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Abstract. We consider a class of growing random graphs ob-
tained by creating vertices sequentially one by one: at each step,
we choose uniformly the neighbours of the newly created vertex;
its degree is a random variable with a fixed but arbitrary distri-
bution, depending on the number of existing vertices. Examples
from this class turn out to be the Erdős–Rényi random graph, a
natural random threshold graph, etc. By working with the notion
of graph limits, we define a kernel which, under certain conditions,
is the limit of the growing random graph. Moreover, for a sub-
class of models, the growing graph on any given n vertices has
the same distribution as the random graph with n vertices that
the kernel defines. The motivation stems from a model of graph
growth whose attachment mechanism does not require information
about properties of the graph at each iteration.

1. Introduction

Many models of randomly grown graphs have been studied during
the recent years in the attempt of reproducing characteristic properties
of natural and engineered networks. For example, it is well-known that
the power law (Zipf’s law) on the degree distribution observed for many
real-world networks can occur as a result of preferential attachment
following some local rule (see, e.g. Mitzenmacher [19] and Durrett [11]).

We may initially distinguish between two types of growth depending
on whether the random steps require or do not require local knowl-
edge of the graph. Of course, preferential attachment requires local
knowledge either available for free or provided by some dynamics that
generates it, for example, a random walk. Such a distinction is mean-
ingful because it helps to isolate the type of information needed for the
construction of specific network ensembles. Once we have assumed no
knowledge, we may further distinguish between rewiring schemes act-
ing on the whole set of vertices and mechanisms concerned only with
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the lastly added vertex. This latter scenario is considered in the present
note.

We grow graphs by attaching vertices one by one: at each step, the
neighbours of the new vertex are chosen uniformly; and the number is
a random variable with a fixed but arbitrary distribution depending on
the number of vertices already present. This mechanism reflects the
idea that the graph is constructed by an agent without any kind of
knowledge of the graph, apart from the labels of the vertices. The role
of the agent is to attach vertices according to the chosen distribution.
Related results for some other models of growing random graphs can
be found in [8].

We study examples of growing sequences of these random graphs
within the framework of graph limits. (See Lovász [16]; for additional
references and basic definitions see Section 4 below.) Every convergent
sequence of growing graphs, where “convergent” means Cauchy in a
specific metric, has a limit which can be represented in the form of a
symmetric measurable function in two variables also called a graphon.
The notion of graph limits has been central to a general theory of
parameter testing as developed by Borgs et al. [7]. The wider perspec-
tive of graph limits is to propose an approximation theory of graphs.
This would help to study large graphs/networks by looking at the the
proportion of copies of any fixed graph as a subgraph.

Section 2 defines our construction and lists some of its natural exam-
ples. Section 3 recasts a special case of the construction in terms of a
certain infinite random graph. Section 4 gives the necessary definitions
concerned with graph limits and kernels. Section 5 contains the main
result. Section 6 states further remarks and formulates several open
problems.

2. Preliminaries

Consider a growing sequence of random graphs (Gn)∞n=1 defined by
the following Markov process:

Construction 2.1. For each n > 1, let νn be a given probability
distribution on {0, . . . , n−1}. Construct the random graphs G1, G2, . . .
as follows.

(i) G1 = K1, the graph with a single vertex.
(ii) For n > 2, let Dn be a random variable with distribution νn and

construct Gn by adding a new vertex to Gn−1 and connecting
it to Dn of the previously existing vertices; these vertices are
chosen randomly and uniformly among all

(
n−1
Dn

)
possibilities.

(Dn and the choice of vertices are independent of Gn−1.)
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We may label the vertices 1, 2, 3, . . . in the order they are added, so Gn

has vertex set [n] := {1, . . . , n}. Since edges are added only incident to
the new vertex, and edges are never removed, we can define the infinite
random graph G∞ :=

⋃∞
n=1Gn with vertex set [∞] := {1, 2, . . . }; then

Gn = G∞|[n], the restriction of G∞ to the vertex set [n].

We may regard Gn as a directed graph by directing each edge towards
the endpoint with largest label. Then Dk is the indegree of vertex k
in Gn, for any n > k. The outdegree of k is 0 in Gk, and increases
(weakly) as n grows.

Example 2.2. Fix p ∈ [0, 1] and let νn = Bi(n − 1, p), n > 1. Then
Construction 2.1 yields the same result as connecting the new vertex
n to each previous vertex i with probability p, with these events inde-
pendent for i = 1, . . . , n − 1. Hence, Gn = G(n, p), the Erdős–Rényi
random graph where all edges appear independently and with proba-
bility p each. This random graph has been extensively studied, see e.g.
[2] and [14].

Example 2.3. Fix p ∈ [0, 1] and let νn be concentrated on {0, n− 1}
with νn{n − 1} = P(Dn = n − 1) = p and νn{0} = P(Dn = 0) =
1−p. Thus each new vertex is with probability p joined to all previous
vertices, and with probability p to none. This is an example of a random
threshold graph, see [9, Section 6.3], where this Gn is denoted Tn,p.

Note that each pair of vertices in Gn is joined by an edge with proba-
bility p, just as in Example 2.2. However, in the present example these
events are not always independent for different pairs.

Example 2.4. Let νn be the uniform distribution on {0, ..., n − 1}.
In this case, the degree of vertex n in Gn is then chosen uniformly at
random among all possibilities. Thus, if we only consider the num-
ber of added edges, this example uses the “highest possible amount of
randomness” for the construction of the n-th iteration graph, in the
sense that the entropy of this number is maximal. Hence, of all graph
ensembles obtained with Construction 2.1, Gn is in some sense the less
predictable one. Note also that the neighbours of n are also chosen at
random once the degree has been determined, again maximising the
entropy of this step. Nevertheless, as is well-known, the total entropy
of the growing random graph is not maximised by this procedure but
by Example 2.2 with p = 1/2.

The purpose of the present note is to find the limit of the sequence
Gn in the sense of graph limits, see Section 4.

All graphs are undirected and finite except when we explicitly say
otherwise. All unspecified limits are as n→∞.
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3. A related construction

A class of examples, including the three examples above, can be
obtained as follows.

Construction 3.1. Let ν be a given probability measure on [0, 1]. Let
θ1, θ2, . . . , be an i.i.d. sequence of random variables with distribution ν.
Then, conditionally given this sequence, let G∞ be the infinite random
graph on [∞] where the edge {i, j} appears with probability θmax{i,j},
and all edges appear independently (conditionally on (θj)

∞
j=1). Further,

let Gn := G∞|[n].

If Dn := |{i < n : in ∈ E(Gn)}|, i.e. the indegree of n if we orient
the edges as above, then Dn conditioned on (θj)j has the distribution
Bi(n − 1, θn). Hence, the distribution of Dn is a mixture of binomial
distributions:

P(Dn = k) = EBi(n− 1, θn){k} = E
(
n− 1

k

)
θkn(1− θn)n−1−k

=

(
n− 1

k

)∫ 1

0

θk(1− θ)n−1−k dν(θ), 0 6 k 6 n− 1.

(3.1)

It is obvious that Construction 3.1 is a special case of Construction 2.1,
with νn := L(Dn) given by (3.1).

Example 3.2. Let ν = δp, a point mass at p ∈ [0, 1]. Then θn =
p and Dn ∼ Bi(n − 1, p), in other words, νn = Bi(n − 1, p); hence
Construction 3.1 with this ν yields the Erdős–Rényi random graph
G(n, p) in Example 2.2.

Example 3.3. Let ν = pδ1 + (1 − p)δ0. (This is the Bernoulli dis-
tribution Be(p).) Then θ ∈ {0, 1}, which implies Dn = (n − 1)θn,
and

P(Dn = n− 1) = P(θn = 1) = p,

P(Dn = 0) = P(θn = 0) = 1− p.

Hence, Construction 3.1 yields the random threshold graph in Exam-
ple 2.3.

Example 3.4. Let ν be the uniform distribution on [0, 1]; thus ν = λ,
the Lebesgue measure on [0, 1]. Then each θn ∼ U(0, 1) and (3.1) yields
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by the evaluation of a beta integral, as is well-known,

νn{k} = P(Dn = k) =

(
n− 1

k

)∫ 1

0

θk(1− θ)n−1−k dθ

=

(
n− 1

k

)
B(k + 1, n− k) =

1

n
, 0 6 k 6 n− 1. (3.2)

Consequently, νn is uniform on {0, . . . , n−1}, so Construction 3.1 with
ν = λ yields the random graphs Gn in Example 2.4.

Example 3.5. The random graph Gn in Examples 2.4 and 3.4 can
also be constructed as follows, using some basic results on Pólya–
Eggenberger urns.

Recall that a Pólya–Eggenberger urn contains red and black balls;
we repeatedly draw a ball at random from the urn, and then replace
the ball together with another ball of the same colour. If we start
the urn with one ball of each colour, then the sequence of drawn balls
has the same distribution as the sequence obtained by first taking a
random θ ∼ U(0, 1) and then, conditioned on θ, taking a sequence of
i.i.d. balls, each being red with probability θ and black otherwise. This
is easily verified by a direct calculation, see [12], [18, Theorem 3.1] and
(3.2). Alternatively, it is easily seen (again by direct calculation) that
the sequence of drawn balls is exchangeable. By de Finetti’s theorem
(see e.g. [18, Theorem 1.2] or, in a more general version, [15, Theorem
11.10]), there exists a random variable θ with values in [0, 1] such that
conditioned on θ, the sequence of drawn balls is i.i.d. with each ball
being red with probability θ. The law of large numbers yields Rn/n

a.s.−→
θ, where Rn is the number of red balls drawn in the first n draws. To
see the representation above, with θ ∼ U(0, 1), it thus suffices to show

that Rn/n
d−→ U(0, 1), see [12], [18, Exercise 3.4].

The sequence of the first n − 1 drawn balls in this urn thus has
the same distribution as the sequences of indicators of edges {i, n},
i = 1, . . . , n−1 in the random graph Gn in Example 3.4. (We translate
red = 1 and black = 0.) The graph Gn is therefore described by a
sequence of (finite) draws from Pólya–Eggenberger urns, independent
of each other. This can be formulated as the following, rather curious,
construction:

Start with vertices {−1, 0, 1, 2, 3, . . . }. Connect 0 to all other vertices
(except −1), but do not connect −1 to any vertex. For each k > 1,
consider i = 1, . . . , k − 1 in order; for each i < k pick a random j in
−1, 0, . . . , i − 1 (uniformly and independent of everything else), and
add an edge {i, k} if and only if there already is an edge {j, k}. The
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sequence of edge indicators {i, k}, i = 1, . . . , k−1, then forms a Pólya–
Eggenberger sequence as above, for each k. Consequently, if we discard
vertices 0 and −1 at the end, the random graph constructed in this
way equals G∞ in Example 3.4, and we obtain Gn if we do the same
construction for k = 1, . . . , n.

We note the following consequence of the law of large numbers.

Lemma 3.6. Let ν be a probability measure on [0, 1], and let Dn have

the mixed binomial distribution in (3.1). Then Dn/n
d−→ ν as n→∞.

Proof. Since Dn conditioned on θn has the distribution Bi(n − 1, θn),

we have the law of large numbers Dn/(n − 1) − θn
p−→ 0 as n→∞.

(For example, by computing the variance.) The result follows since
θn ∼ ν. �

4. Graph limits and kernels

We assume that the reader is familiar with the theory of graph limits
developed in Lovász and Szegedy [17] and Borgs, Chayes, Lovász, Sós
and Vesztergombi [5, 6], see also e.g. Austin [1], Bollobás and Riordan
[3], Borgs, Chayes and Lovász [4], Lovász [16], Diaconis and Janson
[10], Janson [13]. We recall only a few definitions; these will help to fix
our notation.

If F and G are finite graphs, let t(F,G) be the probability that a
random mapping ϕ : V (F ) → V (G) is a graph homomorphism, i.e.,
satisfies ϕ(i) ∼ ϕ(j) in G whenever i ∼ j in F . We say that a sequence
(Gn) of graphs with |Gn| → ∞ converges if limn→∞ t(F,Gn) exists for
every graph F .

Graph limits. The graph limits are objects in a suitable space defined
such that each convergent sequence of graphs has a graph limit as its
limit. If Γ is a graph limit, then t(F,Γ) is defined for every graph F ,
and a sequence of graphs Gn with |Gn| → ∞ converges to Γ if and only
if t(F,Gn)→ t(F,Γ) for every F . Hence a graph limit Γ is determined
by the numbers t(F,Γ) ∈ [0, 1] for graphs F . Formally, the graph
limits may be defined as equivalence classes of convergent sequences
of graphs, or as suitable families (tF )F∈U of numbers, where U is the
set of graphs. The graph limits can be equivalently defined as classes
of kernels, as we do below. This distinction is immaterial. We tacitly
refer to unlabelled graphs.

It is important that the set of all graphs together with all graph
limits is a compact metric space.
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Kernels. Let (S,F , µ) be a probability space. (We usually denote this
space simply by S or (S, µ), with F and perhaps µ being clear from
the context.) A kernel or graphon on (S, µ) is a measurable symmetric
function W : S2 → [0, 1]. We will consider graphons with domain
[0, 1]2. For this specific setting see e.g. Borgs, Chayes, Lovász, Sós and
Vesztergombi [5].

The basic fact is that every kernel W on a probability space (S, µ)
defines a graph limit ΓW . Conversely, every graph limit equals ΓW
for some kernel W . We say that the graph limit is represented by the
kernel W . Note that ΓW implicitly depends on S and µ as well as
on W . However, such representations of graph limits are not unique.
We say that two kernels W1 and W2, possibly on different probability
spaces, are equivalent if they represent the same graph limit, i.e., if
ΓW1 = ΓW2 . Since every kernel is equivalent to some kernel on [0, 1],
every graph limit may be represented by a kernel W on [0, 1], equipped
with Lebesgue measure λ, but even then W is not unique. Detailed
results are in Borgs, Chayes and Lovász [4], Bollobás and Riordan [3]
and Janson [13].

If Gn is a sequence of graphs with Gn → ΓW , for some kernel W , we
also write Gn → W .

Random graphs. Let W be a kernel, defined on a probability space
(S, µ). We define a random graph G(n,W ) with vertex set [n], for 1 6
n 6∞, by first taking an i.i.d. sequence {Xi}ni=1 of random points in S
with the distribution µ, and then, given this sequence, letting {i, j} be
an edge in G(n,W ) with probability W (Xi, Xj). For a given sequence
(Xi)i, this is done independently for all pairs (i, j) ∈ [n]2 with i < j.
Note that we may construct G(n,W ) for all n by first constructing
G(∞,W ) and then taking the subgraph induced by the first n vertices.
A fundamental result is that for every kernel W , G(n,W )→ W a.s.

Furthermore, two kernels W1 and W2 are equivalent, i.e. ΓW1 = ΓW2 ,

if and only if G(n,W1)
d
= G(n,W2) for every finite n, and then also for

n =∞.

5. Main results

Given a probability measure ν on [0, 1], let µ = µν := ν × λ be a
measure on the product space S := [0, 1]2. Define the kernel W : S2 →
[0, 1] by

W
(
(s1, t1), (s2, t2)

)
:=

{
s2, if t1 < t2;

s1, if t1 > t2.
(5.1)
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We may define W
(
(s1, t1), (s2, t2)

)
:= 0 if t1 = t2; this is not important

since it really is sufficient to have W defined µ-almost everywhere.

Theorem 5.1. Let ν be a probability measure on [0, 1], and let 1 6 n <
∞. The random graph Gn defined by Construction 3.1 and the random
graph G(n,W ) defined by the kernel W in (5.1) on the probability space
(S, µν) are, regarded as unlabelled graphs, equal in the sense that they
have the same distribution.

Remark 5.2. We have to regard the graphs as unlabelled here, since
the vertices in Gn are (in general) not equivalent, while they are in
G(n,W ). For example, in Example 3.3, the edges in Gn incident to
vertex 1 appear independently of each other, so the degree of 1 has
distribution Bi(n − 1, p), while the degree of n is Dn, which is 0 or
n− 1.

If we prefer to consider labelled graphs, the correct conclusion is that
Gn with a (uniform) random relabelling of the vertices has the same
distribution as G(n,W ), for any finite n.

Remark 5.3. Similarly, the conclusion of Theorem 5.1 fails for n =∞.
Consider again Example 3.3. It is easily verified that in G∞ there is a
pair of vertices i and j with the same closed neighbourhoods N̄(i) and
N̄(j) (for example, vertices 1 and 2; in fact, there are a.s. infinitely
many such pairs), while there is a.s. no such pair in G(∞,W ).

Proof of Theorem 5.1. Let Xi = (ξi, ηi), i = 1, 2, 3, . . . , be i.i.d. points
in S = [0, 1]2 with distribution µν ; thus each ξi has distribution ν and
ηi ∼ U(0, 1), and all ξi, ηi are independent.

The numbers η1, . . . , ηn are a.s. distinct. Order them in increasing
order as ηi1 < ηi2 < · · · < ηin , and let θk := ξik . Then θ1, . . . , θn
are i.i.d. with distribution ν, and (θi)

n
i=1 is independent of the random

permutation (i1, . . . , in).
Conditioned on (X1, . . . , Xn), the edges in G(n,W ) appear indepen-

dently, and the probability of an edge between ij and ik, with j < k,
is W (Xij , Xik) = ξik = θk. Thus, given (i1, . . . , in), G(n,W ) has the
same distribution asGn in Construction 3.1 after the relabelling k 7→ ik.
Hence, G(n,W ) has the same distribution asGn with a uniform random

relabelling. Consequently, G(n,W )
d
= Gn as unlabelled graphs. �

Theorem 5.4. If Gn is defined by Construction 3.1 for some proba-

bility measure ν on [0, 1], then Gn
p−→ Γν as n→∞, where Γν is the

graph limit defined by the kernel W in (5.1) on the probability space
([0, 1]2, µν).
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Proof. An immediate consequence of Theorem 5.1 and G(n,W )
p−→

ΓW = Γν . �

We have a similar result for the more general construction Construc-
tion 2.1, provided the distributions νn converge to ν after rescaling by
n (or n− 1).

Theorem 5.5. Let Gn be defined by Construction 2.1 for some prob-

ability measures νn, and suppose that Dn/n
d−→ ν as n→∞ for some

probability measure ν on [0, 1], where Dn ∼ νn. Then Gn
p−→ Γν as

n→∞, where Γν is the graph limit defined by the kernel W in (5.1)
on the probability space ([0, 1]2, µν).

Proof. If F and G are labelled graphs, let n(F,G) be the number of
graph homomorphisms ϕ : F → G; thus t(F,G) = n(F,G)/|G||F |.
Further, let n<(F,G) be the number of graph homomorphisms ϕ : F →
G that are increasing, i.e., ϕ(i) < ϕ(j) when i < j, and let n0(F,G) be
the number of graph homomorphisms F → G that are not injective.

Let F be a fixed graph with vertices labelled 1, . . . ,m = |F |. If σ
is a permutation of [m], let Fσ be F relabelled by i 7→ σ(i). For any
labelled graph G,

n(F,G) =
∑
σ

n<(Fσ, G) + n0(F,G), (5.2)

since an injective map V (F ) → V (G) is increasing as a map Fσ → G
for exactly one permutation σ.

Fix a permutation σ and consider n<(Fσ, Gn), with Gn as in Con-
struction 2.1. We regard Fσ as a directed graph by directing each edge
towards the endpoint with the largest label. Let d−j := |{i < j : {i, j} ∈
E(Fσ)}| be the indegree in Fσ of j ∈ [m].

Let ϕ : [m] → [n] be an increasing map. Then ϕ is a graph homo-
morphism Fσ → Gn if and only if, for each j = 1, . . . ,m, Gn contains
the d−j edges {ϕ(i), ϕ(j)} for i < j with {i, j} ∈ E(Fσ). Conditioned
on the indegrees D1, . . . , Dn in Gn, this happens with probability

m∏
j=1

(Dϕ(j)

d−j

)
(ϕ(j)−1

d−j

) =
m∏
j=1

(
Dϕ(j)

)
d−j

(ϕ(j)− 1)d−j
. (5.3)

Hence, taking the expectation, summing over all ϕ, and using the in-
dependence of D1, . . . , Dn,

En<(Fσ, Gn) =
∑

16ϕ(1)<···<ϕ(m)6n

m∏
j=1

E
(
Dϕ(j)

)
d−j

(ϕ(j)− 1)d−j
. (5.4)
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By assumption, Dk/k
d−→ ν as k →∞. By dominated convergence,

since 0 6 Dk/k 6 1, we have

EDd
k

kd
→Md :=

∫ 1

0

xd dν(x), k →∞, (5.5)

for every d > 0. Hence also

E (Dk)d
(k − 1)d

=
EDd

k +O(kd−1)

kd +O(kd−1)
→Md, k →∞. (5.6)

Let ε > 0, it follows from (5.6) that there exists nε such that if ϕ(1) >
nε, then the product in (5.4) differs by at most ε from

∏m
j=1Md−j

. For

smaller ϕ(1) we use the fact that the product is bounded by 1. The
total number of terms in the sum in (5.4) is

(
n
m

)
, of which O(nm−1)

have ϕ(1) < nε, and thus we obtain∣∣∣∣∣En<(Fσ, Gn)−
(
n

m

) m∏
j=1

Md−j

∣∣∣∣∣ 6 ε

(
n

m

)
+O(nm−1), (5.7)

which implies,

En<(Fσ, Gn) =

(
n

m

) m∏
j=1

Md−j
+ o(nm) =

nm

m!

m∏
j=1

Md−j
+ o(nm), (5.8)

since ε > 0 is arbitrary.
We have so far considered a fixed σ, but we now sum (5.8) over all

σ and use (5.2). Since n0(F,Gn) = O(nm−1),

En(F,Gn) = tFn
m + o(nm) (5.9)

for some constant tF depending on F and ν. We havem! tF =
∑

σ

∏m
j=1Md−j

,

where d−j depends on F and σ.
Since t(F,Gn) = n(F,Gn)/nm, (5.9) is the same as

E t(F,Gn)→ tF . (5.10)

We have proved this for any graph F , and it follows by [10, Corollary

3.2] that Gn
p−→ Γ for some graph limit Γ.

It remains to identify the limit Γ as Γν . We have proved that tF for
each graph F , and thus the limit Γ, depends on ν but not otherwise
on the distributions νn. For a given distribution ν, we consider Con-
struction 3.1, which is a special case of Construction 2.1 with νn the
mixture of binomial distributions given by (3.1). By Lemma 3.6, we

have Dn/n
d−→ ν. We are then in the setting of the present theorem

and the proof above shows Gn
p−→ Γ. On the other hand, Theorem 5.4

shows Gn
p−→ Γν . Hence, Γ = Γν . �
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6. Further comments and open problems

We have found the limit of the random sequence Gn as a graph limit
defined by a kernel on ([0, 1]2, ν × λ). It is easy to find an equivalent
kernel on ([0, 1]2, λ× λ): Let ψ : [0, 1]→ [0, 1] be the right-continuous
inverse of the distribution function of ν. If U ∼ U(0, 1), then ψ(U) ∼ ν.
We define Wν as the pullback of W via the map (s, t) 7→ (ψ(s), t), i.e.,

Wν

(
(s1, t1), (s2, t2)

)
:= W

(
(ψ(s1), t1), (ψ(s2), t2)

)
=

{
ψ(s2), if t1 < t2;

ψ(s1), if t1 > t2.

(6.1)
ThenWν is a kernel on ([0, 1]2, λ2) which is equivalent toW on ([0, 1]2, ν×
λ); thus we also have Gn

p−→ Wν under the conditions of Theorem 5.4
or Theorem 5.4.

However, it is at least sometimes possible to find simpler represen-
tations.

Example 6.1. In Example 2.2 and 3.2, ν = δp and ψ(s) = p for all
s; thus Wν = p is constant. (Similarly, W = p a.e. with respect to
µν .) In fact, as is well known, the graph limit of G(n, p) is represented
by the constant kernel p on any probability space. (Conversely, any
representing kernel equals p a.s., see [13, Corollary 8.12].)

Example 6.2. In Example 2.3 and 3.3, ν is concentrated on {0, 1}, so
µν is concentrated on {0, 1}× [0, 1]. In particular, the kernel W is a.e.
0/1-valued. (This is a general property of kernels representing limits
of threshold graphs; see [9] and [13, Section 9].)

The representation theorem in [9] for general limits of threshold
graphs yields a kernel on [0,1]. (This kernel is monotone, and this
property makes it uniquely determined a.e.) In the present case, the
kernel is the indicator function of the quadrilateral Sp having vertices
in (0, 1), (1− p, 1− p), (1, 0) and (1, 1), see [9, Section 6]. Denote this
kernel by W ′.

It is easy to find a relation between the two representations. Let
ϕ : [0, 1] → {0, 1} × [0, 1] be defined by ϕ(x) = (0, 1 − x/(1 − p)) for
0 6 x 6 1 − p and ϕ(x) = (1, (x − 1 + p)/p) for 1 − p < x 6 1. Then
ϕ is measure preserving ([0, 1], λ) → ([0, 1]2, µν) and W ′(x, y) is the
pullback W (ϕ(x), ϕ(y)) of W .

As said in Section 4, it is always possible to find an equivalent kernel
on [0, 1]. In the two examples above, there are simple and natural
choices of such kernels. However, in Example 2.4 and 3.4 we do not
know any natural kernel on [0, 1] representing the limit.
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Problem 6.3. Find a natural kernel on [0, 1] representing the limit in
Example 2.4, i.e., a natural kernel on [0, 1] that is equivalent to W in
(5.1) on ([0, 1]2, λ2).

More generally, find a natural representing kernel on [0, 1] for any ν.

We close with two different problems inspired by the results above.

Problem 6.4. We have stated Theorems 5.4 and 5.5 with convergence
in probability. Are these results true also a.s.?

Problem 6.5. In Theorem 5.5, we assume that Dn/n converges in dis-
tribution, i.e., that the distributions νn converge after rescaling. What
happens for more general sequences νn? Is it possible to characterize
the sequences νn that give convergence of Gn to some graph limit?
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