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Abstract. We explore the size of the largest (permuted) triangular submatrix of
a random matrix, and more precisely its asymptotical behavior as the size of the
ambient matrix tends to infinity. The importance of such permuted triangular sub-
matrices arises when dealing with certain combinatorial algebraic settings in which
these submatrices determine the rank of the ambient matrix, and thus attract a
special attention.

1. Introduction

Let X = Xn = (xij)
n
i,j=1 be a random n×n matrix. We assume that the entries of Xn

are taken from some set A and that they are independent and identically distributed,
with P(xij = a) = pa for some fixed probabilities pa, a ∈ A. We assume further that
0, 1 ∈ A and p0, p1 > 0. (In the present paper only 0 and 1 have special roles and we
might as well assume that A = {0, 1, 2}, but because of our application to superboolean
rank discussed below, we prefer to state the results for a general A.)

The purpose of the present paper is to study the size of the largest triangular
submatrix of Xn, and more precisely its asymptotical behavior as n→∞. We actually
consider four versions of this problem; it turns out that to the first order studied here,
they all have the same answer.

Definitions 1.1.
(i) A submatrix of a matrix A = (aij)i∈M,j∈N is any matrix obtained by deleting

rows and/or columns of A. In other words, it is a matrix (aij)i∈I,j∈J for a non-empty
subset of rows I ⊆ M and a non-empty subset of columns J ⊆ N . (We preserve the
order of the rows and columns in I and J .)

(ii) A permutation of a matrix is a matrix obtained by a permutation of the rows and
a (possibly different) permutation of the columns. In particular, a permuted submatrix

of (aij) is (airjs)
k,`
r,s=1 for a sequence of distinct rows i1, . . . , ik and a sequence of distinct

columns j1, . . . , j`.
(iii) A (lower) triangular matrix is a square matrix (aij)

m
i,j=1 such that aij = 0 for

any i < j.
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(iv) A special triangular matrix is a square matrix (aij)
m
i,j=1 such that aij = 0 for

any i < j and aij = 1 when i = j. (The remaining entries are arbitrary.)

Note that a k × ` submatrix is determined by two sets I, J of indices with |I| = k,
|J | = `, while a permuted submatrix is determined by two sequences i1, . . . , ik and
j1, . . . , j` of indices, with each sequence without repetitions.

We define the random variable Tn as the maximal size (= number of rows, or
columns) of a submatrix of Xn (an n × n random matrix as above) that is trian-
gular; similarly T s

n, T p
n , T ps

n denote the maximal sizes of submatrices of Xn that are
special triangular, permuted triangular and permuted special triangular, respectively.
Note that

T s
n ≤ Tn ≤ T p

n and T s
n ≤ T ps

n ≤ T p
n . (1.1)

The general motivation for studying these quantities comes from boolean algebra [10]
or, more generally, from (tropical) max-plus algebra [1] and supertropical algebra [4].
These algebras take place over semirings and are fundamentally connected to graph the-
ory, in particular square matrices over these semirings correspond uniquely to weighted
directed graphs. With this correspondence, basic algebraic notions are naturally sub-
stituted by combinatorial ones; for example, the role of the determinant is replaced
by the permanent. These combinatorial analogous also help to bypass the lack of
negation in the ground structure of semirings. As a consequence, computational com-
plexity, such as computing the rank of a matrix, is not always polynomial and could
be NP-complete [11] over this framework.

The specific motivation occurs if one considers either the boolean case (A = {0, 1})
or the superboolean case (A = {0, 1, 1ν}) – the simplest example for a supertropical
semiring [5, 8]. The latter papers lead to a new algebraic theory of combinatorics,
establishing a universal representation of matroids by boolean matrices. In this theory,
a square matrix is non-singular if and only if it is permuted special triangular, and the
rank of a matrix is thus the maximal size of a permuted special triangular submatrix,
see Izhakian and Rhodes [5, 6, 7] for details. Consequently, the rank of the random
matrix Xn is T ps

n .

Theorem 1.2. Let Q = 1/p0 > 1, and let T ∗n be any of Tn, T
s
n, T

p
n , T

ps
n . Then,

as n→∞,

T ∗n/ logQ n
p−→ 2 +

√
2, (1.2)

where
p−→ denotes convergence in probability.

We say that an event occurs with high probability (w.h.p.) if its probability tends
to 1 as n→∞. Recall that, by the definition of convergence in probability, (1.2) says
that for any ε > 0, w.h.p.

(2 +
√

2− ε) logQ n < T ∗n < (2 +
√

2 + ε) logQ n. (1.3)

Furthermore, by (1.1), it suffices to prove the upper inequality for T p
n and the lower

for T s
n. The upper inequality is proved in Section 2 and the lower in Section 3; the

proofs are based on the first and second moment methods. (See e.g. [9, p. 54] for a
general description of these methods.)

Remark 1.3. The corresponding problem of the largest square submatrix with only 0’s
(or, equivalently, after interchange of 0 and 1, with only 1’s) has been studied by several
authors, see [13] and the references therein. It is shown in [13] that if Sn is the size of
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the largest such matrix, then Sn/ logQ n
p−→ 2. This problem can be seen as finding

the largest balanced complete subgraph of a random bipartite graph. The analogous
problem of finding the largest complete set in a random graph G(n, p) (or, equivalently,
the largest independent set in G(n, 1 − p)) was solved by Bollobás and Erdős [3] and
Matula [12], see also [2] and [9]; again the size, Cn say, is asymptotically 2 logQ n,

where Q = 1/p. (We have no intuitive explanation for the extra summand
√

2 in the
triangular case. Note also that the number of 0’s in the largest triangular submatrix
is ≈ 1

2(2 +
√

2)2 log2Q n = (3 + 2
√

2) log2Q n, which is larger than for the largest square

submatrix with only zeros where the number is ≈ 4 log2Q n.)

Note that Tn ≥ Sn ≥ bT p
n/2c ≥ bTn/2c, which shows that Tn, T p

n and Sn are equal
within a factor of 2+o(1), and in particular of the same order of magnitude. However,
it does not seem possible to get the right constant in front of logQ n for one of these
problems from the other.

For the largest square zero submatrix and the largest cliques in G(n, p), much more
precise estimates are known, see [13] and [2, 9]; for example, it follows that if

s(n) = 2 logQ n− 2 logQ logQ n+ 2 logQ(e/2),

then for any ε > 0, bs(n)−εc ≤ Sn ≤ bs(n)+εc and bs(n)+1−εc ≤ Cn ≤ bs(n)+1+εc
w.h.p. (and, in fact, almost surely); in particular the sizes are concentrated on one or
at most two values. It would be interesting to find similar sharper versions of the result
above, which leads to the following open problems.

Problem 1.4. Find second order terms for Tn, T
s
n, T

p
n , T

ps
n , and if possible even sharper

estimates, and see if they differ between the four versions. In particular, what are the
orders of the differences T p

n − Tn, Tn − T s
n, . . . ?

Problem 1.5. Are the quantities Tn, T
s
n, T

p
n , T

ps
n concentrated on at most two values

each?

Problem 1.6. Prove a version of Theorem 1.2 (or a stronger result) with convergence
almost surely instead of just in probability, seeing Xn as submatrices of an infinite
random matrix in the natural way.

Problem 1.7. Find corresponding results when p0 and p1 depend on n. The case
when p0 tends to 1 (not too fast) seems to be the most interesting.

Remark 1.8. We consider for simplicity only square matrices Xn, but the definitions
extend to general m×n matrices. Since the quantities Tn, T

s
n, T

p
n , T

ps
n are monotone if

we add rows or columns, the result of Theorem 1.2 holds as long as logm/ log n→ 1;
this includes for example the case m/n→ c ∈ (0,∞). We have not investigated other
cases such as m = nγ for some γ > 0.

1.1. Notation. We let bxc and dxe denote the largest and smallest integers such that
bxc ≤ x ≤ dxe. We write [m,n] for the interval {m,m+1, . . . , n} of integers between m
and n. Further, log denotes the natural logaritm loge; recall that logQ n = log n/ logQ.
Henceforth, an n× n random matrix Xn = (xij)

n
i,j=1 is denoted as X, for short.

2. Proof of upper bound

As said above, it suffices to show that T p
n ≤ (2 +

√
2 + ε) logQ n w.h.p. for every

ε > 0. We will use the first moment method, i.e., show that a suitable expectation tends
to 0. However, for reasons discussed below, we will not obtain the right constant by
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calculating the expected number of (permuted) triangular submatrices of X. Instead
we consider the following type of submatrices.

Definition 2.1. Let 1 ≤ ` ≤ k. A (k, `)-corner matrix is an ` × ` matrix (aij)
`
i,j=1

such that
aij = 0 if i < j + k − `; (2.1)

if further aij = 1 when i = j + k − `, the matrix is a special (k, `)-corner matrix.

Thus the `×` submatrix in the upper right corner of a [special] lower k×k triangular
matrix is a [special] (k, `)-corner matrix, and conversely. Note that if ` ≤ k/2, then
a (k, `)-corner matrix is 0, and if ` = k then a (k, `)-corner matrix is the same as a
triangular matrix.

Let ν0(k, `) be the number of entries required to be 0 by (2.1). Thus ν0(k, `) = `2

when ` ≤ k/2; for ` ≥ k/2 we have

ν0(k, `) =
∑̀
j=1

min(j + k − `− 1, `)

=

2`−k∑
j=1

(j + k − `− 1) +
∑̀

j=2`−k+1

`

=
(2`− k)(2`− k + 1)

2
+ (2`− k)(k − `− 1) + (k − `)`

=
4k`− k2 − 2`2 + k − 2`

2
. (2.2)

Similarly, let ν1(k, `) be the number of entries required to be 1 in a special (k, `)-
corner matrix. Thus ν1(k, `) = 0 when ` ≤ k/2 and ν1(k, `) = 2` − k when ` ≥ k/2.
Further, let ν(k, `) = ν0(k, `) +ν1(k, `) be the total number of fixed entries in a special
(k, `)-corner matrix. If ` ≥ k/2, then by (2.2)

ν(k, `) =
4k`− k2 − 2`2 − k + 2`

2
. (2.3)

Let 1 ≤ ` ≤ m and let Ym,` be the number of permuted (m, `)-corner submatrices
inX. Note that ifX contains a permuted triangularm×m submatrixA, then a suitable
submatrix of A is a permuted (m, `)-corner submatrix of X. Hence, if T p

n ≥ m, then
Ym.` ≥ 1, and Markov’s inequality yields

P(T p
n ≥ m) ≤ P(Ym,` ≥ 1) ≤ EYm,` . (2.4)

The expected value EYm,` is easily computed. The number of permuted `× ` subma-
trices of X is (n)` · (n)`, where (n)` = n(n−1) · · · (n− `+1), and for each such matrix,

the probability that it is an (m, `)-corner matrix is p
ν0(m,`)
0 , with ν0(m, `) given above.

Thus,

EYm,` = (n)2` · p
ν0(m,`)
0 ≤ exp

(
2` log n− logQ · ν0(m, `)

)
. (2.5)

Taking m = ds log ne and ` = dt log ne for some fixed s and t with s/2 < t ≤ s, we
have by (2.5) and (2.2),

EYm,` ≤ exp
(
2t(log n)2 − logQ · (2st− s2/2− t2)(log n)2 +O(log n)

)
. (2.6)

We see from (2.6) that if we choose s and t such that s/2 < t ≤ s and

2t− logQ · (2st− s2/2− t2) < 0, (2.7)
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then EYm,` → 0 and thus by (2.4)

P(T p
n ≥ s log n) = P(T p

n ≥ m) ≤ EYm,` → 0; (2.8)

hence T p
n < s log n w.h.p.

Write for convenience γ = 1/ logQ. The left hand side of (2.7) is, for a fixed s,
maximized when t = s− γ, and then its value is, by a short calculation,

2s− γ − s2

2γ
= −s

2 − 4sγ + 2γ2

2γ
= −(s− 2γ)2 − 2γ2

2γ
,

which is negative for s > 2γ +
√

2γ. Consequently, taking any s > (2 +
√

2)γ and
t = s − γ, which clearly satisfies s/2 < t < s, (2.8) yields T p

n < s log n w.h.p. It
remains only to note that γ log n = log n/ logQ = logQ n.

Remark 2.2. If we instead estimate the number of (permuted) triangular submatrices,
we are taking ` = m and t = s in the calculations above and we only obtain the weaker
estimate T p

n ≤ (4+ε) logQ n w.h.p. The reason that the first moment method does not
yield a sharp estimate in this case is that triangular submatrices of large size tend to
occur in large clusters; thus the expected number of such submatrices of a given size
can tend to infinity although the probability that the number is nonzero tends to 0.
See also the proof of the lower bound in Section 3, which shows that a (k, `)-corner
matrix of close to maximal size w.h.p. can be extended to a triangular submatrix in
many different ways.

3. Proof of lower bound

We begin by stating three lemmas; the first is elementary and the two others contain
the main probabilistic arguments. The proofs are provided later.

Lemma 3.1. Suppose that k1 ≥ `1 ≥ 1, k2 ≥ `2 ≥ 1, and 2(`1 − `2) ≥ k1 − k2 ≥ 0.
Then every special (k1, `1)-corner matrix contains a special (k2, `2)-corner submatrix.

Lemma 3.2. Let ε > 0. There exists some k = k(n) and ` = `(n) with

(2 +
√

2− ε) logQ n ≤ k ≤ (2 +
√

2) logQ n,

and

(1 +
√

2− ε) logQ n ≤ ` ≤ (1 +
√

2) logQ n

such that w.h.p. X contains a special (k, `)-corner submatrix.

Lemma 3.3. Let X ′ be the submatrix (xij)i≤n/2, j>n/2 comprising the upper right quar-
ter of X. Let ε > 0 and let k = k(n) and ` = `(n) be such that k/2 < ` < k and
k− ` ≤ (1− ε) logQ n. If X ′ contains a special (k, `)-corner submatrix, then w.h.p. X
contains a special triangular k × k submatrix, and thus T s

n ≥ k.

Proof of lower bound in Theorem 1.2. Let 0 < ε < 1/3. Let X ′ be the upper right
quarter of X as in Lemma 3.3. By Lemma 3.2, there exists k1 and `1 with

(2 +
√

2− ε) logQbn/2c ≤ k1 ≤ (2 +
√

2) logQbn/2c,

(1 +
√

2− ε) logQbn/2c ≤ `1 ≤ (1 +
√

2) logQbn/2c
such that there w.h.p. is a special (k1, `1)-corner submatrix M1 of X ′.

Note that k1− `1 ≤ (1 + ε) logQ n. Let d = d2ε logQ ne, k = k1− 2d, and ` = `1− d.
By Lemma 3.1, there is a special (k, `)-corner submatrix M2 of M1. It is easily verified
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that k and ` satisfy the conditions of Lemma 3.3, and thus Lemma 3.3 shows that
w.h.p.

T s
n ≥ k ≥ (2 +

√
2− 5ε) logQ n+O(1).

The bound T s
n ≥ (2+

√
2−ε) logQ n w.h.p. follows by replacing ε by ε/6. This completes

the proof of Theorem 1.2 since T ∗n ≥ T s
n by (1.1). �

It remains to prove the lemmas.

Proof of Lemma 3.1. Let A be a special (k, `)-corner matrix. The submatrix obtained
by deleting the first row and last column is a special (k − 2, ` − 1)-corner matrix.
Similarly, we obtain a special (k− 1, `− 1)-corner matrix by deleting the last row and
last column, and a special (k, ` − 1)-corner matrix by deleting the last row and first
column.

The lemma now follows by induction on `1 − `2. �

Proof of Lemma 3.2. We may assume that ε < 1/4. We consider a block version of
(k, `)-corner matrices.

Let N be a large integer and let K = d(2 +
√

2− ε)Ne and L = d(1 +
√

2− ε)Ne =
K − N ; note that K > L > K/2. Let n1 = bn/Lc and divide the interval [1, n] into
the L subintervals Ei = [(i−1)n1+1, in1], i = 1, . . . , L, ignoring the possible remainder
at the end. Let Xij be the n1 × n1 submatrix (xrs)r∈Ei, s∈Ej of X.

Let
q = dN−1 logQ ne (3.1)

and consider the submatrices of X obtained by choosing q rows from each Ei and q
columns from each Ej , i, j = 1, . . . , L. We denote the set of all such submatrices byM;
each M ∈ M is identified by its set of rows and columns, and the number of them is
thus

|M| =
(
n1
q

)2L

. (3.2)

Each M is a Lq×Lq submatrix of X which consists of L2 blocks Mij , i, j ∈ {1, . . . , L},
where Mij is a q × q submatrix of Xij .

We say that the submatrix M ∈ M is good (for a given realization of the random
matrix X) if Mij = 0 when i < j + K − L and Mij = I (the q × q identity matrix)
when i = j +K − L; otherwise M is called bad. Thus, a good submatrix can be seen
as a special (K,L)-corner matrix of q × q matrices.

Note that a good submatrix M is a special (Kq,Lq)-corner matrix, and that k = Kq
and ` = Lq satisfy the inequalities in the lemma if N and q are large enough. Hence
it suffices to show that if N is large enough, then there exists w.h.p. at least one good
submatrix M ∈M.

Let IM be the indicator that M is good, i.e., IM = 1 if M is good and IM = 0 if M
is bad, and let Z =

∑
M∈M IM be the number of good submatrices M ∈M. Our task

is to show that Z ≥ 1 w.h.p., which we do by estimating the mean and variance.
In order for M to be good, the number of submatrices Mij required to be 0 is

ν0(K,L), and the number required to be I is ν1(K,L). Consequently, the number of
entries required to be 0 is ν0(K,L)q2 + ν1(K,L)(q2 − q) = ν(K,L)q2 − ν1(K,L)q and
the number of entries required to be 1 is ν1(K,L)q. Hence, denoting the probability
that M is good by π, for each M ∈M,

π = P(IM = 1) = p
ν(K,L)q2−ν1(K,L)q
0 p

ν1(K,L)q
1 . (3.3)
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We have by (2.3), recalling K = L+N ,

ν(K,L) =
4(L+N)L− (L+N)2 − 2L2 +O(N)

2

=
L2 + 2LN −N2

2
+O(N)

=
(

2 + 2
√

2− (2 +
√

2)ε+
ε2

2

)
N2 +O(N)

< (2− ε/2)LN, (3.4)

provided N is chosen large enough. We fix such an N ; thus K and L are now fixed,
while n→∞. By (3.1),

log n = logQ n · logQ = Nq logQ+O(1). (3.5)

Furthermore, (3.1) also yields, as n→∞, q ≤ logQ n � n1. Hence, by Stirling’s
formula,

log

(
n1
q

)
= q log n1 +O

( q2
n1

)
− log(q!) = q log n+O(q log q).

Consequently, by (3.2), (3.3), (3.4) and (3.5),

EZ = |M|P(IM = 1) = |M|π

= exp
(

2L
(
q log n+O(q log q)

)
− ν(K,L)q2 logQ+O(q)

)
≥ exp

(
2L
(
q log n

)
− (2− ε/2)LNq2 logQ+O(q log q)

)
= exp

(
(εLN logQ/2)q2 +O(q log q)

)
→∞. (3.6)

To estimate the variance Var(Z), we first calculate the covariance Cov(IM , IM ′) =
E(IMIM ′)− E(IM )E(IM ′) for two submatrices M,M ′ ∈ M. Let ai be the number of
common rows in Ei of M and M ′, and let bj be the number of common columns in Ej .
Then Mij has aibj entries in common with M ′ij , so their union has 2q2−aibj elements.

For i < j +K − L, we have

P(Mij = 0 = M ′ij)

P(Mij = 0)P(M ′ij = 0)
=
p
2q2−aibj
0

p2q
2

0

= p
−aibj
0 . (3.7)

For i = j + K − L, we want Mij = M ′ij = I, so we have to consider also the required

positions of the 1’s in Mij and M ′ij . In many cases, the rows and columns chosen

for Mij and M ′ij are such that the conditions Mij = I and M ′ij = I are contradictory,

so P(Mij = M ′ij = I) = 0. Otherwise, the aibj common entries of Mij and M ′ij contain

some number of entries, d say, that have to be 1 in both Mij and M ′ij , while the
remaining aibj − d have to be 0 in both, and then

P(Mij = M ′ij = I)

P(Mij = I)P(M ′ij = I)
= p

−(aibj−d)
0 p−d1 = p

−aibj
0

(p0
p1

)d
; (3.8)

note that 0 ≤ d ≤ min(ai, bj). Combining (3.7) and (3.8) by taking the product over
all pairs (i, j) with i ≤ j +K −L, and recalling that K −L = N , we obtain the upper
bound

P(IM = IM ′ = 1)

P(IM = 1)P(IM ′ = 1)
≤ p

−
∑

i,j:i≤j+N aibj
0 max

((p0
p1

)L∑
i ai
, 1
)
. (3.9)
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Let π = P(IM = 1), C1 = max{(p0/p1)L, 1} and, for a given pair M,M ′, A =
∑

i ai
and B =

∑
j bj , be the numbers of common rows and columns, respectively, of M

and M ′. Then (3.9) yields

Cov(IM , IM ′) ≤ P(IM = IM ′ = 1) ≤ Q
∑

i,j:i≤j+N aibjCA1 π
2. (3.10)

Let

τ = τ
(
(ai), (bj)

)
=

∑
i,j:i≤j+N

aibj (3.11)

and let τ(A,B) be the maximum of τ for given sums A =
∑

i ai and B =
∑

j bj , with

ai, bj ∈ [0, q]. If i1 < i2 and we increase ai1 by some ∆ to ai1 + ∆ and decrease ai2 by
the same ∆ to ai2 −∆, then τ =

∑
i,j:i≤j+N aibj cannot decrease. The same happens

if we decrease bj1 and increase bj2 with j1 < j2. Consequently, given A and B, the
sum τ is maximized when, for some indices i∗, j∗ ∈ [1, L],

ai = q when i < i∗, ai = 0 when i > i∗; (3.12)

bj = 0 when j < j∗, bj = q when j > j∗. (3.13)

Returning to (3.10), we have the estimate Cov(IM , IM ′) ≤ Qτ(A,B)CA1 π
2. If A = 0

or if B = 0, then M and M ′ are disjoint submatrices of X, and thus independent, so
in this case Cov(IM , IM ′) = 0. Consequently,

Var(Z) =
∑
M,M ′

Cov(IM , IM ′) ≤
∑

M,M ′:A,B>0

Qτ(A,B)CA1 π
2, (3.14)

where A and B are defined as above, given M and M ′.
For a given M ∈ M, the number of submatrices M ′ ∈ M with given a1, . . . , aL,

b1, . . . , bL is

N
(
(ai)i, (bj); q

)
=

L∏
i=1

(
q

ai

)(
n1 − q
q − ai

) L∏
j=1

(
q

bj

)(
n1 − q
q − bj

)
.

We have, for any a ∈ [0, q],(
q
a

)(
n1−q
q−a

)(
n1

q

) ≤
qa
(
n1−a
q−a

)(
n1

q

) = qa
a−1∏
i=0

q − i
n1 − i

≤ qa
( q
n1

)a
=
( q2
n1

)a
. (3.15)

Thus, recalling (3.2),

N
(
(ai)i, (bj); q

)
|M|

≤
( q2
n1

)A+B
.

Moreover, given A and B, the number of choices of a1, . . . , aL with sum A is ≤ (A +
1)L ≤ 2AL, and similarly the number of b1, . . . , bL is ≤ 2BL. Hence, for each M ∈ M,
the number of M ′ with given A and B is at most, using (3.15),

2AL2BL
( q2
n1

)A+B
|M| =

(2Lq2

n1

)A+B
|M| ≤

(C2q
2

n

)A+B
|M|,
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where C2 = (L+ 1)2L (for n large enough). Since M can be chosen in |M| ways, and
A,B ≤ Lq, (3.14) yields, recalling EZ = |M|π,

Var(Z) ≤
Lq∑

A,B=1

|M|
(C2q

2

n

)A+B
|M|Qτ(A,B)CA+B1 π2

= (EZ)2
Lq∑

A,B=1

(C3q
2

n

)A+B
Qτ(A,B), (3.16)

with C3 = C1C2. We write (3.16) as Var(Z) = (EZ)2
∑

A,B λ(A,B), with

λ(A,B) =
(C3q

2

n

)A+B
Qτ(A,B). (3.17)

Claim. If A,B ∈ [1, Lq], then λ(A,B) ≤ max{λ(1, 1), λ(Lq, Lq)}; in other words,
λ(A,B) attains its maximum for A = B = 1 or A = B = Lq.

To prove the claim, let (ai) and (bj) be vectors that maximize τ in (3.11) for some
given A and B; we may thus assume that (3.12) and (3.13) hold. We first note that if
A < Nq, then by (3.12) we have i∗ ≤ N and ai = 0 when i > N ; hence

τ(A,B) = τ =
∑

i,j:i≤j+N
aibj =

L∑
i,j=1

aibj = AB

and thus

λ(A,B) = (C3q
2/n)A+BQAB.

Keeping A fixed, this is maximized by either B = 1 or B = Lq.
On the other hand, if A ≥ Nq, then (3.12) yields ai = q when i ≤ N . Hence,

increasing any bj by 1 will increase τ in (3.11) by
∑

i:i≤j+N ai ≥ Nq, and thus τ(A,B+

1) ≥ τ(A,B) +Nq. Consequently, by (3.17) and (3.1),

λ(A,B + 1)

λ(A,B)
=
(C3q

2

n

)
Qτ(A,B+1)−τ(A,B) ≥

(C3q
2

n

)
QNq ≥ C3q

2 > 1,

and thus λ(A,B) ≤ λ(A,Lq) for any B ≤ Lq.
Hence, for any fixed A ≤ Lq, λ(A,B) is maximized by either B = 1 or B = Lq. By

symmetry, for fixed B, the maximum is attained for A = 1 or A = Lq. Consequently,
the maximum for all A,B ∈ [1, Lq] is attained for A,B ∈ {1, Lq}. Moreover, λ(1, Lq) =
λ(Lq, 1) by symmetry and λ(Lq, 1) ≤ λ(Lq, Lq) by the case A ≥ Nq above. Hence,
the claim follows.

Having proved the claim, we calculate easily the two extreme cases in it. For A =
B = 1, τ(1, 1) = 1 and

λ(1, 1) =
(C3q

2

n

)2
Q = O

( log4 n

n2

)
. (3.18)
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For A = B = Lq, all ai = bj = q, and thus τ(Lq, Lq) = ν(K,L)q2, with ν(K,L) given
by (2.3). Hence, recalling q = O(log n), (3.5) and (3.4),

λ(Lq, Lq) =
(C3q

2

n

)2Lq
Qν(K,L)q

2

= exp
(
−2Lq log n+O(q log q) + ν(K,L)q2 logQ

)
= exp

(
(−2LNq2 + ν(K,L)q2) logQ+O(q log q)

)
≤ exp

(
−(εLN logQ/2)q2 +O(q log q)

)
. (3.19)

For large n, this is less than exp(−2Nq) < n−2. Consequently, the claim and (3.18)–
(3.19) shows that for all A,B ≤ Lq,

λ(A,B) = O
( log4 n

n2

)
. (3.20)

Finally, by (3.16) and (3.20),

Var(Z)

(EZ)2
≤

Lq∑
A,B=1

λ(A,B) = O
(q2 log4 n

n2

)
= O

( log6 n

n2

)
= o(1), (3.21)

as n→∞. This is what we need: by Chebyshev’s inequality

P(Z = 0) ≤ Var(Z)

(EZ)2
;

hence (3.21) yields P(Z = 0) → 0, and thus Z ≥ 1 w.h.p., which completes the
proof. �

Proof of Lemma 3.3. Condition on X ′ and fix a special (k, `)-corner submatrix M ′ =
(xi′r,j′s)

`
r,s=1 of X ′; thus 1 ≤ i′1 < · · · < i′` ≤ n/2 and n/2 < j′1 < · · · < j′` ≤ n.

We try to complete M ′ to a k × k special triangular matrix by adding k − ` columns
j1 < · · · < jk−` ≤ n/2 in the left half and k − ` rows n/2 < i1 < · · · < ik−` ≤ n in
the lower half of X; we do this by trying the columns one by one until we find first
a suitable j1 (i.e., one with xi′1j1 = 1), then a suitable j2 (one with xi′1j2 = 0 and

xi′2j2 = 1), and so on until jk−`, and similarly for i1, . . . , ik−`. (Note that we only

search among the rows and columns that do not intersect X ′.)
Let r ≤ k − `. Each time we try a column in order to find jr, we want one specific

entry in it to be 1 and r − 1 others to be 0; the probability of this is πr = pr−10 p1,
independently of X ′ and what has happened earlier. If Tr is the number of columns
that we have to try until we find jr, then Tr thus has a geometric distribution

P(Tr = t) = (1− πr)t−1πr, t = 1, 2, . . . .

This distribution has mean ETr = 1/πr and variance VarTr = (1− πr)/π2r ; hence the
sum S := T1 + · · ·+ Tk−` has mean

ES =

k−∑̀
r=1

ETr =

k−∑̀
r=1

π−1r =

k−∑̀
r=1

p−11 Qr−1 = O
(
Qk−`

)
= O

(
n1−ε

)
= o(n)
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and variance

VarS =
k−∑̀
r=1

VarTr ≤
k−∑̀
r=1

π−2r = O
(
Q2(k−`)) = O

(
n2(1−ε)

)
= o(n2).

The search for j1, . . . , jk−` succeeds if S ≤ n/2. Consequently the probability of failure
is, using Chebyshev’s inequality, for n so large that ES < n/4,

P(S > n/2) ≤ VarS

(n/2− ES)2
≤ VarS

(n/4)2
= o(1).

Hence, w.h.p. we succeed and find suitable columns j1, . . . , jk−`; similarly w.h.p. we
find also suitable rows i1, . . . , ik−`, and we can extend M ′ to a special triangular k× k
matrix. �

Note that w.h.p. S is much less than n/2, so we have a wide margin in this proof
and there are w.h.p. many different choices of rows and columns that work, and thus
many different ways to extend M ′ to a special triangular matrix, cf. Remark 2.2.
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