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Asymptotic normality of fringe subtrees and
additive functionals in conditioned
Galton–Watson trees. (Extended abstract)

Svante Janson1†

1Department of Mathematics, Uppsala University, PO Box 480, SE-751 06 Uppsala, Sweden

Abstract. We consider conditioned Galton–Watson trees and show asymptotic normality of additive functionals that
are defined by toll functions that are not too large. This includes, as a special case, asymptotic normality of the number
of fringe subtrees isomorphic to any given tree, and joint asymptotic normality for several such subtree counts. The
offspring distribution defining the random tree is assumed to have expectation 1 and finite variance; no further moment
condition is assumed.
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1 Introduction
Given a rooted tree T and a node v in T , let Tv be the subtree of T rooted at v, i.e., the subtree consisting
of v and all its descendents. Such subtrees are called fringe subtrees. The random fringe subtree T∗ is the
random rooted tree obtained by taking the subtree Tv at a uniformly random node v in T , see Aldous [1].

We let, for T, T ′ ∈ T,
nT ′(T ) :=

∣∣{v ∈ T ′ : Tv = T ′}
∣∣, (1.1)

i.e., the number of subtrees of T that are equal (i.e., isomorphic to) to T ′. Then the distribution of T∗ is
given by

P(T∗ = T ′) = nT ′(T )/|T |, T ′ ∈ T. (1.2)

Thus, to study the distribution of T∗ is equivalent to studying the numbers nT ′(T ).
A related point of view is to let f be a functional of rooted trees, i.e., a function f : T → R, and for a

tree T ∈ T consider the sum
F (T ) = F (T ; f) :=

∑
v∈T

f(Tv). (1.3)

Thus,
F (T )/|T | = E f(T∗). (1.4)
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One important example of this is to take f(T ) = 1{T = T ′}, the indicator function that T equals some
given tree T ′ ∈ T; then F (T ) = nT ′(T ) and (1.4) reduces to (1.2). Conversely, for any f ,

F (T ) =
∑
T ′∈T

f(T ′)nT ′(T ); (1.5)

hence any F (T ) can be written as a linear combination of the subtree counts nT ′(T ), so the two points of
views are essentially equivalent.

Remark 1.1 Functionals F that can be written as (1.3) for some f are called additive functionals. The
definition (1.3) can also be written recusively as

F (T ) = f(T ) +

d∑
i=1

F (Ti), (1.6)

where T1, . . . , Td are the branches (i.e., the subtrees rooted at the children of the root) of T . In this context,
f(T ) is often called a toll function. (One often considers toll functions that depend only on the size |T | of
T , but that is not always the case. We emphasise that we allow more general functionals f .)

Note that when T is a random tree, as it was in [1] and will be in the present paper, F (T ) is a random
variable. In particular, nT ′(T ) is a random variable for each T ′ ∈ T, and thus the distribution of T∗,
which is given by (1.2), is a random probability distribution on T. Note that (1.2) now reads

P
(
T∗ = T ′ | T

)
= nT ′(T )/|T | (1.7)

and that similarly (1.4) then has to be replaced by

F (T )/|T | = E
(
f(T∗) | T

)
. (1.8)

The random trees that we consider in this paper are conditioned Galton–Watson trees. (Related results
for some other random trees are given by Fill and Kapur [9, 10] (m-ary search trees under different
models) and Holmgren and Janson [11] (random binary search trees and random recursive trees).) The
Galton–Watson trees are defined using an offspring distribution ξ and we assume throughout the paper
that E ξ = 1 and σ2 := Var ξ is finite (and non-zero). We denote the probability distribution of ξ by
(pk)

∞
0 , i.e., pk := P(ξ = k).

The results in Aldous [1] focus on convergence (in probability), as |T | → ∞, of the fringe subtree dis-
tribution for suitable classes of random trees T , which by (1.8) is equivalent to convergence of F (T )/|T |
or EF (T )/|T | for suitable functionals f . For the conditioned Galton–Watson trees studied here, this is
stated in the following theorem from [15, Theorem 7.12], improving earlier results by Aldous [1] and
Bennies and Kersting [2].

Theorem 1.2 (Aldous, et al.) Let Tn be a conditioned Galton–Watson tree with n nodes, defined by an
offspring distribution ξ with E ξ = 1, and let T be the corresponding unconditioned Galton–Watson tree.
Then, as n→∞: For every fixed tree T ,

nT (Tn)
n

= P(Tn,∗ = T | Tn)
p−→ P(T = T ). (1.9)
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Equivalently, for any bounded functional f on T,

F (Tn)
n

= E f
(
Tn,∗ | Tn

) p−→ E f(T ). (1.10)

Theorem 1.2 is a law of large numbers for F (Tn). In the present paper we take the next step and give a
central limit theorem. This includes, as a special case, (joint) normal convergence of the subgraph counts
nT ′(T ), see Corollary 1.4.

Theorem 1.3 Let Tn be a conditioned Galton–Watson tree of order n with offspring distribution ξ, where
E ξ = 1 and 0 < σ2 := Var ξ < ∞, and let T be the corresponding unconditioned Galton–Watson tree.
Suppose that f : T→ R is a functional of rooted trees such that E |f(T )| <∞, and let µ := E f(T ).

(i) If E f(Tn)→ 0 as n→∞, then

EF (Tn) = nµ+ o
(√
n
)
. (1.11)

(ii) If

E f(Tn)2 → 0 (1.12)

as n→∞, and

∞∑
n=1

√
E(f(Tn)2)

n
<∞, (1.13)

then
VarF (Tn) = nγ2 + o(n) (1.14)

where
γ2 := 2E

(
f(T )

(
F (T )− |T |µ

))
−Var f(T )− µ2/σ2 (1.15)

is finite; moreover,
F (Tn)− nµ√

n

d−→ N(0, γ2). (1.16)

By (1.11), we may replace nµ by the exact mean EF (Tn) in (1.16).
Special cases of Theorem 1.3 have been proved before, by various methods. A simple example is

the number of leaves in Tn, shown to be normal by Kolchin [19], see Example 2.1. (See also Aldous
[1, Remark 7.5.3].) Wagner [26] considered random labelled trees (the case ξ ∼ Po(1)) and showed
Theorem 1.3 (and convergence of all moments) for this case, assuming further that f is bounded and
E |f(Tn)| = O(cn) for some c < 1 (a stronger assumption that our (1.12)–(1.13)).

Theorem 1.3 is stated for a single functional F , but joint convergence for several different F (each
satisfying the conditions in the theorem) follows immediately by the Cramér–Wold device. One example
is the following corollary for the subtree counts (1.1). (We state the result as asymptotic normality for the
infinite family of all subtree counts; by definition, this is the same as asymptotic normality for any finite
subfamily.)
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Corollary 1.4 The subtree counts nT (Tn), T ∈ T, are asymptotically jointly normal. More precisely, let
πT := P(T = T ),

γT,T := πT −
(
2|T | − 1 + σ−2

)
π2
T , (1.17)

and, for T1 6= T2,

γT1,T2
:= nT2

(T1)πT1
+ nT1

(T2)πT2
−
(
|T1|+ |T2| − 1 + σ−2

)
πT1

πT2
. (1.18)

Then, for any trees T, T1, T2 ∈ T,

EnT (Tn) = nπT + o
(√
n
)
, (1.19)

Cov
(
nT1

(Tn), nT2
(Tn)

)
= nγT1,T2

+ o(n), (1.20)

nT (Tn)− nπT√
n

d−→ ZT , (1.21)

the latter jointly for all T ∈ T, where ZT are jointly normal with mean EZT = 0 and covariances
Cov

(
ZT1

, ZT2

)
= γT1,T2

.

We say that the functional f has finite support if f(T ) 6= 0 only for finitely many trees T ∈ T; equiv-
alently, there exists a constant K such that f(T ) = 0 unless |T | 6 K. Note that a functional with finite
support necessarily is bounded. By (1.5), the additive functionals F that arise from functionals f with
finite support are exactly the finite linear combinations of subgraph counts nT ′(T ). Hence Corollary 1.4
is equivalent to asymptotic normality (with convergence of mean and variance) for F (Tn) whenever f has
finite support. The asymptotic variance γ2 = limn→∞VarF (Tn)/n is given by (1.15) or, equivalently,
follows from (1.17)–(1.18).

Remark 1.5 The condition (1.12) in Theorem 1.3(ii) is equivalent to E f(Tn) → 0 and Var f(Tn) → 0,
and it implies E |f(Tn)| → 0 as assumed in (i). Both this condition and (1.13) say that f(T ) is (on
the average, at least) decreasing as |T | → ∞, but a rather slow decrease is sufficient; for example, the
theorem applies when f(T ) = 1/ log2 |T | (for |T | > 1). In particular, it is not enough to assume that f is
a bounded functional. For a trivial example, let f(T ) = 1 for all trees T ; then F (T ) = |T | so F (Tn) = n
is constant, with mean n and variance 0. However, the first two terms on the right-hand side of (1.15)
vanish, so γ2 = −σ−2 < 0, which is absurd for an asymptotic variance, and (1.14) and (1.16) fail.

Remark 1.6 If we go further and allow f(T ) that grow with the size |T |, we cannot expect the results
to hold. Fill and Kapur [8] have made an interesting and illustrative study (for certain f ) of the case
of binary trees, which is the case ξ ∼ Bin(2, 1/2) of conditioned Galton–Watson tree, and presumably
typical for other conditioned Galton–Watson trees as well. They show that for f(T ) = log |T |, F (Tn) is
asymptotically normal, but with a variance of the order n log n. And if f(T ) increases more rapidly, with
f(T ) = |T |α for some α > 0, then the variance is of order n1+2α, and F (Tn) has, after normalization, a
non-normal limiting distribution.

Intuitively, our conditions are such that the sum (1.3) is dominated by the many small subtrees Tv; since
different parts of our trees are only weakly dependent on each other, this makes asymptotic normality
plausible. For a toll function f that grows too rapidly with the size of T , the sum (1.3) will on the contrary
be dominated by large subtrees, which are more strongly dependent, and then other limit distributions will
appear.
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Remark 1.7 For the m-ary search tree (2 6 m 6 26) and random recursive tree a similar theorem
holds, but there f(T ) may grow almost as |T |1/2, see Hwang and Neininger [13] (binary search tree,
f depends on |T | only), Fill and Kapur [9] (m-ary search tree, f depends on |T | only), Holmgren and
Janson [11] (binary search tree and random recursive tree, general f ). A reason for this difference is
that for a conditioned Galton–Watson tree, the limit distribution of the size of the fringe subtree, which
by Theorem 1.2 is the distribution of |T |, decays rather slowly, with P(|T | = n) � n−3/2. while
the corresponding limit distribution for fringe subtrees in a binary search tree or random recursive tree
decays somewhat faster, as n−2, see Aldous [1]. Cf. also the related results in Fill, Flajolet and Kapur [7,
Theorem 13 and 14], showing a similar contrast (but at orders n1/2 and n) between uniform binary trees
(an example of a conditioned Galton–Watson tree) and binary search trees for the asymptotic expectation
of an additive functional.

We can weaken the conditions on the size of f if we assume that f is “nice”. We say that a functional
f(T ) on T is local (with cut-off M ) if it depends only on the first M generations of T , for some M <∞,
i.e., if we let T (M) denote T truncated at height M , then f(T ) = f(T (M)). More generally, we say that
f is weakly local (with cut-off M ) if f(T ) depends on |T | and T (M) for some M .

Theorem 1.8 Let Tn be a conditioned Galton–Watson tree as in Theorem 1.3. Suppose that f : T → R
is a bounded and local functional. Then the conclusions (1.11), (1.14) and (1.16) hold for some γ2 <∞.

More generally, the same holds if f is a bounded and weakly local functional such that E f(Tn) → 0
and

∑
n |E f(Tn)|/n <∞.

Remark 1.9 The asymptotic variance γ2 equals 0 in two trivial cases:

(i) f(T ) = F (T ) = F (Tn) = 0 a.s.;

(ii) {k : pk > 0} = {0, r} for some r > 1 and f(T ) = a1{|T | = 1} for some real a; then
F (Tn) = a(n− (n− 1)/r) is deterministic.

We can show, using [17], that if f has finite support, then γ2 > 0 except in these trivial cases. For general
f , we do not know whether γ2 = 0 is possible except in such trivial cases. (See Example 2.2 for another
trivial case. For some f , it may be possible to use the simple criterion in [6] to show γ2 > 0, but in
general, our f is not of the type studied there so more research is needed.)

This is an extended abstract of [16], where proofs and further details are given.

2 Examples
Example 2.1 The perhaps simplest non-trivial example is to take f(T ) = 1{|T | = 1}. Then F (T ) is the
number of leaves in T . We have E f(T ) = P(|T | = 1) = P(ξ = 0) = p0.

Theorems 1.3 and 1.8 both apply and show asymptotic normality of F (Tn), and so does Corollary 1.4
since F (T ) = n•(T ), where • is the tree of order 1; (1.15) yields

γ2 = 2p0(1− p0)− p0(1− p0)− p20/σ2 = p0 − (1 + σ−2)p20, (2.1)

which also is seen directly from (1.17). The asymptotic normality in this case (and a local limit theorem)
was proved by Kolchin [19, Theorem 2.3.1]. By Remark 1.9, or by a simple calculation directly from
(2.1), γ2 > 0 except in the case pr = 1 − p0 = 1/r for some r > 2 when all nodes in Tn have 0 or r
children (full r-ary trees) and n•(Tn) = n− (n− 1)/r is deterministic.
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Example 2.2 A natural extension is to consider the number of nodes of outdegree r, for some given
integer r > 1; we denote this by nr(T ). Then nr(T ) = F (T ) with f(T ) = 1 if the root of T has degree
r, and f(T ) = 0 otherwise. Asymptotic normality of nr(Tn) too was proved by Kolchin [19, Theorem
2.3.1], with

n−1/2
(
F (Tn)− npr

) d−→ N
(
0, γ2r

)
(2.2)

where
γ2r = pr(1− pr)− (r − 1)2p2r/σ

2, (2.3)

see also Janson [14] (joint convergence and moment convergence, assuming at least E ξ3 <∞), Minami
[23] and Drmota [5, Section 3.2.1] (both assuming an exponential moment) for different proofs.

It is easily checked that for r > 0, γr > 0 except in the two trivial cases pr = 0, when nr(Tn) = 0,
and pr = 1− p0 = 1/r, when all nodes have 0 or r children (full r-ary trees) and nr(Tn) = (n− 1)/r is
deterministic.

In this example,
E f(Tn) = P(the root of Tn has degree r)→ rpr. (2.4)

see [18] and [15, Theorem 7.10]. Hence (1.12) and (1.13) both fail, and we cannot apply Theorem 1.3. (It
does not help to subtract a constant, since f(Tn) is an indicator variable.) However, f is a bounded local
functional. Hence Theorem 1.8 applies and yields (2.2), together with convergence of mean and variance,
for some γr. It is immediate from the definition of the Galton–Watson tree T that

µ := E f(T ) = P(the root of T has degree r) = pr. (2.5)

Similarly, we obtain joint convergence for different r by Theorem 1.8 and the Cramér–Wold device. (It
seems that joint convergence has not been proved before without assuming at least E ξ3 <∞.)

Nevertheless, this result is a bit disappointing, since we do not obtain the explicit formula (2.3) for the
variance. Theorem 1.8 shows existence of γ2 but the formula (3.19) given by the proof is rather involved,
and we do not know any way to derive (2.3) from it. In this example, because of the simple structure of f ,
we can use a special argument and derive both (2.3) and the asymptotic covariance γrs for two different
outdegrees r, s > 0:

γrs = −prps − (r − 1)(s− 1)prps/σ
2, r 6= s, (2.6)

(as proved by [14] provided E ξ3 <∞).
Note that by (2.2), lim infn→∞ n−1/2 E |F (Tn)−nµ| > (2/π)1/2γr, so assuming γr > 0, E |F (Tn)−

nµ| > c1n
1/2, at least for large n. It is easily seen that also E f(Tn)|F (Tn)− nµ| > c2n

1/2, at least for
large n; hence, using P(|T | = n) ∼ cn−3/2,

E
∣∣f(T )(F (T )− |T |µ)∣∣ = ∞∑

n=1

P(|T | = n)E
∣∣f(Tn)(F (Tn)− nµ)∣∣ =∞,

which shows that the expectation in (1.15) does not exist, so γ2 is not given by (1.15).

Example 2.3 A node in a (rooted) tree is said to be protected if it is neither a leaf nor the parent of a leaf.
Asymptotics for the expected number of protected nodes in various random trees, including several ex-
amples of conditioned Galton–Watson trees, have been given by e.g. Cheon and Shapiro [3] and Mansour
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[22], and convergence in probability of the fraction of protected nodes is proved for general conditioned
Galton–Watson trees by Devroye and Janson [4].

We can now extend this to asymptotic normality of the number of protected nodes, in any conditioned
Galton–Watson tree Tn with E ξ = 1 and σ2 <∞. We define f(T ) := 1{the root of T is protected}, and
then F (T ) is the number of protected nodes in T . Since f is a bounded and local functional, Theorem 1.8
applies and shows asymptotic normality of F (Tn).

The asymptotic mean µ = E f(T ) is easily calculated, see [4] where also explicit values are given for
several examples of conditioned Galton–Watson trees. However, as in Example 2.2, we do not see how
to find an explicit value of γ2 from (3.19) (although it ought to be possible to use these for numerical
calculation for a specific offspring distribution). It seems possible that there is some other argument to
find γ2, but we have not pursued this and we leave it as an open problem to find the asymptotic variance
γ2, for example for uniform labelled trees or uniform binary trees.

Example 2.4 Wagner [26] studied the number s(T ) of arbitrary subtrees (not necessarily fringe subtrees)
of the tree T , and the number s1(T ) of such subtrees that contain the root. He noted that if T has branches
T1, . . . , Td, then s1(T ) =

∏d
i=1(1 + s1(Ti)) and thus

log
(
1 + s1(T )

)
= log

(
1 + s1(T )

−1)+ d∑
i=1

log
(
1 + s1(Ti)

)
, (2.7)

so log
(
1 + s1(T )

)
is an additive functional with toll function f(T ) = log

(
1 + s1(T )

−1), see (1.6).
Wagner [26] used this and the special case of Theorem 1.3 shown by him to show asymptotic normality
of log

(
1 + s1(Tn)

)
(and thus of log s1(Tn)) for the case of uniform random labelled trees (which is Tn

with ξ ∼ Po(1)). We can generalize this to arbitrary conditioned Galton–Watson trees with E ξ = 1 and
E ξ2 < ∞ by Theorem 1.3, noting that |f(Tn)| 6 s1(Tn)−1 6 n−1 (since s1(T ) > |T | by considering
only paths from the root); hence (1.12)–(1.13) hold. Consequently,

(
log s1(Tn)− nµ

)
/
√
n

d−→ N(0, γ2) (2.8)

for some µ = E log
(
1 + s1(T )−1

)
and γ2 given by (1.15) (both depending on the distribution of ξ);

Wagner [26] makes a numerical calculation of µ and σ2 for his case.
Furthermore, as noted in [26], s1(T ) 6 s(T ) 6 |T |s1(T ) for any tree (an arbitrary subtree is a fringe

subtree of some subtree containing the root), and thus the asymptotic normality (2.8) holds for log s(Tn)
too.

Similarly, the example by Wagner [26, pp. 78–79] on the average size of a subtree containg the root
generalizes to arbitrary conditioned Galton–Watson trees (with E ξ2 <∞), showing that the average size
is asymptotically normal with expectation ∼ µn and variance ∼ γ2n for some µ > 0 and γ2; we omit the
details. We conjecture that the same is true for the average size of an arbitrary subtree, as shown in [26]
for the case considered there. (Note that a uniformly random arbitrary subtree thus is much larger than a
uniformly random fringe subtree.)
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3 Sketch of proofs
We let ξ1, ξ2, . . . be a sequence of independent copies of ξ, and let

Sn :=

n∑
i=1

ξi. (3.1)

3.1 A useful representation
A tree in T is uniquely described by its degree sequence (d1, . . . , dn). We may thus define the functional
f also on finite nonnegative integer sequences (d1, . . . , dn), n > 1, by

f(d1, . . . , dn) :=

{
f(T ), (d1, . . . , dn) is the degree sequence of a tree T ,
0, otherwise.

(3.2)

If T has degree sequence (d1, . . . , dn), and its nodes are numbered v1, . . . , vn in depth-first order so di
is the degree of vi, then the subtree Tvi has degree sequence (di, di+1, . . . , di+k−1), where k 6 n− i+1
is the unique index such that (di, . . . , di+k−1) is a degree sequence of a tree. By the definition (3.2), we
thus can write (1.3) as

F (T ) =
∑

16i6j6n

f(di, . . . , dj) =

n∑
k=1

n−k+1∑
i=1

f(di, . . . , di+k−1). (3.3)

Moreover, if we regard (d1, . . . , dn) as a cyclic sequence and allow wrapping around by defining dn+i :=
di, we also have the more symmetric formula

F (T ) =

n∑
k=1

n∑
i=1

f(di, . . . , di+k−1). (3.4)

The difference from (3.3) is that we have added some terms f(di, . . . , di+k−1−n) where the indices wrap
around, but these terms all vanish by definition because (di, . . . , di+k−1−n) is never a degree sequence.
(The subtree with root vi is completed at the latest by vn.)

It is a well-known fact, see e.g. [15, Corollary 15.4], that up to a cyclic shift, the degree sequence
(d1, . . . , dn) of the conditioned Galton–Watson tree Tn has the same distribution as

(
(ξ1, . . . , ξn) | Sn =

n− 1
)
. Since (3.4) is invariant under cyclic shifts of (d1, . . . , dn), it follows that, recalling (3.1),

F (Tn)
d
=

(
n∑
k=1

n∑
i=1

f(ξi, . . . , ξi+k−1 mod n)
∣∣∣ Sn = n− 1

)
, (3.5)

where j mod n denotes the index in {1, . . . , n} that is congruent to j modulo n.

3.2 More notation
We let, for k > 1, fk be f restricted to Tk; more precisely, we define fk for all trees T ∈ T by fk(T ) :=
f(T ) if |T | = k and fk(T ) := 0 otherwise. In other words,

fk(T ) := f(T ) · 1{|T | = k}. (3.6)
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Extended to integer sequences as in (3.2), this means that

fk(d1, . . . , dn) = f(d1, . . . , dn) · 1{n = k}. (3.7)

Note that Tk is a finite set; thus fk is always a bounded function for each k.
We further let, for k > 1 and any tree T , with degree sequence (d1, . . . , dn),

Fk(T ) := F (T ; fk) =

n−k+1∑
i=1

fk(di, . . . , di+k−1). (3.8)

(We can also let the sum extend to n, wrapping around di as in (3.4).) Obviously,

f(T ) =

∞∑
k=1

fk(T ) and F (T ) =

∞∑
k=1

Fk(T ) (3.9)

for any tree T , where in both sums it suffices to consider k 6 |T | since the summands vanish for k > |T |.

3.3 Expectations
We calculate the expectation EF (Tn) using (3.5), which converts this into a problem on expectations
of functionals of a sequence of i.i.d. variables conditioned on their sum. Results of this type have been
studied before under various conditions, see for example Zabell [27, 28, 29], Swensen [25] and Janson
[14].

By (3.5) and symmetry,

EF (Tn) = n

n∑
k=1

E
(
f(ξ1, . . . , ξk) | Sn = n− 1

)
. (3.10)

We consider first the expectation of each Fk(Tn) separately, recalling (3.9). Note that each fk is
bounded, and thus trivially E |fk(T )| <∞. A simple argument yields the following.

Lemma 3.1 If 1 6 k 6 n, then

EFk(Tn) = n
P(Sn−k = n− k)
P(Sn = n− 1)

E fk(T ). (3.11)

We use this in combination with the following estimates, which are shown using the local limit theorem
and the methods used to prove it. (Cf. [24, Theorem VII.13].)

Lemma 3.2 (i) Uniformly for all k with 1 6 k 6 n/2, as n→∞,

P(Sn−k = n− k)
P(Sn = n− 1)

= 1 +O

(
k

n

)
+ o
(
n−1/2

)
. (3.12)

(ii) If n/2 < k 6 n, then

P(Sn−k = n− k)
P(Sn = n− 1)

= O

(
n1/2

(n− k + 1)1/2

)
. (3.13)
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3.4 Variances and covariances
We next consider the variance of F (Tn). As in Section 3.3, we consider first the different Fk(Tn) sepa-
rately; thus we study variances and covariances of these sums. We begin with an exact formula (omitted
here), corresponding to Lemma 3.1; then the terms in it are estimated similarly to Lemma 3.2, but with
more care since there typically is important cancellation between different terms. In particular, this leads
to a simple asymptotic result for fixed k and m.

Lemma 3.3 For any fixed k and m with k > m, as n→∞,

1

n
Cov(Fk(Tn), Fm(Tn))→ E

(
fk(T )Fm(T )

)
− (k +m− 1 + σ−2)E fk(T )E fm(T ).

Corollary 3.4 Suppose that f has finite support. Then, as n→∞,

1

n
VarF (Tn)→ E

(
f(T )

(
2F (T )− f(T )

))
− 2E

(
|T |f(T )

)
E f(T ) +

(
1− σ−2

)(
E f(T )

)2
.

For general f , we first show a uniform bound valid for all n.

Theorem 3.5 For any functional f : T→ R,

Var
(
F (Tn)

)1/2
6 C1n

1/2

(
sup
k

√
E f(Tk)2 +

∞∑
k=1

√
E f(Tk)2
k

)
, (3.14)

with C1 independent of f .

Using this bound, (1.14)–(1.15) follow easily.

3.5 Asymptotic normality
To prove asymptotic normality, we first consider functionals f with finite support. We use the representa-
tion (3.5), where now it suffices to sum over k 6 m for some m <∞. We define

g(x1, . . . , xm) :=

m∑
k=1

f(x1, . . . , xk) =

m∑
k=1

fk(x1, . . . , xk). (3.15)

Then (3.5) can be written (assuming n > m)

F (Tn)
d
=

(
n∑
i=1

g(ξi, . . . , ξi+m−1 mod n)
∣∣∣ Sn = n− 1

)
. (3.16)

Asymptotic normality now follows by a method by Le Cam [21] and Holst [12], see also Kudlaev [20].
For general f in Theorems 1.3 and 1.8 we define the truncation

f (N)(T ) :=

N∑
k=1

fk(T ) = f(T )1{|T | 6 N} (3.17)
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and the corresponding sum F (N)(T ). The result follow from the case of finite support, using Theorem 3.5
and a similar but sharper estimate for weakly local functionals.

More precisely, with µ(N) := E f (N)(T ) and

(γ(N))2 := 2E
(
f (N)(T )

(
F (N)(T )− |T |µ(N)

))
−Var f (N)(T )− (µ(N))2/σ2, (3.18)

this proof yields asymptotic normality with the asymptotic variance

γ2 := lim
N→∞

(γ(N))2. (3.19)

In Theorem 1.3, this leads to (1.15). In Theorem 1.8, we do not know any simple general formula for
γ2.
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