
S×T W . Then (E.13) follows from

W (S, T ) = W (T, S) and

W (S, T ) +W (T, S) = W (S ∪ T, S ∪ T ) +W (S ∩ T, S ∩ T )

−W (S \ T, S \ T )−W (T \ S, T \ S).

For (E.14) we randomize. Let (Ai)
n
i=1 be a partition of Ω with µ(Ai) = 1/n

for each i (such partitions exist when Ω is atomless as a consequence of
Lemma A.1), let I be a random subset of {1, . . . , n} defined by including
each element with probability 1/2, independently of each other, and define
a random subset B of Ω by B :=

⋃
i∈I Ai. Then, for any S, T ⊆ Ω, E

∣∣W (S∩
B, T \B)

∣∣ ≤ ‖W‖�,4. Moreover,

EW (S ∩B, T \B) =
∑
i 6=j

1

4
W (S ∩Ai, T ∩Aj)

=
1

4
W (S, T )− 1

4

∑
i

W (S ∩Ai, T ∩Ai).

The last sum is the integral of W over a subset of Ω2 of measure 1/n, so
it tends to 0 as n→∞. Consequently, 1

4W (S, T ) ≤ ‖W‖�,4, and (E.14)
follows.

For (E.15), assume that S ∩T = ∅. Let R := (S ∪T )c. The result follows
from

W (S, T ) +W (T, S) = W (S, T ∪R) +W (T, S ∪R)−W (S ∪ T,R). �

Remark E.3. Some restrictions are necessary in Lemma E.2. For ex-
ample, if W is anti-symmetric (W (x, y) = −W (y, x)), then ‖W‖�,3 = 0,

so (E.13) does not hold for arbitrary W . More generally, if W̃ (x, y) :=
1
2(W (x, y) + W (y, x)) is the symmetrization of W , then ‖ · ‖�,3 never dis-

tinguishes between W and W̃ , so ‖ · ‖�,3 is appropriate only for symmetric
W .

Similarly, if Ω has an atom A and W (x, y) := 1{x, y ∈ A}, then ‖W‖�,4 =
0 and (E.14) does not hold. Hence, in general ‖ · ‖�,4 and ‖ · ‖�,5 are not

appropriate for spaces with atoms. (However, they work well also for WV
G

for graphs G, because WV
G(x, x) = 0 for every x, see Lemma E.1 and its

proof.)
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If W is anti-symmetric and the marginal
∫

ΩW (x, y) dµ(y) = 0, then∫
S×Sc

W =

∫
S×Ω

W −
∫
S×S

W = 0 (E.16)

for every S, so ‖W‖�,5 = 0 and (E.15) does not hold (unless W = 0 a.e.).
For example, we can take W (x, y) = sin(2π(x − y)) on [0, 1], or take Ω =
{1, 2, 3} with µ(i) = 1/3 for each i ∈ Ω, and W (i, j) ∈ {−1, 0, 1} with
W (i, j) ≡ i − j (mod 3). (In fact, if Ω is atomless, then ‖W‖�,5 = 0 if
and only if W is anti-symmetric and its marginals vanish a.e. To see this,
note that if ‖W (x, y)‖�,5 = 0, then ‖W (y, x)‖�,5 = 0 as well, and thus

‖W̃‖�,5 = 0. By Lemma E.2, then ‖W̃‖�,2 = 0 and thus W̃ = 0 a.e. By

(E.16),
∫
SW

(2)
=
∫
S×ΩW = 0 for every S ⊆ Ω, and thus W

(2)
= 0 a.e.) Cf.

[39, Section 9].

Remark E.4. If W ∼= W ′, then ‖W‖�,3 = ‖W ′‖�,3; this is easily seen
first for pull-backs by the argument in the proof of Lemma 5.5, and then in
general by Theorem 8.3. The same holds for ‖ · ‖�,4 and ‖ · ‖�,5 provided W
and W ′ are defined on atomless spaces, using also a randomization argument
similar to the one in the proof of Lemma E.2. However, this is not true in
general for spaces with atoms. For a trivial example, let W = 1 on [0, 1] and
W ′ = 1 on one-point space; then ‖W ′‖�,4 = ‖W ′‖�,5 = 0.

Remark E.5. The constants in (E.12)–(E.15) are best possible. Examples
with equality in the left or right inequalities are given by the following
matrices, interpreted as functions on [0, 1]2, with each row or column in an
n× n-matrix corresponding to an interval Iin of length 1/n (we could use a
space Ω with n points, but we want Ω to be atomless):

(E.12): (1),
(

1 −1
−1 1

)
;

(E.13):
(−1 0 1

0 1 0
1 0 −1

)
, (1);

(E.14): (1),
(

1 −1
−1 1

)
;

(E.15):
(

0 3 −1
3 0 −1
−1 −1 0

)
, (1).

E.2. Complex and Hilbert space valued functions. Another set of
versions of the cut norm use (4.3) but consider other sets of functions f
and g. For example, we may take the supremum over all complex-valued
functions f and g with |f |, |g| ≤ 1, i.e.

‖W‖�,C := sup
f,g:Ω→C

‖f‖∞,‖g‖∞≤1

∣∣∣∫
Ω2

W (x, y)f(x)g(y) dµ(x) dµ(y)
∣∣∣. (E.17)

It is easily seen that ‖W‖�,C ≤ 2‖W‖�,2, which can be improved to [45]

‖W‖�,2 ≤ ‖W‖�,C ≤
√

2‖W‖�,2, (E.18)

which is best possible. (For an example, consider a two-point space Ω =
{1, 2} with µ{1} = µ{2} = 1/2, and let W1(x, y) = 1/2 and W2(x, y) =
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1{x = y = 1}. Then ‖W1 − W2‖�,2 = 1/4 but ‖W1 − W2‖�,C =
√

2/4,
obtained by taking f = g = (1, i) in (E.17).)

An interesting version is to allow f and g to take values in the unit ball
of an arbitrary Hilbert space H and define

‖W‖�,H := sup
f,g:Ω→H

‖f‖∞,‖g‖∞≤1

∣∣∣∫
Ω2

W (x, y)〈f(x), g(y)〉 dµ(x) dµ(y)
∣∣∣. (E.19)

(Since we only consider real W , it is easy to see that it does not matter
whether we allow real or complex Hilbert spaces in (E.19).) In this case, the
equivalence with ‖W‖�,2 is a form of the famous Grothendieck’s inequality
[31], which says that

‖W‖�,2 ≤ ‖W‖�,H ≤ KG‖W‖�,2, (E.20)

where the constant KG, the real Grothendieck constant, is known to satisfy
π/2 ≤ KG ≤ π/(2 log(1+

√
2)) ≈ 1.78221 [45]. (The lower bound is improved

in an unpublished manuscript [56].) We also have ‖W‖�,C ≤ ‖W‖�,H ≤
KC
G‖W‖�,C, where KC

G is the complex Grothendieck constant, known to

satisfy 4/π ≤ KC
G < 1.40491 [33]. Moreover, ‖W‖�,C is obtained by taking

only a fixed Hilbert space of dimension 2 in (E.19).
See [3] for an algorithmic use of the version ‖ · ‖�,H of the cut norm and

Grothendieck’s inequality.

E.3. Other operator norms. If W is a kernel on Ω, then it defines an
integral operator TW : f 7→

∫
ΩW (x, y)f(y) dµ(y) (for suitable f). We have

already noted in Remark 4.2 that ‖ · ‖�,2 is the operator norm of TW as an
operator L∞(Ω)→ L1(Ω), but we may also consider other spaces.

Let, for 1 ≤ p, q ≤ ∞, ‖T‖p,q denote the norm of T as an operator
Lp → Lq.

Lemma E.6. If |W | ≤ 1, then for all p, q ∈ [1,∞],

‖W‖�,2 = ‖TW ‖∞,1 ≤ ‖TW ‖p,q ≤
√

2‖W‖min(1−1/p,1/q)
�,2 .

Consequently, for any fixed p > 1 and q < ∞, if W1,W2, . . . and W are
graphons defined on the same space Ω, then ‖Wn −W‖� → 0 if and only if
‖TWn − TW ‖p,q → 0.

Proof. We know that ‖W‖�,2 = ‖TW ‖∞,1. Moreover, for any probability
space, the inclusions L∞ ⊆ Lp and Lp ⊆ L1 have norm 1, and thus ‖T‖∞,1 ≤
‖T‖p,q for any operator T .

Let θ := min(1 − 1/p, 1/q), so 1 − θ := max(1/p, 1 − 1/q), and define
p0, q0 ∈ [1,∞] by 1/p = (1− θ)/p0 and 1− 1/q = (1− θ)(1− 1/q0). Further,
let p1 =∞ and q1 = 1. Then (1/p, 1/q) = (1−θ)(1/p0, 1/q0)+θ(1/p1, 1/q1),
and it follows from the Riesz–Thorin interpolation theorem (see e.g. [5, The-
orem 1.1.1]) that, provided we work with complex Lp spaces,

‖TW ‖p,q ≤ ‖TW ‖1−θp0,q0‖TW ‖
θ
p1,q1 .
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By (E.17) and (E.18),

‖TW ‖p1,q1 = ‖TW ‖∞,1 = ‖W‖�,C ≤
√

2‖W‖�,2,
and the assumption |W | ≤ 1 implies ‖TW ‖p0,q0 ≤ ‖TW ‖1,∞ ≤ ‖W‖∞ ≤ 1.
The result follows. �

We consider the case p = q = 2 further, i.e., we regard TW as an operator
on the Hilbert space L2(Ω). If W is bounded (or, more generally, in L2(Ω2)),
then TW is bounded on L2; it is further compact (and Hilbert–Schmidt)
and selfadjoint (because W is symmetric). Hence TW has a sequence of
eigenvalues (λn). We define, for 1 ≤ p <∞, the Schatten Sp-norm of TW to
be

‖TW ‖Sp := ‖(λn)‖`p =
(∑

n

|λn|p
)1/p

. (E.21)

(See e.g. [30], where also the non-selfadjoint case is treated.) It is well-known
that for p = 2, ‖ · ‖S2 equals the Hilbert–Schmidt norm and thus

‖TW ‖S2 = ‖W‖L2(Ω2). (E.22)

If p = 2k is an even integer ≥ 4, then (E.21) yields

‖TW ‖2kS2k
=
∑
n

λ2k
n = Tr

(
T 2k
W

)
= t(C2k,W ), (E.23)

where the graph C2k is the cycle of length 2k.

Lemma E.7.

(i) For 2 < p <∞, if |W | ≤ 1, then

‖W‖�,2 = ‖TW ‖∞,1 ≤ ‖TW ‖2,2 ≤ ‖TW ‖Sp ≤
√

2‖W‖1/2−1/p
�,2 .

Consequently, for any fixed p > 2, if W1,W2, . . . and W are graphons
defined on the same space Ω, then ‖TWn − TW ‖Sp → 0 if and only if
‖Wn −W‖� → 0.

(ii) For p = 2, if |W | ≤ 1, then

‖W‖L1 ≤ ‖TW ‖S2 = ‖W‖L2 ≤ ‖W‖1/2
L1 .

Consequently, if W1,W2, . . . and W are graphons defined on the
same space Ω, then ‖TWn−TW ‖S2 → 0 if and only if ‖Wn−W‖L1 →
0.

Proof. (i): The first inequality is in Lemma E.6 and the second is trivial,
since the operator norm ‖TW ‖2,2 = supn |λn|. Further, by this and (E.21),

‖TW ‖pSp
=
∑
n

|λn|p ≤
∑
n

|λn|2 sup
n
|λn|p−2 = ‖TW ‖2S2

‖TW ‖p−2
2,2 . (E.24)

We have ‖TW ‖S2 = ‖W‖L2(Ω2) ≤ 1 by (E.22), and ‖TW ‖2,2 ≤
√

2‖W‖1/2�,2 by
Lemma E.6, and the result follows.

(ii): Immediate by (E.22) and standard inequalities (e.g. Hölder). �
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In particular, by (i) with p = 4 and (E.23), if |W | ≤ 1, then ‖W‖�,2 ≤
t(C4,W )1/4 ≤

√
2‖W‖1/4�,2, or

1
4 t(C4,W ) ≤ ‖W‖�,2 ≤ t(C4,W )1/4.

This was proved in [14, Lemma 7.1] (by a slightly diferent argument, using
a version of (C.3)), where also an application is given.

Remark E.8. There is no corresponding result for p < 2. In fact, ‖TW ‖Sp

may be infinite for a graphon W . To see this, let first W be constant 1/2
on [0, 1] and let (Gn) be a quasirandom sequence of graphs with Gn → W .
Let Wn := WGn , so δ�(Wn,W )→ 0. By [14, Lemma 5.3], we may label the
graphs Gn such that ‖Wn −W‖� → 0.

By (E.22), ‖TWn−W ‖S2 = ‖Wn−W‖L2 = 1/2. On the other hand, arguing
as in (E.24),

‖TWn−W ‖2S2
≤ ‖TWn−W ‖

p
Sp
‖TWn−W ‖

2−p
2,2 ≤

√
2‖TWn−W ‖

p
Sp
‖Wn −W‖2−p�,2 .

Since the left-hand side is constant and the last factor tends to 0, it follows
that ‖TWn−W ‖Sp → ∞. Further, ‖Wn − W‖∞ ≤ 1. It is now an easy
consequence of the closed graph theorem that there exist bounded functions
W on [0, 1]2 such that ‖TW ‖Sp =∞, and by linearity there must exist such a
graphon. (An explicit W is given by a well-known analytic construction [30,
§III.10.3, p. 118]: let W (x, y) = f(x− y) on [0, 1]2, where f is a continuous

even function with period 1 on R such that
∑
|f̂(n)|p = ∞ for all p < 2;

such a function was constructed by Carleman [16], see also [61, V.4.9].)

Appendix F. The weak topology on W(Ω)

Consider the space W = W(Ω) of graphons on a fixed probability space
Ω. We have discussed two different metrics on this space, given by the norms
‖ ‖L1 and ‖ ‖�; these give two different topologies on W(Ω).

Another topology on W(Ω) is the weak topology σ, regarding W(Ω) as a
subset of L1(Ω2). This topology is generated by the functionals χh : W 7→∫

Ω2 hW for h ∈ L∞(Ω2), in the standard sense that it is the weakest topology
that makes all these maps continuous. Actually, since the functions inW(Ω)
are uniformly bounded, we obtain the same topology from many different
families of such functionals.

We state this also for subsets of L1(Ω) and writing χh(f) :=
∫

Ω hf for

h ∈ L∞(Ω) and f ∈ L1(Ω). Thus the weak topology on L1(Ω) (or a subset of
it) is the topology generated by χh, h ∈ L∞(Ω). Recall further that a subset
H of a topological vector space is total if the set of linear combinations of
elements of H is dense in the space.

Lemma F.1. (i) Let H be a total set in L1(Ω), and let X be a subset of
L1(Ω, µ) consisting of uniformly bounded functions: supf∈X ‖f‖∞ < ∞.
Then the functionals {χh : h ∈ H} generate the weak topology on X .
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(ii) Let H be a total set in L1(Ω2). Then the functionals {χh : h ∈ H}
generate the weak topology on W(Ω).

Proof. (i): Let τH be the topology on X generated by {χh : h ∈ H}, and let
H′ be the set of all g ∈ L1(Ω) such that χg is continuous (X , τH)→ R. By
the definition of τH, H ⊆ H′; further, H′ and H generate the same topology,
i.e., τH = τH′ .
H′ is clearly a linear subspace of L1(Ω), and since we have assumed that

H is total, H′ is dense in L1(Ω). If g ∈ L1(Ω), there thus exists a sequence
gn ∈ H′ with ‖gn − g‖L1 → 0. Since the functions in X are uniformly
bounded, this means that χgn → χg uniformly on X , and thus χg too is
τH-continuous; hence g ∈ H′. Consequently, H′ = L1(Ω), and thus τH =
τH′ = τL1(Ω). Thus every total H ⊆ L1(Ω) generates the same topology.
One such H is L∞(Ω) which defines the weak topology (by definition).

(ii): This is a special case, since Ω2 is another probability space. �

In particular, the weak topology on W(Ω) is also the topology generated
by the functionals W 7→

∫
Ω2 hW , h ∈ L1(Ω2), i.e., it equals the weak∗

topology on W(Ω), regarded as a subset of L∞(Ω2).

Remark F.2. Another example of a total set in L1(Ω2) is the set of rectan-
gle indicators 1S(x)1T (y) for S, T ⊆ Ω. Thus the weak topology is also gen-
erated by the functionals W 7→

∫
S×T W . Note that the metric given by ‖ ‖�

uses the same functionals, but with an important difference: ‖Wn−W‖� → 0
if and only if

∫
S×T Wn →

∫
S×T W uniformly for all S, T ⊆ Ω, while Wn →W

in the weak topology if and only if each
∫
S×T Wn →

∫
S×T W , without

any uniformity requirement. (Similarly, ‖Wn − W‖L1 → 0 if and only if∫
hWn →

∫
hW uniformly for all h with ‖h‖∞ ≤ 1.)

Lemma F.3. The weak topology is weaker than the cut norm topology. I.e.,
the identity maps (W, ‖ ‖L1)→ (W, ‖ ‖�)→ (W, σ) are continuous.

Proof. Immediate by Remark F.2. �

Theorem F.4. The topological space (W(Ω), σ) is compact.

Proof. W is a weak∗ closed subset of the unit ball of L∞(Ω2) = L1(Ω2)∗, so
this follows from the Banach–Alaoglu theorem. �

One advantage with the weak topology is thus that it is compact, in
contrast to the topologies defined by the norms ‖ ‖� and ‖ ‖L1 which are not
compact (in general, e.g. if Ω = [0, 1]), see Example F.6 below. (Recall that,

nevertheless, the quotient space (Ŵ, δ�) is compact, and that this is a very
important property.)

However, a serious drawback with the weak topology is that the quotient

map W(Ω)→ Ŵ is not continuous in the weak topology. Equivalently, the
homomorphism densities t(F,W ) defined in Appendix C are not continu-
ous in the weak topology (for every fixed F ). More precisely, for example



GRAPHONS, CUT NORM AND DISTANCE 67

W 7→ t(K3,W ) is not continuous in the weak topology on W([0, 1]), see
Example F.6.

Remark F.5. There are graphs F such that W 7→ t(F,W ) is weakly con-
tinuous (i.e., continuous for σ), for example K2 since t(K2,W ) =

∫
Ω2 W . We

show in Lemma F.7 below that K2 is essentially the only such exceptional
case.

Example F.6. Take Ω = [0, 1]. Let gn(x) = sgn(sin(2πnx)) and Wn(x, y) =
1
2 −

1
2gn(x)gn(y). Then gn(x) ∈ {±1} and Wn is {0, 1}-valued; in fact, Wn

equals WV
Kn,n

for a complete bipartite graph Kn,n. (A less combinatorial

alternative is to take gn(x) = sin(2πnx).)
We have gn = gϕn

1 and Wn = Wϕn
1 , where ϕn(x) = nx mod 1 as in

Example 8.2. Consequently, Wn
∼= W1, and thus Wn = W1 in the quotient

space Ŵ, i.e. δ�(Wn,W1) = 0; in particular, Wn →W1 in (Ŵ, δ�).
On the other hand, for any h ∈ L1([0, 1]2),

∫
[0,1]2 h(x, y)gn(x)gn(y) → 0,

and thus Wn → 1
2 in (W([0, 1]), σ).

If the quotient map W([0, 1])→ Ŵ were continuous for σ, then Wn → 1
2

in Ŵ, and since we already know Wn → W1 in Ŵ, we would have W1 = 1
2

in Ŵ, i.e., W1
∼= 1

2 , which contradicts e.g. Corollary 8.12. Consequently, the

quotient map is not continuous (W([0, 1]), σ)→ (Ŵ, δ�).
This also shows that (W([0, 1]), ‖ ‖�) and, a fortiori, (W([0, 1]), ‖ ‖L1) are

not compact. Indeed, if one of these spaces were compact, then Wn would
have a convergent subsequence in it, and thus in (W, ‖ ‖�), with a limit

W say. Since both maps (W, ‖ ‖�) → (W, σ) and (W, ‖ ‖�) → (Ŵ, δ�)
are continuous, the subsequence would converge to W in both (W, σ) and

(Ŵ, δ�) too; hence both W = 1
2 a.e. and W ∼= W1, so again W1

∼= 1
2 , a

contradiction.
Furthermore, with W = 1

2 , so Wn → W weakly, t(K3,Wn) = 0, while

t(K3,W ) = 1
8 > 0; hence, t(K3,W ) is not weakly continuous.

Lemma F.7. The map W 7→ t(F,W ) is weakly continuous (for Ω = [0, 1],
say) if and only if F is a disjoint union of isolated vertices and edges.

Proof. Let F have m vertices and e edges. If every component of F is a
vertex or an edge, then t(F,W ) =

(∫
Ω2 W

)e
, which is weakly continuous.

Conversely, suppose that F is a graph such that W 7→ t(F,W ) is weakly
continuous. Let α ∈ (0, 1/2) be rational and let Wn := WV

Gn
, where Gn is

the complete bipartite graph Kαn,n−αn (for n such that αn is an integer).
Taking the vertices of Gn in suitable (e.g. random) order, we have Wn →W
weakly, where W = 2α(1− α) is a constant graphon. Thus, by assumption,
t(F,Wn)→ t(F,W ).

If F is not bipartite, then t(F,Wn) = t(F,Gn) = 0, while t(F,W ) > 0, a
contradiction.

If F is bipartite, suppose first that F is connected, so e ≥ m − 1 edges.
Then F has a bipartition where the smallest part has k ≤ m/2 vertices, and
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thus
t(F,Wn) = t(F,Gn) ≥ αk(1− α)m−k ≥ 2−mαm/2, (F.1)

while
t(F,W ) =

(
2α(1− α)

)e ≤ 2eαm−1. (F.2)

If m ≥ 3, then m/2 < m − 1, and thus we can choose α so small that
t(F,Wn) > 2t(F,W ) for all n, a contradiction. Hence m ≤ 2.

If F is bipartite and disconnected, we use the same argument for every
component of F , noting that t(F,Wn) = t(F,W ) if F has at most two
vertices. It follows that no component of F can have more than two vertices.

�

See Chatterjee and Varadhan [17] for a recent application of the weak
topology on W.

Appendix G. Separability in Lebesgue spaces

In many cases, the Banach space L1(Ω,F , µ) is separable. For example,
this is the case if Ω = [0, 1] with any Borel measure µ. (One example of a
countable dense set is the set of polynomials with rational coefficients; this
is dense e.g. by the monotone class theorem [37, Theorem A.1].) Hence,
by Theorem A.4, L1(Ω,F , µ) is separable for every Borel probability space
(Ω,F , µ). This includes almost all examples used in graph limit theory.

However, there are cases when L1(Ω,F , µ) is non-separable. For exam-
ple, this is the case when (Ω, µ) is an uncountable product ([0, 1], ν)R or
({0, 1}, ν)R, with ν the uniform distribution, say. (Any uncountable prod-
uct of non-trivial spaces will do.) In this case there are some technical
difficulties and we sometimes have to be more careful.

Recall that the elements f of L1(Ω,F , µ) formally are equivalence classes
of functions, so to define pointwise values f(x) we have to make a choice of
representative of f . This is usually harmless, but it may be a serious problem
if we want to define f(x) for many f simultaneously, in particular if we want
to define a measurable evaluation map (f, x) 7→ f(x) on L1(Ω, µ)×Ω→ R.

The following lemma shows that this is possible when L1(Ω, µ) is separa-
ble, and more generally on A×Ω when A ⊆ L1(Ω, µ) is a separable subspace.
Note, however, that there is no such measurable evaluation map in general,
without separability assumption, see Example G.2 below. This justifies stat-
ing and proving the lemma carefully, although it may look obvious.

Lemma G.1. If A is a closed separable subspace of L1(Ω,F , µ), then there
is a measurable function Φ : A×Ω→ R such that for every f ∈ A, Φ(f, x) =
f(x) for a.e. x ∈ Ω.

Proof. There exists a countable dense set D ⊂ A. Each element of D is an
element of L1(Ω,F , µ), i.e., an equivalence class of measurable functions on
Ω; we fix one representative for each element of D and regard the elements
of D as these fixed functions. Write D = {d1, d2, . . . } with some arbitrary
ordering of the elements.
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Since D is dense in A, we may recursively define maps Hi : A→ D such
that ∥∥∥f − k∑

i=1

Hi(f)
∥∥∥
L1
≤ 2−k, k ≥ 1, (G.1)

by defining Hk(f) as the first element of D that satisfies (G.1). Then each
Hi : A → D is measurable. Further, (G.1) implies ‖Hi(f)‖L1 ≤ 3 · 2−i
for i ≥ 2, so

∫
Ω

∑∞
i=1 |Hi(f)|dµ =

∑∞
i=1 ‖Hi(f)‖L1 < ∞ for every f ∈

A, which implies that
∑∞

i=1Hi(f)(x) converges absolutely a.e. Moreover,
(G.1) implies by dominated convergence ‖f −

∑∞
i=1Hi(f)(x)‖L1 = 0, so∑∞

i=1Hi(f)(x) = f a.e. We now define

Φ(f, x) :=

{∑∞
i=1Hi(f)(x), if the sum converges;

0 otherwise.

Each map (f, x) 7→ Hi(f)(x) is measurable, and thus Φ is measurable. �

Example G.2. Let Ω0 be the two-point set {0, 1}, with uniform measure
µ0{0} = µ0{1} = 1/2, and let (Ω, µ) be the uncountable product (Ω0, µ0)R.
Any measurable function Φ : L1(Ω, µ)× Ω→ R depends only on countably
many coordinates in L1(Ω, µ)×Ω = L1(Ω, µ)×ΩR

0 , i.e., there is a countable
set C ⊂ R such that if x = (xr)r∈R and y = (yr)r∈R are elements of Ω = ΩR

0

with xr = yr for r /∈ C, then

Φ(f, x) = Φ(f, y) for all f ∈ L1(Ω, µ). (G.2)

Fix s /∈ C and define σ : Ω → Ω by σ : (xr)r 7→ (x′r)r with x′r = xr
for r 6= s and x′s = 1 − xs; note that σ is measure-preserving. By (G.2),
Φ(f, σ(x)) = Φ(f, x) for every f and x ∈ Ω. If Φ(f, x) = f(x) for a.e. x,
then thus f(x) = f(σ(x)) for a.e. x, which obviously is incorrect for the
coordinate function f(x) = xs.

Consequently, there exists no measurable evaluation map Φ : L1(Ω, µ) ×
Ω→ R such that Φ(f, x) = f(x) for every f and a.e. x.

In fact, it can be shown (again using the monotone class theorem) that
if A is any measurable space and Φ : A × Ω → R is measurable and such
that x 7→ Φ(α, x) ∈ L1(Ω,F , µ) for every α ∈ A, then these function all lie
in some separable subspace of L1(Ω,F , µ). This shows that the condition
in Lemma G.1 that A be separable is both necessary and sufficient for the
conclusion of the lemma.
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