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Abstract

The well-known “Janson’s inequality” gives Poisson-like upper bounds for the lower tail probability
P(X 6 (1 − ε)EX) when X is the sum of dependent indicator random variables of a special form.
We show that, for large deviations, this inequality is optimal whenever X is approximately Poisson, i.e.,
when the dependencies are weak. We also present correlation-based approaches that, in certain symmetric
applications, yield related conclusions when X is no longer close to Poisson. As an illustration we, e.g.,
consider subgraph counts in random graphs, and obtain new lower tail estimates, extending earlier work
(for the special case ε = 1) of Janson,  Luczak and Ruciński.

1 Introduction

In probabilistic combinatorics and related areas it often is important to estimate the probability that a sum
X of dependent indicator random variables is small or zero (to, e.g., show that few or none of a collection of
events occurs). Moreover, it frequently is desirable that these probabilities are exponentially small (to, e.g.,
make union bound arguments amenable). In this paper we focus on such sharp estimates for the lower tail
P(X 6 (1 − ε)EX), where X is of a form that is commonly used in, e.g., applications of the probabilistic
method or random graph theory, see [1, 16]. More precisely, the underlying probability space is the random
subset Γp ⊆ Γ, with |Γ| = N and p = (pi)i∈Γ, where each i ∈ Γ is included, independently, with probability
pi. Given a family

(
Q(α)

)
α∈X of subsets of Γ (often X ⊆ 2Γ and Q(α) = α is convenient) we define

Iα = 1{Q(α)⊆Γp}, so that

X =
∑
α∈X

Iα (1)

counts the number of sets Q(α) that are entirely contained in Γp. We write α ∼ β if Q(α) ∩Q(β) 6= ∅ and
α 6= β, which intuitively means that there are ‘dependencies’ between Iα and Iβ . Let

µ = EX =
∑
α∈X

EIα, Π = max
α∈X

EIα,

Λ = µ+
∑

(α,β)∈X×X :α∼β

EIαIβ = (1 + δ)µ.

(We write µ(X), Π(X), Λ(X) and δ(X) in case of ambiguity.) Note that δ measures how dependent the
indicators Iα are (with δ = 0 in the case of independent summands), and that VarX 6 Λ holds. In [13] the first
author proved the following lower tail analogue (often called Janson’s inequality, see, e.g., [1]) of the Bernstein
and Chernoff bounds for sums of independent indicators (the case δ = 0): with ϕ(x) = (1 +x) log(1 +x)−x,
for all ε ∈ [0, 1] we have

P(X 6 (1− ε)EX) 6 exp
{
−ϕ(−ε)µ/(1 + δ)

}
= exp

{
−ϕ(−ε)µ2/Λ

}
, (2)
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where ϕ(−1) = 1, ε2/2 6 ϕ(−ε) 6 ε2 and ϕ(−ε) = ε2/2 + O(ε3) for ε ∈ [0, 1]. As discussed in [13, 16, 1],
inequality (2) is quite attractive because it (i) yields Poisson-like tail estimates in the weakly dependent case
δ = O(1), (ii) usually corresponds to a (one-sided) exponential version of Chebyshev’s inequality, and (iii)
often qualitatively matches the tail behaviour suggested by the central limit theorem. For example, it is
well-known (and not hard to check) that Λ = Θ(VarX) if p̂ = max{Π,maxi pi} is bounded away from one,
that p̂→ 0 implies Λ ∼ VarX, and that δ,Π→ 0 implies Λ ∼ µ ∼ VarX.

The inequality (2) is nowadays a widely used tool in probabilistic combinatorics (see, e.g., [1, 16] and the
references therein), which makes it important to understand how ‘sharp’ it is, i.e., whether the exponential
rate of decay given by (2) is best possible. For sums of independent Bernoulli random variables we have
δ = 0 and (2) coincides with the Chernoff bounds, where the exponent is well-known to be best possible if
maxi pi = o(1). However, it is doubtful whether such examples are of any significance for concrete applications
with δ > 0. Fortunately, whenever Π < 1, Harris’ inequality [12] gives, as noted in [15],

P(X = 0) >
∏
α∈X

(1− EIα) > exp
{
−µ/(1−Π)

}
. (3)

The point is that (2) and (3) yield logP(X = 0) ∼ −µ whenever δ,Π→ 0. This raises the intriguing question
whether the exponent of (2) is also sharp for other choices of ε, in particular when ε→ 0 (which, of course,
is also an interesting problem in concentration of measure).

1.1 Main result

In this paper we prove that “Janson’s inequality” (2) is close to best possible in many situations of interest.
Our first result shows that, for large deviations, the rate of decay of (2) is optimal for any random variable
X of type (1) that is approximately Poisson, i.e., whenever δ,Π→ 0 (see [13]).

Theorem 1. With notations as above, if ε ∈ [0, 1], max{Π,1{ε<1}δ} 6 2−14 and ε2µ > 1{ε<1}, then

P(X 6 (1− ε)EX) > exp
{
−(1 + ξ)ϕ(−ε)µ

}
, (4)

with ξ = 135 max{Π1/8,1{ε<1}δ
1/8,1{ε<1}(ε

2µ)−1/4}.

With ϕ(−1) = 1 in mind, note that (4) qualitatively extends the lower bound (3) resulting from Harris’
inequality [12] to general ε. Here the condition ε2µ = Ω(1) is natural in the context of exponentially small
probabilities since (1 + ξ)ϕ(−ε) = Θ(ε2). As discussed, our favourite range is when δ,Π → 0. For large
deviations, i.e., when ε2µ→∞ holds, (2) and (4) then yield

logP(X 6 (1− ε)EX) ∼ −ϕ(−ε)µ.

In words, Theorem 1 determines the large deviation rate function logP(X 6 (1− ε)EX) up to second order
error terms, closing a gap that was left open by the first author nearly 25 years ago. Indeed, Theorem 2
in [13] gives a lower bound, but it is at best off from the upper bound (2) by a (multiplicative) constant
factor in the exponent, and even this holds only for a more restricted range of the parameters. Furthermore,
Theorem 1 with δ = 0 also implies the optimality of the Chernoff bounds mentioned above.

Our second result yields a related conclusion when δ = O(1) and Π is bounded away from one. More
precisely, in this ‘weakly dependent’ case Theorem 2 shows that the decay of the inequality (2) is best possible
up to constant factors in the exponent.

Theorem 2. With notations as above, if ε ∈ [0, 1], Π < 1 and ε2µ > 1{ε<1/50}(1 + δ)−1/2, then

P(X 6 (1− ε)EX) > exp
{
−Kϕ(−ε)µ(1 + δ∗)

}
> exp

{
−Kε2µ(1 + δ∗)

}
, (5)

with K = 5000/(1−Π)5 and δ∗ = 1{ε<1/50}δ.

A key feature of (5) is that it holds for any Π < 1 (and that the dependence of K on Π is explicit). Note
that usually K = Θ(1). Whenever δ = O(1), inequalities (2) and (5) then yield

logP(X 6 (1− ε)EX) = −Θ(ε2µ),
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where the implicit constants differ by a factor of at most 2K(1 + δ)2 = O(1). This subsumes the folklore
fact that Chernoff bounds (where δ = 0) are sharp up to constants in the exponent if maxi pi is bounded
away from one. While the numerical value of K is often immaterial, better constant factors can typically be
obtained, if desired, by reworking the proof (optimizing certain parameters to the situation at hand).

The proofs of Theorem 1 and 2 hinge on Hölder’s inequality and several estimates of the Laplace transform
(which in turn are based on correlation inequalities), see Section 2. In fact, an inspection of the proofs reveals
that Theorem 1 and 2 (as well as (3), Theorem 6 and Lemma 7) remain valid for the more general correlation
conditions (and setup) stated by Riordan and Warnke [23]. It would be interesting to know whether similar
results also hold under the weaker dependency assumptions of Suen’s inequality [28, 14].

1.2 Main example

From an applications point of view it is important to also understand the sharpness of (2) in the case δ = Ω(1),
i.e., when X is no longer close to Poisson. In Section 3 we present correlation-inequality based bootstrapping
approaches which often allow us to deal with this remaining ‘strongly dependent’ case. The punchline seems
to be that, in the presence of certain symmetries, the inequality (2) is oftentimes best possible up to constant
factors in the exponent.

In this paper our main example is the number of small subgraphs in the binomial random graph Gn,p,
which is a classical topic in random graph theory (see, e.g., [10, 3, 24]). It frequently serves as a test-bed
for new probabilistic estimates (see, e.g., [2, 15, 27, 21, 18, 17, 7]), and we shall use it to demonstrate the

applicability of our bootstrapping approaches. In fact, we consider the more general random hypergraph G
(k)
n,p,

with k > 2, where each of the
(
n
k

)
edges of the complete k-uniform hypergraph K

(k)
n is included, independently,

with probability p. Given a k-uniform hypergraph H, or briefly k-graph, we define XH = XH(n, p) as the

number of copies of H in G
(k)
n,p, where by a copy we mean, as usual, a subgraph isomorphic to H. Furthermore,

we write eH = |E(H)| and vH = |V (H)| for the number of edges and vertices of H, respectively. Theorem 3
shows that the lower tail of the distribution of XH is governed by ΦH , i.e., the expected number of copies of
the ‘least expected’ subgraph of H. This exponential rate of decay is consistent with normal approximation
heuristics since ΦH = Θ

(
(1− p)(EXH)2/VarXH

)
, see Lemma 3.5 in [16].

Theorem 3. Let H be a k-graph with eH > 1. Define ΦH = ΦH(n, p) = min{EXJ : J ⊆ H, eJ > 1}. There
are positive constants c, C, D and n0, all depending only on H, such that for all n > n0, p ∈ [0, 1) and
ε ∈ [0, 1] satisfying ε2ΦH > 1{ε<1}D we have

exp
{
−(1− p)−5Cε2ΦH

}
6 P(XH 6 (1− ε)EXH) 6 exp

{
−cε2ΦH

}
. (6)

The upper bound of (6) follows from (2) via standard calculations (see, e.g., [16] or Lemma 22), and so the
real content of this theorem is the ‘matching’ lower bound. A key feature of Theorem 3 is that ε is not fixed,
but may depend on n. In the context of exponentially decaying probabilities, note that the ε2ΦH = Ω(1)
condition is natural (unless p ≈ 1). In applications p is typically bounded away from one (in fact, p = o(1)
is often standard), in which case (6) yields

logP(XH 6 (1− ε)EXH) = −Θ(ε2ΦH), (7)

determining the large deviation rate function of XH up to constants factors. For the special case ε = 1 (and
k = 2) this was established more than 25 years ago by Janson,  Luczak and Ruciński [15], and for ε > ε0 an
analogous statement is nowadays easily deduced from (2) and (3), see also (73). By contrast, the case ε→ 0
seems to have eluded further attention, and Theorem 3 rectifies this (surprising) gap in the literature.

Although not our primary focus, in certain ranges our proof techniques are strong enough to establish
the finer behaviour of the large deviation rate function. In particular, for the case in which there is only
one subgraph G ⊆ H with EXG = Θ(ΦH) we have two results that determine the leading constant in (7).
More precisely, Theorem 4 applies if there is only one copy of G in H (which includes the case G = H), and
Theorem 5 applies if G is an edge (in which case there are eH copies of G in H). To state these results, for
any given k-graph H we set

mk(H) = 1{eH>2} max
J⊆H,eJ>2

eJ − 1

vJ − k
+ 1{eH=1}

1

k
. (8)
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In addition, we define ex(n,H) as the maximum number of edges in an H-free k-graph with n vertices. It
is well-known (see, e.g., [20]) that πH = limn→∞ ex(n,H)/

(
n
k

)
exists, with πH ∈ [0, 1), and that for graphs

(i.e., k = 2) we have πH = 1− 1/(χ(H)− 1), where χ(H) is the chromatic number of H.

Theorem 4. Let G ⊆ H be k-graphs with eG > 1. Assume that there is exactly one copy of G in H, and
that p = p(n) = o(1) is such that EXG = o(EXJ) for all G 6= J ⊆ H with eJ > 1. If ε = ε(n) ∈ (0, 1] satisfies
ε2EXG > 1{ε<1}ω

(
1 + 1{G 6=H,eG>2} log(1/ε)

)
, then we have

logP(XH 6 (1− ε)EXH) ∼ −ϕ(−ε)EXG. (9)

Theorem 5. Let H be a k-graph with eH > 1. If p = p(n) = o(1) and ε = ε(n) ∈ [0, 1] satisfy p =
ω(n−1/mk(H)) and ε2

(
n
k

)
p = ω(1), then we have

logP(XH 6 (1− ε)EXH) ∼

{
−ϕ(−ε)

(
n
k

)
p/e2

H , if ε = o(1),

−ϕ(−ε)
(
n
k

)
p(1− πH), if ε = 1− o(1).

(10)

Here our main contributions are the tight lower bound of (9), and the case ε = o(1) of (10). Theorem 4
is a natural extension of earlier work of Janson,  Luczak and Ruciński [15] for the special case ε = 1 (and
k = 2). Theorem 5 partially solves an open problem of [15], but in the relevant case ε = 1 inequality (10)
is a fairly simple consequence of the recent ‘hypergraph container’ results of Saxton and Thomason [25], see
also Lemma 23. With ϕ(−ε) = Θ(ε2) in mind the conditions involving ε2 are natural in both results – up to
the logarithmic term in case of Theorem 4, which seems to be an artefact of our proof (we leave its removal
as an open problem, see Section 3.2). The form of the exponent in Theorem 5 differs in an intriguing way
for ε = o(1) and ε = 1 − o(1). In particular, (10) provides a natural example where the inequality (2) does
not always give the correct constants in the exponent when δ = ω(1): in the case ε = 1− o(1), the ‘extremal’
structural properties of H-free graphs come into play. We leave it as an open problem to determine the finer
behaviour of the exponent (i.e., with explicit constants) in the ‘intermediate’ range ε = Θ(1). This seems
of particular interest since Theorem 4 and 5 nearly cover all edge probabilities p for balanced k-graphs with
eH > 2 and mk(H) = (eH − 1)/(vH − k), where G = H for p = o(n−1/mk(H)); for k = 2 (when this class
usually is called 2-balanced) this class includes, e.g., trees, cycles, complete graphs, complete r-partite graphs
Kt,...,t and the d-dimensional cube.

Finally, Theorems 3–5 compare favourable with related work for the upper tail probability P(XH >
(1+ε)EXH), where the case ε = Θ(1) has been extensively studied for k = 2, see, e.g., [27, 29, 17, 5, 8, 26, 6]
and the references therein. Indeed, for most graphs H the order of magnitude of the large deviation rate
function logP(XH > (1+ε)EXH) is only known up to logarithmic factors when ε = Θ(1), whereas Theorem 3
determines logP(XH 6 (1 − ε)EXH) up to constant factors, even when ε = ε(n) → 0. For triangles
the finer behaviour of logP(XK3 > (1 + ε)EXK3) has very recently been determined for ε = Θ(1) and
n−1/42+o(1) 6 p = o(1), see [22]. By contrast, for all balanced k-graphs H (which for k = 2 includes H = K3)
Theorems 4–5 apply for essentially all p = o(1) of interest, excluding only p = Θ(n−1/mk(H)). However, the
key conceptual difference is that Theorem 4 includes the case ε = ε(n)→ 0.

The rest of the paper is organized as follows. First, in Section 2, we prove Theorem 1 and 2. Next, in
Section 3, we present several bootstrapping approaches that yield lower bounds for the lower tail, which are
subsequently illustrated in Section 4. Namely, in Section 4.1 we apply them to the number of arithmetic
progressions in random subsets of the integers, and in Section 4.2 we apply them to subgraph counts in
random hypergraphs and prove Theorems 3–5.

2 Lower bounds for the lower tail

In this section we prove Theorem 1 and 2, i.e., establish lower bounds for the lower tail. Since our core
argument breaks down when ε is very close to one, en route to Theorem 1 we establish the following (slightly
sharper) complementary estimates.

Theorem 6. Let X =
∑
α∈X Iα, µ = EX, Π and δ be defined as in Section 1. If e(1 − ε)ε2µ > 1 and

0 6 ε 6 1− 4 max{Π1/4, δ1/4}, then

P(X < (1− ε)EX) > exp
{
−(1 + ξ)ϕ(−ε)µ

}
, (11)
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with ξ = 135 max{Π1/4, δ1/4, [e(1− ε)ε2µ]−1/2}.

Lemma 7. Let X =
∑
α∈X Iα, µ = EX and Π be defined as in Section 1. If 1 − e−1 6 ε 6 1 and Π < 1,

then
P(X 6 (1− ε)EX) > P(X = 0) > exp

{
−(1 + ζ)ϕ(−ε)µ

}
, (12)

with ζ = 10 max{
√

1− ε,Π/(1−Π)}.

While Lemma 7 follows from (3) via calculus (see Lemma 11), the remaining proofs are not a mere
refinement of [13], but contain several new ideas and ingredients. This includes integrating the logarithmic
derivative of the Laplace transform over the interval [r, t] instead of the usual [0, t] (see the proof of Lemma 9),
using Hölder’s inequality with parameter p→ 1 instead of the Cauchy–Schwarz inequality (see Section 2.2),
and a careful treatment of second order error terms (see, e.g., Lemma 8 and 14).

2.1 Preliminaries

We first collect some basic estimates of the Laplace transform of X as defined in Section 1.

Lemma 8. For all s > 0 satisfying λ = Π(1− e−s) < 1 we have

Ee−sX > exp

{
−µ(1− e−s)− µΠ(1− e−s)2

2(1− λ)

}
. (13)

Proof. The FKG inequality [11] (or Harris’s inequality [12]) yields

Ee−sX = E
∏
α∈X

e−sIα >
∏
α∈X

Ee−sIα =
∏
α∈X

(
1− EIα(1− e−s)

)
.

Now, for x ∈ [0, 1) we have

log(1− x) = −
∑
j>1

xj

j
> −x− x2

2(1− x)
, (14)

and (13) follows since EIα 6 Π and µ =
∑
α∈X EIα.

Lemma 9. For all t > r > 0 we have

Ee−rX

Ee−tX
> exp

{
µ

1 + δ

(
e−(1+δ)r − e−(1+δ)t

)}
. (15)

Proof. Let Ψ(x) = Ee−xX . The proof of Lemma 1 in [13] establishes − d
dx log Ψ(x) > µe−(1+δ)x for x > 0

(see also [23]). Hence

log

(
Ee−rX

Ee−tX

)
= − log Ψ(t) + log Ψ(r) =

∫ t

r

(
− d

dx
log Ψ(x)

)
dx

>
∫ t

r

µe−(1+δ)xdx =
µ

1 + δ

(
e−(1+δ)r − e−(1+δ)t

)
,

and (15) follows.

Next, we state some technical estimates of ϕ(−ε) = (1 − ε) log(1 − ε) + ε for later reference (these can
safely be skipped on first reading). Following standard conventions, for k ∈ {1, 2} we have 0 logk(0) =
limε↗1(1− ε) logk(1− ε) = 0, so that ϕ(−1) = 1.

Lemma 10. For all ε ∈ [0, 1] we have

max
{

(1− ε) log2(1− ε), ε2
}
6 2ϕ(−ε) 6 min

{
log2(1− ε), 2ε2

}
. (16)

Lemma 11. For all 1− e−1 6 ε 6 1 we have

ϕ(−ε) 6 1 6 (1 + 5
√

1− ε)ϕ(−ε). (17)

5



Lemma 12. For all ε ∈ [0, 1] and A ∈ [0,∞) we have, with γ = A− 1,

ϕ(−Aε) 6

{
(1 +Aε)A2ϕ(−ε), if Aε 6 1,

(1 +
√
γ)ϕ(−ε), if 0 6 3

√
γ 6 1− ε.

(18)

The elementary proofs of Lemma 10–12 are deferred to Appendix A.

2.2 Proof strategy

We start with a general lower bound for P(X < (1 − ε)EX). If p, q ∈ (1,∞) satisfy 1/p + 1/q = 1, then
Hölder’s inequality implies

E(e−sX1{X<(1−ε)EX}) 6 (Ee−psX)1/pP(X < (1− ε)EX)1/q.

Noting that q = q/p+ 1 = 1/(p− 1) + 1, we infer

P(X < (1− ε)EX) >

(
E(e−sX1{X<(1−ε)EX})

(Ee−psX)1/p

)q

=

(
E(e−sX1{X<(1−ε)EX})

Ee−sX

) p
p−1

·
(

Ee−sX

Ee−psX

) 1
p−1

Ee−sX .

(19)

In the following we heuristically outline how we estimate P(X < (1− ε)EX) when δ,Π→ 0 and ε < 1 (to
be precise, ε bounded away from one). The idea is to first consider p > 1 and s > z = − log(1− ε), and then
let p→ 1 and s→ z. Since Π→ 0, using Lemma 8 we have

Ee−sX > exp
{
−µ
(
1− e−s + o(1)

)}
. (20)

So, using Lemma 9 together with δ → 0, we expect that (replacing the difference quotient by the derivative),
as p→ 1, (

Ee−sX

Ee−psX

) 1
p−1

> exp
{
µs

(
e−(1+δ)s − e−(1+δ)ps

(1 + δ)(p− 1)s

)}
= exp

{
µ
(
se−s + o(1)

)}
. (21)

The point is that 1− e−s− se−s → ϕ(−ε) as s→ z. So, if (20) and (21) essentially determine the right hand
side of (19), then our previous considerations suggest

P(X < (1− ε)EX) > exp
{
−µ
(
ϕ(−ε) + o(1)

)}
.

Luckily, our later calculations confirm that (for suitable choices of p and s) we can indeed essentially ignore
the first term on the right hand side of (19) for large deviations, i.e., when ε2µ→∞ holds.

2.3 Proofs of Theorem 2 and 6

Assume that ε, τ ∈ (0, 1) and σ ∈ (0,∞). Let

p = 1 + σ and q = 1 + 1/σ, (22)

so that p, q ∈ (1,∞) and 1/p+ 1/q = 1. Furthermore, let

z = − log(1− ε) and s = pz. (23)

With (19) in mind, the following two lemmas are at the heart of our argument.
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Lemma 13. With definitions as above, if Π(1− e−s) 6 1/2, then(
Ee−sX

Ee−psX

) 1
p−1

Ee−sX > e−(1+η)ϕ(−ε)µ, (24)

with η = 2p2(σ + pδ + Π) + 2pσ.

Proof. Since f(x) = −e−x satisfies f ′(x) = e−x, the mean value theorem implies that there is ζ ∈ [1, p] such
that

e−(1+δ)s − e−(1+δ)ps

(1 + δ)(p− 1)s
= e−(1+δ)ζs > e−(1+δ)ps. (25)

Furthermore, since g(x) = e−x satisfies g′(x) = −e−x and g′′(x) = e−x > 0, using Taylor’s theorem with
remainder, we obtain

e−(1+δ)ps > e−s −
(
(1 + δ)p− 1

)
se−s. (26)

Note that (1 + δ)p− 1 = σ + pδ. Furthermore, since s = −p log(1− ε), Bernoulli’s inequality yields

(1− e−s)2 = (1− (1− ε)p)2 6 p2ε2. (27)

So, by combining Lemmas 8 and 9 with (25)–(27), using Π(1− e−s) 6 1/2, it follows that(
Ee−sX

Ee−psX

) 1
p−1

Ee−sX > exp

{
µs
(
e−(1+δ)s − e−(1+δ)ps

)
(1 + δ)(p− 1)s

− µ(1− e−s)− µΠ(1− e−s)2

}
> exp

{
−µ
(

1− e−s − se−s +
(
σ + pδ

)
s2e−s + Πp2ε2

)}
.

Let g(x) = 1− e−x−xe−x, and note that g(z) = ϕ(−ε). Furthermore, for z 6 x 6 s we have g′(x) = xe−x 6
se−z. So, using Taylor’s theorem with remainder, we deduce that

1− e−s − se−s 6 ϕ(−ε) + (s− z)se−z.

Consequently, since s = pz > z, we obtain(
Ee−sX

Ee−psX

) 1
p−1

Ee−sX > exp
{
−ϕ(−ε)µ−

(
z2e−zη1 + ε2η2

)
µ
}
,

where η1 = p2(σ + pδ) + pσ and η2 = p2Π. Finally, recalling z = − log(1 − ε), the point is that Lemma 10
yields max{z2e−z, ε2} 6 2ϕ(−ε), yielding the result with η = 2η1 + 2η2.

Lemma 14. With definitions as above, if λ = Π(1−e−s) < 1 and (1−τ)σ2(1−ε)p > p2Π/(1−λ)+δ/(1+δ),
then (

E(e−sX1{X<(1−ε)EX})

Ee−sX

) p
p−1

> exp

{
−
(

4p

τσ3(1− ε)pε4µ2

)
ϕ(−ε)µ

}
. (28)

Proof. As p = 1 + σ, we write(
E(e−sX1{X<(1−ε)µ})

Ee−sX

) p
p−1

=

(
1−

E(e−sX1{X>(1−ε)µ})

Ee−sX

) p
σ

. (29)

Let t = z/(1 + δ). Recalling ϕ(−ε) = (1− ε) log(1− ε) + ε, note that

t(1− ε)µ− µ

1 + δ

(
1− e−(1+δ)t

)
= −ϕ(−ε)µ

1 + δ
.

So, using t 6 s and Lemma 9 (with r = 0), it follows that

E(e−sX1{X>(1−ε)µ}) 6 e−(s−t)(1−ε)µ · Ee−tX 6 exp

{
−s(1− ε)µ− ϕ(−ε)µ

1 + δ

}
. (30)
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Set h(x) = (1 − ε)x − (1 − e−x), and note that h(z) = −ϕ(−ε) and h′(z) = 0. Furthermore, for x 6 s we
have h′′(x) = e−x > e−s. So, using Taylor’s theorem with remainder, we obtain

(1− ε)s− (1− e−s) > −ϕ(−ε) + (s− z)2e−s/2. (31)

Recalling p = 1 +σ, s = pz and λ = Π(1− e−s), by combining Lemma 8 with (30), (31) and (1− e−s)2 6 s2,
we infer

E(e−sX1{X>(1−ε)µ})

Ee−sX
6 exp

{
−µ
(

(1− ε)s− (1− e−s) +
ϕ(−ε)
1 + δ

− Πs2

2(1− λ)

)}
6 exp

{
−µ
(
σ2(1− ε)pz2

2
− Πp2z2

2(1− λ)
− δϕ(−ε)

1 + δ

)}
.

Since Lemma 10 gives ϕ(−ε) 6 log2(1− ε)/2 = z2/2, we have, by assumption,

E(e−sX1{X>(1−ε)µ})

Ee−sX
6 exp

{
−τσ2(1− ε)pz2µ/2

}
. (32)

Now, inserting (32) into (29), using the fact that e−x + e−1/x 6 1 for x > 0 (as in the proof of Theorem 2
in [13]), we obtain (

E(e−sX1{X<(1−ε)µ})

Ee−sX

) p
p−1

> exp

{
− 2p

τσ3(1− ε)pz2µ

}
.

Finally, recalling z = − log(1− ε), Lemma 10 yields z2 > ε2 and 1 6 2ϕ(−ε)/ε2.

Combining (19) with Lemma 13 and 14, the proofs of Theorem 2 and 6 reduce to defining suitable
parameters σ and τ (our choices are somewhat ad-hoc, and yield fairly transparent error-terms).

Proof of Theorem 6. With foresight, let τ = 5/8 and

σ = max
{

Π1/4, δ1/4, [e(1− ε)ε2µ]−1/2
}
. (33)

Note that the assumption 0 6 ε 6 1− 4 max{Π1/4, δ1/4} implies max{Π, δ} 6 4−4, so that λ = Π(1− e−s) 6
Π 6 1/5. Hence, using e(1− ε)ε2µ > 1, we see that σ 6 1 and thus p 6 2. Consequently, by (33), we have

σ4(1− ε)pε4µ2 > σ4(1− ε)2ε4µ2 > e−2 (34)

and σ2 > max{Π1/2, δ1/2}. In addition, by assumption, we have (1 − ε)p > (1 − ε)2 > 16 max{Π1/2, δ1/2}.
Since 16(1− τ) = 6 and p2/(1− λ) 6 5, it follows that

(1− τ)σ2(1− ε)p > 6 max{Π, δ} > p2Π/(1− λ) + δ/(1 + δ).

Now, combining (19) with Lemmas 13–14 and (34), we obtain

P(X < (1− ε)µ) > e−(1+κ)ϕ(−ε)µ,

with κ = 2p2(σ + pδ + Π) + 2pσ + 4e2τ−1pσ. Finally, using σ > σ4 > max{δ,Π}, p 6 2 and τ = 5/8, we see
that κ 6 135σ.

Proof of Theorem 2. Let τ = (1 − Π)/5, so that, by assumption, τ ∈ (0, 1/5]. The proof distinguishes two
cases, which eventually establish (5) by noting that Lemma 10 gives ϕ(−ε) 6 ε2.

First, we assume 0 6 ε < τ2/2. Note that then, by assumption, we have 0 < ε < 1/50 and δ = δ∗. Let
p = 2/τ and σ = p− 1. Analogous to (27) we have 1− e−s = 1− (1− ε)p 6 pε, so that Π 6 1 implies

λ = Π(1− e−s) 6 Πpε 6 τ,
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which in particular yields λ 6 1/2, with room to spare. Next observe that, since σ/p = 1 − 1/p and
max{2/p, pε, λ} = τ , by the definition of τ we have

(1− τ)σ2(1− ε)p(1− λ)

p2
− 1

p2
> (1− τ)(1− 2/p)(1− pε)(1− λ)− τ2/4

> (1− τ)4 − τ2/4 > 1− 5τ = Π,

which in turn readily yields (1− τ)σ2(1− ε)p > p2Π/(1− λ) + δ/(1 + δ). Similarly, using σ > p/2 = τ−1 and
τ 6 1/2 we obtain

τσ3(1− ε)p > τ−2(1− τ) > τ−2/2.

Since ε4µ2 > (1 + δ)−1 by assumption, analogously to the proof of Theorem 6, using (19) together with
Lemmas 13–14, we obtain

P(X 6 (1− ε)µ) > P(X < (1− ε)µ) > e−(1+κ)ϕ(−ε)µ,

with κ = 2p2(σ + pδ + Π) + 2pσ + 8τ2p(1 + δ). Now, using max{Π, τ} 6 1 and σ 6 p = 2/τ = 10/(1−Π), a
short calculation shows that, say,

1 + κ 6 17 + 2p3 + 4p2 + (2p3 + 16)δ 6 2500(1 + δ)/(1−Π)3.

Finally, we assume τ2/2 6 ε 6 1. Using the lower bound (3) resulting from Harris’ inequality [12], it
follows that

P(X 6 (1− ε)µ) > P(X = 0) > e−µ/(1−Π). (35)

The point is that, by assumption, we have 2/ε2 6 8/τ4 = 5000/(1 − Π)4, so that Lemma 10 implies
1 6 5000ϕ(−ε)/(1−Π)4.

2.4 Proofs of Theorem 1 and Lemma 7

The remaining proofs of Theorem 1 and Lemma 7 are straightforward.

Proof of Lemma 7. Note that, by assumption, 5
√

1− ε 6 5e−1/2 6 4. So, using Lemma 11, we infer

1/(1−Π) 6 (1 + 5
√

1− ε)
(
1 + Π/(1−Π)

)
ϕ(−ε) 6 (1 + ζ)ϕ(−ε),

with ζ = 10 max{
√

1− ε,Π/(1−Π)}. Now an application of (3), analogous to (35), completes the proof.

Proof of Theorem 1. Note that, using the assumption,

η = max{4Π1/4,1{ε<1}4δ
1/4,1{ε<1}e

−1(ε2µ)−1/2}

satisfies η ∈ [0, e−1]. If 1 − η 6 ε 6 1, then ε > 1 − e−1 and 1 − ε 6 η, so that Lemma 7 implies (4). If
0 6 ε < 1 − η, then e(1 − ε)ε2µ > eηε2µ > (ε2µ)1/2 > 1 and ε 6 1 − 4 max{Π1/4, δ1/4}, so that Theorem 6
establishes (4).

3 Bootstrapping lower bounds for the lower tail

As discussed, Theorem 1 and 2 only give reasonable lower bounds for the lower tail if δ = O(1), i.e., as long
as the dependencies are ‘weak’. In this section we present a bootstrapping strategy, which often allows us to
deal with the remaining case, where δ = Ω(1) holds.

In order to establish a competent lower bound on the lower tail, we usually need to (approximately)
identify the most likely way to obtain X 6 (1 − ε)EX. At first glance it seems that this would require
fairly detailed information about the random variable X, where µ = EX. However, in the general setting of
this paper, we discovered that, perhaps surprisingly, we can systematically guess suitable (nearly) ‘extremal’
events by only inspecting the form of the variance VarX 6 Λ = Λ(X). Indeed, assume that there is a random
variable Y , of the same type as (1), satisfying

Λ = Θ(µ2/EY ) and δ(Y ) = O(1). (36)
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For example, if XH counts the number of copies of a given graph H in Gn,p, then (36) holds for X = XH

with Y = XG, where G ⊆ H is a suitable subgraph (see [15, 16] or Lemma 22). Defining E as the event that
Y 6 (1− ε)EY holds, our starting point is the basic inequality

P(X 6 (1− ε)EX) > P(X 6 (1− ε)EX | E)P(E). (37)

Assuming that Theorem 1 or 2 applies to Y , using (36) there are constants c1, c2 > 0 such that

P(E) > e−c1ϕ(−ε)EY > e−c2ϕ(−ε)µ2/Λ. (38)

Hence it remains to estimate P(X 6 (1 − ε)EX | E) from below. It turns out that if X and Y are suitably
related (as in the subgraphs example), then under fairly mild conditions we can prove that E(X | E) is quite
a bit smaller than (1 − ε)EX. In other words, by conditioning on E we intuitively ‘convert’ the rare event
X 6 (1− ε)EX into a typical one (this subtle conditioning idea is at the heart of our approach). With this
in mind it seems plausible that we have, say,

P(X 6 (1− ε)EX | E) = Ω(1), (39)

although > e−c3ϕ(−ε)µ2/Λ suffices for our purposes. Note that for the special case ε = 1 this inequality is
immediate in the subgraphs example (where XG = 0 implies XH = 0). Finally, by combining (37)–(39) we
obtain

P(X 6 (1− ε)EX) = Ω(e−c2ϕ(−ε)µ2/Λ)), (40)

which qualitatively matches the upper bound of (2), as desired.
To implement this proof strategy, we need to be able to verify that (39) holds (or a related inequality).

Here the main technical challenge is that, after conditioning on E , the i ∈ Γ are no longer added independently
to Γp. In Sections 3.1–3.3 we present three approaches that, in symmetric situations, allow us to routinely
overcome this difficulty (each of them hinges on an event that is similar to E). Since we are interested in
large deviations (with exponentially small probabilities), here (εµ)2 = Ω(Λ) is a natural condition in view of
(2), (40) and the fact ϕ(−ε) = Θ(ε2).

3.1 Binomial random subset

The first approach is motivated by the following simple observation: if |Γp| = 0, then deterministically X = 0.
Indeed, this yields

P(X 6 (1− ε)EX) > P(X = 0) > P(|Γp| = 0),

which for ε = Θ(1) may give a fair lower bound. The next theorem, for the case of equal pi, is based on the
following heuristic extension of this observation: if |Γp| is ‘too small’, then we expect that X is typically also
‘too small’. As we shall see, the crux is that conditioning on |Γp| 6 (1−ε)E|Γp| decreases the expected value
of X, which intuitively increases the probability that X 6 (1− ε)EX occurs. Note that E(X | |Γp| = 0) = 0
confirms this phenomenon in the special case ε = 1.

Theorem 15. Let X =
∑
α∈X Iα, µ = EX and Λ be defined as in Section 1. Suppose that p = (p, . . . , p) ∈

[0, 1]N and minα∈X |Q(α)| > 2. For all ε ∈ (0, 1] satisfying (εµ)2 > 1{ε<1}Λ, with c = 1/2 + 1{ε=1}1/2,

P(X 6 (1− ε)EX) > cP(|Γp| 6 (1− ε)E|Γp|). (41)

In the proof of Theorem 15 we use the following one-sided version of Chebyshev’s inequality (see, e.g.,
Theorem A.17 in [9]).

Claim 16. If VarZ 6 v, then P(Z > EZ + t) 6 v/(v + t2) for all t > 0.

Proof of Theorem 15. Given 0 6 j 6 N , we write P(· | |Γp| = j) = Pj(·) for brevity. Note that for
m = (1− ε)Np = (1− ε)E|Γp| we have

P(X 6 (1− ε)µ) >
∑

06j6m

Pj(X 6 (1− ε)µ)P(|Γp| = j)

> P(|Γp| 6 m) min
06j6m

Pj(X 6 (1− ε)µ).
(42)
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Since P0(X 6 (1− ε)µ) > P0(X = 0) = 1, we henceforth may assume m > 1. Consequently ε < 1 and p > 0
hold, so that µ > minα∈X EIα > pN > 0.

In the following we estimate the conditional expected value and variance of X. Given 0 6 j 6 m, we
write E(· | |Γp| = j) = Ej(·) and Var(· | |Γp| = j) = Varj(·) for brevity. Let Γj ⊆ Γ with |Γj | = j be
chosen uniformly at random. Since p = (p, . . . , p), it follows that Γp conditioned on |Γp| = j has the same
distribution as Γj . As |Q(α)| > 2 and j 6 m 6 N , using Iα = 1{Q(α)⊆Γp} we infer

Ej(Iα) = 1{|Q(α)|6j}

(
N−|Q(α)|
j−|Q(α)|

)(
N
j

) = 1{|Q(α)|6j}
∏

06i<|α|

j − i
N − i

6
( j
N

)|Q(α)|
6 (1− ε)|Q(α)|p|Q(α)| 6 (1− ε)2EIα.

(43)

Since IαIβ = 1{Q(α)∪Q(β)⊆Γp}, we analogously obtain Ej(IαIβ) 6 (1 − ε)2E(IαIβ). Furthermore, if Q(α) ∩
Q(β) = ∅ and |Q(α)|+ |Q(β)| 6 j, then a similar calculation shows that

Ej(Iα | Iβ = 1) =

(
N−|Q(β)|−|Q(α)|
j−|Q(β)|−|Q(α)|

)(
N−|Q(β)|
j−|Q(β)|

) =
∏

06i<|Q(α)|

j − |Q(β)| − i
N − |Q(β)| − i

6 Ej(Iα).

If |Q(α) ∪ Q(β)| > j then, trivially, Ej(IαIβ) = 0. It follows that Q(α) ∩ Q(β) = ∅ implies Ej(IαIβ) −
Ej(Iα)Ej(Iβ) 6 0. Combining our findings, we deduce that

max
06j6m

Ej(X) 6 (1− ε)2µ and max
06j6m

Varj(X) 6 (1− ε)2Λ. (44)

Finally, using (44) and the one-sided Chebyshev’s inequality (Claim 16) we infer that for every 0 6 j 6 m
we have

Pj(X > (1− ε)µ) 6 Pj(X > Ej(X) + (1− ε)εµ) 6 Λ/(Λ + (εµ)2),

which together with (εµ)2 > Λ and (42) establishes (41).

The proof shows that (41) holds with c replaced by 1− 1{ε<1,µ>0}Λ/(Λ + (εµ)2), and that the left hand
side of (41) can be strengthened to P(X < (1 − ε)EX) whenever ε ∈ (0, 1) and µ > 0 (we henceforth omit
analogous remarks).

In applications where constant factors in the exponent are important, the following variant of Theorem 15
usually gives better results when ε→ 0 and L = (εµ)2/Λ→∞ (by setting τ = 6 max{ε, L−1/2}; see Lemma 12
with A = (1 + τ)/k).

Theorem 17. Let X =
∑
α∈X Iα, µ = EX and Λ be defined as in Section 1. Suppose that p = (p, . . . , p) ∈

[0, 1]N and minα∈X |Q(α)| > k > 1. For all ε, τ ∈ (0, 1] satisfying τ > 1{k>1}6ε and (εµ)2 > 4τ−2Λ, with
c = 1/2,

P(X 6 (1− ε)EX) > cP(|Γp| 6 (1− (1 + τ)ε/k)E|Γp|). (45)

Proof. Let λ = (1 + τ)ε/k and m = (1 − λ)E|Γp|. As (45) is trivial otherwise, we henceforth assume
P(|Γp| 6 m) > 0, which implies m > 0. Now, (42) carries over mutatis mutandis, and, with similar
reasoning as in the proof of Theorem 15, we may henceforth assume min{m, p, µ} > 0. Furthermore, as
minα∈X |Q(α)| > k, the calculations leading to (44) imply

max
06j6m

Ej(X) 6 (1− λ)kµ and max
06j6m

Varj(X) 6 Λ. (46)

If k = 1, then (1 − ε) − (1 − λ)k = λ − ε = τε, and we now establish a similar bound for k > 1. Note that
λk = (1 + τ)ε 6 2ε 6 τ/3 < 1 and

(1− λ)k 6 e−λk 6 1− λk +
∑
j>2

(λk)j

j!
6 1− λk +

(λk)2

2(1− λk)
.
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Recalling λk = (1 + τ)ε, ε 6 τ/6 and τ 6 1, a short calculation shows that

(1− ε)− (1− λ)k > τε

(
1− (1 + τ)2ε

2τ(1− (1 + τ)ε)

)
> τε/2.

Consequently, using (46) and the one-sided Chebyshev’s inequality (Claim 16), we infer that for every 0 6
j 6 m we have

Pj(X > (1− ε)µ) 6 Pj(X > Ej(X) + τεµ/2) 6 Λ/(Λ + τ2(εµ)2/4),

which together with (εµ)2 > 4τ−2Λ and (42) establishes (45).

3.2 Symmetric decomposition

In general, the conditional expected value of X is difficult to compute (as we do not have explicit formulas
as in (43)). Our second approach shows that we can overcome this obstacle using a symmetric decomposition
of X. As an illustration, we again consider the number of copies of H in Gn,p. Clearly, for every G ⊆ H we
have P(XH = 0) > P(XG = 0). The basic idea is now that, by counting the number of H-copies extending
each copy of G, we ought to be able to argue as follows: if XG is ‘too small’, then the (conditional) expected
value of XH is also ‘too small’. To avoid clutter, we henceforth use the abbreviation

Iα\β = 1{Q(α)\Q(β)⊆Γp}. (47)

Let H = Hn contain all subgraphs isomorphic to H in Kn, and define Q(α) = E(α) for all α ∈ H (here
Q(α) 6= α is crucial to allow for isolated vertices in H). The key observation is that, by symmetry, there is a
constant w > 0 such that we may write

XH = w
∑
β∈G

Iβ
∑

α∈H:β⊆α

Iα\β ,

where E
(∑

α∈H:β⊆α Iα\β
)

is independent of the choice of β ∈ G. The point is that, since E(IβIα\β) =

EIβEIα\β and XG =
∑
β∈G Iβ , this allows us to factorize EXH in terms of EXG. Indeed, for any β̃ ∈ G we

have
EXH = wE

( ∑
α∈H:β̃⊆α

Iα\β̃
)∑
β∈G

EIβ = wEXGE
( ∑
α∈H:β̃⊆α

Iα\β̃
)
.

Intuitively, our approach exploits that correlation inequalities can be used to obtain a similar factorization
of the conditional expected value of XH .

With the subgraphs example in mind, the following theorem should be interpreted under the premise
that the lower bound is exponentially small in Θ((εµ)2/Λ). In other words, the multiplicative γε error-

term ought to be negligible as long as, say, γε > e−(εµ)2/Λ holds. The crux is that this inequality is
equivalent to (εµ)2/Λ > log

(
1/(γε)

)
, which matches our usual condition up to the logarithmic factor. On

first reading it might be useful to consider the important special case exemplified above, where wα,β = w > 0,
X (β) = {α ∈ X : Q(β) ⊆ Q(α)} and κ = 0.

Theorem 18. Let Y =
∑
β∈Y Iβ, where

(
Q(β)

)
β∈Y is a family of subsets of Γ. Suppose that there are wα,β ∈

[0,∞) and families
(
Q(α)

)
α∈X (β)

of subsets of Γ such that X =
∑
β∈Y IβXβ, where Xβ =

∑
α∈X (β) wα,βIα\β

satisfies maxβ∈Y EXβ 6 (1 + κ) minβ∈Y EXβ for κ ∈ [0,∞). For all ε ∈ [0, 1] and γ ∈ [0,∞) satisfying
γε > 2κ and 1{EY=0}γε 6 2, with c = 1/2,

P(X 6 (1− ε)EX) > cγεP(Y 6 (1− (1 + γ)ε)EY ). (48)

If ε↗ 1 or ε = 1 holds, then, by applying Lemma 7 to Y , we often can improve (48) via

P(X 6 (1− ε)EX) > P(X = 0) > P(Y = 0). (49)

The proof of Theorem 18 hinges on the following simple consequence of Harris’ inequality [12], which was
observed by Bollobás and Riordan (see Lemma 6 in [4]).
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Claim 19. For the probability space induced by Γp, suppose that D is a decreasing event with P(D) > 0, and
that I1 and I2 are increasing events with P(I1 ∩ I2) = P(I1)P(I2). Then

P(I1 ∩ I2 | D) 6 P(I1)P(I2 | D). (50)

Proof of Theorem 18. Let y = (1 − (1 + γ)ε)EY and µ = EX. As (48) is trivial otherwise, we henceforth
assume γε > 0 and P(Y 6 y) > 0, which since Y > 0 implies y > 0. If EY = 0, then P(Y = 0) = P(Y 6 y),
and, since we then assume 1 > γε/2, (49) establishes (48). Henceforth we thus assume EY > 0, so that y > 0
implies 1 > (1 + γ)ε > max{ε, γε}. Note that

P(X 6 (1− ε)µ) > P(Y 6 y)P(X 6 (1− ε)µ | Y 6 y). (51)

Since E(IβIα\β) = EIβEIα\β , using the definitions of X, Xβ and Y we deduce

µ = EX =
∑
β∈Y

EIβEXβ > EY min
β∈Y

EXβ > (1 + κ)−1EY max
β∈Y

EXβ . (52)

We write Iα and Iα\β for the increasing events that Iα = 1 and Iα\β = 1, respectively. Hence P(Iα\βIβ) =
P(Iα\β)P(Iβ). Clearly, Y 6 y is a decreasing event. Using Claim 19 together with (52) and (1− (1+γ)ε)(1+
κ) 6 1− (1 + γ/2)ε, it follows that

E(X | Y 6 y) =
∑
β∈Y

∑
α∈X (β)

wα,βP(Iα\βIβ | Y 6 y) 6
∑
β∈Y

P(Iβ | Y 6 y)
∑

α∈X (β)

wα,βP(Iα\β)

6 E(Y | Y 6 y) max
β∈Y

EXβ 6 ymax
β∈Y

EXβ 6 (1− (1 + γ/2)ε)µ.
(53)

Let λ = 1 + γ/2. If µ > 0, then, using Markov’s inequality, we infer from (53)

P(X > (1− ε)µ | Y 6 y) 6
1− λε
1− ε

= 1− (λ− 1)ε

1− ε
6 1− γε/2, (54)

which together with (51) establishes (48). Finally, if µ = 0, then P(X > 0) = 0 and (48) follows trivially
from the fact 1 > γε established above.

It would be desirable to use Chebyshev’s inequality in (54), since this presumably would improve the seem-
ingly suboptimal γε term. Here one technical obstacle is that Claim 19 can, in general, not be strengthened
to

P(I1 ∩ I2 | D) 6 P(I1 | D)P(I2 | D). (55)

Indeed, a short calculation shows that, for Γ = [n] = {1, . . . , n} and p = (p, . . . , p) with n > 3 and p ∈ (0, 1),
the events Ii = {i ∈ Γp} and D = {|Γp| 6 1 or Γp = {1, 2}} provide a counterexample (where, moreover,
equality holds in (50)). It would be interesting to know whether there is perhaps some approximate version
of (55) that suffices for our purposes.

The existence of a symmetric decomposition may not always be obvious. We hope that the following
two examples from additive combinatorics serve as inspiration for future applications of Theorem 18 (or its
method of proof). In both we consider p = (p, . . . , p) and Q(α) = α, and the basic idea is to ‘symmetrize’
X using non-uniform ‘weights’ wα,β (and κ 6= 0). In the first example, we let X contain all arithmetic
progressions of length k > 2 in Γ = [n], i.e., each α ∈ X equals {b, b + d, . . . , b + (k − 1)d} ⊆ [n] for some
b = bα and d = dα with bα, dα > 1. For every β ∈ Y = [n] we define X (β) as the set of α ∈ X where
β = bα or β = bα + (k− 1)dα, and set wα,β = 1/2. Since each α ∈ X contributes to exactly two Xβ , we have
X =

∑
β∈Y IβXβ . Furthermore, careful counting yields

EXβ =
1

2

(⌊n− β
k − 1

⌋
+
⌊β − 1

k − 1

⌋)
pk−1 =

( n

2(k − 1)
+O(1)

)
pk−1,

so κ = O(1/n) suffices. In the second example, we let X contain all Schur triples in Γ = [n], i.e., each α ∈ X
equals {x, y, x + y} ⊆ [n] for some x = xα and y = yα with 1 6 xα < yα. For every β ∈ Y = [n] we define
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X (β) as the set of all α ∈ X with β ∈ α. We set wα,β = 1/2 if β = xα + yα, and wα,β = 1/4 otherwise. By
counting triples, it is not hard to see that X =

∑
β∈Y IβXβ and

EXβ =
(1

2

⌊β − 1

2

⌋
+

max{n− 2β, 0}+ min{n− β, β − 1}
4

)
p2 =

(n
4

+O(1)
)
p2,

so κ = O(1/n) suffices. Finally, in both examples routine calculations (analogous to Example 3.2 in [16])
give µ2/Λ = Θ(min{µ, np}). Since κ = O(1/n) and µ2/Λ = O(np), the natural condition (εµ)2 = Ω(Λ) thus
implies κ/ε = O(1/n ·

√
µ2/Λ) = O(

√
p/n) = o(1). In other words, the assumption γε > 2κ in Theorem 18

is very mild, i.e., allows for γ = o(1).

3.3 Vertex symmetry

In many applications the set Γ has additional structure, and here our main focus is on the case where Γ
contains the edges of some hypergraph. Intuitively, ‘seeing’ the underlying vertices introduces quite a bit of
extra symmetry, and our third approach exploits this to step aside the conditioning issue we faced in the
previous subsection. As an illustration, we consider, as before, the number of copies of H in Gn,p. The basic
idea is to partition the vertex set into U and [n] \ U with |U| ≈ n/2, and then, for suitable G ⊆ H, to focus
on the number of copies of G completely contained in U , which we denote by YG. Note that EYG = Θ(EXG).
Perhaps rashly, we would like to argue that YG 6 (1− ε)EYG typically entails XH 6 (1− ε)EXH . However,
this is overly ambitious: since YG is somewhat ‘local’, we loose a bit when going to the ‘global’ random
variable XH , and thus we need a slightly larger deviation of YG. Instead of counting all copies of H, a
technical reduction allows us to focus on the number of pairs (H ′, G′) of copies of H and G with G′ ⊆ H ′,
V (G′) ⊆ U and V (H ′) \ V (G′) ⊆ [n] \ U . Now, to make variance calculations feasible (i.e., to overcome the
obstacle that (55) may fail), we do not condition on YG, but rather on all edges with both endvertices in U
(satisfying additional typical properties). For technical reasons, here our argument requires that all edges in
the relevant graphs H ′ \ G′ have at least one endvertex outside of U , which, e.g., holds if all copies of G in
H are induced subgraphs. Luckily, it is not hard to check (see Lemma 22) that the former condition always
holds for some G ⊆ H that determines the exponent, i.e., satisfies Λ(XH) = Θ((EXH)2/EXG).

In the statement of the next theorem we restrict ourselves to subgraph counts in random hypergraphs.
The approach works in a more general setting, but we resist the temptation of stating a very technical theorem
(that would be difficult to apply). Instead, we tried to write the proof in a way that hopefully makes the
basic setup and symmetry assumptions fairly transparent. In Theorem 20 the difference between YG and XG

is usually irrelevant in applications where constant factors in the exponent are immaterial: the point is that

G
(k)
n,p[U ] has the same distribution as G

(k)
n′,p with n′ = |U| ≈ n/2. In comparison with Theorem 18, the key

feature of Theorem 20 is that the natural condition (εEXH)2 = Ω(Λ(XH)) suffices.

Theorem 20. Let G ⊆ H be k-graphs with eG > 1, where every copy of G in H is induced. Let XH be the

number of copies of H in G
(k)
n,p, and let YG be the number of copies of G in G

(k)
n,p[U ], where U ⊆ [n] satisfies∣∣|U| − n/2∣∣ 6 `. For all n > n0 = n0(H, `), p ∈ [0, 1] and ε ∈ (0, 1] satisfying (εEXH)2 > Λ(XH), with

λ = 2vH+3 and c = 2−(4v
2
G+2),

P(XH 6 (1− ε)EXH) > cP(YG 6 (1− λε)EYG). (56)

Proof. Let µ = EXH , Λ = Λ(XH), Γ = E(K
(k)
n ) and p = (p, . . . , p), so that Γp = E(G

(k)
n,p). Let H and G

contain all subgraphs isomorphic to H and G in K
(k)
n , respectively. Define Q(σ) = E(σ) for σ ∈ H ∪ G. For

brevity we henceforth use I(α1∪α2)\(β1∪β2) = 1{[Q(α1)∪Q(α2)]\[Q(β1)∪Q(β2)]⊆Γp} and Iσ1∪σ2
= 1{Q(σ1)∪Q(σ2)⊆Γp}

analogous to (47). Set Z =
∑

(α,β)∈H×G 1{β⊆α}Iα. By symmetry, we have
∑
β∈G 1{β⊆α} = τ = τ(H,G) > 1

for all α ∈ H. Hence Z = τX, EZ = τEXH , VarZ = τ2 VarXH and

P(XH 6 (1− ε)EXH) = P(Z 6 (1− ε)EZ). (57)

With foresight, we set ZS =
∑

(α,β)∈H×G 1{α∈H(S,β) and β∈G(S)}Iα for all S ⊆ [n], where

H(S, β) = {α ∈ H : β ⊆ α and V (α) \ V (β) ⊆ [n] \ S},
G(S) = {β ∈ G : V (β) ⊆ S}.
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Define RU = Z −ZU , z = (1− ελ/2)EZU and r = (1− ε)EZ − z. Using Z = RU +ZU and Harris’ inequality,
it follows that

P(Z 6 (1− ε)EZ) > P(RU 6 r and ZU 6 z) > P(RU 6 r)P(ZU 6 z). (58)

The remainder of the proof is devoted to the following two inequalities, which together with (57), (58) and
(εµ)2 > Λ imply (56):

P(RU 6 r) > 1− 1{µ>0}Λ/(Λ + (εµ)2), (59)

P(ZU 6 z) >
(
1− 1{µ>0}Λ/(Λ + 2(εµ)2)

)
4cP(YG 6 (1− λε)EYG). (60)

We note first that in the trivial case µ = 0, almost surely X = 0 and thus Z = 0 which implies
RU = ZU = 0; hence also z = 0 and r = 0 so that (59)–(60) follow trivially. We may thus assume µ > 0.

We next estimate EZU . Let X ⊆ [n] with |X| = |U| be chosen uniformly at random, and independent of
Γp. With the definitions of H(·, β) and G(·) in mind, using linearity of expectation we deduce

E(ZX | Γp) =
∑

(α,β)∈H×G

1{β⊆α}P(V (β) ⊆ X and V (α) \ V (β) ⊆ [n] \ X)Iα, (61)

where the measure P is with respect to the (random) choice of X. Note that, whenever β ⊆ α, we have

σα,β = P(V (β) ⊆ X and V (α) \ V (β) ⊆ [n] \ X) =

(
n−vH
|U|−vG

)(
n
|U|
) .

Recall that
∣∣|U| − n/2

∣∣ 6 `. For fixed `, vG and vH a short calculation shows that σα,β → 2−vH as

n → ∞, so that σα,β > 2−(vH+1) = 4λ−1 for n > n0(H, `). Using (61) and the definition of Z we infer
E(ZX | Γp) > 4λ−1Z, so that E(ZX) > 4λ−1EZ. By definition, we have E(ZX | X = S) = EZS for all S ⊆ [n]
with |S| = |U|. Since EZS = EZU by symmetry, we infer EZX = EZU , so that

EZU > 4λ−1EZ. (62)

Turning to (59), note that RU is a restriction of Z to a subset of all pairs (α, β) ∈ H × G. As Harris’
inequality implies E(Iα1

Iα2
) > EIα1

EIα2
, it follows that VarRU 6 VarZ = τ2 VarXH 6 τ2Λ. Recalling

ERU = EZ−EZU and the definitions of r and z, using (62) we have r−ERU = (ελ/2)EZU−εEZ > εEZ = τεµ.
So, if µ > 0, then the one-sided Chebyshev’s inequality (Claim 16) yields

P(RU > r) 6 P(RU > ERU + τεµ) 6 τ2Λ/(τ2Λ + (τεµ)2) = Λ/(Λ + (εµ)2).

In the remainder we focus on (60). Observing that YG =
∑
β∈G(U) Iβ , we denote by E the event that YG 6

(1−λε)EYG holds. With foresight, we defineXβ =
∑
α∈H(U,β) Iα\β andXβ1,β2 =

∑
(α1,α2)∈H(β1,β2) I(α1∪α2)\(β1∪β2),

where

H(β1, β2) =
{

(α1, α2) ∈ H(U , β1)×H(U , β2) :
[
Q(α1) ∩Q(α2)

]
\
[
Q(β1) ∪Q(β2)

]
6= ∅
}
.

Let F be the family of all pairwise non-isomorphic graphs that are unions of two (not necessarily distinct)
copies of G. The point is that F naturally defines a partition (PF )F∈F of the set of all pairs of graphs
(β1, β2) ∈ G(U)×G(U) with H(β1, β2) 6= ∅ (as each β1∪β2 is isomorphic to some F ∈ F). Furthermore, since

every F ∈ F satisfies vG 6 vF 6 2vG, we have, say, |F| 6 2(2vG
2 ) · 2vG 6 4v

2
G . Let ΨF =

∑
(β1,β2)∈PF Iβ1∪β2 ,

and define D as the event that ΨF 6 2EΨF for all F ∈ F . Using Harris’ inequality and Markov’s inequality,
we deduce

P(E ∩ D) > P(E)
∏
F∈F

P(ΨF 6 2EΨF ) > 2−|F|P(E) > 4cP(E). (63)

For brevity, we write P∗ for the conditional measure with respect to the status of all edges in G
(k)
n,p[U ]. We

use E∗ and Var∗ analogously. Since E ∩ D is determined by E(G
(k)
n,p[U ]), we have

P(ZU 6 z) > P({ZU 6 z} ∩ E ∩ D) = E
(
P∗(ZU 6 z)1{E∩D}

)
. (64)
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In the following we estimate P∗(ZU 6 z) whenever E ∩D holds. Recall that for all β ∈ G(U) and α ∈ H(U , β)
we have β ⊆ α, V (β) ⊆ U and V (α) \ V (β) ⊆ [n] \ U . Since every copy of G in H is induced, for all

f ∈ Q(α) \Q(β) we infer f 6∈ E(K
(k)
n [U ]). Using Q(β) ⊆ Q(α) it follows that E∗Iα = IβE∗Iα\β = IβEIα\β .

By symmetry, EXβ is independent of the choice of β ∈ G(U), and so E∗ZU =
∑
β∈G(U) IβEXβ = YGEXβ̃

for any β̃ ∈ G(U). Taking expectations, we deduce EZU = EYGEXβ̃ . Consequently E∗ZU 6 (1 − λε)EZU
whenever E holds, in which case, using the definition of z and (62), we have

z − E∗ZU > (ελ/2)EZU > 2εEZ = 2τεµ. (65)

Turning to the conditional variance of ZU , note that, by symmetry (analogous as for Z), we have

τ2Λ =
∑
α∈H

∑
(β1,β2)∈G×G:
β1⊆α,β2⊆α

EIα +
∑

(α1,α2)∈H×H:α1∼α2

∑
(β1,β2)∈G×G:
β1⊆α1,β2⊆α2

EIα1∪α2

=
∑

(β1,β2)∈G×G

EIβ1∪β2

∑
(α1,α2)∈H×H:β1⊆α1,β2⊆α2,

Q(α1)∩Q(α2)6=∅

EI(α1∪α2)\(β1∪β2).
(66)

As before, E∗Iα1∪α2
= Iβ1∪β2

E∗I(α1∪α2)\(β1∪β2) = Iβ1∪β2
EI(α1∪α2)\(β1∪β2) for all (β1, β2) ∈ G(U)×G(U) and

(α1, α2) ∈ H(U, β1)×H(U, β2). It follows that

Var∗ ZU 6
∑

(β1,β2)∈G(U)×G(U)

Iβ1∪β2

∑
(α1,α2)∈H(U,β1)×H(U,β2):

[Q(α1)∩Q(α2)]\[Q(β1)∪Q(β2)] 6=∅

EI(α1∪α2)\(β1∪β2).

Now, recalling the definitions of H(β1, β2), Xβ1,β2 , F and ΨF , we infer

Var∗ ZU 6
∑
F∈F

∑
(β1,β2)∈PF

Iβ1∪β2EXβ1,β2 6
∑
F∈F

ΨF max
(β1,β2)∈PF

EXβ1,β2 .

By symmetry, we have max(β1,β2)∈PF EXβ1,β2
= min(β1,β2)∈PF EXβ1,β2

for all F ∈ F . So, with analogous
considerations as above, whenever D holds we have

Var∗ ZU 6 2
∑
F∈F

EΨF min
(β1,β2)∈PF

EXβ1,β2
= 2

∑
F∈F

∑
(β1,β2)∈PF

EIβ1∪β2
EXβ1,β2

= 2
∑

(β1,β2)∈G(U)×G(U)

EIβ1∪β2

∑
(α1,α2)∈H(β1,β2)

EI(α1∪α1)\(β1∪β2) 6 2τ2Λ,
(67)

where the last inequality follows by comparison with (66). If µ > 0, then, using (65), the one-sided Cheby-
shev’s inequality (Claim 16) and (67), whenever E ∩ D holds we have

P∗(ZU > z) 6 P∗(ZU > E∗ZU + 2τεµ) 6 2τ2Λ/(2τ2Λ + (2τεµ)2) = Λ/(Λ + 2(εµ)2). (68)

Inserting (68) into (64), we infer (for µ > 0)

P(ZU 6 z) >
(
1− Λ/(Λ + 2(εµ)2)

)
P(E ∩ D),

which together with (63) implies (60) by definition of E .

A variant of the proof applies to rooted copies of H, see, e.g., Section 3 in [19] for a precise definition. The
basic idea is to map the vertex set of the root R to [r], and the remaining vertices of G and H to U ⊆ [n]\ [r]
and [n] \ (U ∪ [r]), respectively; we leave the details to the interested reader.

4 Applications

In this section we illustrate the bootstrapping approaches of Section 3 via pivotal examples from additive and
probabilistic combinatorics. In Section 4.1 we consider the lower tail of the number of arithmetic progressions
(and Schur triples) in random subsets of the integers. In Section 4.2 we then turn to our main example: the
lower tail of subgraph counts in random hypergraphs.
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4.1 Random subsets of the integers

Let Xk = Xk(n, p) be the number of arithmetic progressions of length k > 2 in the binomial random subset
Γp of the integers Γ = [n] = {1, . . . , n}, where p = (p, . . . , p). Note that EXk = Θ(n2pk); see also Section 3.2.
The following theorem gives fair exponential bounds for the lower tail of Xk, and its proof closely follows the
strategy outlined in Section 3.

Theorem 21. Given k > 2, let Ψk = Ψk(n, p) = min{n2pk, np}. There are positive constants c, C, D and
n0, all depending only on k, such that for all n > n0, p ∈ [0, 1) and ε ∈ (0, 1] satisfying ε2Ψk > 1{ε<1}D we
have

exp
{
−(1− p)−5Cε2Ψk

}
6 P(Xk 6 (1− ε)EXk) 6 exp

{
−cε2Ψk

}
. (69)

Proof. Let µ = EXk, Λ = Λ(Xk) and δ = δ(Xk). Routine calculations, analogous to Example 3.2 in [16],
reveal that

δ = Θ(npk−1 + p) and µ2/Λ = µ/(1 + δ) = Θ(Ψk), (70)

where the implicit constants depend only on k. Hence the upper bound of (69) is an immediate consequence
of (2). For the lower bound we pick, with foresight, D = D(k) > 1 such that EXk > Ψk/D and µ2/Λ > Ψk/D
for n > n0(k).

If Ψk = n2pk, then Theorem 2 (with X = Xk) yields

P(Xk 6 (1− ε)EXk) > exp
{
−Θ((1− p)−5ε2Ψk)

}
since ε2EXk > ε2Ψk/D > 1{ε<1}, Π(Xk) = pk 6 p, δ = O(1) and EXk = Θ(Ψk).

If Ψk = np, then Theorem 15 (with X = Xk) and Theorem 2 (with X = |Γp|) yield, with d = 1/2 +
1{ε=1}1/2,

P(Xk 6 (1− ε)EXk) > dP(|Γp| 6 (1− ε)E|Γp|) > exp
{
−1{ε<1} log 2−Θ((1− p)−5ε2Ψk)

}
since (εµ)2 > Λε2Ψk/D > 1{ε<1}Λ, ε2E|Γp| = ε2Ψk > 1{ε<1} and E|Γp| = Ψk. This completes the proof of
(69) since 1{ε<1} log 2 6 1{ε<1}D 6 (1− p)−5ε2Ψk.

For Schur triples, which are defined in Section 3.2, the same calculations carry over (with k = 3; the point
is that (70) holds), yielding an analogous lower tail estimate. Related results for the upper tail of arithmetic
progressions and Schur triples have been established by Warnke [30].

4.2 Random hypergraphs

Finally, we consider the lower tail of the number XH = XH(n, p) of copies of a given k-graph H in G
(k)
n,p, and

prove Theorems 3–5. Here the following precise analysis of Λ(XH) is at the heart of our approach. In fact,
Lemma 22 is essentially given in [15] (for k = 2), but the restriction to subgraphs from IH is new and crucial
for our purposes: the key point is that every copy of G ∈ IH in H is induced. Recall that mk(H) is defined
by (8).

Lemma 22. Let H be a k-graph with eH > 1. Define IH as the collection of all non-isomorphic subgraphs
J ⊆ H which satisfy eJ > max{eK , 1} for all K ⊆ H with vK = vJ . For all p = p(n) ∈ (0, 1] we have

Λ(XH) = (1 + o(1))
∑
J∈IH

C2
J,H

(EXH)2

EXJ
= Θ

( (EXH)2

minJ∈IH EXJ

)
, (71)

min
J∈IH

EXJ = o( min
J⊆H,eJ>1,J 6∈∗IH

EXJ), (72)

where CJ,H denotes the number of copies of J in H, and J 6∈∗IH means that there is no J ′ ∈ IH which
is isomorphic to J . In addition, p = ω(n−1/mk(H)) implies minJ∈IH EXJ =

(
n
k

)
p and Λ(XH) = (1 +

o(1))e2
H(EXH)2/[

(
n
k

)
p].

The fairly standard proof of Lemma 22 is deferred to Appendix A. In the following proofs of Theorems 3–
5 we shall not explicitly discuss the upper bounds: once the form of (EXH)2/Λ(XH) has been established,
these are immediate consequences of (2).
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Proof of Theorem 3. Let d = 2−(4v
2
H+2), λ = 2vH+3 and ε0 = (2λ)−1. Since the claim is trivial otherwise,

we henceforth assume p > 0. Furthermore, we use the convention that all implicit constants depend only on
H, and tacitly assume n > n0(H) whenever necessary. Suppose that ΦH = EXG for G ⊆ H with eG > 1.
Using (71) and (72) we infer G ∈ IH , (EXH)2/Λ(XH) = Θ(ΦH) and δ(XG) = O(1). With foresight, we pick
D = D(H) > log(1/d) such that (EXH)2/Λ(XH) > ΦH/D holds.

If ε ∈ [ε0, 1], then Π(XG) = peG 6 p, EXG = ΦH , 1 6 ε−2
0 ε2 and (3) yield

P(XH 6 (1− ε)EXH) > P(XH = 0) > P(XG = 0) > exp
{
−(1− p)−1ε−2

0 ε2ΦH
}
. (73)

It remains to establish (6) when ε < ε0. We shall eventually apply Theorem 20 with U = [bn/2c], where

YG counts the total number of copies of G whose vertex sets are completely contained in U . Since G
(k)
n,p[U ]

has the same distribution as G
(k)
n′,p with n′ = |U| ≈ n/2, we readily deduce 3−vGEXG 6 EYG 6 EXG and

δ(YG) = Θ(δ(XG)). Furthermore, G ∈ IH implies that every copy of G in H is induced. So, using λε 6 1/2,
Π(YG) 6 p, δ(YG) = O(1) and EYG = Θ(ΦH), a combination of Theorem 20 and Theorem 2 yields

P(XH 6 (1− ε)EXH) > dP(YG 6 (1− λε)EYG) > exp
{
− log(1/d)−Θ((1− p)−5λ2ε2ΦH)

}
since ε2(EXH)2 > ε2ΦHΛ(XH)/D > Λ(XH) and (λε)2EYG > λ23−vGε2EXG > ε2ΦH > D > 1. This
completes the proof of (6) since log(1/d) 6 D 6 (1− p)−5ε2ΦH .

Proof of Theorem 4. Since the claim is trivial otherwise, we henceforth assume p > 0. Furthermore, since p =
o(1) we have Π = o(1). Recalling the properties of G, using (71) and (72) we infer G ∈ IH , (EXH)2/Λ(XH) =
(1 + o(1))EXG and δ(XG) = o(1).

In the special case eG = 1, note that uniqueness of G in H implies eH = 1, and that minimality of EXG

implies vG = k. Thus XH = XG

(
n−k
vH−k

)
and δ(XG) = 0. Using P(XH 6 (1−ε)EXH) = P(XG 6 (1−ε)EXG),

the lower bound of (9) now follows from Theorem 1 (applied to XG), where ξ = o(1) by our assumptions.
Henceforth we thus assume eG > 2. Now, in case of H = G the lower bound of (9) follows directly from

Theorem 1. In the main case, where G ( H and eG > 2, there exists, by assumption, ω = ω(n) → ∞
such that ε2EXG > 1{ε<1}ω log(e/ε). Setting γ = 2 exp{−ω1/2} = o(1) we have (when ω > 1) ε2EXG >
1{ε<1}ω

1/2 log(2/(γε)), which together with Lemma 10 yields 2−1γε > 1{ε<1} exp{−2ω−1/2ϕ(−ε)EXG}. So,
if (1 + γ)ε < 1 and 3

√
γ < 1 − ε, then a combination of Theorem 18 (with X = XH , Y = XG and κ = 0),

Theorem 1 (for XG) and Lemma 12 (with A = 1+γ) establishes (9). Otherwise ε > 1−max{γ/(1+γ), 3
√
γ} =

1−o(1) holds, and then a combination of (49) (with X = XH and Y = XG) and Lemma 7 (for XG) completes
the proof.

Proof of Theorem 5. We start with the main case ε = o(1). Note that Lemma 22 implies minJ∈IH EXJ =(
n
k

)
p = E|Γp| and (EXH)2/Λ(XH) = (1 + o(1))E|Γp|/e2

H . By assumption, there is ω = ω(n)→∞ such that

ε 6 1/ω and ε2
(
n
k

)
p > ω. Let τ = 6eHω

−1/2 = o(1) and A = (1+τ)/eH , so that ϕ(−Aε) 6 (1+o(1))ϕ(−ε)/e2
H

by Lemma 12. Since p = o(1), a combination of Theorem 17 (with X = XH and k = eH) and Theorem 1
(with X = |Γp|) establishes (10), where the factor c = 1/2 is negligible due to ϕ(−ε)

(
n
k

)
p→∞.

The remaining ε = 1− o(1) estimate of (10) follows from Lemma 23 below and Lemma 11 since 1− p =
e−(1+o(1))p and ϕ(−ε) = 1 + o(1) for p = o(1) and ε = 1− o(1), respectively.

The proof above used the following lemma, which follows from results of Saxton and Thomason [25].

Lemma 23. Let H be a k-graph with eH > 1. If p = p(n) ∈ [0, 1] and ε = ε(n) ∈ (0, 1] satisfy p =
ω(n−1/mk(H)) and ε = 1− o(1), then we have

P(XH 6 (1− ε)EXH) = (1− p)(1+o(1))(1−πH)(nk). (74)

Proof. For the lower bound, let Tn,H be any hypergraph which achieves equality in the definition of ex(n,H).
As every subgraph of Tn,H is H-free, it follows that

P(XH 6 (1− ε)EXH) > P(XH = 0) > P(G(k)
n,p ⊆ Tn,H) = (1− p)(

n
k)−e(Tn,H).

This establishes the lower bound of (74) since e(Tn,H) = (πH + o(1))
(
n
k

)
and 1− πH ∈ (0, 1].
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Turning to the corresponding upper bound, we first consider the case eH > 2. Let 0 < δ 6 (1 − πH)/3.
Theorem 9.2 in [25] implies that there is c = c(H, δ) > 0 such that for n > c the following holds for all
q ∈ [n−1/mk(H), 1/c]: there exists s 6 c and a mapping T 7→ C(T ) of sequences T = (T1, . . . , Ts) with

Ti ⊆ E(K
(k)
n ) to sets C(T ) ⊆ E(K

(k)
n ) such that for every k-graph G on n vertices with less than nvH qeH

copies of H there exists T = (T1, . . . , Ts) such that E(G) ⊆ C(T ), |C(T )| 6 (πH + δ)
(
n
k

)
= F and further∑

16i6s |Ti| 6 cqnk = U and
⋃

16i6s Ti ⊆ E(G). (Recall that E(K
(k)
n ) is the set of all edges in the complete

k-graph K
(k)
n . The mapping T 7→ C(T ) is quite complicated; the point of it is that we can bound the number

of ’containers’ C(T ) by the number of sequences T .)
By assumption we have 1 − ε 6 1/ω and p > ωn−1/mk(H), where ω = ω(n) → ∞. Let q = ω−1/eHp, so

that (1− ε)EXH < ω−1nvHpeH = nvH qeH and n−1/mk(H) 6 q 6 ω−1/eH 6 1/c for n > n0(c). Note that we
can construct a superset of all possible T = (T1, . . . , Ts) as follows: we first decide on |

⋃
16i6s Ti| = u, then

select u edges of K
(k)
n and decide on all the Ti in which they appear. So, taking the union bound over all

choices of T that are possible for G = G
(k)
n,p, using

⋃
16i6s Ti ⊆ E(G

(k)
n,p) and E(G

(k)
n,p) \ C(T ) = ∅ it follows

that

P(XH 6 (1− ε)EXH) 6
∑

06u6U

((n
k

)
u

)
(2s)upu(1− p)(

n
k)−F . (75)

Hence, recalling the definitions of F and U , for any θ ∈ (0, 1] we obtain

P(XH 6 (1− ε)EXH) 6 (1− p)(
n
k)−F θ−U

∑
06u6U

((n
k

)
u

)
(2s)upuθu

6 (1− p)(
n
k)−F θ−U

(
1 + 2spθ

)(nk) 6 (1− p)(1−πH−δ)(nk)ecqn
k log(1/θ)+2spθ(nk).

(76)

Choose θ = q/p = o(1). Then q log(1/θ) = pθ log(1/θ) = o(p), ep 6 (1−p)−1 and (76) yield, for n > n0(c, s, δ),

P(XH 6 (1− ε)EXH) 6 (1− p)(1−πH−δ)(nk)eo(p(
n
k)) 6 (1− p)(1−πH−2δ)(nk). (77)

It follows as usual that there is some δ(n)→ 0 such that (77) holds with δ = δ(n) for n > n0, which together
with 1− πH ∈ (0, 1] establishes the upper bound of (74) when eH > 2.

Finally, in the remaining case eH = 1 (where Theorem 9.2 in [25] does not apply) we have XH =

e(G
(k)
n,p)
(
n−k
vH−k

)
. Hence XH 6 (1− ε)EXH is equivalent to e(G

(k)
n,p) 6 (1− ε)

(
n
k

)
p. Since e(G

(k)
n,p) ∼ Bin

((
n
k

)
, p
)

and πH = 0, (74) follows by standard calculations. (For example, (75) holds with s = 0 and U = F =
(1− ε)p

(
n
k

)
, and the reasoning of (76)–(77) carries over since F = o(p

(
n
k

)
) and U 6 ω−1pnk = qnk.)
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A Appendix

In this appendix we prove Lemmas 10–12 and 22.

Proof of Lemma 10. By our conventions, (16) is trivial for ε = 1, and so we henceforth assume ε ∈ [0, 1).
First, let f(x) = 2ϕ(−x)−(1−x) log2(1−x). Since f ′(x) = log2(1−x) > 0 for x ∈ [0, 1), we infer f(ε) > f(0) =
0. Second, let g(x) = 2ϕ(−x)− x2. Since 1− x 6 e−x implies g′(x) = −2 log(1− x)− 2x > 0 for x ∈ [0, 1),
we infer g(ε) > g(0) = 0. Next, let h(x) = log2(1− x)− 2ϕ(−x). Since h′(x) = −2x(1− x)−1 log(1− x) > 0
for x ∈ [0, 1), we infer h(ε) > h(0) = 0. Finally, 1− ε 6 e−ε implies ϕ(−ε) = (1− ε) log(1− ε) + ε 6 ε2.

Proof of Lemma 11. As (17) is trivial otherwise, we henceforth assume ε < 1. Since ϕ′(x) = log(1 + x) 6 0
for x ∈ [−1, 0], we infer ϕ(−ε) 6 ϕ(−1) = 1, which establishes the first inequality of (17).

Next, define y = 1 − ε, and note that y ∈ (0, e−1]. Let g(x) = φ(x − 1) = 1 − x log(e/x). Since
g′(x) = log x 6 0 for x ∈ (0, 1], we infer g(y) > g(e−1) = (e − 2)/e > 0. Let h(x) =

√
x log(e/x), and note

that h(y) > 0. Since h′(x) = − log(ex)/(2
√
x) > 0 for x ∈ (0, e−1], we infer h(y) 6 h(e−1) = 2/

√
e. It follows

that
1

ϕ(−ε)
− 1 =

1− g(y)

g(y)
=

√
yh(y)

g(y)
6

2
√
ey

e− 2
6 5
√

1− ε,

which establishes the second inequality of (17).
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Proof of Lemma 12. We first consider the case y = Aε 6 1, so that y ∈ [0, 1]. Since log(1 − x) =
−
∑
j>1 x

j/j 6 −x − x2/2 for x ∈ [0, 1), we see that ϕ(−y) = (1 − y) log(1 − y) + y 6 (1 + y)y2/2,

where the inequality is trivial for y = 1 due to ϕ(−1) = 1. By Lemma 10 we have ε2/2 6 ϕ(−ε), so that

ϕ(−Aε) 6 (1 +Aε)(Aε)2/2 6 (1 +Aε)A2ϕ(−ε).

Turning to the second inequality of (18) we henceforth assume γ > 0 and ε ∈ [0, 1), as the claim is
trivial otherwise. Let ρ(x) = ϕ(−x), and note that ρ′(x) = − log(1 − x) and ρ′′(x) = 1/(1 − x). Since
log(1 − x) > −x/(1 − x) for x ∈ [0, 1), c.f. (14), we see that ρ′(ε) 6 ε/(1 − ε). Note that γ > 0 and
3
√
γ 6 1 − ε imply 0 < 3γ3/2 6 γ − γε 6 1 − (1 + γ)ε. So, recalling ε2/2 6 ϕ(−ε) and A = 1 + γ, using

Taylor’s theorem with remainder it follows that 0 6 Aε < 1 and

ϕ(−Aε) 6 ϕ(−ε) + γε2/(1− ε) + (γε)2/[2(1− (1 + γ)ε)]

6
(
1 + 2γ/(1− ε) + γ2/(1− (1 + γ)ε)

)
ϕ(−ε) 6 (1 +

√
γ)ϕ(−ε),

completing the proof of (18).

Proof of Lemma 22. Define SH as the collection of all non-isomorphic subgraphs J ⊆ H with eJ > 1. Let

N(n,H) denote the number of copies of H in K
(k)
n . Note that N(n,H) = Θ(nvH ). By double counting pairs

(J ′, H ′) of copies of J and H with J ′ ⊆ H ′ ⊆ K(k)
n , using symmetry we infer that, in K

(k)
n , there are exactly

λJ,H(n) =
N(n,H)CJ,H
N(n, J)

= Θ(nvH−vJ ) (78)

copies of H containing any given copy of J . Since EXJ = N(n, J)peJ and CH,H = 1, by distinguishing all
possible intersections of H-copies it follows that

Λ(XH) 6 EXH +
∑

J∈SH :J 6=H

N(n, J)λ2
J,H(n)p2eH−eJ =

∑
J∈SH

C2
J,H

(EXH)2

EXJ
. (79)

Recall that EXJ = Θ(nvJpeJ ). By definition, for every K ∈ SH \ IH there is J ∈ IH with vJ = vK and
eJ > eK + 1. Using EXK = Ω(p−1EXJ) we infer

Λ(XH) 6
∑
J∈IH

(
1 + 1{eJ>2}O(p)

)
C2
J,H

(EXH)2

EXJ
. (80)

Suppose that ω = ω(n) → ∞ satisfies 1 6 ω 6 n1/(2mk(H)+1). Using mk(H) > (eK − 1)/(vK − k) when
eK > 2, note that for p > ωn−1/mk(H) we have

min
K∈SH :vK>k

nvK−kpeK−1 > min
{
n, min
K∈SH :eK>2

ωeK−1
}
> ω. (81)

Thus the ‘edge-term’ with eJ = 1 and vJ = k dominates (80) for p > ωn−1/mk(H): indeed, K 6= J implies
EXK = Ω(ωEXJ). As ωn−1/mk(H) 6 ω−1, the 1 + 1{eJ>2}O(p) factor in (80) can thus be replaced by
1 + O(ω−1), establishing the upper bound of (71). Furthermore, by combining EXK = Ω(p−1EXJ) and
EXK = Ω(ωEXJ) in an analogous way, it is not difficult to see that (72) holds. For the lower bound of (71)
we argue similar as for (79), but restrict our attention to intersections in subgraphs J ∈ IH only. Moreover,
to avoid overcounting (due to additional intersections outside of J), in the case J 6= H we replace λ2

J,H(n) by

λJ,H(n)
(
λJ,H(n)−O

( ∑
J′(G⊆H:J′∼=J

λG,H(n)
))

=
(
1−O(n−1)

)
λ2
J,H(n),

where we used (78) and that every copy of J ∈ IH in H is induced (which implies vG > vJ + 1). With these
modifications, the lower bound of (71) follows.
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