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Abstract

In this paper we prove asymptotic normality of the total length of
external branches in Kingman’s coalescent. The proof uses an embedded
Markov chain, which can be described as follows: Take an urn with n black

balls. Empty it in n steps according to the rule: In each step remove a
randomly chosen pair of balls and replace it by one red ball. Finally
remove the last remaining ball. Then the numbers Uk, 0 ≤ k ≤ n, of
red balls after k steps exhibit an unexpected property: (U0, . . . , Un) and
(Un, . . . , U0) are equal in distribution.
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1 Introduction and results

Our main result in this paper is that the total length Ln of all external branches
in Kingman’s coalescent with n external branches is asymptotically normal for
n → ∞.

Kingman’s coalescent (1982) consists of two components. First there are the
coalescent times T1 > T2 > · · · > Tn = 0. They are such that

(

k

2

)

(Tk−1 − Tk) , k = 2, . . . , n

are independent, exponential random variables with expectation 1. Second
there are partitions π1 =

{

{1, . . . , n}
}

, π2, . . . , πn =
{

{1}, . . . , {n}
}

of the set
{1, . . . , n}, where the set πk containes k disjoint subsets of {1, . . . , n} and πk−1

evolves from πk by merging two randomly chosen elements of πk. Moreover,
(Tn, . . . , T1) and (πn, . . . , π1) are independent. For convenience we put π0 := ∅.
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As is customary the coalescent can be represented by a tree with n leaves
labelled from 1 to n. Each of these leaves corresponds to an external branch of
the tree. The other node of the branch with label i is located at level

ρ(i) := max{k ≥ 1 : {i} 6∈ πk}
within the coalescent. The length of this branch is Tρ(i), The total external
length of the coalescent is given by

Ln :=
n
∑

i=1

Tρ(i) .

This quantity is of a certain statistical interest. Coalescent trees have been
introduced by Kingman as a model for the genealogic relationship of n individ-
uals, down to their most recent common ancestor. Mutations can be located
everywhere on the branches. Then mutations on external branches affect only
single individuals. This fact was used by Fu and Li (1993) in designing their
D-statistic and providing a test whether or not data fit to Kingman’s coalescent.

Else the total external length has been studied by Möhle (2010) for a kind
of coalescent, which differs substantially from Kingman’s coalescent. Otherwise
single external branches have mainly been investigated in the literature. The
asymptotic distribution of Tρ(i) has been obtained by Caliebe et al (2007), using
a representation of its Laplace transform due to Blum and François (2005). We
address this issue in Section 6 below. Freund and Möhle (2009) studied the
external branch length of the Bolthausen-Snitman coalescent, and Gnedin et al
(2008) the Λ-coalescent.

Here is our main result.

Theorem 1. As n → ∞,

1

2

√

n

logn

(

Ln − 2
) d→ N(0, 1) .

The proof will show that the limiting normal distribution originates from
the random partitions and not from the exponential waiting times.

A second glance on this result reveals a peculiarity: The normalization of
Ln is carried out using its expectation, but only half of its variance. These two
terms have been determined by Fu and Li (1993) (with a correction given by
Durrett (2002)). They obtained

E(Ln) = 2 , Var(Ln) =
8nhn − 16n+ 8

(n− 1)(n− 2)
∼ 8 logn

n

with hn := 1+ 1
2 + · · ·+ 1

n , the n-th harmonic number. Below we derive a more
general result.

To uncover this peculiarity we shall study the external lengths in more detail.
First we look at the point processes ηn on (0,∞), given by ηn =

∑n
i=1 δ

√
nTρ(i)

,
i.e.

ηn(B) := #{i : √nTρ(i) ∈ B} (1)

for Borel sets B ⊆ (0,∞).
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Theorem 2. As n → ∞ the point process ηn converges in distribution, as

point processes on (0,∞], to a Poisson point process η on (0,∞) with intensity

measure λ(dx) = 8x−3 dx.

We use (0,∞] in the statement of Theorem 2 instead of (0,∞) since it is

stronger, including for example ηn(a,∞)
d→ η(a,∞) for every a > 0. The

significance is that, as n → ∞, there will be points clustering at 0 but not at
∞. (Below in the proof we recall the definition of convergence in distribution
of point processes.)

Theorem 2 permits a first orientation. Since
√
nLn =

∫

x ηn(dx), one is
tempted to resort to infinitely divisible distributions. However, the intensity
measure λ(dx) is slightly outside the range of the Lévy-Chintchin formula.
Shortly speaking this means that small points of ηn have a dominant influ-
ence on the distribution of Ln and we are within the domain of the normal
distribution.

Thus let us look in more detail on the external lengths and focus on

Lα,β
n :=

∑

nα≤ρ(i)<nβ

Tρ(i) , 0 ≤ α < β ≤ 1 ,

which is the total length of those external branches having their internal nodes
between level ⌈nα⌉ and ⌈nβ⌉ within the coalescent. Obviously Ln = L0,1

n .

Proposition 3. For 0 ≤ α < β ≤ 1

E(Lα,β
n ) =

2

n(n− 1)

(

⌈nβ⌉ − ⌈nα⌉
)(

2n+ 1− ⌈nβ⌉ − ⌈nα⌉
)

and

Var(Lα,β
n ) ∼ 8(β − α)

log n

n
,

as n → ∞.

In particular E(L1−ε,1
n ) ∼ E(L0,1

n ), whereas Var(L1−ε,1
n ) ∼ εVar(L0,1

n ).
Thus the proposition indicates that the systematic part of Ln and its fluc-
tuations arise in different regions of the coalescent tree, the former close to the
leaves and the latter closer to the root.

Still this proposition gives an inadequate impression.

Theorem 4. For 0 ≤ α < β < 1/2

P(Lα,β
n = 0) → 1

as n → ∞. Moreover √
nL

0, 12
n

d→
∫ ∞

2

x η(dx)

and for 1/2 ≤ α < β ≤ 1

Lα,β
n −E(Lα,β

n )
√

Var(Lα,β
n )

d→ N(0, 1) .

In addition Lα,β
n and Lγ,δ

n are asymptotically independent for α < β ≤ γ < δ.
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This result implies Theorem 1: In Ln = L
0, 12
n + L

1
2 ,1
n the summands are of

order
√

1/n and
√

logn/n, such that in the limit the second, asymptotically
normal component dominates. To this end, however, n has to become exponen-

tially large, otherwise the few long branches, which make up L
0, 12
n , cannot be

neglected and may produce extraordinary large values of Ln. Thus the normal
approximation for the distribution of Ln seems little useful for practical pur-
poses. One expects a fat right tail compared to the normal distribution. Indeed
∫∞
2 x η(dx) has finite mean but infinite variance.

This is illustrated by the following two histograms from 10000 values of Ln,
where the length of the horizontal axis to the right indicates the range of the
values.

0
2 4

0,1

6 80

n = 50

6
0

8

0,2

2 4

n = 1000

The heavy tails to the right are clearly visible. Also very large outliers appear:
For n = 50 the simulated values of Ln range from 0.685 to 8.38, and for n = 1000
from 1.57 to 7.87.

Also it turns out that the approximation of the variance in Proposition 3 is
good only for very large n. This can be seen already from the formula of Fu and
Li. To get an exact formula for the variance we look at a somewhat different
quantity, namely

L̂α,β
n :=

n
∑

i=1

(Tρ(i) ∧ T⌊nα⌋ − Tρ(i) ∧ T⌊nβ⌋)

with 0 ≤ α < β ≤ 1, which is the portion of the external length between level
⌊nα⌋ and ⌊nβ⌋ within the coalescent.

Proposition 5. For 0 ≤ α ≤ 1 with m := ⌊nα⌋

E(L̂α,1
n ) = 2

n−m

n− 1

and

Var(L̂α,1
n ) =

8(hn−1 − hm−1)(n+ 2m− 2)

(n− 1)(n− 2)
− 4(n−m)(4n+m− 5)

(n− 1)2(n− 2)
.
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For α = 0 we recover the formula of Fu and Li. A similar expression holds for
L̂α,β
n .
Proposition 3 and Theorem 4 carry over to L̂α,β

n , up to a change in expecta-

tion and with the limit
√
nL̂

0, 12
n

d→
∫∞
2 (x− 2) η(dx). The following histogram

from a random sample of length 10000 shows that already for n = 50 the dis-

tribution of L̂
1
2 ,1
n fits well to the normal distribution when using the values for

expectation and variance, given in Proposition 5.

0
32

0,1

1

Our main tool for the proofs is a representation of Ln by means of an imbed-
ded Markov chain U0, U1, . . . , Un, which is of interest of its own. We shall in-
troduce it as an urn model. The relevant fact is that this model possesses an
unexpected hidden symmetry, namely it is reversible in time. This is our second
main result. For the proof we use another urn model, which allows reversal of
time in a simple manner.

The urn models are introduced and studied in Section 2. Proposition 3 is
proven in Section 3, Theorems 2 and 4 are derived in Section 4 and Proposition
5 in Section 5. In Section 6 we complete the paper by considering the length of
an external branch chosen at random.

2 The urn models

Take an urn with n black balls. Empty it in n steps according to the rule: In
each step remove a randomly chosen pair of balls and replace it by one red ball.
In the last step remove the last remaining ball. Let

Uk := number of red balls in the urn after k steps .

Obviously U0 = Un = 0, U1 = Un−1 = 1 and 1 ≤ Uk ≤ min(k, n − k) for
2 ≤ k ≤ n− 2. U0, . . . , Un is a Markov chain with transition probabilities

P(Uk+1 = u′ | Uk = u) =











(

u
2

)/(

n−k
2

)

, if u′ = u− 1 ,

u(n− k − u)
/(

n−k
2

)

, if u′ = u ,
(

n−k−u
2

)/(

n−k
2

)

, if u′ = u+ 1 .

We begin our study of the model by calculating expectations and covariances.

Proposition 6. For 0 ≤ k ≤ l ≤ n

E(Uk) =
k(n− k)

n− 1
, Cov(Uk, Ul) =

k(k − 1)(n− l)(n− l − 1)

(n− 1)2(n− 2)
.
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Proof. Imagine that the black balls are numbered from 1 to n. Let Zik be the
indicator variable of the event that the black ball with number i is not yet
removed after k steps. Then Uk = n− k −∑n

i=1 Zik and consequently

E(Uk) = n− k − nE(Z1k)

and for k ≤ l in view of Z1l ≤ Z1k

Cov(Uk, Ul) =
n
∑

i=1

n
∑

j=1

Cov(Zik, Zjl)

= n(n− 1)E(Z1kZ2l) + nE(Z1l)− n2E(Z1k)E(Z1l) .

Also

P(Z1k = 1) =

(

n−1
2

)

(

n
2

) · · ·
(

n−k
2

)

(

n−k+1
2

) =
(n− k)(n− k − 1)

n(n− 1)

and for k ≤ l

P(Z1k = 1, Z2l = 1) =

(

n−2
2

)

(

n
2

) · · ·
(

n−k−1
2

)

(

n−k+1
2

) ·
(

n−k−1
2

)

(

n−k
2

) · · ·
(

n−l
2

)

(

n−l+1
2

)

=
(n− k − 1)(n− k − 2)(n− l)(n− l − 1)

n(n− 1)2(n− 2)
.

Our claim now follows by careful calculation.

Note that these expressions for expectations and covariances are invariant under
the transformation k 7→ n− k, l 7→ n− l. This is not by coincidence:

Theorem 7. (U0, U1, . . . , Un) and (Un, Un−1, . . . , U0) are equal in distribution.

Proof. Leaving aside U0 = Un = 0 we have Uk ≥ 1 a.s. for the other values of
k. Instead we shall look at U ′

k = Uk − 1 for 1 ≤ k ≤ n − 1. It turns out that
for this process one can specify a different dynamics, which is more lucid and
amenable to reversing time.

Consider the following alternative box scheme: There are two boxes A and
B. At the beginning A contains n − 1 black balls whereas B is empty. The
balls are converted in 2n− 2 steps into n − 1 red balls lying in B. Namely, in
the steps number 1, 3, . . . , 2n− 3 a randomly drawn ball from A is shifted to B
and in the steps number 2, 4, . . . , 2n− 2 a randomly chosen black ball (whether
from A or B) is recolored to a red ball. These 2n− 2 operations are carried out
independently.

For 1 ≤ k ≤ n− 1 let

U ′
k := number of red balls in box A after 2k − 1 steps,

that is at the moment after the kth move and before the kth recoloring. Obvi-
ously the sequence is a Markov chain, also U ′

1 = 0.
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As to the transition probabilities note that after 2k− 1 steps there are n− k
black balls in all and n − k − 1 balls in A. Thus given U ′

k = r there are r red
and n − k − r − 1 black balls in A, and the remaining r + 1 black balls belong
to B. Then U ′

k+1 = r + 1 occurs only, if in the next step the ball recolored
from black to red belongs to A and subsequently the ball shifted from A to B
is black. Thus

P(U ′
k+1 = r + 1 | U ′

k = r) = n−k−r−1
n−k · n−k−r−2

n−k−1 =
(

n−k−r−1
2

)

/
(

n−k
2

)

.

Similarly U ′
k+1 = r − 1 occurs, if the recolored ball belongs to B and next the

ball shifted from A to B is red. The corresponding probability is

P(U ′
k+1 = r − 1 | U ′

k = r) = r+1
n−k · r

n−k−1 =
(

r+1
2

)

/
(

n−k
2

)

.

Since U1 = 1 = U ′
1 + 1 and in view of the transition probabilities of (Uk) and

(U ′
k) we see that (U1, . . . , Un−1) and (U ′

1 + 1, . . . , U ′
n−1 + 1) indeed coincide in

distribution.
Next note that U ′

n−1 = 0. Therefore U ′
k can be considered as a function not

only of the first 2k−1 but also of the last 2n−2k−1 shifting and recoloring steps.
Since the steps are independent, the process backwards is equally easy to handle.
Taking into account that backwards the order of moving and recoloring balls is
interchanged, one may just repeat the calculations above to obtain reversibility.

But this repetition can be avoided as well. Let us put our model more
formally: Label the balls from 1 to n− 1 and write the state space as

S :=
{(

(L1, c1), . . . , (Ln−1, cn−1)
)

| Li ∈ {A,B}, ci ∈ {b, r}
}

,

where Li is the location of ball i and ci its color. Then in our model the first
and second coordinate are changed in turn from A to B and from b to r. This
is done completely at random, starting within the first coordinates. Clearly we
may interchange the role of the first and second coordinate. Thus our box model
is equivalent to the following version:

Again initially A contains n− 1 black balls whereas B is empty. Now in the
steps number 1, 3, . . . , 2n− 3 a randomly chosen black ball is recolored to a red
ball and in the steps number 2, 4, . . . , 2n− 2 a randomly drawn ball from A is
shifted to B. Again these 2n−2 operations are carried out independently. Here
we consider

U ′′
k := number of black balls in box B after 2k − 1 steps.

Then from the observed symmetry it is clear that (U ′
1, . . . , U

′
n−1) and

(U ′′
1 , . . . , U

′′
n−1) are equal in distribution.

If we finally interchange both colors and boxes as well, then we arrive at the
dynamics of the backward process. This finishes the proof.

There is a variant of our proof, which makes the reversibility of (U ′
k) manifest

in a different manner. Let again the balls be labelled from 1 to n− 1. Denote

νm := instance between 1 and n− 1, when ball m is colored to red,

σm := instance between 1 and n− 1, when ball m is shifted to box B.
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Then from our construction it is clear that ν = (νm) and σ = (σm) are two
independent random permutations of the numbers {1, . . . , n− 1}. Moreover, at
instance k (i.e. after 2k−1 steps) ball number m is red and belongs to box A, if
it was colored before and shifted afterwards, i.e. νm < k < σm. Thus we obtain
the formula

U ′
k = #{1 ≤ m ≤ n− 1 : νm < k < σm} (2)

and we may conclude the following result.

Corollary 8. Let ν and σ be two independent random permutations of

{1, . . . , n− 1}. Then (U1, . . . , Un−1) is equal in distribution to the process

(

#{1 ≤ m ≤ n− 1 : νm < k < σm}+ 1
)

1≤k≤n−1
.

Certainly this representation implies Theorem 7 again. Also it contains
additional information. For example, it is immediate that Uk − 1 has a hyper-
geometric distribution with parameters n− 1, k − 1, n− k − 1.

The next example contains a first application of Theorem 7 to our original
urn model.

Example. Let us consider τn = max{k ≥ 1 : Un−k = k}, the number of red
balls in the urn, after the last black ball has been removed. From reversibility
τn has the same distribution as the moment τ ′n = max{k ≥ 1 : Uk = k}, before
the first red ball is taken away from the urn. Thus

P(τn ≥ k) =

(

n−2
2

)

(

n−1
2

)

(

n−4
2

)

(

n−2
2

) · · ·
(

n−2k+2
2

)

(

n−k+1
2

) =
(n− k) · · · (n− 2k + 1)

(n− 1) · · · (n− k)
.

It follows for t ≥ 0

P
( τn√

n
≥ t

)

→ exp(−t2) ,

as n → ∞.

More generally the dynamics of our urn looks as follows: Clearly, if n is
large, then in the beginning always two black balls are removed from the urn.
The rare moments, when red balls are taken away, appear with increasing rate.
Indeed it is not difficult to see that in the limit n → ∞ and after a

√
n-scaling

of time these instances build up a Poisson process with linearly increasing rate.
As we have seen the picture remains the same after reversal of time. This will
be made more precise in Section 4.

We conclude this section by imbedding our urn model into the coalescent. Let

Vk := k −#{i : ρ(i) < k} , (3)

and Uk := Vn−k, 0 ≤ k ≤ n. Thus Vk is the number of internal branches among
the k branches after the (n − k)-th coalescing event and Uk is the number of
internal branches among the n−k branches after the k-th coalescing event. The
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coalescing mechanism takes two random branches and combines them into one
internal branch. If we code the external branches by black balls and the internal
branches by red, this completely conforms to our urn model; thus (U0, . . . , Un) is
as above. By Theorem 7, (V0, . . . , Vn) has the same distribution as (U0, . . . , Un).
In the next sections we make use of the Markov chain V0, . . . , Vn and its prop-
erties.

Remark. For a different interpretation of the process (Uk), suppose that we
have n − 1 pairs of (different) shoes, and that all left shoes are mixed in one
pile and all right shoes in another. We sort the shoes by taking first a left shoe
(at random), then a right shoe (also at random), then another left shoe, and so
on. As soon as we take a shoe that matches one that we already have picked,
we put away the pair; otherwise we put the shoe on the table in front of us.
If the pairs are numbered and νm is the time right shoe m is picked, and σm

the time left shoe m is picked, then right shoe m is on the table when the k-th
left shoe has been picked if and only if νm < k < σm, so by (2), the number
of right shoes remaining on the table when the k-th left shoe has been picked
is U ′

k, 1 ≤ k ≤ n − 1. The number of left shoes remaining on the table at the
same time is U ′

k + 1 = Uk, so the total number of shoes on the table is 2Uk − 1.
This is a variation of the sock-sorting process studied in Steinsaltz (1999)

and Janson (2009), Section 8, which is similar except that there is no difference
between left and right; we obtain it if we mix all shoes in one pile and pick from
it at random. (See Janson (2009) for other interpretations, including priority

queues, and further references.) It is not surprising that we have the same
asymptotical behaviour of Uk and maxk Uk as for the sock-sorting problem. In
particular, we mention the following Gaussian process limit result, cf. Theorem
8.2 in Janson (2009). (This result is not used in the sequel.)

Theorem 9. As n → ∞, the stochastic process n−1/2
(

U⌊nt⌋ − nt(1 − t)
)

con-

verges in D[0, 1] to a continuous Gaussian process Z(t) with mean E(Z(t)) = 0
and covariance function

E
(

Z(s)Z(t)
)

= s2(1− t)2, 0 ≤ s ≤ t ≤ 1.

Sketch of proof. Note first that E(U⌊nt⌋) = nt(1− t) +O(1) by Proposition 6.
It is easily seen that

E(Uk+1 | Uk) = Uk −
2

n− k
Uk + 1 =

n− k − 2

n− k
Uk + 1

and it follows that

Mk :=
Uk −E(Uk)

(n− k)(n− k − 1)
=

Uk

(n− k)(n− k − 1)
− k

(n− 1)(n− k − 1)
,

k = 0, 1, . . . , n− 2, is a martingale.
Consider in the sequel only k ≤ (1 − δ)n for some fixed δ > 0. Then

Var(Mk) ≤ (n − k − 1)−4Var(Uk) = O(n−3), and it follows from Doob’s in-
equality that

max
k

|Uk −E(Uk)| = OP (n
1/2).
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(Using Theorem 7 we see that this extends to 0 ≤ k ≤ n.) A straight-
forward computation of the conditional quadratic variation 〈M,M〉m :=
∑

k<m E
(

(Mk+1 −Mk)
2 | Uk) shows that, uniformly in 0 ≤ t ≤ 1− δ,

n3〈M,M〉⌊nt⌋
p→ t2

(1− t)2
,

which implies, see Theorem VIII.3.11 in Jacod and Shiryaev (1987), that

n3/2M⌊nt⌋
d→ Ẑ(t) in D[0, 1 − δ], where Ẑ(t) is a Gaussian martingale given

by Ẑ(t) = W (t2/(1 − t)2) for a standard Brownian motion W (t). The result
follows, for t ∈ [0, 1− δ], with Z(t) = (1− t)2Ẑ(t).

Since δ > 0 is arbitrary, this yields convergence in D[0, 1). By time-reversal
and Theorem 7, we also have convergence in D(0, 1], and together these imply
convergence in D[0, 1], see e.g. the proof in Janson (2009).

3 Proof of Proposition 3

We use the representation

Lα,β
n =

∑

nα≤k<nβ

TkXk ,

where
Xk := #{i : ρ(i) = k} ,

1 ≤ k < n. In view of the coalescing procedure Xk takes only the values 0, 1, 2,
and from the definition (3) of Vk

Xk = 1 + Vk − Vk+1 . (4)

From (4), Vk = Un−k and Proposition 6 we obtain after simple calculations

E(Xk) =
2k

n− 1
, Var(Xk) =

2k(n− k − 1)(n− 3)

(n− 1)2(n− 2)
(5)

and for k < l

Cov(Xk, Xl) = − 4k(n− l − 1)

(n− 1)2(n− 2)
. (6)

Also from Tk =
∑n

j=k+1(Tj−1 − Tj) we have E(Tk) = 2
∑n

j=k+1
1

(j−1)j and

Var(Tk) = 4
∑n

j=k+1
1

(j−1)2j2 ; thus

E(Tk) = 2
(1

k
− 1

n

)

, Var(Tk) ≤
c

k3
(7)

for a suitable c > 0, independent of n.
Thus from independence

E(Lα,β
n ) =

∑

nα≤k<nβ

2
(1

k
− 1

n

) 2k

n− 1
.
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Now the first claim follows by simple computation.
Further from independence

Var
(

∑

nα≤k<nβ

(Tk −E(Tk))Xk

)

=
∑

nα≤k,l<nβ

Cov(Tk, Tl)E(XkXl) . (8)

Using (5)–(7) we have for k < l,

Cov(Tk, Tl)E(XkXl) = Var(Tl)E(XkXl) ≤ Var(Tl)E(Xk)E(Xl) ≤
c

l3
· 4kl

(n− 1)2
,

and it follows that

0 ≤
∑

nα≤k<l<nβ

Cov(Tk, Tl)E(XkXl) ≤
∑

nα≤k<l<nβ

4ck

l2
(n− 1)−2

≤
∑

nα≤k<nβ

4c(n− 1)−2 = O(n−1) .

Consequently, (8) yields, using again (5)–(7),

Var
(

∑

nα≤k<nβ

(Tk −E(Tk))Xk

)

=
∑

nα≤k<nβ

Var(Tk)E(X2
k) +O(n−1)

≤ c
∑

nα≤k<nβ

1

k3

( 2k

n− 1
+

4k2

(n− 1)2

)

+O(n−1)

≤ 6c

n− 1

∑

nα≤k<nβ

1

k2
+O(n−1) = O(n−1) . (9)

It remains to show that

Var
(

∑

nα≤k<nβ

E(Tk)Xk

)

∼ 8(β − α)
log n

n
.

Now
∣

∣

∣

∑

nα≤k<l<nβ

E(Tk)E(Tl)Cov(Xk, Xl)
∣

∣

∣

≤
∑

nα≤k<l<nβ

2

k
· 2
l
· 4k

(n− 1)2
= 16

∑

nα<l<nβ

l − ⌈nα⌉
l(n− 1)2

= O(n−1)

and consequently

Var
(

∑

nα≤k<nβ

E(Tk)Xk

)

=
∑

nα≤k<nβ

E(Tk)
2Var(Xk) +O(n−1)

=
∑

nα≤k<nβ

4

k2
· 2k
n

(

1 +O
( k

n

))

+O(n−1) = 8(β − α)
log n

n
+O(n−1) .

This gives our claim.
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4 Proof of Theorems 2 and 4

In this section we use Theorem 7. Namely, V0, . . . , Vn is a Markov chain with
transition probabilities, which can be expressed by means of X1, . . . , Xn−1 as
follows:

P(Xk = x | Vk = v) =











(

n−k−v
2

)

/
(

n−k
2

)

, if x = 0 ,

v(n− k − v)/
(

n−k
2

)

, if x = 1 ,
(

v
2

)

/
(

n−k
2

)

, if x = 2 .

We like to couple these random variables with suitable independent random
variables taking values 0 or 1. Note that Vk takes only values v ≤ k, thus for
k ≤ n/3

(

n− k − v

2

)

/

(

n− k

2

)

≥
(

n− 2k

2

)

/

(

n− k

2

)

≥ n− 3k

n− k
.

Therefore we may enlarge our model by means of random variables Yk, k ≤ n/3,
such that

P(Xk = x, Yk = y | Vk = v, Vk−1, . . . , V0, Yk−1, . . . , Y1)

=



















n−3k
n−k , if x = 0, y = 0 ,
(

n−k−v
2

)

/
(

n−k
2

)

− n−3k
n−k , if x = 0, y = 1 ,

v(n− k − v)/
(

n−k
2

)

, if x = 1, y = 1 ,
(

v
2

)

/
(

n−k
2

)

, if x = 2, y = 1 .

For P(Xk = x | Vk = v) this gives the above formula, whereas

P(Yk = y | Vk = v, Vk−1, . . . , V0, Yk−1, . . . , Y1) =

{

n−3k
n−k , if y = 0 ,
2k

n−k , if y = 1 .

This means that the 0/1-valued random variables Yk, k ≤ n/3, are independent.
For convenience we put Yk = 0 for k > n/3. A straightforward computation
gives

E(Yk −Xk | Vk = v) =
2(k − v)

n− k
, (10)

E((Yk −Xk)
2 | Vk = v) =

2(k − v)

n− k
+

2v(v − 1)

(n− k)(n− k − 1)

≤ 2(k − v)

n− k
+

2k(k − 1)

(n− k)(n− k − 1)
(11)

for k ≤ n/3. Since k −E(Vk) = k(k − 1)/(n− 1) from Proposition 6, it follows

E((Yk −Xk)
2) ≤ 4k(k − 1)

(n− k)(n− k − 1)
. (12)

12



Proof of Theorem 2. Recall that, by (1) and (4),

ηn =
n
∑

i=1

δ√nTρ(i)
=

n−1
∑

k=1

Xkδ√nTk
. (13)

Recall also that ηn
d→ η as point processes on the interval (0,∞] means

that
∫

f dηn
d→

∫

f dη for every continuous f with compact support in (0,∞],

or equivalently ηn(B)
d→ η(B) for every relatively compact Borel subset B of

(0,∞] such that η(∂B) = 0 a.s. (Here B is relatively compact, if B ⊆ [δ,∞] for
some δ > 0.) See, for example, the Appendix in Janson and Spencer (2007) and
Chapter 16 (in particular Theorem 16.16) in Kallenberg (2002).

Let us first look at the point process

η′n :=
n−1
∑

k=1

Ykδ2√n/k . (14)

For 0 < a < b ≤ ∞
η′n([a, b)) =

∑

2
√

n
b <k≤ 2

√

n
a

Yk

and

E
(

η′n([a, b))
)

=
∑

2
√

n
b <k≤ 2

√

n
a

2k

n− k
→ 4(a−2 − b−2) = 8

∫ b

a

dx

x3
,

thus we obtain from standard results on sums of independent 0/1-valued ran-
dom variables that η′n([a, b)) has asymptotically a Poisson distribution. Also
η′n(B1), . . . , η

′
n(Bi) are independent for disjoint B1, . . . , Bi. Therefore we ob-

tain from standard results on point processes (for example Kallenberg (2002),
Proposition 16.17) weak convergence of η′n to the Poisson point process η on
(0,∞] with intensity 8x−3 dx.

Next we prove that for all 0 < a < b ≤ ∞

ηn([a, b))− η′n([a, b)) → 0

in probability. To this end note that from (12)

E
[

∑

k≤ 2
√

n
a

(Yk −Xk)
2
]

= O(n−1/2) ,

which implies that P(Xk = Yk for all k ≤ 2
√
n

a ) → 1. Therefore we may well
replace Yk by Xk in η′n([a, b)).

Also, by (7),
√
nTk − 2

√
n/k =

√
nTk − √

nE(Tk) − 2/
√
n. From (7) and

Doob’s inequality for any ε > 0

P
(

max
k≥n2/5

√
n|Tk −E(Tk)| ≥ ε

)

≤ n

ε2
Var(T⌈n2/5⌉) = O(n−1/5) .

13



Since P(Yk = 0 for all k < n2/5) → 1, we may as well also replace 2
√
n/k

by
√
nTk in η′n, which yields ηn by (13) and (14) (use for example Kallenberg

(2002), Theorem 16.16). Thus the proof of Theorem 2 is complete.

Proof of Theorem 4. As to the first claim of Theorem 4 observe that the events
{L0,β

n = 0} = {Xk = 0 for all k < nβ} and {V⌈nβ⌉ = ⌈nβ⌉} are equal. Thus

P(Lα,β
n > 0) ≤ P(L0,β

n > 0) = P(⌈nβ⌉ − V⌈nβ⌉ ≥ 1)

≤ E(⌈nβ⌉ − V⌈nβ⌉) =
⌈nβ⌉(⌈nβ⌉ − 1)

n− 1
.

For β < 1/2 this quantity converges to zero, which gives the first claim of the
theorem.

For the next claim we use that because of (7)
√
nT⌈n1/2⌉ has expectation

2+O(n−1/2) and variance of order n−1/2. ThusP(2−ε <
√
nT⌈n1/2⌉ < 2+ε) → 1

for all ε > 0. This implies that the probability of the event

∫

[2+ε,∞)

x ηn(dx) =
√
n

n
∑

k=1

TkXkI{√nTk≥2+ε}

≤ √
n

∑

k<
√
n

TkXk =
√
nL

0, 12
n

≤ √
n

n
∑

k=1

TkXkI{√nTk≥2−ε} =

∫

[2−ε,∞)

x ηn(dx)

goes to 1. Also for a > 0 from Theorem 2
∫∞
a

x ηn(dx) →
∫∞
a

x η(dx) in
distribution. Altogether we obtain, letting ǫ → 0,

√
nL

0, 12
n →

∫ ∞

2

x η(dx) ,

which is our second claim.
As to the last claim of Theorem 4 we note that from (9)

Lα,β
n =

∑

nα≤k<nβ

E(Tk)Xk +OP (n
−1/2) (15)

in probability, and also in L1. In this representation we like to replace Xk by
Yk. We assume first β < 1. Note that for β < 1 in view of (7) and (12)

Var
(

∑

nα≤k<nβ

E(Tk)(Yk −Xk −E(Yk −Xk | Vk))
)

≤
∑

nα≤k<nβ

4

k2
E((Yk −Xk)

2) = O(nβ−2)

14



and from (10), (7) and Proposition 6

Var
(

∑

nα≤k<nβ

E(Tk)E(Yk −Xk | Vk)
)

= Var
(

∑

nα≤k<nβ

E(Tk)
2Vk

n− k

)

≤ 2
∑

nα≤k≤l<nβ

4
E(Tk)E(Tl)

(n− k)(n− l)
Cov(Vk, Vl)

≤ 32
∑

nα≤k≤l<nβ

k

l
· (n− l)

(n− k)(n− 1)2(n− 2)
= O(n2β−3) .

Thus
∑

nα≤k<nβ E(Tk)
(

Yk −Xk)−E(Yk −Xk)
)

= OP (n
−1/2) and (15) yields

Lα,β
n −E(Lα,β

n ) =
∑

nα≤k<nβ

E(Tk)(Yk −E(Yk)) +OP (n
−1/2) .

AlsoVar( 1n
∑

nα≤k<nβ Yk) ≤ n−2
∑

nα≤k<nβ 2k/(n−k) = O(n−1), and because
of (7) we end up with

Lα,β
n −E(Lα,β

n ) = 2
∑

nα≤k<nβ

Yk −E(Yk)

k
+OP (n

−1/2) . (16)

This is a representation of the external length by a sum of independent random
variables.

Now Var(Yk) =
2k

n−k − 4k2

(n−k)2 , thus for β < 1

Var
(

2
∑

nα≤k<nβ

Yk −E(Yk)

k

)

= 4
∑

nα≤k<nβ

( 2

k(n− k)
− 4

(n− k)2

)

∼ 8(β − α)
log n

n
.

Moreover for δ > 0 we have E(|Yk − E(Yk)|2+δ) ≤ 2k
n−k + ( 2k

n−k )
2+δ ≤ 4k

n−k for
k ≤ n/3, thus

∑

nα≤k<nβ

1

k2+δ
E(|Yk −E(Yk)|2+δ) ≤ 4

∑

nα≤k<nβ

1

k1+δ(n− k)
≤ 8

δn

1

(nα − 1)δ
.

Thus for α ≥ 1/2 we get

∑

nα≤k<nβ

1

k2+δ
E(|Yk −E(Yk)|2+δ) = o

( (logn)1+δ/2

n1+δ/2

)

,

and we may use Lyapunov’s criterion for the central limit theorem. Conse-
quently, (16) implies

Lα,β
n −E(Lα,β

n )
√

8(β − α) logn/n

d→ N(0, 1).

This finishes the proof in the case β < 1, using Proposition 3.
The case β = 1 then follows from Lα,1

n = Lα,1−ε
n +L1−ε,1

n using Proposition 3.
The last claim on asymptotic independence follows from (16), too.
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5 Proof of Proposition 5

Let 0 ≤ α ≤ 1 and m = ⌊nα⌋. Since k − Vk = #{i : ρ(i) < k} is the number of
external branches, which are found between level k − 1 and k,

L̂α,1
n =

∑

m<k≤n

(Tk−1 − Tk)(k − Vk) .

From independence

E(L̂α,1
n ) =

∑

m<k≤n

2

k(k − 1)
· k(k − 1)

n− 1
.

This gives the first claim. Next, letting

En := E(Lα,1
n | V0, . . . , Vn) =

∑

m<k≤n

k − Vk
(

k
2

) ,

we have
Var(Lα,1

n ) = Var(Lα,1
n − En) +Var(En) .

Now, using Proposition 6,

Var(Lα,1
n − En) =

∑

m<k≤n

E
((

Tk−1 − Tk −
1
(

k
2

)

)2)

E((k − Vk)
2)

=
∑

m<k≤n

1
(

k
2

)2

(k2(k − 1)2

(n− 1)2
+

k(k − 1)(n− k)(n− k − 1)

(n− 1)2(n− 2)

)

= 4
n−m

(n− 1)2
+ 4

∑

m<k≤n

(n− k)(n− k − 1)

k(k − 1)(n− 1)2(n− 2)

and

Var(En) =
∑

m<k,l≤n

1
(

k
2

)(

l
2

)Cov(Vk, Vl)

= 4
∑

m<k≤n

(n− k)(n− k − 1)

k(k − 1)(n− 1)2(n− 2)
+ 8

∑

m<k<l≤n

(n− l)(n− l − 1)

l(l− 1)(n− 1)2(n− 2)

= 4
∑

m<k≤n

(n− k)(n− k − 1)

k(k − 1)(n− 1)2(n− 2)
+ 8

∑

m<l≤n

(l −m− 1)(n− l)(n− l − 1)

l(l− 1)(n− 1)2(n− 2)
.

Thus

Var(Lα,1
n ) = 4

n−m

(n− 1)2
+ 8

∑

m<k≤n

(k −m)(n− k)(n− k − 1)

k(k − 1)(n− 1)2(n− 2)
.
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Now

(k −m)(n− k)(n− k − 1)

=
(

k − 1− (m− 1)
)(

k(k − 1)− 2(n− 1)k + n(n− 1)
)

= k(k − 1)2 − (2n+m− 3)k(k − 1)

+ (n+ 2m− 2)(n− 1)k −mn(n− 1),

thus

1
2 (n−m)(n− 2) +

∑

m<k≤n

(k −m)(n− k)(n− k − 1)

k(k − 1)

= 1
2 (n−m)(n− 2) + 1

2 (n−m)(n+m− 1)− (n−m)(2n+m− 3)

+ (hn−1 − hm−1)(n+ 2m− 2)(n− 1)−
( 1

m
− 1

n

)

mn(n− 1)

= (hn−1 − hm−1)(n+ 2m− 2)(n− 1)− 1
2 (n−m)(4n+m− 5) .

Combining our formulas the result follows.

6 The length of a random external branch

Finally we look at the distribution of the length of an external branch chosen
at random. Equivalently, letting ρ := ρ(1), we may consider

Rn := Tρ ,

the length of the branch ending in the leaf with label 1. Its asymptotic distri-
bution can be obtained in an elementary manner and without recourse to the
results of the preceding sections. Recall ρ := max{k ≥ 1 : {1} /∈ πk}, thus

P(ρ < k) =

(

n−1
2

)

(

n
2

) · · ·
(

k
2

)

(

k+1
2

) =
k(k − 1)

n(n− 1)
.

Letting

R′
n :=

n
∑

k=ρ+1

1
(

k
2

) = 2
(1

ρ
− 1

n

)

,

{R′
n > r} = {ρ < 2n/(nr + 2)} and for x > 0

P(nR′
n > x) = P(ρ < 2n/(x+ 2)) ∼ 4

(x+ 2)2
.

We show that this limiting result carries over to Rn. From

Rn −R′
n =

n
∑

k=ρ+1

(

Tk−1 − Tk −
1
(

k
2

)

)

=
n
∑

k=2

(

Tk−1 − Tk −
1
(

k
2

)

)

I{ρ<k}
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it follows that

P
(

Rn −R′
n 6=

∑

√
n<k≤n

(

Tk−1 − Tk −
1
(

k
2

)

)

I{ρ<k}
)

≤ P(ρ <
√
n) = o(1).

Also from independence

E
[(

∑

√
n<k≤n

(

Tk−1 − Tk −
1
(

k
2

)

)

I{ρ<k}
)2]

=
∑

√
n<k≤n

E
[(

Tk−1 − Tk −
1
(

k
2

)

)2]

P(ρ < k)

=
∑

√
n<k≤n

1
(

k
2

)2

(

k
2

)

(

n
2

) = o(n−2) .

Consequently Rn = R′
n + o(n−1) in probability. Thus we end up with the

following result, which was obtained by Caliebe et al (2007) by means of Laplace
transform methods.

Proposition 10. nRn converges in distribution to the law µ on R
+ with density

µ(dx) = 8(x+ 2)−3 dx.
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