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Abstract. The recent theory of graph limits gives a powerful frame-
work for understanding the properties of suitable (convergent) sequences
(Gn) of graphs in terms of a limiting object which may be represented
by a symmetric function W on [0, 1], i.e., a kernel or graphon. In this
context it is natural to wish to relate specific properties of the sequence
to specific properties of the kernel. Here we show that the kernel is
monotone (i.e., increasing in both variables) if and only if the sequence
satisfies a ‘quasi-monotonicity’ property defined by a certain functional
tending to zero. As a tool we prove an inequality relating the cut and
L1 norms of kernels of the form W1 − W2 with W1 and W2 monotone
that may be of interest in its own right; no such inequality holds for
general kernels.

1. Introduction

Recently, Lovász and Szegedy [20] and Borgs, Chayes, Lovász, Sós and
Vesztergombi (see, e.g., [5]) developed a rich theory of graph limits, as-
sociating limit objects to suitable sequences (Gν) of (dense) graphs with
|Gν | → ∞, where |Gν | denotes the number of vertices of Gν . The basics of
this theory are outlined in Section 2 below; see also Diaconis and Janson [8].
These graph limits (which are not themselves graphs) can be represented
in several different ways; perhaps the most important is that every graph
limit can be represented by a kernel (or graphon) on [0,1], i.e., a symmetric
measurable function W : [0, 1]2 → [0, 1]. However, this representation is
in general not unique, see e.g. [20, 4, 8, 3]. More generally, kernels can be
defined on any probability space, see Section 2.

We use Γ to denote an arbitrary graph limit, and write ΓW for the graph
limit defined by a kernel W . We say that two kernels W and W ′ are equiva-
lent if they define the same graph limit, i.e., if ΓW = ΓW ′ . We write Gν → Γ
when the sequence (Gν) converges to Γ (see [20], [5] and Section 2 below for
definitions); if Γ is represented by a kernel W , i.e., if Γ = ΓW , we also write
Gν →W .
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Following [8], we denote the set of all graph limits by U∞, and note that
U∞ is a compact metric space. Another version of the important compact-
ness property for graph limits is that every sequence (Gν) of graphs with
|Gν | → ∞ has a convergent subsequence, i.e., a subsequence converging to
some Γ ∈ U∞.

Given a suitable class F of graphs, it seems interesting to study the graph
limits of F , i.e., the set of graph limits arising as limits of sequences of
graphs in F . One interesting example is the class of threshold graphs, which
has several different characterizations, see e.g. [23]. One of them is the
monotonicity property of the neighbourhoods N(v) of the vertices:

There exists a (linear) ordering ≺ of the vertices such that
if v ≺ w, then N(v) \ {v, w} ⊆ N(w) \ {v, w}. (1.1)

The graph limits of threshold graphs were studied by Diaconis, Holmes
and Janson [7] (see also [21]), who showed that they are exactly the graph
limits that can be represented by kernels W that take values in {0, 1} only
and are increasing, in that

W (x1, y1) ≤W (x2, y2) if 0 ≤ x1 ≤ x2 ≤ 1, 0 ≤ y1 ≤ y2 ≤ 1. (1.2)

In other words, W is the indicator function of a symmetric increasing subset
of [0, 1]2. (In this paper, ‘increasing’ should always be interpreted in the
weak sense, i.e., as ‘non-decreasing’.) Moreover, the representation by such
a W is unique, if, as is usual, we identify functions that are equal a.e.

Note that the monotonicity properties in (1.1) and (1.2) are obviously
related; this is perhaps best seen if (1.1) is rewritten as a monotonicity
property of the adjacency matrix of the graph (with some exceptions at the
diagonal), so even without the detailed technical study in [7], the condition
(1.2) should not be surprising.

Increasing and decreasing kernels define the same set of graph limits, by
the change of variables x 7→ 1 − x. Hence we shall talk about monotone
kernels rather than increasing kernels, but for simplicity (and without loss
of generality) we consider only increasing ones, so in this paper ‘monotone’
is regarded as synonymous with ‘increasing’.

The main purpose of the present paper is to study the larger class of graph
limits represented by arbitrary monotone kernels (taking any values in [0,1],
rather than just the values 0 and 1), and the corresponding sequences of
graphs. We shall also study analytic properties of monotone kernels them-
selves.

Definition. Let W↑ be the set of monotone kernels on [0, 1], i.e., the set of
all symmetric measurable functions W : [0, 1]2 → [0, 1] that satisfy (1.2).

Let U↑ be the corresponding class of graph limits, i.e., the class of graph
limits that can be represented as ΓW for some W ∈ W↑. We call these graph
limits monotone.

By definition, every monotone graph limit can be represented by a mono-
tone kernel W on [0, 1], but note that a monotone graph limit may also have
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many representations by non-monotone kernels. For example, a monotone
kernel can be rearranged by an arbitrary measure-preserving bijection from
[0, 1] to itself, which will in general destroy monotonicity.

The classes W↑ of monotone kernels and U↑ of monotone graph limits
are studied in Section 4. We show there that W↑ is a compact subset of
L1([0, 1]2), and that U↑ is a compact subset of U∞. In addition, we consider
monotone kernels defined on other (ordered) probability spaces, showing
that each such kernel is equivalent to a monotone kernel on [0, 1], so the
class U↑ is not enlarged by allowing arbitrary probability spaces.

Definition. A sequence (Gν) of graphs with |Gν | → ∞ is quasimonotone
if it converges to the set U↑, in the sense that each convergent subsequence
has as its limit a graph limit in U↑. In this case we will also say that (Gν)
is a sequence of quasimonotone graphs.

In particular, a sequence (Gν) converging to a graph limit in U↑ is quasi-
monotone. Note that it makes no formal sense to ask whether an individual
graph is quasimonotone; just as for quasirandomness, quasimonotonicity is
a property of sequences of graphs.

Example 1.1 (Threshold graphs are quasimonotone). As noted above, each
convergent sequence of threshold graphs converges to a limit represented by
a 0/1-valued kernel W ∈ W↑. Hence every sequence of threshold graphs
(with orders tending to ∞) is quasimonotone.

Example 1.2 (Quasirandom graphs are quasimonotone). Quasirandom graphs
were introduced by Thomason [25, 26] as sequences (Gν) of graphs that have
certain properties typical of random graphs. A number of different such
properties turn out to be equivalent, and there are thus many equivalent
characterizations, see Chung, Graham and Wilson [6]. Another characteri-
zation, found by Lovász and Szegedy [20], is that a sequence (Gν) is quasir-
andom if and only if it converges to a graph limit represented by a constant
kernel W (x, y) = p, for some p ∈ [0, 1]. (See also [19] and [13].) Since a con-
stant function is monotone, W ∈ W↑, and thus every quasirandom sequence
of graphs is quasimonotone.

Example 1.3 (Random graphs are quasimonotone). The sequence of ran-
dom graphs G(ν, p) with some fixed p ∈ [0, 1] and ν = 1, 2, . . . (coupled
in the natural way for different ν) is a.s. quasirandom, and thus a.s. quasi-
monotone.

Our main result (Theorem 1.5 below) is that quasimonotone graphs can be
characterized by a weakening of (1.1). As is typical for conditions concerning
convergence to graph limits, this weakening involves taking averages over
subsets of the vertex set V , rather than imposing a condition for all vertices,
and allows for a small ‘error’, making the condition asymptotic.

Given a graph G with vertex set V = V (G), a vertex v of G and a subset
A of V , let

e(v,A) := |N(v) ∩A| = |{w ∈ A : w ∼ v}|
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denote the number of edges from v to A.
Let x+ denote the positive part of x, i.e., max{x, 0}. Writing n := |G| =

|V |, given a (linear) order ≺ on V and a subset A ⊆ V , define

Ω0(G,≺, A) :=
1

n3

∑
v≺w

(
e(v,A \ {w})− e(w,A \ {v})

)
+

(1.3)

=
1

n3

∑
v≺w

(
e(v,A \ {v, w})− e(w,A \ {v, w})

)
+
, (1.4)

Ω0(G,≺) := max
A⊆V

Ω0(G,≺, A), and (1.5)

Ω0(G) := min
≺

Ω0(G,≺). (1.6)

In the last line the minimum is taken over all n! orders on V . The normal-
ization by n3 ensures that 0 ≤ Ω0 < 1. In fact, Ω0 < 1/2, and this bound
can be improved further, but this is not important for our purposes since
we are interested in small values of Ω0.

Note that Ω0(G) = 0 if and only if there exists an order ≺ such that
Ω0(G,≺, A) = 0 for every A, i.e., e(v,A\{v, w}) ≤ e(w,A\{v, w}) for all A
and v ≺ w, which easily is seen to be equivalent to (1.1), giving the following
result.

Proposition 1.4. A graph G is a threshold graph if and only if Ω0(G) =
0. �

Note that Ω0 is not intended as a measure of how far a graph is from
being a threshold graph (for such a measure, see Section 8). Rather, we
may think (informally!) of a typical quasimonotone graph as being similar
to a random graph in which edges are independent, and the probability pij
of an edge ij is increasing in i and in j. In such a graph, one cannot expect
the neighbourhoods of different vertices to be even approximately nested.
But one can expect that for all ‘large’ sets A of vertices, for most i < j,
e(i, A) will be smaller than (or at least not much larger than) e(j, A). The
idea is that a small value of Ω0(G) detects this phenomenon, without relying
on any given labelling of the vertices.

Some variations of the functional Ω0 will be defined in Section 3, where
we shall show that they are asymptotically equivalent for our purposes.

Our main result is the following, proved in Section 7. (All unspecified
limits in this paper are taken as ν →∞.)

Theorem 1.5. Let (Gν) be a sequence of graphs with |Gν | → ∞. Then
(Gν) is quasimonotone if and only if Ω0(Gν)→ 0.

We state a special case separately.

Theorem 1.6. Let (Gν) be a sequence of graphs with |Gν | → ∞, and sup-
pose that (Gν) is convergent, i.e., Gν → Γ for some graph limit Γ ∈ U∞.
Then Γ ∈ U↑ if and only if Ω0(Gν)→ 0.
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We give several results on monotone graph limits in Sections 4–6. These
include a characterization in terms of a functional Ω(W ) for kernels, analogu-
ous to Ω0 for graphs. Along the way we prove some results about monotone
kernels that may be of interest in their own right. For example, on functions
that may be written as the difference between two monotone kernels, the
L1 norm and the cut norm may be bounded in terms of each other; see
Theorem 5.5.

Remark 1.7. Lovász and Szegedy [22] have studied the class of graph lim-
its represented by 0/1-valued kernels (and the corresponding graph proper-
ties); with a slight variation of their terminology we call such graph limits
random-free. In contrast to the monotone case, it can be shown that every
representing kernel of a random-free limit is a.e. 0/1-valued; see [14]. It
follows that the graph limits that are both monotone and random-free are
exactly the threshold graph limits.

In Section 8, we consider the functional obtained by taking the supremum
over A inside the sum in (1.3) instead of outside as in (1.5). We shall show
that this stronger functional characterizes convergence to threshold graph
limits instead of monotone graph limits; we call the corresponding sequences
of graphs quasithreshold.

1.1. A problem. The convergence Gν → Γ of a sequence (Gν) of graphs to
a graph limit Γ can be expressed using the homomorphism numbers t(F, ·):
Gν → Γ if and only if t(F,Gν) → t(F,Γ) for every fixed graph F ; see e.g.
[20], [5], [8] for definitions and further results. In particular, the graph limit
Γ is characterized by the family (t(F,Γ))F . The families (t(F,Γ))F that
appear are characterized algebraically by Lovász and Szegedy [20].

Problem 1.8. Characterize the families (t(F,Γ))F that appear for Γ ∈ U↑.

The rest of this paper is organized as follows. In the next section we review
some basic properties of the cut metric that we shall rely on throughout the
paper. In Section 3 we introduce some variants of the functional Ω0 for
graphs. In Section 4 we define analogous functionals for kernels and state
several key properties; these are proved in the next two sections, and then
our main results are deduced in Section 7. Finally, in Section 8 we discuss
related functionals characterizing quasithreshold graphs.

2. Kernels and graph limits

We state here some standard definitions and results that we shall use later
in the paper. For proofs and further details, see e.g. Borgs, Chayes, Lovász,
Sós and Vesztergombi [5], Bollobás and Riordan [3], or Janson [12, 14].

Let (S,F , µ) be a probability space; for simplicity, we will usually abbre-
viate the notation to S or (S, µ).

A kernel (or graphon) on S is a symmetric measurable function S2 →
[0, 1]. We let W(S) denote the set of all kernels on S.
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If W is an integrable function on S2, we define its cut norm by

‖W‖� := sup
‖f‖∞,‖g‖∞≤1

∣∣∣∫
S2
W (x, y)f(x)g(y) dµ(x) dµ(y)

∣∣∣, (2.1)

where ‖ · ‖∞ denotes the norm in L∞. In other words, the supremum in
(2.1) is taken over all (real-valued) functions f and g with values in [−1, 1].
(Several other versions exist, which are equivalent within constants.) By
considering the supremum over f with g fixed, and vice versa, it is easy to
see that the supremum is unchanged if we restrict f and g to take values in
{±1}, so we have

‖W‖� = sup
f,g:S→{±1}

∣∣∣∫
S2
W (x, y)f(x)g(y) dµ(x) dµ(y)

∣∣∣. (2.2)

This norm defines a metric ‖W1−W2‖� for kernels on the same probability
space S; as usual, we identify kernels that are equal a.e.

The cut norm may be used to define another (semi)metric δ�, the cut
metric, as follows. If ϕ : S1 → S2 is a measure-preserving map between two
probability spaces and W is a kernel on S2, we let Wϕ be the kernel on S1

defined by Wϕ(x, y) := W
(
ϕ(x), ϕ(y)

)
. Let W1 be a kernel on a probability

space S1 and W2 a kernel on a possibly different probability space S2. Then

δ�(W1,W2) := inf
ϕ1,ϕ2

‖Wϕ1
1 −W

ϕ2
2 ‖�, (2.3)

where the infimum is taken over all couplings (ϕ1, ϕ2) of S1 and S2, i.e.,
over all pairs of measure-preserving maps ϕ1 : S3 → S1 and ϕ2 : S3 → S2

from a third probability space S3. It is not difficult to verify that δ� satisfies
the triangle inequality (see e.g. [14]), but note that δ�(W1,W2) may be 0
even if W1 6= W2, for example if W1 = Wϕ

2 for some measure-preserving
ϕ : S1 → S2. Hence, δ� is really a semimetric (but is usually called a metric
for simplicity).

Note that δ�(W1,W2) is defined for kernels on different spaces. Moreover,
it is invariant under measure-preserving maps: δ�(Wϕ1

1 ,Wϕ2
2 ) = δ�(W1,W2)

for any measure-preserving maps ϕk : S ′k → Sk, k = 1, 2.
Although we allow couplings (ϕ1, ϕ2) defined on an arbitrary third space

S3, in (2.3) it suffices to consider the case when S3 = S1 × S2, with a
measure µ having marginals µ1 and µ2, taking for ϕ1 and ϕ2 the projections
πk : S1 × S2 → Sk, k = 1, 2. In fact, for an arbitrary coupling (ϕ1, ϕ2)
defined on a space (S3, µ3), the mapping (ϕ1, ϕ2) : S3 → S1×S2 maps µ3 to
a measure µ on S1 × S2 with the right marginals, and it is easily seen that
‖Wϕ1

1 −W
ϕ2
2 ‖� = ‖W π1

1 −W
π2
2 ‖�.

Although this will be of much lesser importance, we also define the cor-
responding rearrangement-invariant version of the L1 distance:

δ1(W1,W2) := inf
ϕ1,ϕ2

‖Wϕ1
1 −W

ϕ2
2 ‖L1(S23 ). (2.4)

The coupling definition (2.3) of the cut metric is valid for all S1 and S2,
but in common special cases it is possible, and often convenient, to use other,
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equivalent, definitions. For example, if S1 = S2 = [0, 1] (equipped with the
Lebesgue measure, as always), then as shown by Borgs, Chayes, Lovász, Sós
and Vesztergombi [5, Lemma 3.5],

δ�(W1,W2) := inf
ϕ
‖W1 −Wϕ

2 ‖�, (2.5)

taking the infimum over all measure-preserving bijections [0, 1]→ [0, 1].
We say that two kernels W1 and W2 are equivalent if δ�(W1,W2) = 0.

The set of equivalence classes is thus a metric space with the metric δ�.
A central result [20, 5] is that these equivalence classes are in one-to-one
correspondence with the graph limits. In other words, each kernel W defines
a graph limit ΓW , every graph limit can be represented by a kernel in this
way, and two kernels define the same graph limit if and only if they are
equivalent. Thus, the cut metric defines the same notion of equivalence
as the one mentioned in the introduction. Furthermore, W1 and W2 are
equivalent if and only if δ1(W1,W2) = 0, see e.g. [14].

Every kernel is equivalent to a kernel on [0, 1], so it suffices to consider
such kernels. (We shall not use this restiction in the present paper, however.)

One manifestation of the connection between graph limits and kernels is
the following: If G is a graph with vertices labelled 1,2,. . . ,n, let AG(i, j) :=
1{i ∼ j} define its adjacency matrix, and let

WG(x, y) := AG
(
dnxe, dnye

)
.

This defines a kernel WG on [0, 1] (or rather on (0, 1], which is equivalent).
A sequence of graphs with |Gν | → ∞ converges to the graph limit Γ = ΓW
if and only if δ�(WGν ,W )→ 0.

Note that WG depends on the labelling of the vertices of G, but only in
a rather trivial way, and different labellings yield equivalent kernels. Here,
in the study of monotone kernels, the ordering is relevant. If G is a graph
with a given order ≺ on V , we therefore define WG = WG,≺ as above, but
using the labelling of the vertices with 1 ≺ 2 ≺ · · · , ignoring the original
labelling, if any.

3. Further measures of quasimonotonicity

In Section 1 we defined a functional Ω0 that measures, in an averaged
sense, how far the adjacency matrix of a graph is from being monotone.
There are several natural variations of the definition; we shall concentrate
on two.

Firstly, in (1.3) and (1.4), we were careful to exclude v and w from the
set A; this had the advantage of making Ω0(G) exactly zero when G is a
threshold graph. But most of the time it is more convenient not to do this.
Instead, we consider

Ω1(G,≺, A) :=
1

n3

∑
v≺w

(
e(v,A)− e(w,A)

)
+
, (3.1)
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which differs from (1.4) in that we count all edges into A, and not just the
edges into A \ {v, w}. This changes each edge count by at most 1, so

|Ω0(G,≺, A)− Ω1(G,≺, A)| < 1/n. (3.2)

As in (1.5) and (1.6), we set

Ω1(G,≺) := max
A⊆V

Ω1(G,≺, A), and (3.3)

Ω1(G) := min
≺

Ω1(G,≺). (3.4)

Before turning to our second variant, let us note a basic property of Ω0.
Let e(v,A) denote the number of edges from v to A in the complement Gc

of G. If v /∈ A, then e(v,A) = |A| − e(v,A). Hence, for any v, w and A,

e(w,A \ {v, w})− e(v,A \ {v, w}) = e(v,A \ {v, w})− e(w,A \ {v, w}).
From (1.4) it follows that Ω0(Gc,�, A) = Ω0(G,≺, A), where, naturally,
� denotes the reverse of the order ≺. Thus Ω0(Gc,�) = Ω0(G,≺) and
Ω0(Gc) = Ω0(G).

For Ω1 one can show similarly, or deduce using (3.2), that |Ω1(Gc) −
Ω1(G)| ≤ 2/n, say.

Despite the above symmetry property of Ω0, the following ‘locally sym-
metrized’ version of the definition turns out to have technical advantages.
Given a graph G, an order ≺ on V (G), and A ⊆ V (G), set

Ω2(G,≺, A) := Ω1(G,≺, A) + Ω1(G,≺, V \A), (3.5)

Ω2(G,≺) := max
A⊆V

Ω2(G,≺, A) (3.6)

and

Ω2(G) := min
≺

Ω2(G,≺). (3.7)

Of course, we could define a corresponding symmetrization of Ω0, but we
shall not bother.

It is easily seen that all our functionals Ωj take values in [0, 1] (in fact, in
[0, 1

2)). We have the following relations.

Lemma 3.1. If G is a graph with |G| = n, then

|Ω0(G)− Ω1(G)| < 1/n, (3.8)

and

Ω1(G) ≤ Ω2(G) ≤ 2Ω1(G). (3.9)

Consequently, if (Gν) is a sequence of graphs with |Gν | → ∞, then Ωj(Gν)→
0 for some j if and only if this holds for all j = 0, 1, 2.

Proof. The inequality (3.8) is immediate from (3.2).
The definition (3.5) implies that

Ω1(G,≺) ≤ Ω2(G,≺) ≤ 2Ω1(G,≺), (3.10)

which in turn implies (3.9). �
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Remark 3.2. Instead of summing in (1.4) or (3.1), in analogy with the
standard definition of ε-regular partitions (see e.g. [2, Section IV.5]), we
may count the number of ‘bad’ pairs (v, w) of vertices v ≺ w where the
difference e(v,A)−e(w,A) is larger than εn, for some small ε. This suggests
the following definition: with ≺ an order on the vertex set V , n := |V |, and
A a subset of V , set

Ω′1(G,≺, A) := inf
{
ε > 0 :

∣∣{v ≺ w : e(v,A) > e(w,A) + εn
}∣∣ ≤ εn2

}
,

and define Ω′1(G) by taking the maximum over A with ≺ fixed, and then
minimizing over ≺. It is a standard observation that if x1, . . . , xa take values
in [0, b], then

∑
i xi ≥ εab implies that there are at least εa/2 of the xi that

are at least εb/2, and that if at least εa of the xi are at least εb, then the sum
is at least ε2ab. Using this it is easy to check that Ω1 and Ω′1 are bounded
by suitable functions of each other. In fact, it turns out that

1
2Ω1(G) ≤ Ω′1(G) ≤ Ω1(G)1/2.

We can also define corresponding modifications of the other Ωj .

Remark 3.3. Proposition 1.4 says that a graph G is a threshold graph if
and only if Ω0(G) = 0. This does not hold for Ω1; in fact, if G contains an
edge vw, with v ≺ w, then Ω1(G,≺, {w}) ≥ n−3e(v, {w}) = n−3 by (3.1);
hence Ω1(G) ≥ n−3 unless G is empty. Consequently, Ω1(G) > 0 for every
non-empty graph G. On the other hand, Proposition 1.4 and Lemma 3.1
show that Ω1(G) ≤ 1/n for every threshold graph.

We defined each Ωj(G) by taking the minimum of Ωj(G,≺) over all pos-
sible orderings ≺ of the vertices. As the next lemma shows, for Ω2, ordering
the vertices by their degrees d(v) := e(v, V ) (resolving ties arbitrarily) is
optimal. This is the main reason for considering Ω2.

Lemma 3.4. Let < be an order on V such that v < w =⇒ d(v) ≤ d(w).
Then Ω2(G) = Ω2(G,<).

Proof. The inequality Ω2(G) ≤ Ω2(G,<) is immediate from the definition
(3.7), so it suffices to prove the reverse inequality.

Let ≺ be any order on V . If v < w, then e(v, V ) = d(v) ≤ d(w) = e(w, V )
and thus, for A ⊆ V ,

e(v,A)− e(w,A) = e(v, V )− e(w, V ) + e(w, V \A)− e(v, V \A)

≤ e(w, V \A)− e(v, V \A). (3.11)

Let f(v, w,A) :=
(
e(v,A)−e(w,A)

)
+

and g(v, w,A) := f(v, w,A)+f(v, w, V \
A). By (3.11), if v < w, then f(v, w,A) ≤ f(w, v, V \A) and thus

g(v, w,A) ≤ f(w, v, V \A) + f(w, v,A) = g(w, v,A). (3.12)
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Using (3.12) for v < w with v � w, we obtain

Ω2(G,<,A) :=
1

n3

∑
v<w

g(v, w,A)

=
1

n3

∑
v<w
v≺w

g(v, w,A) +
1

n3

∑
v<w
v�w

g(v, w,A)

≤ 1

n3

∑
v<w
v≺w

g(v, w,A) +
1

n3

∑
w>v
w≺v

g(w, v,A)

=
1

n3

∑
v≺w

g(v, w,A) = Ω2(G,≺, A).

Hence, by (3.6), Ω2(G,<) ≤ Ω2(G,≺). Since ≺ is arbitrary, this yields
Ω2(G,<) = Ω2(G). �

As an immediate consequence of Lemmas 3.4 and 3.1, we have the follow-
ing result for Ω1.

Corollary 3.5. Let < be an order on V such that v < w =⇒ d(v) ≤ d(w).
Then Ω1(G) ≤ Ω1(G,<) ≤ 2Ω1(G).

Proof. By (3.10), Lemma 3.4 and (3.9),

Ω1(G) ≤ Ω1(G,<) ≤ Ω2(G,<) = Ω2(G) ≤ 2Ω1(G).

(Alternatively, one can use a simplified version of the proof of Lemma 3.4.)
�

Using a symmetrized version of Ω0, or otherwise, it is easy to prove the
corresponding result for Ω0.

Remark 3.6. If G is regular, then any order < satisfies the condition of
Lemma 3.4 and Corollary 3.5, so these results show that Ω2(G,<) is the
same for all orders, and Ω1(G,<) is the same for all orders within a factor
of 2; the latter holds also for Ω0.

The factor 2 in Corollary 3.5 is annoying but not really harmful for our
purposes. It is best possible, as shown by the following example.

Example 3.7. Consider a balanced complete bipartite graph G = Km,m

(so n = 2m), with bipartition (V1, V2). Given an order ≺ on the vertex set
V1 ∪ V2, let Nij :=

∣∣{(x, y) ∈ Vi × Vj : x ≺ y
}∣∣. Note that

N12 +N21 =
∣∣V1 × V2

∣∣ = m2. (3.13)

Let A ⊆ V = V1 ∪ V2 and let ai = |A ∩ Vi|, i = 1, 2. Then e(v,A) = a2 if
v ∈ V1 and e(v,A) = a1 if v ∈ V2. Hence,

n3Ω1(G,≺, A) =
∑
v≺w

(
e(v,A)− e(w,A)

)
+

= N12(a2 − a1)+ +N21(a1 − a2)+. (3.14)
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Since a1 and a2 can be freely chosen in {0, . . . ,m}, we have a1 − a2 ∈
{−m, . . . ,m}, and maximizing over A yields

n3Ω1(G,≺) = mmax{N12, N21}. (3.15)

If ≺1 is an order with all elements of V1 coming first, then N12 = m2 and
N21 = 0, and thus

Ω1(G,≺1) = m3/n3 = 1/8.

On the other hand, if m is even and ≺2 is an order which starts with m/2
elements of V1, continues with all of V2, and finishes with the remaining half
of V1, then N12 = N21 = m2/2, and thus

Ω1(G,≺2) = 1
2m

3/n3 = 1/16. (3.16)

Thus Ω1(G,≺1) = 2Ω1(G,≺2) although G is regular and Corollary 3.5 ap-
plies to every order.

For Ω0, the ratio between Ω0(G,≺1) and Ω0(G,≺2) is 2−O(1/n) by (3.2).
Note that for any order ≺, (3.13) implies max{N12, N21} ≥ m2/2, and

thus (3.15) yields

Ω1(G) ≥ n−3m3/2 = 1/16. (3.17)

Consequently, if m is even, then (3.16) shows that

Ω1(G) = Ω1(G,≺2) = 1/16 (m even). (3.18)

On the other hand, if m is odd, then since N12 + N21 = m2 is odd, for
any order ≺ we have max{N12, N21} ≥ (m2 + 1)/2, and this is attained for
some ≺. Thus (3.15) now yields

Ω1(G) = n−3m(m2 + 1)/2 > 1/16 (m odd). (3.19)

We thus have{
Ω1(Km,m) = 1/16, m even,

Ω1(Km,m) = (1 +m−2)/16 > 1/16, m odd.
(3.20)

For Ω2, the situation is simpler. It follows from (3.14) that n3Ω1(G,≺,
V \A) = N12(a2 − a1)− +N21(a1 − a2)−, and thus, using (3.13),

n3Ω2(G,≺, A) = N12|a2 − a1|+N21|a1 − a2| = m2|a1 − a2|. (3.21)

Maximizing over A we find Ω2(G,≺) = m3/n3 = 1/8 for every order ≺, cf.
Remark 3.6, and thus Ω2(G) = 1/8.

If we modify G by adding a perfect matching inside V2 (assuming m is
even) then every order < satisfying the condition of Corollary 3.5 is of the
type ≺1. The added edges change each e(v,A) by at most 1, and thus each
Ωj(G,≺, A) is changed by at most 1/n. Hence this yields an example where
Ωj(G,<) = (2−O(1/n))Ωj(G) for j = 0, 1, for every order < considered in
Corollary 3.5.
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4. Monotone kernels and graph limits

We begin by extending the definition of monotone kernels to other prob-
ability spaces.

Definition. An ordered probability space (S,≺) = (S,F , µ,≺) is a prob-
ability space (S,F , µ) with a (linear) order ≺ that is measurable, i.e.,
{(x, y) : x ≺ y} is a measurable subset of S × S.

Note that it follows that {(x, y) : x � y} and {(x, y) : x = y} are measur-
able.

All orders considered in this paper are assumed to be measurable, even if
we only sometimes say so explicitly. Similarly, we only consider subsets and
functions that are measurable.

The standard example of an ordered probability space is [0, 1] with Lebes-
gue measure and the standard order. [0, 1] is always equipped with these
unless we say otherwise.

Definition. Let (S,≺) be an ordered probability space. A monotone kernel
on (S,≺) is a kernel W : S2 → [0, 1] such that

W (x1, y1) ≤W (x2, y2) if x1 � x2, y1 � y2. (4.1)

LetW↑(S,≺) be the set of monotone kernels on (S,≺), noting thatW↑ =
W↑([0, 1]). We shall prove the following properties of W↑(S,≺) in Sections
5 and 6.

Theorem 4.1. Let (S,≺) be an ordered probability space.
(i) W↑(S,≺) is a compact subset of L1(S2).
(ii) Two kernels in W↑(S,≺) are equivalent if and only if they are a.e.

equal.
(iii) The metrics ‖W1−W2‖L1, δ1(W1,W2), ‖W1−W2‖�, and δ�(W1,W2)

are equivalent on W↑(S,≺), i.e., induce the same topology.

Recall that U↑ denotes the set of monotone graph limits, i.e., the class of
graph limits that can be represented as ΓW for some W ∈ W↑ =W↑([0, 1]).

Corollary 4.2. Each monotone graph limit has a representation as ΓW for
some W ∈ W↑ =W↑([0, 1]) with W unique up to equality a.e. Furthermore,
there is a homeomorphism between U↑ and W↑([0, 1]), regarded as a subset
of L1([0, 1]2).

Proof. Immediate from Theorem 4.1 and the fact that the metric on the set
of graph limits is equivalent to δ� on the corresponding kernels. �

In Section 1 we defined U↑ as the set of graph limits that can be rep-
resented by some W ∈ W↑([0, 1]). The following theorem shows that we
may allow monotone kernels on arbitrary ordered probability spaces with-
out changing U↑, i.e.,

U↑ = {Γ : ∃ (S,≺) and W ∈ W↑(S,≺) such that Γ = ΓW }.
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This version of the definition is perhaps more natural than considering [0, 1]
only; on the other hand, it is often convenient to use [0, 1].

Theorem 4.3. Let (S,≺) be an ordered probability space, and let W ∈
W↑(S,≺). Then there is a monotone kernel W ′ ∈ W↑([0, 1]) that is equiva-
lent to W . Equivalently, ΓW ∈ U↑.

We shall next define two quantitative measures of how far a kernel is from
being monotone, in analogy with (1.3)–(1.6) (or, more closely, (3.1), (3.3)
and (3.4)), and (3.5)–(3.7).

Given W ∈ L1(S2), a (measurable) order ≺ on S, and a (measurable)
subset A of S, set

Ω1(W, ≺, A) :=∫∫
x≺y

(∫
A
W (x, z) dµ(z)−

∫
A
W (y, z) dµ(z)

)
+

dµ(x) dµ(y), (4.2)

Ω2(W,≺, A) := Ω1(W,≺, A) + Ω1(W,≺,S \A), (4.3)

and, for j = 1, 2,

Ωj(W,≺) := sup
A⊆S

Ωj(W,≺, A), (4.4)

Ωj(W ) := inf
≺

Ωj(W,≺), (4.5)

where the infimum is over all measurable orders on S. Note that

Ω1(W ) ≤ Ω2(W ) ≤ 2Ω1(W ). (4.6)

For A ⊆ S, let WA(x) :=
∫
AW (x, z) dµ(z). Then (4.2) can be written as

Ω1(W,≺, A) =

∫∫
x≺y

(
WA(x)−WA(y)

)
+

dµ(x) dµ(y). (4.7)

Remark 4.4. It is easily seen that

Ω1(W,≺) = sup
f,g

∫∫∫
x≺y

(
W (x, z)−W (y, z)

)
f(x, y)g(z) dµ(x) dµ(y) dµ(z),

(4.8)
where the supremum is taken over all f : S2 → {0, 1} and g : S → {0, 1},
and that allowing all f : S2 → [0, 1] and g : S → [0, 1] yields the same result.
Thus Ω1(W,≺) can be seen as a one-sided version of the cut norm of the
function

(
W (x, z)−W (y, z)

)
1{x≺y} on S2 × S.

Similarly, Ω2(W,≺) equals

sup
f1,f2,g

∫∫∫
x≺y

(
W (x, z)−W (y, z)

)(
f1(x, y)g(z) + f2(x, y)(1− g(z))

)
· dµ(x) dµ(y) dµ(z), (4.9)

where the supremum is taken either over all f1, f2 : S2 → {0, 1} and g : S →
{0, 1}, or over all f1, f2 : S2 → [0, 1] and g : S → [0, 1].



14 BÉLA BOLLOBÁS, SVANTE JANSON, AND OLIVER RIORDAN

In the light of (4.6), Ω1 and Ω2 are essentially equivalent. In particular
Ω1(W ) = 0 ⇐⇒ Ω2(W ) = 0. When the difference is not important, we
simply write Ω; formally, this may be read as Ω1. Occasionally, there are
advantages to considering one or the other variant.

Theorem 4.5. Let (S,≺) be an ordered probability space and let W be a
kernel on S. Then Ω(W,≺) = 0 if and only if W is a.e. equal to a monotone
kernel.

As noted above, Ωj , j = 1, 2, is an analogue of Ωj defined earlier for
graphs. Indeed, there is a simple relation.

Lemma 4.6. If G is a graph with an order ≺ on the vertex set V , and
< denotes the standard order on [0, 1], then Ωj(WG, <) = Ωj(G,≺) for
j = 1, 2.

For Ω2, we shall show that Lemma 4.6 implies a corresponding result after
minimizing over the relevant orderings.

Lemma 4.7. If G is a graph, then Ω2(WG) = Ω2(G).

Note that WG depends on the labelling of the vertices in G, but this is
harmless since the different versions differ by measure-preserving bijections
of [0, 1] (in fact, permutations of subintervals) and obviously have the same
Ωj(WG).

Remark 4.8. Let G = Km,m as in Example 3.7. Then WG does not depend
on m, and one can check that Ω1(WG) = 1/16. For m odd, we have Ω1(G) >
1/16 by (3.19). Thus we can have Ω1(WG) < Ω1(G). It seems likely that
the difference is bounded by some function tending to 0 as n → ∞, but
we have not proved anything stronger than Ω1(WG) ≤ Ω1(G) ≤ 2Ω1(WG),
which follows from Lemma 4.7 and the relationship between Ω1 and Ω2.

Remark 4.9. Given a graph G, define W V
G as the adjacency matrix of G,

regarded as a kernel on V = V (G), which we regard as a probability space
with the uniform probability measure (each point has mass 1/|G|). It is
easily verified that Ω1(W V

G ,≺, A) = Ω1(G,≺, A) for every order ≺ on V
and every set A ⊆ V . Hence Ω1(W V

G ,≺) = Ω1(G,≺) for every order ≺ and
Ω1(W V

G ) = Ω1(G), and the same holds for Ω2.
Note that W V

G and WG are equivalent kernels. It follows from Lemma 4.7
that Ω2(W V

G ) = Ω2(WG), but Remark 4.8 shows that Ω1(W V
G ) > Ω1(WG) if

G = Km,m with m odd. (See also Corollary 6.7 and Remark 6.8 below.)

Remark 4.10. In (4.5), we take the infimum over all measurable orders on
S. In general, this may be problematic, since there are probability spaces
with no measurable orders, see Example 4.12 below. In such cases, we
interpret (4.5) as Ωj(W ) = ∞ (or perhaps 1), but this has the unhappy
consequence that two equivalent kernels W1 and W2 may have Ω2(W1) 6=
Ω2(W2). For example, let W1 and W2 both be constant 1/2, with W1 defined
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on [0, 1] and W2 on a space S with no measurable order; then Ω2(W1) = 0
and Ω2(W2) = ∞. In the sequel we therefore consider only S that have at
least one measurable order. Even in this case, equivalent kernels may have
different Ω1; see Remark 4.9. We will show in Corollary 6.7 that there is
no such problem for Ω2. The case Ω(W ) = 0 is covered by the following
theorem.

Theorem 4.11. Let W be a kernel on a probability space S with at least
one measurable order. Then the following are equivalent.

(i) Ω(W ) = 0.
(ii) There exists a measurable order ≺ on S such that W is a.e. equal

to a monotone kernel on (S,≺).
(iii) W is equivalent to a monotone kernel on some ordered probability

space.
(iv) W is equivalent to a monotone kernel on [0, 1].
(v) ΓW is a monotone graph limit.

Example 4.12. Let S = [0, 1], but equipped with the σ-field F0 consisting
of the subsets of S that are either countable or have a countable complement.
For the measure µ we take the restriction of the Lebesgue measure to F .
(Thus, µ(A) = 0 if A is countable, and µ(A) = 1 otherwise.)

Let C be the family of countable subsets of S. The σ-field F × F is
contained in the σ-field{

A ⊆ S2 : ∃B1, B2 ∈ C such that A or S \A ⊆ (B1 × S) ∪ (S ×B2)
}
.

Thus, if ≺ is a measurable order, then there exist B1, B2 ∈ C such that
either

{(x, y) : x ≺ y} ⊆ (B1 × S) ∪ (S ×B2)

or

{(x, y) : x � y} ⊆ (B1 × S) ∪ (S ×B2);

in the latter case we have

{(x, y) : x ≺ y} ⊂ {(x, y) : x � y} ⊆ (B2 × S) ∪ (S ×B1).

However, in both cases we find that if we choose two distinct x, y /∈ (B1∪B2),
then neither x ≺ y nor y ≺ x holds, which is a contradiction. Thus (S,F , µ)
is a probability space supporting no measurable orders.

5. Proofs of Theorems 4.1–4.3

A downset in an ordered set (S,≺) is a subset A such that if x ≺ y and
y ∈ A, then x ∈ A. We begin with two lemmas concerning simple (and
certainly well-known) properties of downsets; for completeness we give full
proofs.
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Lemma 5.1. (i) If A and B are downsets in a linearly ordered set (S,≺),
then A ⊆ B or B ⊆ A.

(ii) If A and B are downsets in an ordered probability space (S,≺) with
µ(A) < µ(B), then A ⊂ B.

Proof. (i): Otherwise there would exist x ∈ A \ B and y ∈ B \ A, but then
neither x ≺ y, y ≺ x nor x = y is possible.

(ii): Now B ⊆ A is impossible, and the result follows by (i). �

Lemma 5.2. If (S,≺) is an ordered probability space without atoms, then
for every t ∈ [0, 1] there exists a downset D(t) with µ(D(t)) = t. Further-
more, D(t) ⊂ D(u) when t < u.

Proof. It suffices to prove the first statement; the second then follows by
Lemma 5.1(ii).

For x ∈ S, letDx be the downset {y ∈ S : y � x}. LetX = X0, X1, X2, . . .
be an i.i.d. sequence of random points in S (with the distribution µ). Since
there are no atoms, P(Xi = Xj) = 0 for all i 6= j. Thus, for every n,
X0, . . . , Xn are a.s. distinct, and by symmetry, all (n+1)! orderings of them
have the same probability 1/(n+ 1)!. Hence,

E
(
µ(DX)n

)
= P(X1, . . . , Xn ≺ X0) =

n!

(n+ 1)!
=

1

n+ 1
, n ≥ 1.

Consequently, µ(DX) has the same moments as the uniform distribution
U(0, 1), and thus µ(DX) ∼ U(0, 1).

It follows that the set {µ(Dx) : x ∈ S} is a dense subset of [0,1]. Hence,
for every t ∈ (0, 1], there exists a sequence (xi)i in S such that µ(Dxi) ↗ t
as i→∞. Then Dxi ⊂ Dxi+1 for i ≥ 1 by Lemma 5.1(ii), and we can take
D(t) :=

⋃∞
i=1Dxi , which is a downset with µ(D(t)) := limi→∞ µ(Dxi) = t.

For t = 0 we take D(0) := ∅. �

Given an integrable function W on S2 and A,B ⊆ S with µ(A), µ(B) > 0,
let

W (A,B) :=
1

µ(A)µ(B)

∫∫
A×B

W (x, y) dµ(x) dµ(y) (5.1)

denote the average of W over A×B. If P = {Ai} is a finite partition of S,
we say that a function on S2 is a P-step function if it is constant on each
set Ai × Aj . (A step function on S2 is a P-step function for some finite
partition P.) If W ∈ L1(S2), we let WP be the P-step function defined by

WP(x, y) = W (Ai, Aj) for x ∈ Ai, y ∈ Aj . (5.2)

If some Ai has measure 0, then WP is not defined everywhere, but it is
always defined a.e., which suffices for us. Note that WP is the conditional
expectation of W given the σ-field FP×FP , where FP is the finite σ-field on
S generated by P. It follows that ‖WP‖� ≤ ‖W‖� and ‖WP‖L1 ≤ ‖W‖L1 .
If W is a kernel, then WP is also a kernel. A kernel that is also a step
function, such as WP , is called a step kernel.
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Suppose now that (S, µ,≺) is an atomless ordered probability space, and
letD(t), 0 ≤ t ≤ 1, be an increasing family of downsets in S with µ(D(t)) = t
as in Lemma 5.2, with D(0) = ∅ and D(1) = S.

For n ≥ 1 and i = 1, . . . , n, define

Ai = Ani := D(i/n) \D((i− 1)/n). (5.3)

Then Pn := {Ani}i is a partition of S into n sets of the same measure 1/n.
Furthermore, if i < j, then Ani ≺ Anj , meaning that if x ∈ Ani and y ∈ Anj ,
then x ≺ y.

Given a kernel W on S, let w
(n)
ij := W (Ani, Anj) and let Wn be the step

kernel WPn ; thus Wn = w
(n)
ij on Ani × Anj . Define the step kernels W±n

by W+
n (x, y) := w

(n)
i+1,j+1 and W−n (x, y) := w

(n)
i−1,j−1 on Ani × Anj , where

w
(n)
ij = 0 if i or j = 0 and w

(n)
ij = 1 if i or j = n+ 1.

If W is monotone, then the matrix (w
(n)
ij )ij is increasing along each row

and column, and thus Wn is a monotone step kernel.

Lemma 5.3. Let W be a monotone kernel on an atomless ordered probability
space (S,≺). Then W−n ≤W ≤W+

n , W−n ≤Wn ≤W+
n and

‖Wn −W‖L1(S2) ≤ ‖W+
n −W−n ‖L1(S2) ≤ 4/n.

Proof. If (x, y) ∈ Ani × Anj and (x′, y′) ∈ An,i+1 × An,j+1 (with i, j ≤
n− 1), then W (x, y) ≤ W (x′, y′), and averaging over (x′, y′) it follows that

W (x, y) ≤ w
(n)
i+1,j+1 = W+

n (x, y). This inequality evidently holds also if i or

j = n. Hence W ≤W+
n . Similarly, W ≥W−n .

Averaging over each Ani × Anj , it follows that W−n ≤ Wn ≤ W+
n . (This

also follows directly from the monotonicity of w
(n)
ij .) Consequently, |Wn −

W | ≤W+
n −W−n , and thus

‖Wn −W‖L1(S2) ≤
∫∫
S2

(
W+
n −W−n

)
=

∫∫
S2
W+
n −

∫∫
S2
W−n

= n−2
n+1∑
i,j=2

w
(n)
ij − n

−2
n−1∑
i,j=0

w
(n)
ij ≤ 2n−2

n+1∑
i=n

n+1∑
j=2

w
(n)
ij

≤ 4/n. �

Trivially, for any kernel W we have ‖W‖� ≤ ‖W‖L1(S2). In general there
is no reverse inequality. However, if P is a partition of S into n sets and W
is a P-step function, then it is trivial to bound ‖W‖L1(S2) from above by
a polynomial times ‖W‖�. Indeed, one can write ‖W‖L1(S2) as a sum of n
integrals of the form in (2.1), in each taking g to be 1 on one part of P and
zero elsewhere, and choosing the sign of f on each part appropriately. In
fact, the correct polynomial order is

√
n, as shown in [14].
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Lemma 5.4. Let S be a probability space and P a partition of S into n sets.
If W is a P-step function, then ‖W‖L1(S2) ≤

√
2n‖W‖�. Furthermore, for

any W ∈ L1(S2) we have

‖WP‖L1(S2) ≤
√

2n‖W‖�. (5.4)

Proof. It suffices to prove the first statement; the second follows immedi-
ately, since WP is a P-step function, and ‖WP‖� ≤ ‖W‖�.

The statement and proof are (essentially) present in Remark 9.8 of [14].
Nevertheless, let us write out the proof.

In 1930, Littlewood [18] proved that there is a constant c ≤
√

3 such that
for any n-by-n array of real numbers aij we have

n∑
i=1

( n∑
j=1

|aij |2
)1/2

≤ c max
εi,ε′j=±1

n∑
i=1

n∑
j=1

εiε
′
jaij

= c max
εi=±1

n∑
j=1

∣∣∣∣ n∑
i=1

εiaij

∣∣∣∣ = c max
εj=±1

n∑
i=1

∣∣∣∣ n∑
j=1

εjaij

∣∣∣∣.
Later it was noticed (see [27], Ch. 5 and [1]) that this inequality of Little-
wood’s could be deduced from a special case of an inequality that had been
proved some years earlier by Khintchine [15]. In 1976, Szarek [24] proved
that the best constant in Littlewood’s inequality (in fact, in the correspond-
ing inequality of Khintchine) is

√
2. For some related results, see, e.g., [9],

[10], [11], [16] and [17].
As noted in [14], using the Cauchy–Schwartz inequality and Littlewood’s

inequality, with the constant c =
√

2 proved by Szarek, it follows that

n∑
i=1

n∑
j=1

|aij | ≤
n∑
i=1

n1/2
( n∑
j=1

|aij |2
)1/2

≤
√

2n max
εi,ε′j=±1

n∑
i=1

n∑
j=1

εiε
′
jaij . (5.5)

Returning to the proof of Lemma 5.4, let the parts of P be A1, . . . , An,
and set aij = µ(Ai)µ(Aj)Wij , where Wij is the value of W on Ai×Aj . Then
‖W‖L1(S2) =

∑
ij |aij |. In the definition (2.1) of the cut norm, restricting

our attention to functions f, g : S → {±1} that are constant on each Ai, we
find that

‖W‖� ≥ max
εi,ε′j=±1

n∑
i=1

n∑
j=1

εiε
′
jaij

(in fact, equality holds), so the result follows from (5.5). �

As noted in [14], it is easy to check that the factor
√

2n is best possi-
ble apart from the constant, for example by considering 0/1-valued kernels
associated to random graphs. For arbitrary monotone kernels, the lemmas
above allow us to bound the L1-norm in terms of the cut norm.
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Theorem 5.5. If W1 and W2 are monotone kernels on an ordered proba-
bility space (S,≺), then

‖W1 −W2‖L1(S2) ≤ 10‖W1 −W2‖2/3� . (5.6)

Proof. Suppose first that S is atomless. Let n ≥ 1 and consider the partition
Pn = {Ani}i defined in (5.3) and the step kernels Wk,n = (Wk)Pn , k = 1, 2.
Lemma 5.4 yields

‖W1,n −W2,n‖L1(S2) = ‖(W1 −W2)Pn‖L1(S2) ≤
√

2n‖W1 −W2‖�. (5.7)

By Lemma 5.3, we have ‖Wk −Wk,n‖L1(S2) ≤ 4/n, so by the triangle in-
equality

‖W1 −W2‖L1(S2) ≤ ‖W1,n −W2,n‖L1(S2) + 8/n ≤
√

2n‖W1 −W2‖� + 8/n.

The result for atomless S now follows by choosing n :=
⌈
‖W1−W2‖−2/3

�

⌉
≤

2‖W1 −W2‖−2/3
� . (In the case ‖W1 −W2‖� = 0, we let n→∞.)

If S has atoms, we consider the atomless probability space Ŝ := S × [0, 1]

with the lexicographic order. Let π : Ŝ → S be the projection onto the first

coordinate and let Ŵk := W π
k be the extension of Wk to Ŝ. The proof just

given applies to Ŝ, and thus

‖W1−W2‖L1(S2) = ‖Ŵ1−Ŵ2‖L1(Ŝ2)
≤ 10‖Ŵ1−Ŵ2‖2/3� = 10‖W1−W2‖2/3� .

�

Example 5.6. It is easy to see that (5.6) is tight apart from the con-
stant. Indeed, let S be the discrete probability space with n equiprobable
elements {0, 1, . . . , n − 1}, and choose two 0/1-valued kernels on S with

‖W1 −W2‖L1(S2) = Θ(1) and ‖W1 −W2‖� = Θ(n−1/2). For example, we
may take kernels corresponding to two independent instances of the ran-
dom graph G(n, 1/2). Let W be the function defined by W (i, j) = i + j.
Then it is easy to see that W ′i = (Wi + W )/(2n) is a monotone kernel for
each i. Since ‖W ′1 − W ′2‖L1(S2) = ‖W1 − W2‖L1(S2)/(2n) = Θ(n−1) and

‖W ′1 −W ′2‖� = ‖W1 −W2‖�/(2n) = Θ(n−3/2), this gives monotone kernels

W ′1 and W ′2 with ‖W ′1 −W ′2‖L1(S2) = Θ(‖W ′1 −W ′2‖
2/3
� ).

Our next aim is to prove the rather unsurprising fact that if we start from
two monotone kernels, then ‘rearranging’ one or both does not bring them
any closer in the L1 distance. First we need a preparatory lemma; this can
be viewed as a continuous, coupling version of the trivial observation that
if we wish to minimize

∑n
i=1 |ai − bi| (or, equivalently,

∑
(ai − bi)+) where

the values in each sequence are given but we are allowed to permute them,
then we should sort both sequences into ascending order.

Lemma 5.7. If h1, h2 : S → R are increasing integrable functions on an or-
dered probability space (S, µ,≺), and ϕ1, ϕ2 : S ′ → S are measure-preserving
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maps from a probability space (S ′, µ′) to (S, µ), then∫
S′

(hϕ1
1 − h

ϕ2
2 )+ dµ′ ≥

∫
S

(h1 − h2)+ dµ (5.8)

and ‖hϕ1
1 − h

ϕ2
2 ‖L1(S′) ≥ ‖h1 − h2‖L1(S).

Proof. For any integrable function on any measure space we have ‖h‖L1 =∫
(h)+ +

∫
(−h)+, so it suffices to prove the first statement.

For any function f and real number t, let Bf (t) := {x : f(x) ≤ t}. Fubini’s
theorem yields∫

S
(h1 − h2)+ dµ =

∫
S

∫ ∞
−∞

1{h1(x) > t ≥ h2(x)} dt dµ(x)

=

∫ ∞
−∞

∫
S

1{x ∈ Bh2(t) \Bh1(t)} dµ(x) dt

=

∫ ∞
−∞

µ
(
Bh2(t) \Bh1(t)

)
dt.

Similarly, ∫
S′

(hϕ1
1 − h

ϕ2
2 )+ dµ′ =

∫ ∞
−∞

µ′
(
Bhϕ22

(t) \Bhϕ11
(t)
)

dt.

Since the ϕi are measure preserving, we have µ′
(
Bhϕii

(t)
)

= µ′
(
ϕ−1
i (Bhi(t))

)
=

µ(Bhi(t)). Since h1 and h2 are increasing, Bh1(t) and Bh2(t) are downsets, so
by Lemma 5.1 they are nested. The result follows by noting that µ(X \Y ) ≥
(µ(X)− µ(Y ))+, with equality if X and Y are nested. �

Lemma 5.8. If W1 and W2 are monotone kernels on an ordered probability
space (S,≺), then δ1(W1,W2) = ‖W1 −W2‖L1(S2).

Proof. Suppose that ϕ1, ϕ2 are measure-preserving maps S ′ → S for some
probability space (S ′, µ′). Then, using Lemma 5.7 on each coordinate sepa-
rately,

‖Wϕ1
1 −W

ϕ2
2 ‖L1((S′)2)

=

∫
S′

∫
S′

∣∣W1(ϕ1(x), ϕ1(y))−W2(ϕ2(x), ϕ2(y))
∣∣dµ′(x) dµ′(y)

≥
∫
S′

∫
S

∣∣W1(t, ϕ1(y))−W2(t, ϕ2(y))
∣∣ dµ(t) dµ′(y)

≥
∫
S

∫
S

∣∣W1(t, u)−W2(t, u)
∣∣ dµ(t) dµ(u) = ‖W1 −W2‖L1(S2),

where for the last step we first apply Fubini’s Theorem to change the order
of integration. The result follows by the definition (2.4). �

With a little more work, we obtain a corresponding result for the cut
norm and cut metric. Unfortunately, we need to consider a variant of the
definition.
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If W is an integrable function on S2, let

‖W‖�,1 := sup
f,g:S→{0,1}

∣∣∣∫
S2
W (x, y)f(x)g(y) dµ(x) dµ(y)

∣∣∣, (5.9)

where the supremum is over all pairs of measurable 0/1-valued functions
on S. (We could equally well consider functions taking values in [0, 1]; the
value of the supremum does not change.) Expressing each of the functions
f, g in (2.2) as the difference of two 0/1-valued functions, we see that

‖W‖�,1 ≤ ‖W‖� ≤ 4‖W‖�,1, (5.10)

so for all questions concerning convergence, the norms are equivalent.
In analogy with (2.3), given Wi ∈ L1(S2

i ), i = 1, 2, let

δ�,1(W1,W2) := inf
ϕ1,ϕ2

‖Wϕ1
1 −W

ϕ2
2 ‖�,1, (5.11)

where, as in (2.3), the infimum is taken over all couplings (ϕ1, ϕ2) of S1 and
S2.

Lemma 5.9. If W1 and W2 are monotone kernels on an ordered probability
space (S,≺), then δ�,1(W1,W2) = ‖W1 −W2‖�,1.

Proof. Suppose that ϕ1, ϕ2 are measure-preserving maps S ′ → S for some
probability space S ′. It suffices to show that ‖Wϕ1

1 −Wϕ2
2 ‖�,1 ≥ ‖W1 −

W2‖�,1.
Given a probability space (S, µ), an integrable function W on S2, and

two functions f, g : S → {0, 1}, set

If,g(W ) :=

∫
S2
W (x, y)f(x)g(y) dµ(x) dµ(y),

so ‖W‖�,1 = supf,g |If,g(W )|. Swapping W1 and W2 if necessary, we may
assume that ‖W1−W2‖�,1 = supf,g If,g(W1−W2). Hence, fixing (arbitrary)
functions f, g : S → {0, 1}, it suffices to prove that

sup
f ′,g′

If ′,g′(W
ϕ1
1 −W

ϕ2
2 ) ≥ If,g(W1 −W2), (5.12)

since ‖Wϕ1
1 −W

ϕ2
2 ‖� is at least the left-hand side.

The first statement (5.8) of Lemma 5.7 says exactly that if h1 and h2 are
increasing, integrable functions on (S, µ,≺) and ϕ1, ϕ2 : (S ′, µ′) → (S, µ)
are measure-preserving, then

max
f ′:S′→{0,1}

∫
S′

(
h1(ϕ1(x))− h2(ϕ2(x))

)
f ′(x) dµ′(x)

≥ max
f :S→{0,1}

∫
S

(
h1(t)− h2(t)

)
f(t) dµ(t), (5.13)

where the maximization is over all {0, 1}-valued functions on the relevant
space; the corresponding supremum is clearly attained. We shall use this
inequality twice; in particular, we shall twice use the observation that a
specific f on the right is ‘beaten’ by some f ′ on the left.
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Let hi(t) =
∫
SWi(t, u)g(u) dµ(u). Then (since g(u) is non-negative), hi

is monotone. Applying (the observation following) (5.13) to these functions
and our function f , we find that there is some f ′ : S ′ → {0, 1} such that∫
S′

(∫
S

(W1(ϕ1(x), u)−W2(ϕ2(x), u)) g(u) dµ(u)

)
f ′(x) dµ′(x)

≥
∫
S

(∫
S

(W1(t, u)−W2(t, u)) g(u) dµ(u)

)
f(t) dµ(t) = If,g(W1 −W2).

Using Fubini’s Theorem, we may rewrite the left-hand side as

I :=

∫
S

(∫
S′

(
W1(ϕ1(x), u)−W2(ϕ2(x), u)

)
f ′(x) dµ′(x)

)
g(u) dµ(u).

Let h′i(u) =
∫
S′Wi(ϕi(x), u)f ′(x) dµ′(x). Then the h′i are again monotone,

so applying (5.13) to these functions and g gives a g′ : S ′ → {0, 1} such that∫
S′

(∫
S′

(
W1(ϕ1(x), ϕ1(y))−W2(ϕ2(x), ϕ2(y))

)
f ′(x) dµ′(x)

)
g′(y) dµ′(y) ≥ I.

But now the left-hand side is simply If ′,g′(W
ϕ1
1 −W

ϕ2
2 ), so we have If ′,g′(W

ϕ1
1 −

Wϕ2
2 ) ≥ I ≥ If,g(W1 −W2), establishing (5.12). �

In the light of (5.10), Lemma 5.9 has the following immediate corollary.

Lemma 5.10. If W1 and W2 are monotone kernels on an ordered probability
space (S,≺), then δ�(W1,W2) ≥ ‖W1 −W2‖�/4. �

It seems plausible that δ�(W1,W2) = ‖W1−W2‖� for monotone kernels,
but we do not have a proof (or indeed a strong feeling that this is actually
true).

We are now ready to bound the L1 distance with ‘rearrangement’ in terms
of the cut metric, when the kernels in question are monotone.

Lemma 5.11. If W1 and W2 are monotone kernels on an ordered probability
space (S, µ,≺), then

δ1(W1,W2) ≤ 26 δ�(W1,W2)2/3. (5.14)

Proof. Combining Lemma 5.8, Theorem 5.5 and Lemma 5.10, we have

δ1(W1,W2) = ‖W1 −W2‖L1(S2) ≤ 10‖W1 −W2‖2/3� ≤ 10(4δ�(W1,W2))2/3,
(5.15)

giving the result. �

Remark 5.12. Using Theorem 4.3 (which is proved below), Lemma 5.11
immediately extends to monotone kernels defined on possibly different or-
dered probability spaces.

Remark 5.13. The exponent 2/3 in (5.14) is best possible, as shown by the
kernels W ′1, W ′2 in Example 5.6. Indeed, for these kernels, the first inequality
in (5.15) is tight up to the constant. The second inequality is always tight

up to the constant 42/3 since, by definition, δ�(W1,W2) ≤ ‖W1 −W2‖�.
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We are now ready to prove the first few results in Section 4.

Proof of Theorem 4.1. The equivalence of the different metrics in (iii) fol-
lows from Theorem 5.5, Lemmas 5.8 and 5.10 (see (5.15)) and the inequality
δ�(W1,W2) ≤ δ1(W1,W2).

As a special case, for two kernels W1,W2 ∈ W↑(S),

δ�(W1,W2) = 0 ⇐⇒ ‖W1 −W2‖L1(S2) = 0 ⇐⇒ W1 = W2 a.e.,

which establishes (ii).
For (i), we show that W↑(S) is closed and totally bounded as a subset of

L1(S2). First, if Wν ∈ W↑(S) and Wν →W in L1(S2) as ν →∞, then there
is a subsequence that converges a.e. to W , and replacing W by the lim sup
of that subsequence, we see that W ∈ W↑(S). Hence, W↑(S) is closed.

Next, first assume that S is atomless. By Lemma 5.3, for every n there
is a partition Pn such that for every kernel W ∈ W↑(S), there is a Pn-step
kernel Wn with ‖W −Wn‖L1(S2) ≤ 4/n. If Fn is the finite set of Pn-step

kernels taking values in {0, 1
n ,

2
n , . . . , 1}, then there always exists a W ′n ∈ Fn

with ‖Wn −W ′n‖L1(S2) ≤ 1/n, and thus ‖W −W ′n‖L1(S2) ≤ 5/n. Since n is
arbitrary, this shows that W↑(S) is totally bounded.

If S has atoms, we consider as above Ŝ = S × [0, 1] and π : Ŝ → S; then

W 7→ W π is an isometric embedding of L1(S2) into L1(Ŝ2). This embeds

W↑(S) intoW↑(Ŝ), and since the latter is totally bounded,W↑(S) is too. �

Proof of Theorem 4.3. If S has atoms, we replace it, as above, by Ŝ = S ×
[0, 1]; thus we may assume that S is atomless. By Lemma 5.3, there is
a sequence of step kernels Wn that converges to W in L1(S2). Each Wn

is obviously equivalent to the monotone step kernel W ′n on [0, 1] defined

by W ′n = w
(n)
ij on Ii × Ij , where Ii := ((i − 1)/n, i/n]. We have ‖W ′n −

W ′m‖L1([0,1]2) = ‖Wn −Wm‖L1(S2), and thus (W ′n) is a Cauchy sequence in

L1([0, 1]2). Hence there is some W ′ such that W ′n → W ′ in L1([0, 1]2), and
Theorem 4.1(i) implies that W ′ ∈ W↑([0, 1]). For every n,

δ�(W,W ′) ≤ δ�(W,Wn) + δ�(Wn,W
′
n) + δ�(W ′n,W

′)

≤ 4

n
+ 0 + ‖W ′n −W ′‖L1([0,1]2).

Since W ′n → W ′ in L1([0, 1]2), it follows that δ�(W,W ′) = 0, so W ′ and W
are equivalent. �

6. Proofs of Theorems 4.5–4.11

In this section we prove the remaining results in Section 4, namely, The-
orem 4.5, Lemmas 4.6 and 4.7, and Theorem 4.11.

We start with a technical lemma, which is fairly obvious but nevertheless
deserves to be stated precisely.
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Lemma 6.1. Suppose that (S1, µ1,≺1) and (S2, µ2,≺2) are ordered prob-
ability spaces, and that S1 × S2 is equipped with a probability measure µ
such that the projection π1 onto S1 is measure-preserving. Let ≺∗1 be the
lexicographic order on S1 × S2. If W is a kernel on S1, then for j = 1, 2,

Ωj(W,≺1) = Ωj(W
π1 ,≺∗1).

In most applications, we take µ = µ1 × µ2.

Proof. Writing x ∈ S := S1 × S2 as x = (x1, x2), by (4.8), Ω1(W π1 ,≺∗1) is
equal to

sup
f,g

∫∫∫
x≺∗1y

(
W (x1, z1)−W (y1, z1)

)
f(x, y)g(z) dµ(x) dµ(y) dµ(z), (6.1)

where the supremum is over all f : S2 → [0, 1] and g : S → [0, 1].
Let F1 be the σ-field on S obtained by pulling back that on S1. Thus

the F1-measurable functions are all functions of the form h(x1, x2) = h1(x1)
for measurable h1 on S1. In (6.1) we may replace f and g by their condi-
tional expectations given F1×F1 and F1, respectively. Recalling that ≺∗1 is
lexicographic, and noting that the integrand vanishes when x1 = y1, (6.1)
reduces to

sup
f1,g1

∫∫∫
x1≺1y1

(
W (x1, z1)−W (y1, z1)

)
f1(x1, y1)g1(z1) dµ1(x1) dµ1(y1) dµ1(z1),

with the supremum over f1 : S2
1 → [0, 1] and g1 : S1 → [0, 1]. By (4.8), this

is simply Ω1(W,≺1).
(In the special case when µ = µ1 × µ2, the argument above is equivalent

to simply integrating over x2, y2, z2 in (6.1).)
For Ω2, the argument is similar, using (4.9) instead of (4.8). �

Proof of Theorem 4.5. Here it makes no difference whether we consider Ω1

or Ω2, so we simply write Ω.
If W = W ′ a.e. where W ′ is monotone, then we have Ω(W,≺, A) =

Ω(W ′,≺, A) = 0 for all A ⊆ S, and hence Ω(W,≺) = 0.
Conversely, suppose that Ω(W,≺) = 0. Let A,B,C,D ⊆ S have positive

measures, and suppose that A ≺ B. Since Ω(W,≺) = 0, we have Ω(W,≺
, C) = 0 and thus by (4.7) WC(x) ≤ WC(y) for a.e. (x, y) with x ≺ y, and
in particular for a.e. (x, y) ∈ A × B. Averaging over all such (x, y) yields
W (A,C) ≤ W (B,C). Similarly, by symmetry, if C ≺ D, then W (B,C) ≤
W (B,D). Consequently, letting A � B mean A ≺ B or A = B,

W (A,C) ≤W (B,D) if A � B, C � D. (6.2)

Assuming still that A,B,C,D ⊆ S have positive measures, suppose that
A ≺ B and C ≺ D. If A1 ⊆ A and C1 ⊆ C, then (6.2), applied to
A1, B,C1, D, yields∫∫

A1×C1

W ≤ (µ× µ)(A1 × C1)W (B,D).
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Since every measurable subset of A× C can be approximated (in measure)
by a finite disjoint union of rectangle sets Ai × Ci, and W is bounded, it
follows that∫∫

E
W ≤ (µ× µ)(E)W (B,D) for every E ⊆ A× C.

Taking E := {(x, y) ∈ A×C : W (x, y) > W (B,D)}, we obtain µ×µ(E) = 0,
and thus

W (x, y) ≤W (B,D) a.e. on A× C when A ≺ B and C ≺ D. (6.3)

Similarly, by reversing the inequalities,

W (x, y) ≥W (B,D) a.e. on A× C when A � B and C � D. (6.4)

Suppose now that S is atomless, and consider, for a given n, the partition
P = (Ai)

n
1 defined in (5.3). By (6.2), Wn := WP is a monotone kernel.

By (6.3) and (6.4), W−n (x, y) ≤ W (x, y) ≤ W+
n (x, y) a.e. on each Ai × Aj ,

and thus a.e. on S2. Further, by averaging this or directly from (6.2), also
W−n ≤Wn ≤W+

n . It follows as in the proof of Lemma 5.3 that

‖Wn −W‖L1(S2) ≤ 4/n. (6.5)

Now consider the sequence W2k , k ≥ 1. By (6.5) and the Borel–Cantelli
lemma, or by the martingale convergence theorem, W2k →W a.e. as k →∞.
Hence, if we define W ′ := lim supk→∞W2k , then W = W ′ a.e. and W ′ is a
monotone kernel. This completes the proof when S is atomless.

If S has atoms, we may either modify the argument above, or use our
standard trick of replacing S by S × [0, 1], using Lemma 6.1; this gives a
monotone kernel W ′ on S × [0, 1] with W ′((x, a), (y, b)) = W (x, y) for a.e.
(x, a, y, b) ∈ (S × [0, 1])2, and thus W is a.e. equal to the monotone kernel

W ′′ on S defined by W ′′(x, y) =
∫ 1

0

∫ 1
0 W

′((x, a), (y, b)) dadb. �

Proof of Lemma 4.6. Let Ii := ((i − 1)/n, i/n] and for A ⊆ [0, 1], set Ai :=
A ∩ Ii. For j = 1, 2, by (4.2) and (4.3), Ωj(WG, <,A) depends only on the
numbers ai := µ(Ai) ∈ [0, 1/n]; moreover, since the function u 7→ u+ is
convex, Ωj(WG, <,A) is a convex function of (a1, . . . , an); hence it attains
its maximum when each ai is either 0 or 1/n. In other words, it suffices to
consider A =

⋃
i∈B Ii for some B ⊆ V . In this case, it is easily seen that

Ωj(WG, <,A) = Ωj(G,≺, B), noting that
∫
AWG(x, z) dz =

∫
AWG(y, z) dz

if x, y ∈ Ii for some i. The result follows by taking the maximum over
B ⊆ V . �

Lemma 6.2. Let (S,≺) be an ordered probability space, and let j ∈ {1, 2}.
(i) If W1,W2 ∈ L1(S2), then

Ωj(W1 +W2,≺, A) ≤ Ωj(W1,≺, A) + Ωj(W2,≺, A),

Ωj(W1 +W2,≺) ≤ Ωj(W1,≺) + Ωj(W2,≺).

(ii) If W ∈ L1(S2), then Ωj(W,≺) ≤ j‖W‖�.
(iii) If W1,W2 ∈ L1(S2), then

∣∣Ωj(W1,≺)−Ωj(W2,≺)
∣∣ ≤ j‖W1−W2‖�.
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Proof. (i): An immediate consequence of the inequality (a+ b)+ ≤ a+ + b+
for real a and b, and the definitions (4.2)–(4.4).

(ii): By (4.7) and Fubini’s theorem,

Ω1(W,≺, A) ≤
∫∫

x≺y

(∣∣WA(x)
∣∣+
∣∣WA(y)

∣∣)dµ(x) dµ(y)

=

∫
S
µ{y : y � x}

∣∣WA(x)
∣∣dµ(x) +

∫
S
µ{x : x ≺ y}

∣∣WA(y)
∣∣dµ(y)

=

∫
S
µ{z : z 6= x}

∣∣WA(x)
∣∣dµ(x) ≤

∫
S

∣∣WA(x)
∣∣ dµ(x)

=

∫∫
S2
W (x, y)f(x)g(y) dµ(x) dµ(y) ≤ ‖W‖�,

where f(x) := sign(WA(x)) and g(y) := 1A(y); the final inequality follows
from the definition (2.1) of the cut norm. Now apply (4.3), if j = 2, and
take the supremum over A.

(iii): A simple consequence of (i), applied to the sums W1 + (W2 −W1)
and W2 + (W1 −W2), and (ii). �

The function WS = WS(x) :=
∫
SW (x, y) dµ(y) is known as the marginal

of W . (There is also a second marginal, obtained by integrating over the first
variable. Here we consider only symmetric functions, so the two marginals
coincide.) It is well known that the marginal of a kernel is the natural
analogue of the degree sequence of a graph, see e.g. [7]. We have the following
analogue of Lemma 3.4.

Lemma 6.3. Let < be a (measurable) order on S and assume that x <
y =⇒ WS(x) ≤WS(y). Then Ω2(W,<) = Ω2(W ).

Proof. Follow the proof of Lemma 3.4, replacing sums by integrals and de-
grees by the values of WS . �

Remark 6.4. For Ω1, it follows by (4.6) that Ω1(W,<) ≤ 2Ω1(W ). The
factor 2 here is best possible, just as in Corollary 3.5. This can be seen by
taking W = WG where G is the complete bipartite graph Km,m considered
in Example 3.7.

Corollary 6.5. Let S be a probability space and W a kernel on S. Then
Ω2(W ) = 0 if and only if there exists an order ≺ on S such that Ω2(W,≺
) = 0.

Proof. The ‘if’ direction is clear. Thus, assume Ω2(W ) = 0. Then there
exists a measurable order ≺0 on S. Define an order ≺ on S by

x ≺ y if WS(x) < WS(y) or (WS(x) = WS(y) and x ≺0 y). (6.6)

This is a measurable order to which Lemma 6.3 applies, so Ω2(W,≺) =
Ω2(W ) = 0. �

Of course, the same result for Ω1 follows by (4.6).
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Proof of Lemma 4.7. Recall that WG = WG,≺ depends on a labelling of the
vertices of G, via the associated order ≺ on V (G). However, Ω2(WG,≺) is
independent of the order ≺.

For any order ≺ on V = V (G), Lemma 4.6 shows that, using ≺ to define
WG, and writing < for the standard order on [0, 1], we have Ω2(WG) ≤
Ω2(WG, <) = Ω2(G,≺). Thus Ω2(WG) ≤ Ω2(G).

Conversely, let≺ be an order on V such that v ≺ w =⇒ d(v) ≤ d(w), and
use this order to define WG. Then WG satisfies the assumption of Lemma 6.3
with the standard order < on [0, 1], and thus Ω2(WG, <) = Ω2(WG). Hence,
by Lemma 4.6 again,

Ω2(G) ≤ Ω2(G,≺) = Ω2(WG, <) = Ω2(WG). �

Our next lemma shows that Ω2 is continuous with respect to the cut
metric.

Lemma 6.6. If W1 and W2 are kernels on probability spaces S1 and S2, and
there exists a measurable order on S1, then Ω2(W1) ≤ Ω2(W2)+2δ�(W1,W2).

Proof. Recall that the set of step functions is dense in L1(S2
1 ). Hence, for

any ε > 0, there exists a step kernel W ′1 on S1 with ‖W1 −W ′1‖� ≤ ‖W1 −
W ′1‖L1(S21 ) < ε. By Lemma 6.2(iii), replacing W1 by W ′1 changes Ω2(W1) by

less than 2ε, and the same holds for δ�(W1,W2). Hence, it suffices to prove
the result when W1 is a step kernel.

Consequently, assume that W1 is a P-step kernel, for a finite partition
P = (Ai)i of S1. Then its marginal W1,S is constant on each Ai, and we
may assume that A1, A2, . . . are labelled such that W1,S(x) ≤ W1,S(y) if
x ∈ Ai, y ∈ Aj with i < j. Let ≺0 be a measurable order on S1, and define
≺1 by

x ≺1 y
′ if x ∈ Ai and y ∈ Aj with (i < j or (i = j and x ≺0 y)).

Let ≺2 be any measurable order on S2. Consider a coupling (π1, π2)
defined on (S1 × S2, µ) for some µ. Let ≺∗1 be the lexicographic order on
S1 × S2, and let ≺∗2 be the lexicographic order with the factors in opposite
order. By Lemma 6.1,

Ω2(Wk,≺k) = Ω2(W πk
k ,≺∗k), k = 1, 2. (6.7)

Moreover, Lemma 6.3 applies to ≺∗1 and W π1
1 and shows that

Ω2(W π1
1 ,≺∗1) = Ω2(W π1

1 ) ≤ Ω2(W π1
1 ,≺∗2), (6.8)

and by Lemma 6.2(iii),

Ω2(W π1
1 ,≺∗2) ≤ Ω2(W π2

2 ,≺∗2) + 2‖W π1
1 −W

π2
2 ‖�. (6.9)

Combining (6.7)–(6.9), we find

Ω2(W1,≺1) ≤ Ω2(W2,≺2) + 2‖W π1
1 −W

π2
2 ‖�,

and the result follows by taking the infimum over all couplings such (π1, π2),
i.e., over all probability measures µ with the right marginals, and then over
all orders ≺2. �
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Corollary 6.7. If W1 and W2 are equivalent kernels on probability spaces S1

and S2 that have measurable orders, then Ω2(W1) = Ω2(W2), and 1
2Ω1(W2) ≤

Ω1(W1) ≤ 2Ω1(W2).

Proof. We have δ�(W1,W2) = 0; the first statement follows by Lemma 6.6.
To deduce the second, use (4.6). �

Remark 6.8. The equivalent of Lemma 6.6 for Ω1 does not hold, and
the inequalities 1

2Ω1(W2) ≤ Ω1(W1) ≤ 2Ω1(W2) in Corollary 6.7 are best

possible. In fact, if Wm := W V
Km,m

is the kernel defined in Remark 4.9 for

the bipartite graph Km,m, then Wm is equivalent to WKm,m (defined on
[0, 1]), but WKm,m is the same for all m. Hence, all Wm are equivalent.
Nevertheless, Remark 4.9 and (3.20) show that Ω1(Wm) = Ω1(Km,m) =
(1 +m−2)/16 if m is odd, while Ω1(Wm) = Ω1(Km,m) = 1/16 if m is even.
In particular, Ω1(W1) = 1/8 = 2Ω1(W2).

On the other hand, for kernels W1,W2 on the standard space S = [0, 1]
(and thus for kernels on any atomless Borel spaces), it follows from (2.5)
and Lemma 6.2(iii) that

∣∣Ω1(W1) − Ω1(W2)
∣∣ ≤ δ�(W1,W2), since clearly

Ω1(Wϕ
2 ) = Ω1(W2) for a measure-preserving bijection ϕ. In particular,

Ω1(W1) = Ω1(W2) for any two equivalent kernels on [0, 1]. Hence the unruly
behaviour of Ω1 is caused by the atoms.

Proof of Theorem 4.11. (i) =⇒ (ii). We use Ω2. If Ω2(W ) = 0, then by
Corollary 6.5 there exists an order ≺ on S such that Ω2(W,≺) = 0, and
Theorem 4.5 shows that W is a.e. equal to a monotone kernel on (S,≺).

(ii) =⇒ (iii). Trivial.
(iii) =⇒ (i). If W is equivalent to a monotone kernel W ′ on some proba-

bility space S ′, then δ�(W,W ′) = 0 and Ω2(W ′) = 0, and thus Ω2(W ) = 0
by Lemma 6.6.

(iii)⇐⇒ (iv) ⇐⇒ (v). By Theorem 4.3. �

7. Proof of Theorems 1.5–1.6

After the preparation above, the proofs are simple.

Proof of Theorem 1.6. Let W be a kernel on [0, 1] representing Γ, i.e., Γ =
ΓW and Gν →W . Since Gν →W , we have δ�(WGν ,W )→ 0.

Suppose first that Γ ∈ U↑; we then may choose W ∈ W↑, and thus
Ω2(W,<) = 0 so Ω2(W ) = 0. Then, by Lemmas 4.7 and 6.6,

Ω2(Gν) = Ω2(WGν ) ≤ Ω2(W ) + 2δ�(WGν ,W ) = 2δ�(WGν ,W )→ 0.

Hence Ω2(Gν)→ 0, and by Lemma 3.1, Ω0(Gν)→ 0 as well.
Conversely, suppose that Ω0(Gν)→ 0, and thus by Lemma 3.1 Ω2(Gν)→

0. Then, by Lemmas 6.6 and 4.7 again,

Ω2(W ) ≤ Ω2(WGν ) + 2δ�(WGν ,W ) = Ω2(Gν) + 2δ�(WGν ,W )→ 0,

and thus Ω2(W ) = 0. Hence, Γ = ΓW ∈ U↑ by Theorem 4.11. �
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Proof of Theorem 1.5. If Ω0(Gν)→ 0, then the same holds for every subse-
quence. Hence Theorem 1.6 shows that every convergent subsequence has a
limit that is in U↑, which by definition says that (Gν) is quasimonotone.

Conversely, suppose that (Gν) is quasimonotone but Ω0(Gν) 6→ 0. We
can then find ε > 0 and a subsequence along which Ω0(Gν) > ε. By re-
stricting to a suitable subsubsequence, we may further assume that (Gν)
converges to some limit Γ. By the assumption that (Gν) is quasimonotone,
Γ ∈ U↑ and thus by Theorem 1.6, Ω0(Gν)→ 0 along the subsubsequence, a
contradiction. �

8. Quasithreshold graphs

In the definition (1.5) of Ω0(G,≺), we take the maximum over A of the
sum in (1.3). If instead we take the maximum inside the sum, then we
obtain the functional

Ω∗0(G,≺) :=
1

n3

∑
v≺w

∣∣N(v) \ (N(w) ∪ {w})
∣∣, (8.1)

since maxA
(
e(v,A \ {w}) − e(w,A \ {v})

)
+

is obtained by taking (for ex-

ample) A = N(v) \N(w). From Ω1, we similarly obtain the slightly simpler
functional

Ω∗1(G,≺) :=
1

n3

∑
v≺w

∣∣N(v) \N(w)
∣∣ = Ω∗0(G,≺) +O(1/n). (8.2)

For a kernel W on an ordered probability space (S, µ,≺), taking the
supremum over A inside the double integral in (4.2), we define

Ω∗(W,≺) :=

∫∫∫
x≺y

(
W (x, z)−W (y, z)

)
+

dµ(x) dµ(y) dµ(z). (8.3)

(Cf. (4.8).) For any graph G with an ordering ≺ of the vertices, correspond-
ing to Lemma 4.6 we have

Ω∗(WG, <) = Ω∗1(G,≺). (8.4)

Obviously, Ω∗0(G,≺) ≥ Ω0(G,≺), and similarly for Ω∗1 and Ω∗.
Let

Ω∗j (G) := min
≺

Ω∗j (G,≺) (j = 0, 1), Ω∗(W ) := inf
≺

Ω∗(W,≺). (8.5)

For kernels, we can use Ω∗ instead of Ω to characterize monotonicity, cf.
Theorems 4.5 and 4.11.

Theorem 8.1. Let (S, µ,≺) be an ordered probability space and W a kernel
on (S, µ). Then Ω∗(W,≺) = 0 if and only if W is a.e. equal to a monotone
kernel.

Proof. If W is a.e. equal to a monotone kernel, then W (x, z) ≤ W (y, z) for
a.e. (x, y, z) with x ≺ y, and thus Ω∗(W,≺) = 0. The converse follows by
Theorem 4.5, since Ω1(W,≺) ≤ Ω∗(W,≺). �
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Theorem 8.2. Let W be a kernel on a probability space S with at least
one measurable order. Then Ω∗(W ) = 0 if and only if W is a.e. equal to a
monotone kernel on (S,≺) for some order ≺ on S.

Theorem 4.11 gives further equivalent conditions, for example that ΓW is
a monotone graph limit.

Proof. If Ω∗(W ) = 0, then Ω1(W ) = 0, since Ω1(W ) ≤ Ω∗(W ). Hence the
conclusion follows by Theorem 4.11.

Conversely, if W is a.e. equal to a monotone kernel om (S,≺), then
Ω∗(W ) ≤ Ω∗(W,≺) = 0 by Theorem 8.1. �

For a sequence of graphs, we cannot replace Ω0 by Ω∗0 in Theorem 1.5.
In fact, we have the following result, which shows that Ω∗0(Gν) → 0 char-
acterizes threshold graph limits rather than monotone graph limits. (Recall
that threshold graph limits are the monotone graph limits that correspond
to 0/1-valued kernels; see Remark 1.7.)

As usual, we define the edit distance de(G,G
′) of two graphs on the same

vertex set V (G) = V (G′) by de(G,G
′) = |E(G)4E(G′)|. If A is a class of

graphs, then

de(G,A) := inf
{
de(G,G

′) : G′ ∈ A and V (G′) = V (G)
}
. (8.6)

Theorem 8.3. Let (Gν) be a sequence of graphs with |Gν | → ∞. Then the
following are equivalent.

(i) Ω∗0(Gν)→ 0.
(ii) Every convergent subsequence of (Gν) has a limit that is a threshold

graph limit.
(iii) de(Gν , T ) = o

(
|Gν |2

)
, where T is the class of threshold graphs.

(iv) There exists a sequence of threshold graphs G′ν with V (G′ν) = V (Gν)
and

∣∣E(Gν)4E(G′ν)
∣∣ = o

(
|Gν |2

)
.

(v) There exists a sequence of threshold graphs G′ν with V (G′ν) = V (Gν)
and ‖WGν −WG′ν‖L1(S2) = o(1).

(vi) There exists a sequence of threshold graphs G′ν with V (G′ν) = V (Gν)
and ‖WGν −WG′ν‖� = o(1).

We say that a sequence (Gν) of graphs with |Gν | → ∞ is quasithreshold
if it satisfies one, and thus all, of the conditions in Theorem 8.3.

As a special case of the equivalence (i) ⇐⇒ (ii), we see that if Gν → Γ,
then Γ is a threshold graph limit if and only if Ω∗0(Gν)→ 0; cf. Theorem 1.6.

The proof of Theorem 8.3 is simpler than the proof of Theorem 1.5, but
we will nevertheless need some other results first. One complication is that
there is no analogue of Lemma 6.2(iii); as is shown by the following example,
Ω∗(W,≺) is not continuous for the cut norm.

Example 8.4. Let W = 1/2 be constant on [0, 1]2, and let (Gn) be a
sequence of graphs with |Gn| = n and Gn → W , i.e., (Gn) is a sequence of
quasirandom graphs. (E.g., let Gn be random graphs G(n, 1/2).) Then, for
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every ε > 0,
∣∣|N(v) \N(w)|−n/4

∣∣ ≤ εn for all but o(n2) pairs (v, w) ∈ V 2
Gn

,

and thus for any order ≺,
∣∣n3Ω∗1(Gn,≺)−n3/8

∣∣ ≤ εn3 +o(n3), so
∣∣Ω∗1(Gn,≺

)− 1/8
∣∣ ≤ ε+ o(1). Since ε is arbitrary, it follows that

Ω∗(WGn) = Ω∗1(Gn)→ 1
8 6= 0 = Ω∗(W ),

although ‖WGn −W‖� → 0.

Ω∗ is obviously continuous in the stronger L1 norm. It is possible to prove
Theorem 8.3 using this fact and Lemma 8.13 below, but it is simpler to use
another extension of Ω∗1 to kernels.

Definition. If (S, µ) is an atomless probability space and ≺ an order on S,
let

Ω̃∗(W,≺) :=

∫∫∫
x≺y

W (x, z)
(
1−W (y, z)

)
dµ(x) dµ(y) dµ(z). (8.7)

If S has atoms, we add half the integral over x = y (and any z), i.e., we add
1
2

∫∫
W (x, z)

(
1−W (x, z)

)
µ{x}dµ(x) dµ(z).

The definition in the case that S has atoms is such that Ω̃∗(W,≺) =

Ω̃∗(Ŵ , ≺̂), where Ŵ is the extension of W to the atomless probability space

Ŝ := S × [0, 1] and ≺̂ is the lexicographic order on Ŝ.

Note that if W is 0/1-valued, then Ω̃∗(W,≺) = Ω∗(W,≺). In particular,
for any graph with an order ≺ on V = V (G), by (8.4),

Ω∗1(G,≺) = Ω∗(WG, <) = Ω̃∗(WG, <). (8.8)

For our purposes Ω̃∗ is better than Ω∗ in two different ways. The first

is that, unlike Ω∗, Ω̃∗ is continuous with respect to the cut norm. Before
proving this, we recall a basic property of the cut norm. (See e.g. [14] for a
proof.)

Lemma 8.5. If W ∈ L1(S2), then ‖WS‖L1(S) ≤ ‖W‖�. �

Recall that, by definition, a kernel W takes values in [0, 1].

Lemma 8.6. Let (S,≺) be an ordered probability space. If W1 and W2 are

kernels on S, then
∣∣Ω̃∗(W1,≺)− Ω̃∗(W2,≺)

∣∣ ≤ 2‖W1 −W2‖�.
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Proof. We may assume that S is atomless. (Otherwise we consider S×[0, 1].)
In this case, writing Ux for {y : y � x}, we have the alternative formula

Ω̃∗(W,≺) =

∫∫
W (x, z)µ(Ux) dµ(x) dµ(z)

−
∫∫∫

x≺y
W (x, z)W (y, z) dµ(x) dµ(y) dµ(z)

=

∫∫
µ(Ux)W (x, z) dµ(x) dµ(z)

− 1

2

∫∫∫
W (x, z)W (y, z) dµ(x) dµ(y) dµ(z)

=

∫∫
µ(Ux)W (x, z) dµ(x) dµ(z)− 1

2

∫
WS(z)2 dµ(z). (8.9)

By the definition (2.1) of the cut norm,∣∣∣∣∫∫ µ(Ux)
(
W1(x, z)−W2(x, z)

)
dµ(x) dµ(z)

∣∣∣∣ ≤ ‖W1 −W2‖�.

Recalling that |Wj | ≤ 1 and using Lemma 8.5 on W1 −W2,∣∣∣∣∫
S

(
W1,S(z)2 −W2,S(z)2

)
dµ(z)

∣∣∣∣
=

∣∣∣∣∫
S

(
W1,S(z)−W2,S(z)

)(
W1,S(z) +W2,S(z)

)
dµ(z)

∣∣∣∣
≤ 2‖W1,S(z)−W2,S(z)‖L1(S) ≤ 2‖W1 −W2‖�.

Applying (8.9) to W1 and W2, the result follows. �

Theorem 8.7. Let (S,≺) be an ordered probability space and W a kernel

on (S,≺). Then Ω̃∗(W,≺) = 0 if and only if W is a.e. equal to a 0/1-valued
monotone kernel.

Proof. As usual, we may assume for simplicity that S is atomless. Suppose

first Ω̃∗(W,≺) = 0. For a > 0, let Ea := {(x, y) ∈ S2 : a ≤W (x, y) ≤ 1−a},
and, for z ∈ S, let Ea(z) := {x ∈ S : (x, z) ∈ Ea} be the corresponding
section.

If x, y ∈ Ea(z), then W (x, z)(1−W (y, z)) ≥ a2, and thus, for each z,∫∫
x≺y

W (x, z)
(
1−W (y, z)

)
dµ(x) dµ(y)

≥ a2µ× µ
{

(x, y) ∈ Ea(z)2 : x ≺ y
}

=
1

2
a2µ(Ea(z))

2.

Hence,

0 = Ω̃∗(W,≺) ≥
∫
S

1

2
a2µ(Ea(z))

2 dµ(z),

and thus µ(Ea(z)) = 0 for a.e. z, so µ × µ(Ea) =
∫
S µ(Ea(z)) dµ(z) = 0.

Consequently, Ea is a null set for every a > 0. Hence, W (x, y) ∈ {0, 1}
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a.e. Thus W is a.e. 0/1-valued, which implies that Ω∗(W,≺) = Ω̃∗(W,≺
) = 0; hence Theorem 8.1 shows that W is a.e. equal to a monotone kernel
W ′. Finally, W ′ is a.e. 0/1-valued, and thus a.e. equal to the 0/1-valued
monotone kernel 1{W ′ > 0}.

The converse is obvious. �

We also have an analogue of Lemma 6.3. To prove this, we shall need the
following ‘rearrangement’ inequality.

Lemma 8.8. Let ≺ and < be two orders on an atomless probability space
S, and let f be a bounded function on S. If x < y =⇒ f(x) ≤ f(y), then∫∫
x≺y f(x) dµ(x) dµ(y) ≥

∫∫
x<y f(x) dµ(x) dµ(y).

Proof. Consider first one arbitrary order ≺. Let Dy := {x : x ≺ y} and set
ϕ(y) := µ(Dy), and let D(t) be as in Lemma 5.2. Then Dy and D(ϕ(y)) are
two downsets with the same measure, and thus they differ only by a null
set, cf. Lemma 5.1.

Let F (y) :=
∫
x≺y f(x) dµ(x) and define α(t) :=

∫
D(t) f(x) dµ(x). Then

F (y) =

∫
Dy

f =

∫
D(ϕ(y))

f = α(ϕ(y)).

It was noted in the proof of Lemma 5.2 that if X has distribution µ, then
ϕ(X) has distribution U(0, 1). Equivalently, the function ϕ : S → [0, 1]
maps µ to the uniform measure on [0,1]. Hence,∫∫

x≺y
f(x) dµ(x) dµ(y) =

∫
S
F (y) dµ(y) =

∫
S
α(ϕ(y)) dµ(y) =

∫ 1

0
α(t) dt.

Now write α = α≺ and compare α≺(t) and α<(t). Both are integrals of
f over sets of measure t, and for α< the set is such that if x is in the set
and y is not, then x < y and thus f(x) ≤ f(y). It follows easily that
α<(t) is the minimum of

∫
E f dµ over all set E of measure t, and thus in

particular α<(t) ≤ α≺(t) for any other order ≺. Consequently,
∫ 1

0 α<(t) dt ≤∫ 1
0 α≺(t) dt, and the result follows. �

Lemma 8.9. Let < be a (measurable) order on S and assume that x <

y =⇒ WS(x) ≤WS(y). Then, Ω̃∗(W,<) = Ω̃∗(W ).

Proof. We may again assume for simplicity that S is atomless. Let ≺ be
any order on S. We again use (8.9), which we write as

Ω̃∗(W,≺) =

∫
S
µ(Ux)WS(x) dµ(x)− 1

2

∫
S
WS(x)2 dµ(x).

The second integral does not depend on ≺. Moreover, the first integral
equals

∫∫
x≺yWS(x), which by Lemma 8.8 is minimized by taking ≺ equal

to <. Hence Ω̃∗(W,≺) ≥ Ω̃∗(W,<), and the result follows. �
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Remark 8.10. It follows by (8.8) that the corresponding result holds for
graphs and Ω∗1: i.e., ordering the vertices by their degrees achieves the min-
imum min≺Ω∗1(G,≺).

Our next result shows that Ω̃∗ characterizes kernels that yield threshold
graph limits. Note the parallel and contrast to Theorems 4.11 and 8.2.

Theorem 8.11. Let W be a kernel on a probability space S with at least
one measurable order. Then the following are equivalent.

(i) Ω̃∗(W ) = 0.
(ii) There exists an order ≺ on S such that W is a.e. equal to a 0/1-

valued monotone kernel on (S,≺).
(iii) W is equivalent to a 0/1-valued monotone kernel on some ordered

probability space.
(iv) W is equivalent to a 0/1-valued monotone kernel on [0, 1].
(v) ΓW is a threshold graph limit.

Proof. (i) =⇒ (ii). There exists a measurable order ≺0 on S. As in the proof
of Corollary 6.5, we define an order ≺ on S by (6.6). Lemma 8.9 applies

and yields Ω̃∗(W,≺) = Ω̃∗(W ) = 0, and the result follows by Theorem 8.7.

(ii) =⇒ (i). Theorem 8.7 yields Ω̃∗(W,≺) = 0 and thus Ω̃∗(W ) ≤ Ω̃∗(W,≺
) = 0.

(ii)⇐⇒ (iii)⇐⇒ (iv). Every kernel equivalent to an a.e. 0/1-valued ker-
nel is itself a.e. 0/1-valued, see Remark 1.7 and [14]. Furthermore, arguing
as in the proof of Theorem 8.7, a monotone kernel W that is a.e. 0/1-
valued is a.e. equal to the 0/1-valued monotone kernel 1{W > 0}. Hence,
(ii)⇐⇒ (iii)⇐⇒ (iv) follows from the corresponding equivalences in Theo-
rem 4.11.

(iv)⇐⇒ (v). As noted in the introduction, this was proved by Diaconis,
Holmes and Janson [7]. �

We need some more preparation before the proof of Theorem 8.3.

Lemma 8.12. Let W1 and W2 be kernels on a probability space S with W1

0/1-valued, and let W ′1 be a 0/1-valued step kernel with n steps. Then

‖W1 −W2‖L1(S2) ≤ n2‖W1 −W2‖� + 2‖W1 −W ′1‖L1(S2).

Proof. Let {Ai}n1 be a partition of S such that W ′1 is constant 0 or 1 on each
Ai ×Aj .

If W ′1 = 0 on Ai ×Aj , then∫∫
Ai×Aj

|W ′1 −W2| =
∫∫

Ai×Aj
W2 ≤ ‖W1 −W2‖� +

∫∫
Ai×Aj

W1

= ‖W1 −W2‖� +

∫∫
Ai×Aj

|W1 −W ′1|.

If W ′1 = 1 on Ai ×Aj , then
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Ai×Aj

|W ′1 −W2| =
∫∫

Ai×Aj
(1−W2) ≤ ‖W1 −W2‖� +

∫∫
Ai×Aj

(1−W1)

= ‖W1 −W2‖� +

∫∫
Ai×Aj

|W1 −W ′1|.

Thus, in both cases
∫∫
Ai×Aj |W

′
1−W2| ≤

∫∫
Ai×Aj |W1−W ′1|+‖W1−W2‖�,

and summing over all i and j yields

‖W ′1 −W2‖L1 ≤ ‖W1 −W ′1‖L1 + n2‖W1 −W2‖�.

The result follows by ‖W1 −W2‖L1 ≤ ‖W1 −W ′1‖L1 + ‖W ′1 −W2‖L1 . �

Lemma 8.13. Let W and W1,W2, . . . be kernels on a probability space S,
and assume that W is 0/1-valued. Then ‖Wn −W‖� → 0 as n→∞ if and
only if ‖Wn −W‖L1(S2) → 0.

Proof. Assume ‖Wn − W‖� → 0. W is the indicator function 1A of a
measurable set A ⊆ S2. Any such set can be approximated in measure by a
finite disjoint union of rectangle sets

⋃
iAi × Bi, and we may assume that

this set is symmetric since A is; in other words, given any ε > 0, there
exists a 0/1-valued step kernel W ′ such that ‖W − W ′‖L1 < ε. Let the
corresponding partition have N = N(ε) parts. Lemma 8.12 then yields

‖W −Wn‖L1 ≤ N2‖W −Wn‖� + 2ε→ 2ε

as n→∞. Hence, lim supn→∞ ‖W −Wn‖L1 = 0.
The converse is obvious. �

Proof of Theorem 8.3. Note first that (i) is equivalent to Ω∗1(Gν) → 0 by

(8.2), and that Ω∗1(Gν) = Ω̃∗(WGν ) by (8.8).
(i) =⇒ (ii). Assume (i) and consider a subsequence that converges. We

thus assume that there exists a graph limit Γ with Gν → Γ. Let W be a
kernel on [0,1] representing Γ.

We have Gν → W , and thus δ�(WGν ,W ) → 0. Moreover, by [5, Lemma
5.3] we may choose the labelling of the vertices in Gν such that

‖WGν −W‖� → 0. (8.10)

This labelling yields an order < on V (Gν). Let ≺ be an order on V (Gν)
achieving the minimum in (8.5) for Ω∗1(Gν), i.e., such that

Ω∗1(Gν ,≺) = Ω∗1(Gν) = o(1). (8.11)

In general ≺ differs from <, but it clearly corresponds to some order ≺ν
on [0, 1] and, by (8.8) again,

Ω∗1(Gν ,≺) = Ω∗(WGν ,≺ν) = Ω̃∗(WGν ,≺ν). (8.12)

By Lemma 8.6 and (8.10)–(8.12), we then have

Ω̃∗(W,≺ν) ≤ Ω̃∗(WGν ,≺ν) + 2‖W −WGν‖� → 0,
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as ν →∞; hence Ω̃∗(W ) = 0 and Γ = ΓW is a threshold graph limit by
Theorem 8.11.

(ii) =⇒ (iii) Suppose that (iii) fails; then there exists ε > 0 and a subse-
quence for which de(Gν , T ) > ε|Gν |2. We may select a subsubsequence such
that Gν converges; we shall show that (ii) implies (iii) in this case, which
yields a contradiction.

Suppose then that Gν → Γ for some graph limit Γ, and that (ii) holds.
By assumption, Γ is a threshold graph limit. Let W be a kernel on [0, 1]
representing Γ. By the result of Diaconis, Holmes and Janson [7] discussed
in the introduction, we may choose W to be monotone and 0/1-valued.

We have Gν → W , and thus δ�(WGν ,W ) → 0. As above, by [5, Lemma
5.3] we may choose the labelling of the vertices in Gν such that ‖WGν −
W‖� → 0. By Lemma 8.13, this implies ‖WGν −W‖L1 → 0.

Since, by assumption, Γ is a threshold graph limit, there exists a sequence
of threshold graphs G′ν such that G′ν → Γ, and we may further assume that
|G′ν | = |Gν |. (For example, we may a.s. take G′ν as the random graph
G(nν ,W ) with nν = |Gν |.) Then also δ�(WG′ν ,W )→ 0, and by [5, Lemma
5.3] again we may choose the labelling of the vertices in G′ν such that ‖WG′ν−
W‖� → 0, and thus by Lemma 8.13 ‖WG′ν −W‖L1 → 0. Consequently,

‖WGν −WG′ν‖L1 ≤ ‖WGν −W‖L1 + ‖W −WG′ν‖L1 → 0.

We may identify the vertex sets of Gν and G′ν . Then

de(Gν , T ) ≤
∣∣E(Gν)4E(G′ν)

∣∣ = 1
2 |Gν |

2‖WGν −WG′ν‖L1 = o(|Gν |2).

(iii)⇐⇒ (iv) by the definition (8.6).
(iv)⇐⇒ (v) by

‖WGν −WG′ν‖L1(S2) = 2|Gν |−2
∣∣E(Gν)4E(G′ν)

∣∣.
(v) =⇒ (vi) since ‖ · ‖� ≤ ‖ · ‖L1(S2).

(vi) =⇒ (i). Let < be the order on V (Gν) = V (G′ν) defined by the
degrees of the vertices in G′ν . Then, since G′ν is a threshold graph, NG′ν (v) ⊆
NG′ν (w) ∪ {w} whenever v < w, and thus Ω∗0(G′ν , <) = 0 by (8.1).

By (8.2), (8.8) and Lemma 8.6,

Ω∗0(Gν , <) = Ω∗0(Gν , <)− Ω∗0(G′ν , <) = Ω∗1(Gν , <)− Ω∗1(G′ν , <) + o(1)

= Ω̃∗(WGν , <)− Ω̃∗(WG′ν , <) + o(1)

≤ 2‖WGν −WG′ν‖� + o(1) = o(1).

Hence Ω∗0(Gν)→ 0. �
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