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Abstract. Bliem and Kousidis recently considered a family of ran-
dom variables whose distributions are given by the generalized Galois
numbers (after normalization). We give probabilistic interpretations of
these random variables, using inversions in random words, random lat-
tice paths and random Ferrers diagrams, and use these to give new
proofs of limit theorems as well as some further limit results.

1. Introduction

The homogeneous multivariate Rogers–Szegö polynomial in m ≥ 2 vari-
ables is defined by

H̃n(t1, . . . , tm) :=
∑

k1+···+km=n

(
n

k1, . . . , km

)
q

tk11 · · · t
km
m , (1.1)

where
(

n
k1,...,km

)
q

is the q-multinomial coefficient (or Gaussian multinomial

coefficient)(
n

k1, . . . , km

)
q

:=
[n]!q

[k1]!q · · · [km]!q
for n = k1 + · · ·+ km, (1.2)

where [k]!q := [1]q[2]q · · · [k]q with [`]q := (1− q`)/(1− q). Equivalently, one
might consider the inhomogeneous multivariate Rogers–Szegö polynomial

Hn(t1, . . . , tm−1) := H̃n(t1, . . . , tm−1, 1). (1.3)

For these polynomials, see Rogers [13], Andrews [1] and Vinroot [17].
We concentrate here on the special value

G(m)
n (q) = Hn(1, . . . , 1) = H̃n(1, . . . , 1) =

∑
k1+···+km=n

(
n

k1, . . . , km

)
q

, (1.4)

studied in Vinroot [17] and Bliem and Kousidis [2]. This is a polynomial in q.
In the special case m = 2, studied in e.g. Goldman and Rota [4], Nijenhuis,
Solow and Wilf [11], Kac and Cheung [10, Chapter 7] and Hitzemann and

Hochstättler [6], these numbers G
(2)
n (q) are known as Galois numbers, and
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the numbers G
(m)
n are therefore called generalized Galois numbers by [17]

and [2]. Note that

G(m)
n (1) =

∑
k1+···+km=n

(
n

k1, . . . , km

)
= mn, (1.5)

by the multinomial theorem.

Bliem and Kousidis [2] noted that the polynomialG
(m)
n (q) has non-negative

coefficients, and thus

g(m)
n (q) :=

G
(m)
n (q)

G
(m)
n (1)

= m−nG(m)
n (q) (1.6)

can be interpreted as the probability generating function of a random vari-
able Gn,m. We let Gn,m denote the probability distribution with the prob-
ability generating function (1.6), and have thus Gn,m ∼ Gn,m. (We use,
following [2], Gn,m for an arbitrary random variable with this distribution.
In the next sections we will construct specific random variables of this type.)

The purpose of the present paper is to provide some probabilistic in-
terpretations of this random variable, see Sections 2–4, and to use these
interpretations to give new, and perhaps simpler, proofs of the following

results in [2]. We use
d−→ for convergence in distribution and (later)

d
= for

equality in distribution. N(µ, σ2) is the normal distribution with mean µ
and variance σ2.

Theorem 1.1 ([2]). The random variable Gn,m has mean and variance

EGn,m =
n(n− 1)

4
· m− 1

m
, (1.7)

VarGn,m =
n(n− 1)(2n+ 5)

72
· m

2 − 1

m2
. (1.8)

Theorem 1.2 ([2]). If m→∞ with n ≥ 1 fixed, then

Gn,m
d−→ Gn, (1.9)

where Gn is the number of inversions in a random permutation of {1, . . . , n}.

Theorem 1.3 ([2]). If n→∞ with m ≥ 2 fixed, then

Gn,m − EGn,m
Var(Gn,m)1/2

d−→ N(0, 1); (1.10)

equivalently,

Gn,m − EGn,m
n3/2

d−→ N
(

0,
m2 − 1

36m2

)
. (1.11)

Furthermore, we can also let both m and n tend to infinity; we show that
there are no surprises in this case.
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Theorem 1.4. If m,n→∞, then

Gn,m − EGn,m
Var(Gn,m)1/2

d−→ N(0, 1); (1.12)

equivalently,
Gn,m − EGn,m

n3/2
d−→ N

(
0,

1

36

)
. (1.13)

Moreover, we show a local limit theorem strengthening Theorems 1.3
and 1.4.

Theorem 1.5. If n→∞, then, with µn,m := EGn,m and σ2n,m := VarGn,m
given by Theorem 1.1,

σn,m P(Gn,m = k) =
1√
2π
e−(k−µn,m)2/2σ2

n,m + o(1), (1.14)

uniformly in all m ≥ 2 and k ∈ Z.
Equivalently, we can in (1.14) replace µn,m and σ2n,m by the approxima-

tions µ̄n,m := m−1
4m n2 and σ̄2n,m := m2−1

36m2 n
3.

Proofs are given in Sections 5–6.

Remark 1.6. The name (generalized) Galois numbers comes from the fol-
lowing algebraic interpretation, see [4], [17], [10, Chapter 7], [15, Proposition
1.3.18] which, however, not will be important in the present paper.

If q is a prime power and V an n-dimensional vector space over the Galois
field Fq with q elements, then it is not difficult to see that

(
n

k1,...,km

)
q

is the

number of flags {0} ⊆ V1 ⊆ · · · ⊆ Vm = V , where Vi is a subspace of

dimension k1 + · · ·+ ki. Hence, G
(m)
n (q) is the total number of such flags of

fixed length m in V = Fnq . In particular, the Galois number G
(2)
n (q) is the

number of subspaces of Fnq .

2. Inversions

If w = w1 · · ·wn is a word with letters from an ordered alphabet A, then
the number of inversions in w is the number of pairs (i, j) with i < j and
wi > wj ; we denote this number by Inv(w). Using the notation 1{E} for
the indicator of an event E , we thus have

Inv(w) =
∑

1≤i<j≤n
1{wi > wj}. (2.1)

With the alphabet A = {1, . . . ,m}, it is well-known (and not difficult to
see) that the q-multinomial coefficient

(
n

n1,...,nm

)
q
, where n1 + · · ·+ nm = n,

is the generating function of the number of inversions in words consisting of
n1 1’s, . . . , nm m’s, in the sense that if an1,...,nm(`) is the number of such
words with exactly ` inversions, then(

n

n1, . . . , nm

)
q

=

∞∑
`=0

an1,...,nm(`)q`, (2.2)
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see [1, Theorem 3.6].
Summing over all n1, . . . , nm with n1 + · · · + nm = n, we immediately

obtain the following from (1.4) and (2.2).

Theorem 2.1. G
(m)
n (q) is the generating function of the number of inver-

sions in words of length n in the alphabet {1, . . . ,m}, in the sense that if

A
(m)
n (`) is the number of such words with exactly ` inversions, then

G(m)
n (q) =

∞∑
`=0

A(m)
n (`)q`. (2.3)

�

By the definition of the random variable Gn,m, (2.3) is equivalent to

P(Gn,m = `) = A(m)
n (`)/n−m. (2.4)

This can be formulated as follows, yielding our first construction of a random
variable Gn,m.

Theorem 2.2. Let Wn,m be a uniformly random word of length n in the
alphabet {1, . . . ,m}. Then the number of inversions Inv(Wn,m) has the dis-

tribution Gn,m. In other words, Gn,m
d
= Inv(Wn,m). �

We can thus choose Gn,m := Inv(Wn,m). (Recall that we have defined
Gn,m to be an arbitrary random variable with the desired distribution.)

If we write the random word Wn,m as X1 · · ·Xn, we have X1, . . . , Xn i.i.d.
(independent and identically distributed) with the uniform distribution on
{1, . . . ,m}, and using (2.1), Theorem 2.2 may be reformulated as follows.

Corollary 2.3. Let {Xi}∞i=1 be i.i.d. random variables, with every Xi uni-
formly distributed on {1, . . . ,m}, and let

Vn,m :=
∑

1≤i<j≤n
1{Xi > Xj}. (2.5)

Then Vn,m ∼ Gn,m. In other words, Gn,m
d
= Vn,m. �

Let Nk := #{i ≤ n : Xi = k} be the number of occurences of the
letter k in the random string Wn,m = X1 · · ·Xn. Then (N1, . . . , Nm) has a
multinomial distribution with ENk = n/m, and it is well known that if we

keep m fixed, n−1/2(Nk−ENk)
m
k=1

d−→ (Zk)
m
k=1 as n→∞, where Z1, . . . , Zm

are jointly normal with means EZk = 0, variances VarZk = (m−1)/m2 and

covariances Cov(Zk, Zl) = −1/m2 (k 6= l). By Theorem 1.3, Vn,m
d
= Gn,m

has an asymptotic normal distribution, and this extends to joint asymptotic
normality of Vn,m and N1, . . . , Nm.

Theorem 2.4. For fixed m, as n→∞,(
V − EVn,m

n3/2
,
N1 − EN1

n1/2
, . . . ,

Nm − ENm

n1/2

)
d−→ (Z∗, Z1, . . . , Zm),
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where Z∗, Z1, . . . , Zm are jointly normal with means 0, VarZ∗ = (m2 −
1)/36m2 as in (1.11), Z1, . . . , Zm have the variances and covariances given
above and Z∗ is independent of Z1, . . . , Zm.

The proof is given in Section 5.

3. A U-statistic

Let {Xi}∞i=1 and {Yi}∞i=1 be independent random variables, with every
Xi uniformly distributed on {1, . . . ,m} and every Yi uniformly distributed
on [0,1]. (Any common continuous distribution of Yi would yield the same
result.)

Fix n ≥ 1. The values Y1, . . . , Yn are a.s. distinct, and can thus be ordered
as Yσ(1) < · · · < Yσ(n) for some (unique) permutation of {1, . . . , n}. LetWn,m

be the word Xσ(1) · · ·Xσ(n). Since {Xi}ni=1 and {Yi}ni=1 are independent,
Wn,m has the same distribution as X1 · · ·Xn, and is thus a uniformly random
word in {1, . . . ,m}n. Consequently, Theorem 2.2 yields Inv(Wn,m) ∼ Gn,m.
Moreover, since i < j ⇐⇒ Yσ(i) < Yσ(j),

Inv(Wn,m) =
∑

1≤i<j≤n
1{Xσ(i) > Xσ(j)} =

n∑
i,j=1

1{Xσ(i) > Xσ(j) and i < j}

=

n∑
i,j=1

1{Xσ(i) > Xσ(j) and Yσ(i) < Yσ(j)}

=

n∑
k,l=1

1{Xk > Xl}1{Yk < Yl}.

We have shown the following, yielding our second construction of Gn,m.

Theorem 3.1. Let Xi and Yi be as above, and define the random variable

Un,m :=
n∑

i,j=1

1{Xi > Xj}1{Yi < Yj}. (3.1)

Then Un,m ∼ Gn,m. In other words, Gn,m
d
= Un,m. �

Let Zi := (Xi, Yi); this yields a sequence of i.i.d. random vectors taking
values in S := {1, . . . ,m} × [0, 1]. Define the functions h, h∗ : S2 → R by

h
(
(x1, y1), (x2, y2)

)
:= 1{xi > xj}1{yi < yj}, (3.2)

h∗
(
(x1, y1), (x2, y2)

)
:= h

(
(x1, y1), (x2, y2)

)
+ h
(
(x2, y2), (x1, y1)

)
. (3.3)

Thus h∗ is symmetric and (3.1) can be written

Un,m =

n∑
i,j=1

h
(
Zi, Zj

)
=

∑
1≤i<j≤n

h∗
(
Zi, Zj

)
, (3.4)

which shows that Un,m is (for fixed m) a U -statistic [7].
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4. Lattice paths and Ferrers diagrams

In this section we consider the special case m = 2. In this case, there
is an alternative combinatorial description of the Gaussian binomial coeffi-
cients using using lattice paths instead of inversions, see Pólya [12]. Indeed,
consider lattice paths in the first quadrant, starting at the origin and con-
taining n unit steps East or North. There are 2n such paths, and they may
be encoded by the 2n words of length n with the alphabet {E,N}. The area
under each horizontal step equals the number of previous vertical steps, so
by summing, we see that the area under the path equals the number of
inversions in the corresponding word, where we use the ordering E < N.

Consequently, Theorem 2.2 yields the following.

Theorem 4.1. Let θ(n) be the area under a uniformly random lattice path

(of the type above) of length n. Then θ(n) ∼ Gn,2. In other words, Gn,2
d
=

θ(n).

The random variable θ(n) was studied by Takács [16], who found its mean
and variance and proved a central limit theorem and a local limit theorem
(our Theorems 1.1, 1.3 and 1.5 for m = 2).

By symmetry, we may instead consider the area θ′(n) between the path
and the y-axis. This area can be regarded as a Ferrers diagram; if the path
ends at (s1, s2), then the height (number of non-empty rows) h and width
w of the Ferrers diagram satisfy h ≤ s2 and w ≤ s1, and there is a bijection
between all paths ending at (s1, s2) and all such Ferrers diagrams. (Note
the bijection between such Ferrers diagrams with a given area N and the
partitions of N into at most s2 parts, each at most s1; see [1, Theorem 3.5].)

Alternatively, by adding an extra row and column, we obtain a Ferrers
diagram with height s2 +1 and width s1 +1; its right boundary consists of a
path from (−1, 0) to (s1, s2+1), beginning with a horizontal step and ending
with a vertical. Moreover, there is a bijection between all paths ending at
(s1, s2) and all such Ferrers diagrams. We further see that the area of this
Ferrers diagram equals θ′ + s1 + s2 + 1, where θ′ is the area between the
(original) path and the y-axis.

The semiperimeter of a Ferrers diagram equals its height plus width,
and we thus have obtained a bijection between all Ferrers diagram with
semiperimeter n + 2 and all (north-east) lattice paths of length n. This
bijection gives a correspondence between uniformly random Ferrers diagrams
with semiperimeter n + 2 and uniformly random lattice paths of length n,
yielding the following theorem.

Theorem 4.2. Let An be the area of a uniformly random Ferrers diagram

with semiperimeter n+ 2. Then An − n− 1 ∼ Gn,2. In other words, Gn,2
d
=

An − n− 1.
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Proof. If θ′(n) is the area between the corresponding random lattice path
and the y-axis, then the arguments above show that

An = θ′(n) + n+ 1
d
= θ(n) + n+ 1

and the result follows by Theorem 4.1. �

Corollary 4.3. The random variable An has mean and variance

EAn = EGn,2 + n+ 1 =
n2 + 7n+ 8

8
, (4.1)

VarAn = VarGn,2 =
n(n− 1)(2n+ 5)

96
. (4.2)

Proof. By Theorems 4.2 and 1.1. �

Theorem 1.3 yields the central limit theorem

An − EAn
Var(An)1/2

d−→ N(0, 1); (4.3)

by (4.1)–(4.2), this can also be written as

An − n2/8
n3/2

d−→ N
(

0,
1

48

)
, (4.4)

which was proved by other methods by Schwerdtfeger [14]. Furthermore,
Schwerdtfeger [14] showed that if Hn is the height of the Ferrers diagram,
then there is joint convergence of the normalised variables(

An − n2/8√
n3/48

,
Hn − n/2√

n/4

)
d−→ (ζ1, ζ2), (4.5)

where ζ1, ζ2 are independent standard normal variables. The asymptotic
normality of Hn is immediate, since Hn − 1 is the y-coordinate of the end-
point of the corresponding lattice path, and thus Hn − 1 has the binomial
distribution Bi(n, 1/2). The joint convergence follows by Theorem 2.4.

5. Proofs of Theorems 1.1–1.4 and 2.4

We will base most of the proofs on the representation in (3.1)–(3.4). (It
is also possible to use (2.5), see Remark 5.3 and the proof of Theorem 2.4;
(2.5) is simpler in some ways, but we prefer the symmetry in (3.1)–(3.4).)

We use the notations, with Z, h, h∗ as in Section 3, see (3.2)–(3.3),

Iij := h(Zi, Zj) = 1{Xi > Xj}1{Yi < Yj}, (5.1)

I∗ij := h∗(Zi, Zj) = Iij + Iji. (5.2)

Thus (3.4) can be written

Gn,m
d
= Un,m =

∑
1≤i<j≤n

I∗ij . (5.3)
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Proof of Theorem 1.1. By symmetry and the independence of Iij and Ikl
when {i, j} and {k, l} are disjoint, (5.3) implies

EGn,m =

(
n

2

)
E I∗12 = n(n− 1)E I12, (5.4)

VarGn,m =

(
n

2

)
Var I∗12 + n(n− 1)(n− 2) Cov

(
I∗12, I

∗
13

)
. (5.5)

Clearly,

E Iij = P(Xi > Xj)P(Yi < Yj) =

(
m
2

)
m2
· 1

2
=
m− 1

4m
(5.6)

and

E I∗ij = 2E Iij =
m− 1

2m
=

1

2
− 1

2m
; (5.7)

any of these yields (1.7) by (5.4).
Since I∗ij is 0/1-valued, it follows from (5.7) also that

Var I∗ij = E I∗ij(1− E I∗ij) =
1

4

(
1− 1

m2

)
. (5.8)

Furthermore, again using symmetry,

E
(
I∗12I

∗
13

)
= 2E

(
I12I13

)
+ 2E

(
I21I13

)
= 2P

(
X1 > X2, X3

)
P
(
Y1 < Y2, Y3

)
+ 2P

(
X2 > X1 > X3

)
P
(
Y2 < Y1 < Y3

)
= 2

∑m
i=1(i− 1)2

m3
· 1

3
+ 2

(
m
3

)
m3
· 1

6
=
m(m− 1)(2m− 1)

9m3
+
m(m− 1)(m− 2)

18m3

=
(m− 1)(5m− 4)

18m2

and hence

Cov
(
I∗12, I

∗
13

)
= E

(
I∗12I

∗
13

)
− E

(
I∗12
)2

=
(m− 1)(5m− 4)

18m2
− (m− 1)2

4m2

=
(m− 1)(m+ 1)

36m2
. (5.9)

The variance formula (1.8) follows from (5.5), (5.8) and (5.9). �

Proof of Theorem 1.2. Consider the random wordWn,m = X1 · · ·Xn in The-
orem 2.2. If we condition on the letters X1, . . . , Xm being distinct, then the
number of inversions Inv(Wn,m) has the same distribution as the number
Gn of inversions in a random permutation. Hence, for any set A ⊂ N,

P
(
Inv(Wn,m) ∈ A | X1, . . . , Xn distinct

)
= P(Gn ∈ A)

and thus∣∣P(Inv(Wn,m) ∈ A
)
− P(Gn ∈ A)

∣∣ ≤ P(X1, . . . , Xn not distinct)

≤
(
n

2

)
P(X1 = X2) =

(
n
2

)
m
→ 0

as m→∞, and thus Gn,m
d
= Inv(Wn,m)

d−→ Gn. �
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Remark 5.1. We have actually proved that the total variation distance
dTV(Gn,m, Gn) ≤

(
n
2

)
/m. Moreover, the bound can be improved to

dTV(Gn,m, Gn) ≤ P(X1, . . . , Xn not distinct) = 1− (m)n/m
n,

where (m)n := m!/(m− n)!.

Proof of Theorems 1.3 and 1.4. The two versions in each theorem are equiv-
alent by (1.8), so it suffices to prove, for example, (1.11) and (1.13).

The central limit theorem Theorem 1.3 follows immediately from Hoeffd-
ing’s central limit theorem for U -statistics [7] without any further calcu-
lations. Moreover, we shall see that the decomposition method used by
Hoeffding [7] yields also Theorem 1.4; we therefore do the decomposition
explicitly.

The idea is to decompose each term I∗ij as

I∗ij = µ+ ξi + ξj + ηij , (5.10)

where µ := E I∗ij ,

ξi := E
(
I∗ij − µ | Zi

)
= E

(
I∗ij | Xi, Yi

)
− µ (5.11)

and ηij is defined by (5.10). Then the random variables ξi (1 ≤ i ≤ n) and
ηij (1 ≤ i < j ≤ n) have mean 0 and are orthogonal (in L2), so they are
uncorrelated. In particular,

1 ≥ Var I∗ij = Var ξi + Var ξj + Var ηij . (5.12)

Moreover, ξi = g(Zi) for some function g, and thus the variables ξi are i.i.d.
By summing (5.10), we obtain by (5.3) a corresponding decomposition of

Un,m:

Un,m =

(
n

2

)
µ+ (n− 1)

n∑
i=1

ξi +
∑

1≤i<j≤n
ηij . (5.13)

Hence,

Un,m − EUn,m
n3/2

=
n− 1

n
n−1/2

n∑
i=1

ξi + n−3/2R, (5.14)

where R :=
∑

1≤i<j≤n ηij . Since the variables ηij are uncorrelated, and

Var ηij ≤ 1 by (5.12), we have

ER2 = VarR =
∑

1≤i<j≤n
Var ηij ≤

(
n

2

)
≤ n2, (5.15)

and thus E(n−3/2R)2 → 0. Hence, the last term in (5.14) is a small remain-
der term that can be ignored when n→∞. Furthermore, the decomposition
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(5.13) yields the variance decomposition

VarUn,m = (n− 1)2
n∑
i=1

Var ξi +
∑

1≤i<j≤n
Var ηij

= n(n− 1)2 Var ξ1 +

(
n

2

)
Var η12

∼ n3 Var ξ1 (5.16)

as n→∞, and thus by (1.8),

Var ξ1 =
1

36

(
1− 1

m2

)
. (5.17)

For fixed m (Theorem 1.3), the standard central limit theorem for sums
of i.i.d. random variables now shows that∑n

i=1 ξi

n1/2
d−→ N

(
0,
m2 − 1

36m2

)
, (5.18)

and thus (1.11) follows from (5.14).
For m → ∞ (Theorem 1.4), we have Var ξ1 → 1/36 by (5.17); moreover,

the random variables ξi are uniformly bounded (by 1), and thus the central
limit theorem with e.g. Lyapounov’s condition [5, Theorem 7.2.2] applies
and shows that ∑n

i=1 ξi

n1/2
d−→ N

(
0,

1

36

)
, (5.19)

and thus (1.13) follows from (5.14). �

Remark 5.2. It is interesting to do the decomposition (5.10) explicitly.
Using the centred variables

X ′i := Xi − EXi = Xi −
m+ 1

2
, (5.20)

Y ′i := Yi − EYi = Yi −
1

2
, (5.21)

we have by (5.1)

E(Iij | Xi, Yi) =
Xi − 1

m
(1− Yi) =

X ′i + (m− 1)/2

m

(1

2
− Y ′i

)
, (5.22)

E(Iji | Xi, Yi) =
m−Xi

m
Yi =

(m− 1)/2−X ′i
m

(
Y ′i +

1

2

)
, (5.23)

and thus, using (5.2) and (5.7),

ξi := E(I∗ij | Xi, Yi)− E I∗ij = − 2

m
X ′iY

′
i . (5.24)

Hence, the decomposition is

I∗ij =
m− 1

2m
− 2

m
X ′iY

′
i −

2

m
X ′jY

′
j + ηij (5.25)
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and

Un,m =

(
n

2

)
m− 1

2m
− 2(n− 1)

m

n∑
i=1

X ′iY
′
i +R. (5.26)

Note also that (5.17) follows from (5.24), and then (5.12) yields, using
(5.8),

Var ηij = Var I∗ij − 2 Var ξi =
1

4

(
1− 1

m2

)
− 2

36

(
1− 1

m2

)
=

7

36

(
1− 1

m2

)
,

(5.27)
which together with (5.17) and (5.16) yield another proof of (1.8).

Remark 5.3. It is also interesting to do the corresponding orthogonal de-
composition of Vn,m in (2.5). We have, similarly to (5.10),

1{Xi > Xj} = µ′ + ξ′i + ξ′′j + η′ij , (5.28)

where µ′ := P(Xi > Xj) = m−1
2m , and, with X ′i as in (5.20),

ξ′i := P
(
Xi > Xj | Xi

)
− µ′ = X ′i

m
, (5.29)

ξ′′j := P
(
Xi > Xj | Xj

)
− µ′ = −

X ′j
m
, (5.30)

and η′ij is defined by (5.28). Summing we get,

Vn,m = EVn,m +
n∑
i=1

(n− i)ξ′i +
n∑
j=1

(j − 1)ξ′′j +
∑

1≤i<j≤n
η′ij

= EVn,m +
1

m

n∑
i=1

(n+ 1− 2i)X ′i +
∑

1≤i<j≤n
η′ij . (5.31)

Straightforward calculations show that

VarX ′i =
1

12
(m2 − 1), (5.32)

Var(1{Xi > Xj}) =
1

4

(
1− 1

m2

)
, (5.33)

and, by (5.28),

Var η′ij = Var(1{Xi > Xj})−Var ξ′i −Var ξ′′j =
1

12

(
1− 1

m2

)
. (5.34)

Hence, (5.31) yields

VarVn,m =
1

m2

n∑
i=1

(n+ 1− 2i)2 VarX ′i +
∑

1≤i<j≤n
Var η′ij

=
n(n− 1)(n+ 1)

36

(
1− 1

m2

)
+
n(n− 1)

24

(
1− 1

m2

)
, (5.35)

which gives yet another proof of (1.8).
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We can also prove Theorems 1.3 and 1.4 using (5.31) instead of (5.13);
again the final sum can be ignored since, using (5.34) and the fact that the
η′ij are uncorrelated,

Var
(
n−3/2

∑
i<j

η′ij

)
= n−3

(
n

2

)
1

12

(
1− 1

m2

)
<

1

24n
→ 0 (5.36)

as n→∞, cf. (5.15). The summands in
∑n

i=1(n+1−2i)X ′i are not identically
distributed, but that does not matter since Lyapounov’s condition holds.
See [8, Corollary 11.20] for a general limit theorem for asymmetric sums like
(2.5), and note that the argument in Section 3 is an instance of a general
method to convert such sums into (symmetric) U -statistics by introducing
the auxiliary variables Yi, see [8, Remark 11.21].

In the case m = 2, one can check that η′ij = −X ′iX ′j and thus

∑
1≤i<j≤n

η′ij = −1

2

( n∑
i=1

X ′i

)2
+
n

2
, (5.37)

which shows that the decomposition (5.31) then is essentially the same as
the decomposition used by Takács [16].

Proof of Theorem 2.4. We use the decomposition (5.31) of Vn,m, and Nk =∑n
i=1 1{Xi = k}. The result follows by the central limit theorem with

Lyapounov’s condition applied to the random vector(∑n
i=1(n+ 1− 2i)X ′i

n3/2
,
N1 − EN1

n1/2
, . . . ,

Nm − ENm

n1/2

)
=

n∑
i=1

(
(n+ 1− 2i)X ′i

n3/2
,
1{Xi = 1} − 1/m

n1/2
, . . . ,

1{Xi = m} − 1/m

n1/2

)
,

together with (5.31) and (5.36); the variances and covariances are easily
computed, noting that Cov

(∑n
i=1(n+ 1− 2i)X ′i,

∑n
i=1 1{Xi = k}

)
= 0 for

each k since
∑n

i=1(n+1−2i) = 0. (This vector-valued central limit theorem
follows, as is well-known, from the real-valued version [5, Theorem 7.2.2] by
the Cramér–Wold device [5, Theorem 5.10.5].) �

6. Proof of Theorem 1.5

To prove the local limit theorem Theorem 1.5, we need estimates of the

probability generating function g
(m)
n (q) = m−nG

(m)
n (q) for q = eiθ on the

unit circle. We derive these estimates from the corresponding estimates of(
n

n1,...,nm

)
q

in [3] rather than from scratch. (We do not know whether the

estimates below are the best possible.)
Consider a random word Wn,m as in Section 2, let again N1, . . . , Nm be

the number of occurrences of the different letters, and let N∗ := maxk≤nNk
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and N∗ := n−N∗. Similarly, for given n1, . . . , nm with n1 + · · ·+ nm = n,
let n∗ := maxk≤n nk and n∗ := n− n∗; let further

Fn1,...,nm(q) :=

(
n

n1, . . . , nm

)
q

/( n

n1, . . . , nm

)
be the probability generating function of the number of inversions in a ran-
dom word consisting of n1 1’s, . . . , nm m’s, cf. (2.2). Thus Fn1,...,nm(q)
is the probability generating function of Vn,m = Inv(Wn,m) conditioned on
Nk = nk, k = 1, . . . ,m.

Lemma 6.1. There exists c > 0 such that for all m ≥ 2, n ≥ 2 and real
θ ∈ [−π, π], ∣∣g(m)

n (eiθ)
∣∣ ≤ {e−cn3θ2 , 0 ≤ |θ| ≤ 1/n,

e−cn, 1/n ≤ |θ| ≤ π.
(6.1)

Proof. We assume in the proof for simplicity that n is large enough; this
case is enough for our application in Theorem 1.5. It is easy (but not very
interesting) to complete the proof by verifying the estimates (6.1) for each
fixed n ≥ 2 and some c (that now might depend on n); we omit the details
but mention that the case when m is large follows using Theorem 1.2. We
let c1, c2, . . . denote some positive constants whose values are not important.

By [3, Lemma 4.1] there exists τ ∈ (0, 1) such that if |θ| ≤ τ/n, then for
any n1, . . . , nm with n1 + · · ·+ nm = n,∣∣Fn1,...,nm(eiθ)

∣∣ ≤ e−σ2θ2/4,

where σ2 depends on n1, . . . , nm and by [3, Lemma 3.1] σ2 ≥ n2n∗/36.
Furthermore, by [3, Lemma 4.4] there exists c1 > 0 such that if τ/n ≤ |θ| ≤
π, then ∣∣Fn1,...,nm(eiθ)

∣∣ ≤ e−c1n∗ .

Hence, if n∗ ≤ 3n/4 so that n∗ ≥ n/4 we have the estimates∣∣Fn1,...,nm(eiθ)
∣∣ ≤ e−c2n3θ2 , |θ| ≤ τ/n, (6.2)

and ∣∣Fn1,...,nm(eiθ)
∣∣ ≤ e−c3n, τ/n ≤ |θ| ≤ π. (6.3)

We return to our string Wn,m with random numbers N1, . . . , Nm of dif-
ferent letters. We can, for any m ≥ 2, partition {1, . . . ,m} into three sets
with at most m/2 elements each, and thus

P(N∗ > 3n/4) ≤ 3P
(
Bi(n, 1/2) > 3n/4

)
≤ 3e−c4n (6.4)

by Chernoff’s inequality, see e.g. [9, Theorem 2.1].
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When |θ| ≤ τ/n, which implies n3θ2 = O(n), we obtain by (6.2) and
(6.4), ∣∣g(m)

n (eiθ)
∣∣ =

∣∣E eiθVn,m
∣∣

=
∣∣∣E(eiθVn,m | N∗ ≤ 3n/4

)
P(N∗ ≤ 3n/4)

+ E
(
eiθVn,m | N∗ > 3n/4

)
P(N∗ > 3n/4)

∣∣∣
≤ e−c2n3θ2 P(N∗ ≤ 3n/4) + P(N∗ > 3n/4)

≤ e−c2n3θ2 + 3e−c4n

≤ 4e−c5n
3θ2 . (6.5)

This verifies (6.1) with some c > 0 for c6n
−3/2 ≤ |θ| ≤ τ/n.

For |θ| < c6n
−3/2, we first note that P(N∗ ≤ 3n/4) ≥ c7 > 0 for all

m,n ≥ 2; this holds for all large n by (6.4) (and is easily seen for each fixed
n). Hence, by the calculations in (6.5),

1−
∣∣g(m)
n (eiθ)

∣∣ ≥ 1− P(N∗ > 3n/4)− P(N∗ ≤ 3n/4)e−c2n
3θ2

= P(N∗ ≤ 3n/4)
(
1− e−c2n3θ2

)
≥ c7c8n3θ2,

verifying (6.1) in this case too (for c ≤ c7c8).
Finally, for τ/n ≤ |θ| ≤ π, we obtain by arguing as in (6.5), now using

(6.3) and (6.4),∣∣g(m)
n (eiθ)

∣∣ ≤ e−c3n P(N∗ ≤ 3n/4) + P(N∗ > 3n/4) ≤ e−c3n + 3e−c4n

≤ e−c9n,

provided n is large enough. This completes the proof (for large n) for the
cases τ/n ≤ |θ| ≤ 1/n and 1/n ≤ |θ| ≤ π. �

Proof of Theorem 1.5. Consider any sequence m = m(n) ≥ 2. We will
show that (1.14) holds uniformly in k for any such sequence m(n); this is
equivalent to the asserted uniform convergence for all m ≥ 2.

Denote the characteristic function of Gn,m by ϕn(θ), and recall that it is

given by ϕn(θ) = g
(m)
n (eiθ), see (1.6). It follows from Theorems 1.3 and 1.4

that
Gn,m − µn,m

σn,m

d−→ N(0, 1) (6.6)

as n→∞. (To see this we may by considering subsequences assume that
m(n) converges to either a finite limit or to∞; then (6.6) is (1.10) or (1.12).)
Thus, by the continuity theorem, for any fixed θ ∈ R,

e−iθµn,m/σn,mϕn(θ/σn,m)→ e−θ
2/2. (6.7)

Let

rn(θ) := e−iθµn,m/σn,mϕn(θ/σn,m)1{|θ| ≤ πσn,m} − e−θ
2/2, (6.8)
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and note that rn(θ)→ 0 as n→∞ for each fixed θ by (6.7) since σn,m →∞
by (1.8).

By Fourier inversion we have

σn,m P(Gn,m = k) =
σn,m
2π

∫ π

−π
e−iktϕ(t) dt

=
1

2π

∫ πσn,m

−πσn,m

e−ikθ/σn,mϕ(θ/σn,m) dθ

=
1

2π

∫ ∞
−∞

ei(µn,m−k)θ/σn,m

(
rn(θ) + e−θ

2/2
)

dθ

=
1

2π

∫ ∞
−∞

ei(µn,m−k)θ/σn,mrn(θ) dθ +
1√
2π
e−(µn,m−k)2/2σ2

n,m ,

and thus, for all k ∈ Z,∣∣∣∣σn,m P(Gn,m = k)− 1√
2π
e−(µn,m−k)2/2σ2

n,m

∣∣∣∣ ≤ 1

2π

∫ ∞
−∞

∣∣rn(θ)
∣∣ dθ.

The result (1.14) follows since∫ ∞
−∞

∣∣rn(θ)
∣∣dθ → 0

as n→∞ by dominated convergence, using Lemma 6.1; note that if |θ| ≤
πσn,m, then |θ| ≤ n3/2 since π2σ2n,m < n3 by (1.8), and hence (6.1) yields∣∣ϕn(θ/σn,m)

∣∣ =
∣∣g(m)
n (eiθ/σn,m)

∣∣ ≤ e−cn3θ2/σ2
n,m + e−cn ≤ e−cθ2 + e−cθ

2/3
;

hence, for all n ≥ 2 and θ ∈ R,∣∣rn(θ)
∣∣ ≤ 2e−cθ

2
+ e−cθ

2/3
.

The version with µ̄n,m and σ̄2n,m follows in exactly the same way, starting
with

Gn,m − µ̄n,m
σ̄n,m

d−→ N(0, 1), (6.9)

which is equivalent to (6.6) since σ̄2n,m ∼ σ2n,m and µ̄n,m = µn,m + o(σn,m)
as n→∞ by Theorem 1.1. �
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[12] G. Pólya, Gaussian binomial coefficients and the enumeration of inver-
sions. Proc. Second Chapel Hill Conf. on Combinatorial Mathematics
and its Applications (Univ. North Carolina, Chapel Hill, N.C., 1970),
pp. 381–384, Univ. North Carolina, Chapel Hill, N.C., 1970.

[13] L. Rogers, On a three-fold symmetry in the elements of Heine’s series.
Proc. Lond. Math. Soc. 24 (1893), 171–179.

[14] U. Schwerdtfeger, Volume laws for boxed plane partitions and area laws
for Ferrers diagrams. Proceedings, Fifth Colloquium on Mathematics
and Computer Science (Nancy, 2008), Discrete Math. Theor. Comput.
Sci. Proc. AI, 531–539.

[15] R. P. Stanley, Enumerative Combinatorics, Volume I. Cambridge Univ.
Press, Cambridge, 1997.
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