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Abstract. We study rooted planar random trees with a probability
distribution which is proportional to a product of weight factors wn
associated to the vertices of the tree and depending only on their in-
dividual degrees n. We focus on the case when wn grows faster than
exponentially with n. In this case the measures on trees of finite size N
converge weakly as N tends to infinity to a measure which is concen-
trated on a single tree with one vertex of infinite degree. For explicit
weight factors of the form wn = ((n− 1)!)α with α > 0 we obtain more
refined results about the approach to the infinite volume limit.

1. Introduction

Random trees have been studied intensively by mathematicians and the-
oretical physicists in the last few decades. They have direct applications to
many branches in science, they are essential in many mathematical models
used by physicists and are a natural object to study from the point of view
of pure mathematics.

The random trees we are concerned with here were originally called simply
generated trees by probabilists [10]. Later the same tree ensembles were
referred to as random trees with a local action by physicists and viewed as
toy models in statistical mechanics and for some aspects of quantum gravity,
see e.g. [2].

Simply generated trees with N vertices can be defined as follows: Let
(wn)n≥1 be a sequence of nonnegative numbers which we will call branching
weights. If T is a tree graph with vertex set V (T ) having N elements we
define a probability distribution on the set of all such trees by the formula

ν(T ) = Z−1
∏

v∈V (T )

wσ(v), (1.1)

where σ(v) is the degree of the vertex v and Z is a normalization factor
called partition function in physics. One is interested in typical properties
of trees with respect to this measure, especially asymptotics for large N and
the existence of a limiting measure as N →∞.

Date: 14 April, 2011; revised 14 October 2011.
2000 Mathematics Subject Classification. 05C80, 05C05, 60J80, 60F05.
Key words and phrases. Random trees, simply generated trees, branching process, weak

limit.

1



2 SVANTE JANSON, THORDUR JONSSON, AND SIGURDUR ÖRN STEFÁNSSON

A lot is known about such trees for “nice” branching weights as we review
briefly below. In this paper we aim at complementing some of these results
for weights wn which grow faster than exponentially with n. In this case
some of the formalism that has been used to study simply generated trees
is not applicable any more as we will explain below. A physicist would say
that the Grand partition function is divergent which normally is a signal
of instability in a physical theory. We will indeed see that with superex-
ponential branching weights one vertex becomes connected to all the other
vertices in the infinite volume limit.

In the next section we give a more technical background and summarize
our results. The final section contains detailed proofs.

2. Definitions and summary of results

We consider rooted planar trees with root r of degree 1. We let ΓN be
the set of trees with N edges and denote the set of finite and infinite trees
by Γ. Vertices of infinite order are allowed and for such vertices the links
pointing away from the root are ordered as N, i.e. there is a leftmost edge
pointing away from the root. The unique nearest neighbour of the root r
will be denoted by s.

Remark 2.1. We include the root r just for convenience. It is equivalent to
omit it and consider s as the root (now with arbitrary degree), with minor
changes in the notation; N is then the number of vertices in the tree and
the degree σ(v) is replaced by 1 + σ+(v) where σ+(v) is the outdegree of v.
It may be even more convenient to omit r but keep the pendant edge from s
to r as an edge with one free endpoint; this point of view is used sometimes
in the proofs below.

Remark 2.2. We can regard the set Γ as a set of subtrees of the infinite
Ulam–Harris tree T∞, which is the tree with vertex set V (T∞) = {r} ∪⋃∞
k=0 Nk, the set of all finite strings of natural numbers (and r), with s = ∅

(the empty string, so N0 = {s}) and a vertex v = v1 · · · vk having ancestor
v1 · · · vk−1 when k > 0. More precisely, Γ can be identified with the set of
all rooted subtrees T of T∞ such that if v = v1 · · · vk is a vertex in T , then
so is v1 · · · vk−1i for every i < vk. We call such subtrees of T∞ left subtrees
and more generally, we say that a tree T ′ ∈ Γ is a left subtree of T ∈ Γ if
V (T ′) ⊆ V (T ).

We endow Γ with a metric d which is defined as follows: Let T ∈ Γ and
define BR(T ) as the graph ball of radius R, centered on the root r in T . The
left ball of radius R, LR(T ), is defined as the maximal left subtree of BR(T )
with vertices of degree no greater than R. The metric d is given by

d(T, T ′) = inf

{
1

R+ 1

∣∣∣ LR(T ) = LR(T ′)

}
, T, T ′ ∈ Γ. (2.1)
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Convergence in Γ, in the metric d, is equivalent to convergence of the degree
σ(v) for every v ∈ V (T∞) (where we define σ(v) = 0 for v /∈ T ), see [7] for
details.

To avoid trivialities we assume that the branching weights satisfy w1 6= 0
and wn 6= 0 for at least some n > 2. We define the finite volume partition
function

ZN =
∑
τ∈ΓN

∏
v∈V (τ)\{r}

wσ(v) (2.2)

and a probability distribution νN on ΓN by

νN (τ) = Z−1
N

∏
v∈V (τ)\{r}

wσ(v). (2.3)

This probability distribution describes a random tree TN with N edges.
Let ρ ≥ 0 be the radius of convergence of the generating function

g(z) =

∞∑
n=0

wn+1z
n (2.4)

of the branching weights. A rescaling wn 7→ abnwn with a, b > 0 does not
affect the distributions νN , and it is well-known and easy to see that if
ρ > 0, we can by rescaling assume that (wn) is a probability distribution,
i.e.

∑∞
0 wn = 1. In that case, the random tree TN with distribution νN

is a Galton–Watson tree with offspring distribution (wn+1)∞n=0, conditioned
to have size N . If further limz↗ρ zg

′(z)/g(z) ≥ 1, then the distributions
νN converge to the distribution of a random tree that is infinite, with all
vertex degrees finite and exactly one infinite path, see further [1, 3, 4, 8].
The limiting measure describes an infinite critical Galton–Watson tree con-
ditioned on nonextinction. On the other hand, in the subcritical case when
m = limz↗ρ zg

′(z)/g(z) < 1, then (at least under some technical conditions)
the limit distribution still exists but now describes a random tree with ex-
actly one vertex of infinite degree; the length of the path from r to this
vertex has a geometric distribution with mean 1/(1 − m); the rest of the
tree can be described by a subcritical Galton–Watson process, see [7] for
details.

In the present paper we are interested in the case when the radius of con-
vergence ρ = 0. Note that then there is no Galton–Watson interpretation.
We prove in Section 3 weak convergence, as N →∞, of the measures νN (in
the topology generated by d) in this case too, under certain conditions on
the weights. The result can be seen as a natural limiting case of the result
in [7] as m → 0; the resulting limit tree is in this case non-random, and is
simply an infinite star.

Theorem 2.3. If the branching weights satisfy

wn+1

wn
−−−→
n→∞

∞ (2.5)
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then the measures νN viewed as probability measures on Γ, converge weakly
to the probability measure that is concentrated on the single tree which has
σ(s) =∞ and all other vertices of degree one.

Furthermore, we obtain stronger convergence results for certain explicit
choices of weights. In the language of statistical mechanics these results give
an explicit description of the finite size effects.

Theorem 2.4. For the branching weights w2 = λ and wn = (n−1)!, n 6= 2,
the partition function satisfies

ZN
eλ(N − 1)!

→ 1 (2.6)

and we have

N − σ(s)
d−−→ Pois(λ) (2.7)

as N → ∞. Moreover, the tree TN consists of r, s, and σ(s) − 1 branches
attached to s; with probability tending to 1, N −σ(s) of these branches have
size 2 and all other have size 1 (i.e., they contain a single leaf only).

Note that in the limit N →∞, the branches of size 2 disappear to infinity,
so we do not see them in the limit given by Theorem 2.3.

Theorem 2.5. Let the branching weights be wn = ((n− 1)!)α, where 0 <
α < 1. Then the partition function satisfies

ZN =
(
(N − 1)!

)α
exp
(
O(N1−α)

)
= exp

(
αN log(N)− αN +O(N1−α)

)
.

(2.8)
Furthermore, with probability tending to 1, the random tree TN has the fol-
lowing properties, with K = b1/αc:

(i) σ(s) = N −O(N1−α).
(ii) All vertices except s have degrees ≤ K + 1.
(iii) All subtrees attached to s have sizes ≤ K + 1.

Moreover, let Xi,N be the number of vertices of degree i in TN and let

ni = i!αN1−iα. (2.9)

(iv) If 1 ≤ i < 1/α, then ni →∞ as N →∞ and

Xi+1,N

ni

p−→ 1. (2.10)

If i = 1/α = K (which occurs only when 1/α is an integer), then
nK = K!α is constant and

XK+1,N
d−→ Pois(nK). (2.11)

With these branching weights, the asymptotic distributions of the num-
bers Xi,N of vertices of different degrees are Gaussian, except in the Poisson
case when (2.11) applies.
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Theorem 2.6. Let wn = ((n− 1)!)α with 0 < α < 1 as in Theorem 2.5.
Then there exist numbers n∗i = n∗i (N) =

(
1 + o(1)

)
ni, 1 ≤ i < 1/α, with ni

given by (2.9), such that, as N →∞,

Xi+1,N − n∗i√
ni

d−→ N (0, 1), 1 ≤ i < 1/α, (2.12)

Xi+1,N
d−→ Pois(ni), i = K = 1/α. (2.13)

Moreover, these hold jointly for all i ≤ K, with independent limits.
More precisely, for each i < 1/α,

n∗i = ni
(
1− (1− iα)N−α +O

(
N−2α

))
+O(1). (2.14)

In particular, when α is not too small, we have the explicit limits

X2,N −N1−α

N (1−α)/2

d−→ N (0, 1), 1 > α > 1
3 , (2.15)

X2,N − (N1−α − (1− α)N1−2α)

N (1−α)/2

d−→ N (0, 1), 1 > α > 1
5 , (2.16)

X3,N − 2αN1−2α

N (1−2α)/2

d−→ N (0, 2α), 1
2 > α > 1

4 , (2.17)

X3,N − (2αN1−2α − (1− 2α)2αN1−3α)

N (1−2α)/2

d−→ N (0, 2α), 1
2 > α > 1

6 , (2.18)

X4,N − 6αN1−3α

N (1−3α)/2

d−→ N (0, 6α), 1
3 > α > 1

5 , (2.19)

X4,N − (6αN1−3α − (1− 3α)6αN1−4α)

N (1−3α)/2

d−→ N (0, 6α), 1
3 > α > 1

7 . (2.20)

For smaller α, it is possible to obtain further terms in the expansion of
n∗i , and thus explicit forms of the asymptotic mean of Xi+1,N . However, this
approach seems to become more and more difficult as α becomes smaller.

Remark 2.7. The proof of (2.12) shows also the stronger result that the
joint distribution of (Xi+1,N )Ki=1 can be approximated by the joint distribu-
tion of independent Poisson random variables Yi,N ∼ Pois(n∗i ), in the sense
that the total variation distance tends to 0 as N →∞:

1

2

∑
m1,...,mK

∣∣∣P(Xi+1,N = mi, ∀i)− P(Yi,N = mi, ∀i)
∣∣∣→ 0. (2.21)

Remark 2.8. The estimate (2.8) of the partition function can be improved
to

ZN = (N − 1)!α exp

(
N1−α +

(
2α − 1− α

2

)
N1−2α +O

(
N1−3α

)
+ o(1)

)
.

(2.22)
In particular, if 1 > α > 1

2 , then ZN = (N − 1)!α exp
(
N1−α + o(1)

)
.

Again it seems possible, but more complicated, to obtain further terms
in the exponent.
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Remark 2.9. It is straightforward to show, using the same methods as in
the proof of Theorem 2.4, that when α > 1

ZN = (N − 1)!α(1 + o(1)) (2.23)

and all the branches which are attached to s have size 1, with a probability
which tends to 1 as N → ∞. In this case the leading contribution to the
partition function comes only from the Boltzmann factor of the vertex s,
i.e. wσ(s). The case α = 1 is a marginal case when larger branches start
to appear and their entropy adds a contribution to the partition function
which appears in the associated exponential.

3. Proofs of theorems

In this section we state and prove a few lemmas and prove Theorems
2.3–2.6. In the following we will always assume that the branching weights
satisfy the condition in Equation (2.5). Define

Z(N,n) =
∑

d1+···+dN=n

N∏
i=1

wdi+1. (3.1)

By Lagrange’s inversion formula [7, 6] (or by a combinatorial argument, see
[5, 9, 11]), it holds that

ZN =
1

N
Z(N,N − 1). (3.2)

More generally the partition function for an ordered forest of m trees with
a total number of edges N is

Z
(m)
N =

m

N
Z(N,N −m). (3.3)

Lemma 3.1. For every ε > 0 there exists a Cε <∞ such that for all N and
n

Z(N,n) ≤ εZ(N,n+ 1) + CNε . (3.4)

Proof. Consider a finite sequence d1, . . . , dN for which
∑

i di = n. Let i∗ be
the smallest index such that di∗ = maxi di. Define a sequence

d∗i =

{
di + 1 if i = i∗,
di otherwise.

(3.5)

Note that d∗i∗ is the unique maximum in (d∗i ), so (di) can be recovered from
(d∗i ) and the map (di) 7→ (d∗i ) is injective.

Let ε > 0 be given. Choose a number Aε such that wi/wi+1 < ε if
i ≥ Aε. Then∑

d1+···+dN=n
maxi di>Aε

N∏
i=1

wdi+1 ≤ ε
∑

d∗1+···+d∗N=n+1

N∏
i=1

wd∗i+1 ≤ εZ(N,n+ 1) (3.6)
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and, crudely, ∑
d1+···+dN=n
maxi di≤Aε

N∏
i=1

wdi+1 ≤

(
Aε∑
i=0

wi+1

)N
. (3.7)

Taking Cε =
∑Aε

i=0wi+1 completes the proof. �

Lemma 3.2. As N →∞, σ(s)
p−→∞.

Proof. It suffices to show that

νN (σ(s) = k)→ 0 (3.8)

for every fixed k ≥ 1, since νN (σ(s) ≥ m) = 1 −
∑m−1

k=1 νN (σ(s) = k). If
the vertex s, in a tree with N edges, has degree k+ 1, then removing s and
r but leaving all edges from s to its children as pendant edges, cf. Remark
2.1, leaves a forest with k trees and N − 1 edges. Therefore, using (3.2) and
(3.3),

νN (σ(s) = k + 1) =
N

N − 1
kwk+1

Z(N − 1, N − k − 1)

Z(N,N − 1)
. (3.9)

Let ε > 0 be given. Use Lemma 3.1 k times to get

Z(N − 1, N − k − 1) ≤ εkZ(N − 1, N − 1) + kCN−1
ε (3.10)

and note that

Z(N,N − 1) ≥ w1Z(N − 1, N − 1). (3.11)

Since the branching weights satisfy (2.5), Z(N−1, N−1) ≥ wNwN−2
1 grows

super exponentially and in particular Z(N − 1, N − 1) ≥ (2Cε)
N−1 for N

large enough. Therefore

νN (σ(s) = k + 1) ≤ N

N − 1
kwk+1(w−1

1 εk + k2−N+1) (3.12)

and (3.8) follows since ε is arbitrary. �

Lemma 3.3. For any N ≥ 1 and n ≥ 0

N∑
`=0

`w`+1Z(N − 1, n− `) =
n

N
Z(N,n). (3.13)

Proof.

n∑
`=0

`w`+1Z(N − 1, n− `) =
∑

d1+···+dN−1+`=n

`w`+1

N−1∏
i=1

wdi+1

=
∑

d1+···+dN=n

dN

N∏
i=1

wdi+1. (3.14)

By symmetry we can replace dN in front of the product by any dj , j =
1, . . . , N . Summing over j then gives the desired result. �
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Lemma 3.4. Assume N > 1 and let s1 be the first child of s. If L ≥ 1 and
k ≥ L, then

νN
(
L+ 1 ≤ σ(s1) ≤ k + 1 | σ(s) = k + 1

)
≤ 2

L
. (3.15)

Proof. If σ(s) = k+ 1 ≥ 2 and σ(s1) = `+ 1 ≥ 1 then removing the vertices
r, s and s1, again leaving pendant edges, leaves a forest with k+ `− 1 trees
and N − 2 edges. Therefore (assuming N ≥ 3),

νN (σ(s) = k + 1, σ(s1) = `+ 1)

=
N(k + `− 1)wk+1w`+1

N − 2

Z(N − 2, N − 1− k − `)
Z(N,N − 1)

. (3.16)

By (3.9) and (3.16),

νN (σ(s1) = `+ 1 | σ(s) = k + 1)

=
(N − 1)(k + `− 1)w`+1

(N − 2)k

Z(N − 2, N − 1− k − `)
Z(N − 1, N − 1− k)

. (3.17)

By Lemma 3.3,∑
`≥L

w`+1Z(N − 2, N − 1− k − `) ≤ 1

L

∑
`≥0

`w`+1Z(N − 2, N − 1− k − `)

=
1

L

N − 1− k
N − 1

Z(N − 1, N − 1− k).

(3.18)

Hence, (3.17) implies

k∑
`=L

νN (σ(s1) = `+ 1 | σ(s) = k + 1) ≤ N − 1− k
N − 2

2

L
≤ 2

L
. (3.19)

�

Lemma 3.5. As N →∞, νN (σ(s1) = 1)→ 1.

Proof. Fix L > 1 and an ` such that 1 ≤ ` < L. Note that when ` ≥ 1 the
formula (3.16) is symmetric in k and `. Therefore

νN (σ(s1) = `+ 1) =

∞∑
k=1

νN (σ(s) = k + 1, σ(s1) = `+ 1)

= νN (σ(s) = `+ 1, σ(s1) ≥ 2) ≤ νN (σ(s) = `+ 1)
(3.20)
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and thus νN (σ(s1) = ` + 1) → 0 as N → ∞ by Lemma 3.2. Next, Lemma
3.4 implies

νN (L+ 1 ≤ σ(s1) ≤ σ(s))

=
∑
k

νN (L+ 1 ≤ σ(s1) ≤ k + 1 | σ(s) = k + 1)νN (σ(s) = k + 1) ≤ 2

L
.

(3.21)

Thus

lim sup
N→∞

νN (2 ≤ σ(s1) ≤ σ(s)) ≤ lim sup
N→∞

(
L−1∑
`=1

νN (σ(s1) = `+ 1) +
2

L

)

=
2

L
. (3.22)

Since L is arbitrary, νN (2 ≤ σ(s1) ≤ σ(s)) → 0 as N → ∞. By the
symmetry of (3.16) in k and ` we also find that

νN (2 ≤ σ(s) ≤ σ(s1)) = νN (2 ≤ σ(s1) ≤ σ(s))→ 0 (3.23)

as N →∞. Finally, since σ(s) ≥ 2, we have

νN (σ(s1) ≥ 2) ≤ νN (2 ≤ σ(s) ≤ σ(s1)) + νN (2 ≤ σ(s1) ≤ σ(s))→ 0 (3.24)

as N →∞. �

Proof of Theorem 2.3. LetR > 0. By Lemma 3.2, σ(s)
p−→∞, so νN

(
σ(s) ≥

R
)
→ 1. Given that σ(s) ≥ R, denote the first R − 1 children of s by

s1, . . . , sR−1. Then by Lemma 3.5 and symmetry νN
(
σ(si) = 1, σ(s) ≥

R
)
→ 1 for every i ≤ R and thus we find that

νN (σ(s) ≥ R, σ(s1) = · · · = σ(sR−1) = 1)→ 1 (3.25)

as N → ∞. Since R is arbitrary, the result follows from the definition of
the topology on R, cf. the comment below (2.1). �

Proof of Theorem 2.4. First, we establish an upper bound on ZN . Consider
Equation (3.2) for ZN . For a given sequence (di), let mj denote the number
of indices i for which di = j where j = 0, . . . , N − 1. Instead of summing
over (di) we sum over (mj). For a given sequence (mj) there are

(
N

m0,...,mN−1

)
sequences (di) and therefore, since w1 = 1,

ZN
(N − 1)!

=
∑

m0+···+mN−1=N
m1+2m2+···+(N−1)mN−1=N−1

N−1∏
i=0

wmii+1

mi!

=
∑

m1+2m2+···+(N−1)mN−1=N−1

1(
N −

∑N−1
j=1 mj

)
!

N−1∏
i=1

wmii+1

mi!
.

(3.26)
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Denote the maximum vertex degree by M and fix a number L ≥ 2. By
Lemma 3.2, it is sufficient to consider the case M > L. That contribution
to (3.26) can be estimated by shifting mM−1 → mM−1 + 1 which yields the
upper bound∑
m1+2m2+···+(M−1)mM−1

=N−M, M>L

(M − 1)!(
M +

∑M−1
j=1 (j − 1)mj − 1

)
!(mM−1 + 1)

M−1∏
i=1

wmii+1

mi!

≤
∑

m1+2m2+···+(M−1)mM−1=N−M
M>L

λm1

m1!

M−1∏
i=2

(i!/M i−1)mi

mi!

≤ exp

(
λ+

∞∑
i=2

i!

(i ∨ L)i−1

)
(3.27)

where A∨B denotes the maximum of A andB. The last expression converges
to eλ when L→∞ by dominated convergence.

Next we establish a corresponding lower bound on ZN . Consider the
contribution to (3.26) from terms for which the only nonzero elements in
the sequence (mi) are m0, m1 and mk = 1 where k ≥ 2 is arbitrary; thus
m0 = k, m1 = N − k − 1 and mk = 1. These terms provide the following
lower bound of (3.26)

N−1∑
k=2

wk+1
1

k!

wN−1−k
2

(N − 1− k)!
=

N−3∑
`=0

λ`

`!
→ eλ (3.28)

as N →∞. This and (3.27) prove (2.6).
To complete the proof, note that the probability that TN has σ(s) = N−j

and that exactly j of the σ(s)− 1 = N − j − 1 branches attached to s have
size 2 and all others size 1 is, assuming N > 2j and using (2.6),

1

ZN

(
N − j − 1

j

)
wN−j−1

1 wj2wN−j =
1

ZN

(
N − j − 1

j

)
λj(N−j−1)!→ λj

j!
e−λ.

(3.29)
These limits sum to 1 and yield the Pois(λ) distribution in (2.7). �

Proof of Theorem 2.5. Consider the weights wn+1 = n!α. Write, again by
(3.2),

ZN =
1

N

∑
d1+···+dN=N−1

N∏
i=1

di!
α. (3.30)

We get the lower bound
ZN ≥ (N − 1)!α (3.31)

by considering only the terms in ZN with one di = N − 1, and all others 0
(i.e., stars).

Define ZN (k, ε) as the contribution to ZN when precisely k ≥ 0 vertices
have degree greater than ε(N − 1) where ε is some small positive number.
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First consider the case when k = 0. Let (di)
N
i=1 be a sequence which satisfies

di ≤ ε(N − 1) for all i. Using the simple relation

N !M ! ≤ (N + 1)! (M − 1)!, for N ≥M − 1 (3.32)

we can distribute and add the smallest elements in (di)
N
i=1 to the larger ones

until each of them reaches ε(N−1). Thus we obtain the upper bound, using
Stirling’s formula,

N∏
i=1

di!
α ≤ dε(N − 1)e!α/ε ≤ C1N

2α/ε(N − 1)!αεαN (3.33)

where C1 > 0 is a number independent of N (but, as other constants below,
it may depend on α and ε). Therefore,

ZN (0, ε) ≤ C1N
2α/ε(N − 1)!αεαN

(
2N − 2

N − 1

)
≤ C1N

2α/ε(N − 1)!αεαN22N

(3.34)
which is negligible compared to (3.31) as N →∞ for ε small enough.

Next consider the case when two or more of the di are larger than ε(N−1),
i.e. when k ≥ 2 in ZN (k, ε). Clearly, k < 1/ε. Denote the di which are greater
than ε(N − 1) by di1 , . . . , dik and let Dj = dij . The indices ij can be chosen

in
(
N
k

)
ways. We will now lump together all the Di into a single one, i.e. we

define

D = D1 + · · ·+Dk.

For each D, there are at most
(
D+k−1
k−1

)
choices of D1, . . . , Dk. Note that,

with D∗ = dε(N − 1)e, using Di ≥ D∗ and Stirling’s formula again,

D1! · · ·Dk!

D!
≤ Dk

∗
(kD∗)!

≤ C2N
k

(
1

k

)kεN
(3.35)

where C2 > 0 is independent of N . Thus, we get the upper bound

∑
2≤k≤1/ε

ZN (k, ε) ≤ Cα2
∑

2≤k≤1/ε

(
N

k

)
Nαk

(
1

k

)αkεN

×
∑

D+d1+···+dN−k=N−1
D>ε(N−1), di≤ε(N−1), ∀i

(
D + k − 1

k − 1

)
D!α

N−k∏
i=1

di!
α

≤ C3N
3/ε

(
1

2

)2αεN

ZN (1, ε). (3.36)

where C3 > 0 is independent of N . This estimate, together with (3.34),
shows that the main contribution to ZN for N large comes from ZN (1, ε).
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Finally, we consider ZN (1, ε). Using the representation as in (3.26) we
have, writing L = bε(N − 1)c for convenience,

ZN (1, ε)

(N − 1)!
=

N−1∑
D=L+1

∑
m1+2m2+···+LmL=N−1−D

D!α

(N − 1−
∑L

j=1mj)!

L∏
i=1

i!αmi

mi!

(3.37)
where D + 1 denotes the degree of the large vertex and mi denotes the
number of vertices which have degree i+ 1. Consider one term in this sum

and let D̃ = D +
∑L

i=K+1 imi, adding the outdegrees of all vertices which
have degree greater than K + 1 to the large vertex, where we recall that
K = b1/αc. Then

D̃! ≥ D! ·D
∑L
i=K+1 imi ≥ D! · L

∑L
i=K+1 imi (3.38)

and (
N − 1−

K∑
i=1

mi

)
! ≤

(
N − 1−

L∑
i=1

mi

)
! ·N

∑L
i=K+1mi (3.39)

Thus

D!α

(N − 1−
∑L

i=1mi)!
≤ D̃!αN

∑L
i=K+1mi

(N − 1−
∑K

i=1mi)!L
α
∑L
i=K+1 imi

(3.40)

and

ZN (1, ε)

(N − 1)!
≤

N−1∑
D̃=L+1

∑
m1+···+KmK=N−1−D̃

∑
mK+1,...,mL≥0

D̃!α

(N − 1−
∑K

j=1mj)!

K∏
i=1

i!αmi

mi!

L∏
i=K+1

(
Ni!α

Liα

)mi 1

mi!
. (3.41)

We have

∑
mK+1,...,mL

L∏
i=K+1

(
Ni!α

Liα

)mi 1

mi!
=

L∏
i=K+1

exp

(
Ni!α

Liα

)

= exp

(
L∑

i=K+1

Ni!α

Liα

)
. (3.42)

Let, using L = bε(N − 1)c > εN/2 (assuming N large),

ai =
Ni!α

Liα
≤ 2iαi!α

εiα
N1−iα. (3.43)
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Noting that ai+1/ai = ((i+ 1)/L)α ≤ 1 for i < L, we find

L∑
i=K+1

ai ≤ (K + 1)aK+1 +Na2K+2 = O
(
N1−(K+1)α

)
+O

(
N2−(2K+2)α

)
= o(1)

(3.44)

and thus from (3.41),

ZN (1, ε)

(N − 1)!
≤
(
1 + o(1)

) N−1∑
D̃=L+1

∑
m1+···+KmK=N−1−D̃

D̃!α

(N − 1−
∑K

j=1mj)!

K∏
i=1

i!αmi

mi!
. (3.45)

The sum here is just the sum in (3.37) with mi = 0 for i > K, so we have
shown that ZN (1, ε) is dominated by such terms. Recalling (3.34) and (3.36)
we see that

ZN
(N − 1)!

=
(
1 + o(1)

) ∑
m1+···+KmK<N−L−1

(N − 1−
∑K

j=1 jmj)!
α

(N − 1−
∑K

j=1mj)!

K∏
i=1

i!αmi

mi!

(3.46)
and that ZN is dominated by trees having exactly one vertex of degree
> ε(N − 1) and all other vertices having degrees ≤ K + 1.

By Lemma 3.2, the contribution from trees with σ(s) ≤ K+1 is negligible,
so it suffices to consider the case when the unique vertex with high degree
is s, which proves (ii).

To obtain the more precise results in (i) and (iv), fix i ≤ K, fix mj for
j 6= i, and denote the summand in (3.46) by b(mi). Increasing mi by 1

decreases D = N − 1 −
∑K

j=1 jmj by i and, assuming still D > L and

recalling the definition of ni in (2.9),

b(mi + 1)

b(mi)
≤ NL−iα i!α

mi + 1
≤ C4

N1−iαi!α

mi + 1
= C4

ni
mi + 1

. (3.47)

If mi ≥ b2C4nic, this ratio is less than 1/2. In particular,∑
mi≥3C4ni

b(mi) ≤ 2b(b3C4nic) ≤ 22−C4nib(b2C4nic). (3.48)

If i < 1/α, then ni → ∞ as N →∞. Summing over all mj , j 6= i, we
see that the contribution to ZN from mi ≥ 3C4ni is negligible, so we may
assume that mi < 3C4ni. In the exceptional case i = 1/α, we obtain by the
same argument that we may assume mi < logN , say. In particular, since
ni = O(N1−iα) = O(N1−α), we see that we may assume σ(s) = D + 1 =

N −
∑K

j=1 jmj = N −O(N1−α), which proves (i).
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For the remaining terms, we now may use D = N − o(N) to improve
(3.47) to

b(mi + 1)

b(mi)
= (1 + o(1))N ·N−iα i!α

mi + 1
= (1 + o(1))

ni
mi + 1

. (3.49)

Assume i < 1/α and let δ > 0. We can repeat the argument above, using
(3.49) instead of (3.47) and (1 + δ/2)ni instead of 2C4ni, and conclude that
the terms with mi ≥ (1 + δ)ni are negligible. Similarly, (3.49) implies also
that the terms with mi ≤ (1− δ)ni are negligible. Hence, ZN is dominated
by terms with (1 − δ)ni < mi < (1 + δ)ni. Since Xi+1,N = mi, this proves
(iv) for i < 1/α.

If 1/α is an integer and i = K = 1/α, then it follows from (3.49) in
the same way that mK is stochastically bounded and that νN{mK = m +

1}/νN{mK = m} → nK/(m + 1) for every m, which implies that mK
d−→

Pois(nK), completing the proof of (iv).
Furthermore, (3.47) implies, for all mi such that D > L,

b(mi)

b(0)
≤ (C4ni)

mi

mi!
. (3.50)

Using this for each i ≤ K, we see that the general summand in (3.46) is at

most
∏K
i=1

(C4ni)
mi

mi!
, and thus (3.46) yields

ZN
(N − 1)!

≤ (1 + o(1))
(N − 1)!α

(N − 1)!

∑
m1,...,mK

K∏
i=1

(C4ni)
mi

mi!
(3.51)

and

ZN
(N − 1)!α

≤ (1 + o(1))
K∏
i=1

exp(C4ni) = exp
( K∑
i=1

C4ni + o(1)
)
, (3.52)

which proves (2.8).
Finally, we show (iii). If τ is a tree in ΓN such that all vertices except s

have degrees ≤ K + 1, but some branch attached to s has more than K + 1
vertices, pick the first such branch and find, by breadth-first search, say, a
subtree τ0 of that branch with exactly K + 2 vertices. Rearrange the edges
inside τ0 so that τ0 is replaced by a star with center adjacent to s; this
produces a vertex of degree K + 2. Let τ ′ ∈ ΓN be the result of making this
change inside τ . We have changed the degree of (at most) K + 2 vertices,
and since all old and new degrees are at most 2K+1, the weights of τ and τ ′

differ by at most a constant factor. Furthermore, τ ′ has exactly one vertex
of degree K + 2, and thus only a bounded number of trees τ can produce
the same τ ′. Consequently,

P(Tn has a branch of size > K + 1)

≤ C5P(Tn has a vertex 6= s of degree > K + 1), (3.53)

and this probability tends to 0 by (ii). �
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Proof of Theorem 2.6. Recall that ZN is given by (3.46), and that the sig-
nificant terms have mi =

(
1 + o(1)

)
ni = O(N1−iα), except when i = 1/α.

Let us first note that if 1/α is an integer and i = K = 1/α, then, see the
proof of Theorem 2.5, (3.49) implies that XK+1,N = mK has an asymptotic
Poisson distribution Pois(nK), which further is asymptotically independent
of Xi,N , i ≤ K; furthermore,

∑
mK

b(mK) = exp(nK + o(1))b(0). In the
sequel we thus assume mK = 0 and sum only over mi, i < K, when i =
K = 1/α; we omit the trivial modifications below in this case.

Define, for a fixed η ∈ (0, 1), V =
∏n
i=1[(1−η)ni, (1 +η)ni]. In the sequel

we consider only (mi)
K
1 ∈ V ; recall that it suffices to sum over such (mi) in

(3.46). For more compact notation, write

A =

K∑
i=1

mi and B =

K∑
i=1

imi. (3.54)

Note that A and B are O(N1−α). Use Stirling’s approximation on the first
factor in the sum in (3.46) to get

(N − 1−B)!α

(N − 1−A)!

=

√
(2π(N − 1−B))α

2π(N − 1−A)

(
N − 1−B

e

)α(N−1−B)( e

N − 1−A

)N−1−A
(1 +O(N−1))

=
√

(2π(N − 1))α−1

(
N − 1

e

)(α−1)(N−1)

(N − 1)A−αB

× exp

{
αB −A+ α (N − 1−B) log

(
1− B

N − 1

)

− (N − 1−A) log

(
1− A

N − 1

)}
(1 +O(N−α))

= (N − 1)!α−1(N − 1)A−αB exp

{
K∑
j=2

αBj −Aj

j(j − 1)(N − 1)j−1

}
(1 + o(1))

= (N − 1)!α−1NA−αB exp

{
K∑
j=2

αBj −Aj

j(j − 1)N j−1

}
(1 + o(1)), (3.55)

where in the last step we expanded the logarithms and kept only powers of
A and B which contribute for large N , and then approximated N − 1 by N .
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Hence, (3.46) yields, using Stirling’s formula again,

ZN
(N − 1)!α

=
(
1 + o(1)

) ∑
(mi)∈V

exp


K∑
j=2

αBj −Aj

j(j − 1)N j−1


K∏
i=1

Nmi−iαmii!αmi

mi!

=
∑

(mi)∈V

exp
(
f(m1, . . . ,mK) + o(1)

)
,

where

f(m1, . . . ,mK) =
K∑
i=1

(
(1− αi)mi logN + αmi log(i!)−mi logmi

+mi −
1

2
log(2πmi)

)
+

K∑
j=2

αBj −Aj

j(j − 1)N j−1
. (3.56)

Regard f as a function of real variablesm1, . . . ,mK . Then, form1, . . . ,mK ∈
V , which entails A,B = O(N1−α),

∂f

∂mi
= (1− αi) logN + α log(i!)− logmi −

1

2mi
+

K∑
j=2

αiBj−1 −Aj−1

(j − 1)N j−1

= log ni − logmi −
1

2mi
+
αiB −A

N
+O

(
N−2α

)
= log ni − logmi −

1

2mi
− (1− iα)m1

N
+O

(
N−2α

)
= log ni − logmi + o(1) (3.57)

and, similarly,

∂2f

∂mi∂mj
= − δij

mi
+O

( δij
mimj

)
+O

( 1

N

)
. (3.58)

V is compact and f continuous, so f attains its maximum in V at some
point n∗ = (n∗1, . . . , n

∗
K) ∈ V . By (3.57), for large N , ∂f

∂mi
> 0 when

mi = (1 − η)ni and ∂f
∂mi

< 0 when mi = (1 + η)ni, so the maximum is not

attained on the boundary of V , i.e. |n∗i −ni| < ηni. Consequently, by (3.57),

0 =
∂f

∂mi
(n∗) = log ni − log n∗i + o(1) (3.59)

and thus n∗i =
(
1 + o(1)

)
ni. A Taylor expansion of f at n∗ yields, using

(3.59) and (3.58), for m = (m1, . . . ,mK) ∈ V ,

f(m) = f(n∗)− 1

2

K∑
i=1

(
(mi − n∗i )2

n∗i
+O

( |mi − n∗i |2 + |mi − n∗i |3

n2
i

))
+O

( |m− n∗|2

N

)
(3.60)
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Choosing η small enough, this implies first (for large N)

f(m) ≤ f(n∗)− 1

3

K∑
i=1

(mi − n∗i )2

n∗i
, (3.61)

which implies that it suffices to consider terms in (3.56) with, say, |mi−n∗i | <
n

1/2
i logN ; let V1 ⊂ V be the set of such m. For such terms, (3.60) yields

f(m) = f(n∗)− 1

2

K∑
i=1

(mi − n∗i )2

n∗i
+ o(1), (3.62)

and thus by (3.56), letting β = f(n∗) be the maximum value of f on V ,

ZN
(N − 1)!α

=
(
1 + o(1)

) ∑
(mi)∈V1

exp
(
β − 1

2

K∑
i=1

(mi − n∗i )2

n∗i
+ o(1)

)
. (3.63)

Since each term here corresponds to the case Xi+1,N = mi, i = 1, . . . ,K,
and n∗i =

(
1 + o(1)

)
ni, (2.12) follows. Furthermore, (3.63) also yields the

Poisson approximation result in Remark 2.7, since the Poisson probabilities
P(Yi,N = mi, ∀i) can easily be approximated by the same Gaussian as in
(3.63); we omit the details.

In order to obtain more precise estimates of n∗i , we go back to (3.57) and
refine (3.59) to

0 =
∂f

∂mi
(n∗) = log ni − log n∗i −

(1− iα)n∗1
N

+O
(
N−2α +N iα−1

)
(3.64)

which yields

log
n∗i
ni

= −(1− iα)n∗1
N

+O
(
N−2α +N iα−1

)
(3.65)

and thus, recalling n∗1/N = O(N−α),

n∗i
ni

= 1− (1− iα)n∗1
N

+O
(
N−2α +N iα−1

)
(3.66)

Taking i = 1 we find n∗1/n1 = 1 + O(N−α), and thus n∗1 − n1 = O(N1−2α),
so (3.66) yields

n∗i
ni

= 1− (1− iα)n1

N
+O

(
N−2α +N iα−1

)
, (3.67)

establishing (2.14).
We obtain (2.15)–(2.20) from (2.12) and (2.14) by checking that in each

case, the omitted terms in the numerator are of smaller order than the
denominator. �
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Finally, to evaluate the partition function, we approximate the sum in
(3.63) by a Gaussian integral and obtain

ZN
(N − 1)!α

=
(
1 + o(1)

)
eβ

K∏
i=1

√
2πn∗i = eβ+o(1)

K∏
i=1

√
2πni. (3.68)

We have β = f(n∗). Further, (3.67) shows n∗i−ni = O
(
niN

−α) = O
(
N1−2α

)
,

and it follows from (3.60) that, with n = (n1, . . . , nK),

f(n) = f(n∗) +O
(
N1−3α

)
= β +O

(
N1−3α

)
, (3.69)

so it remains to evaluate f(n). For m = n, the final sum in (3.56) is

αB2 −A2

2N
+O

(
N1−3α

)
=

(α− 1)n2
1

2N
+O

(
N1−3α

)
, (3.70)

and thus, after some cancellations,

f(n) =

K∑
i=1

(
ni −

1

2
log(2πni)

)
− (1− α)n2

1

2N
+O

(
N1−3α

)
. (3.71)

Hence, (3.68) yields, with (3.69) and (3.71) and recalling n1 = N1−α,

ZN
(N − 1)!α

= exp

(
K∑
i=1

ni −
1− α

2
N1−2α +O

(
N1−3α

)
+ o(1)

)
. (3.72)

We substitute n1 and n2 from (2.9) and drop ni for i ≥ 3, which yields
(2.22).
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