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Abstract. This survey studies asymptotics of random fringe trees and
extended fringe trees in random trees that can be constructed as family
trees of a Crump–Mode–Jagers branching process, stopped at a suit-
able time. This includes random recursive trees, preferential attachment
trees, fragmentation trees, binary search trees and (more generally) m-
ary search trees, as well as some other classes of random trees.

We begin with general results, mainly due to Aldous (1991) and
Jagers and Nerman (1984). The general results are applied to fringe
trees and extended fringe trees for several particular types of random
trees, where the theory is developed in detail. In particular, we consider
fringe trees of m-ary search trees in detail; this seems to be new.

Various applications are given, including degree distribution, pro-
tected nodes and maximal clades for various types of random trees.
Again, we emphasise results for m-ary search trees, and give for exam-
ple new results on protected nodes in m-ary search trees.

A separate section surveys results on height, saturation level, typical
depth and total path length, due to Devroye (1986), Biggins (1995, 1997)
and others.

This survey contains well-known basic results together with some
additional general results as well as many new examples and applications
for various classes of random trees.
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1. Introduction

Aldous [1] introduced the concept of a random fringe subtree of a random
tree. (See Section 4 below for definitions.) This is a useful concept since
many properties of a tree can be formulated in terms of fringe trees, and
thus results on the asymptotic distribution of fringe trees can imply var-
ious other asymptotic results; a simple example is the degree distribution
(considered already in [1]) and some other examples are given in Section 10
(protected nodes and rank). (See also Devroye and Janson [41] and Holm-
gren and Janson [66] for some recent related applications of fringe trees.)
Moreover, Aldous [1] also introduced the extended fringe tree that allows for
consideration of e.g. parents and siblings of a chosen node; see Section 11
for some applications (e.g. maximal clades).

It is thus of interest to describe the asymptotic distribution of random
fringe trees and extended fringe trees for various classes of (random) trees.
Aldous [1] gave several examples of asymptotic fringe trees, including the
case of random binary search trees; he also, more briefly, gave examples of
asymptotic extended fringe trees. One of the purposes of the present paper
is to extend these examples. In particular, we describe asymptotic fringe
trees and extended fringe trees for m-ary search trees (see Section 3 for a
definition and Section 7 for results). We give some applications of these
results for m-ary search trees in Sections 10 and 11.

Our characterization uses some of the ideas in Aldous [1], in particular
the reduction to results for continuous-time Crump–Mode–Jagers branching
processes by Jagers and Nerman [72], [105]. (The m-ary search trees have
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earlier been studied by similar methods by Pittel [112]; however there the
focus was on the height of the trees and not on the fringe trees.) In a sense,
the results are implicit in [1], and partly in [72; 105], but the details are not
completely trivial so we give a detailed explicit treatment.

We therefore begin with a survey of fringe trees and extended fringe trees
for family trees of Crump–Mode–Jagers branching processes, including many
other examples besides the m-ary search trees. The general theory is de-
scribed in Sections 4 and 5. In Section 6, several examples are studied in
detail, in particular various versions of preferential attachment trees, which
earlier have been studied by these methods by Oliveira and Spencer [108],
Rudas, Tóth and Valkó [118] and Rudas and Tóth [117]. We then specialise
on m-ary search trees; explicit results for them are given in Section 7. In
Section 8 we consider the random median-of-(2` + 1) binary search tree as
yet another example.

Furthermore, as another novel example, we consider in Section 9 the class
of fragmentation trees; these too can be constructed using family trees of
Crump–Mode–Jagers branching processes, but in a slightly different way
from the preceding examples. We extend the results for the asymptotic
distribution of random (extended) fringe trees to this case too.

In Sections 10 and 11, as mentioned above, we give some applications of
the results on asymptotic fringe trees and extended fringe trees to protected
nodes and maximal clades (and related properties). This serves partly to
illustrate the general theory and its uses and some results are old, but we
also give a number of new results for m-ary search trees. In particular, we
give a recursion that yields the asymptotic probability that a random node
in an m-ary search tree is k-protected, for general m and k, and a closed
formula for the case k = 2, together with asymptotics as m→∞ of this
probability for k = 2.

In the main part of the paper, we consider the fringe tree or other prop-
erties of a uniformly random node in the tree. In Section 12 we consider
variations for a random node with a non-uniform distribution. We study
first restricted sampling, where we sample only nodes with some given prop-
erty, for example a random leaf. For m-ary search trees, we study also the
node containing a random key.

In Sections 4–12, we study (more or less) local properties of the tree, that
are related to (extended) fringe trees. Branching process methods have also
for a long time, beginning with Devroye [32], been used to study global prop-
erties of random trees, such as the height and other properties related to the
distance to the root from the nodes. As a complement to the previous sec-
tions, we give in Section 13 a survey of such results for the height, saturation
level, profile, typical depth and total path length. This uses the same set-
up as the preceding sections with random trees constructed as family trees
of Crump–Mode–Jagers branching processes, but the methods are different
and based on results on branching random walks by Biggins [11; 13; 14; 15].
This section is thus essentially independent of the previous sections, except
for definitions and some basic results. The main results are well-known, but
we believe that some results are new.
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In this paper, we concentrate on results obtained by general branching
process methods, in particular results on the asymptotic distribution of (ex-
tended) fringe trees and applications of such results. Typical results can be
expressed as convergence in probability or almost surely (a.s.) of the fraction
of fringe trees that are isomorphic to some given tree, see for example (5.22);
see also (4.7)–(4.8) and Remark 4.1. Such results can be seen as a law of
large numbers for fringe trees, and typical applications yield first-order re-
sults for the proportion or number of nodes that have a certain property (see
Sections 6–12). In some special cases, for example for some properties of
the binary search tree, much more precise results have been derived by other
methods. We give some references to such results, but we do not attempt
completeness.

A natural next step would be to show a general central limit theorem, i.e.,
asymptotic normality of the number of fringe trees of a given type, under
suitable conditions. This will not be attempted in the present paper, but we
give some comments and references in Section 14; in particular we note that
such results have been proved, by other methods, for some special cases (the
binary search tree and random recursive tree), but that they do not hold in
other cases (m-ary search tree with m > 27).

The appendices contain some results that are used in the main part of
the paper.

Remark 1.1. In the present paper we consider random trees that are gen-
erated by stopping a supercritical branching process at a suitable (random)
time, for example when its size (the number of individuals) is a given num-
ber.

Note that the results are quite different from the results for fringe trees
of conditioned Galton–Watson trees, where we also start with a branching
process but instead of stopping it, we let it run until extinction and condition
on its total size being a given finite number, see [1; 7; 76; 77].

2. Some notation

The trees considered here are rooted and finite, unless otherwise indi-
cated. (The infinite sin-trees, that arise as limits in Section 4, are important
exceptions.) Furthermore, the trees are ordered, again unless otherwise indi-
cated; unordered trees may be considered by giving them an arbitrary (e.g.
random) ordering of the children of each node.

Moreover, there may be further information on the children of each node.
In a binary tree, each child is labelled as left or right (with at most one child
of each type at any node); the tree is ordered, with a left child before a right
child, but also a single child is labelled left or right. More generally, in an
m-ary tree, see Section 3, a node has m slots for children and the children
are labelled with distinct numbers in {1, . . . ,m}; these numbers determine
the order of the children, but not conversely, since a node may have less than
m children and thus only use a subset of these labels. (In an extended m-ary
tree, each node has either m children or 0, so these labels are determined
by the order and are therefore redundant.)

We write T1 ≈ T2 when T1 and T2 are isomorphic rooted trees. We often
identify trees that are isomorphic. We may regard all finite rooted trees
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as subtrees of the infinite Ulam–Harris tree with node set V∞ :=
⋃∞
n=0 Nn

consisting of all finite strings of natural numbers, where ∅ is the root and
the mother of i1 · · · ik is i1 · · · ik−1, see e.g. [61, §VI.2] and [106].

Let |T | be the number of nodes in a tree T .
We regard the edges in a tree as directed from the root. Thus the outdegree

d+(v) = d+
T (v) of a node v in a tree T is its number of children.

The depth h(v) of a node v is its distance from the root.
Given a tree T and a node v ∈ T , let T v denote the subtree rooted at v,

i.e., the subtree consisting of v and its descendants.
If T and S are trees, let nS(T ) be the number of nodes v in T such that

T v ≈ S. Similarly, given a property P of nodes in a tree, let nP(T ) be the
number of nodes v in T that have the property P. (Thus nS(T ) = nPS (T )
if PS is the property of v that T v ≈ S.)

For a random rooted tree T and a fixed tree S, let pS(T ) = P(T ≈ S).
Furthermore, if P is a property of nodes, let pP(T ) be the probability that
the root of T has the property P. (Note that pS(T ) = pPS (T ) with PS as
in the preceding paragraph, so the notation is consistent.)

Note that when we talk about a property P of nodes, it is implicit that
the property depends also on the tree containing the node, so it is really a
property of pairs (v, T ) with v ∈ T . We will frequently consider properties
of a node v that depend only on v and its descendants, i.e., on the subtree
T v. In this case (but not in general), we may also regard the property P
as a property of rooted trees: we say that a tree T has P if the root of T
has P. In this case we also use P for the set of rooted trees that have the
property P; thus a node v in a tree T has P ⇐⇒ T v ∈ P.

If P is a property of nodes, we sometimes write v ∈ P for the event that
v has P.

By Exp(λ), we mean the exponential distribution with rate λ > 0, and
thus mean 1/λ: if X ∼ Exp(λ) then P(X > t) = e−λt. Ge0(p) denotes
the geometric distribution with probability function p(1 − p)k, k > 0, and
Ge1(p) denotes the shifted geometric distribution with probability function
p(1− p)k−1, k > 1.

We let 〈x〉k and (x)k denote the rising and falling factorials:

〈x〉k := x(x+ 1) · · · (x+ k − 1) = Γ(x+ k)/Γ(x), (2.1)

(x)k := x(x− 1) · · · (x− (k − 1)) = Γ(x+ 1)/Γ(x− k + 1). (2.2)

We let Z>0 := {0, 1, 2, . . . } and Z60 := {0,−1,−2, . . . }.
We say that a function f(x) is decreasing if x < y implies f(x) > f(y);

note that we allow equality. (This is sometimes called weakly decreasing.) If
x < y implies f(x) < f(y), we may say strictly decreasing. Increasing and
strictly increasing are defined similarly.

We consider asymptotics of various random trees when some parameter n
(for example the number of nodes, or number of keys in an m-ary search tree)
tends to infinity. Similarly, for the continuous-time branching processes, we
consider limits as the time t tends to infinity. As usual, w.h.p. (with high
probability) means with probability tending to 1.
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3. m-ary search trees

An m-ary search tree, where m > 2 is a fixed number, is an m-ary tree
constructed recursively from a sequence of distinct keys (real numbers) as
follows, see e.g. [93] or [44]. (In the case m = 2, we say binary search tree.)
The m-ary search trees were first introduced in [103].

Each node may store up to m − 1 keys. We start with a tree containing
just an empty root. The first m− 1 keys are stored in the root. When the
(m−1):th key is placed in the root, so the root becomes full, we add m new
nodes, initially empty, as children of the root. Furthermore, the m− 1 keys
in the root divide the set of real numbers into m intervals J1, . . . , Jm. Each
further key is passed to one of the children of the root depending on which
interval it belongs to; a key in Ji is passed to the i:th child.

This construction yields the extended m-ary search tree. Nodes containing
at least one key are called internal and empty nodes are called external.
Usually one eliminates all external nodes and consider the tree consisting of
the internal nodes only; this is the m-ary search tree.

For both versions, we often wish to keep track of the number of keys in
each node, so we regard the trees as labelled trees where each node has a
label in {0, . . . ,m− 1} indicating the number of keys. (Thus external nodes
have label 0 while internal nodes have labels in {1, . . . ,m− 1}.)

We assume that the keys are i.i.d. random variables with a continuous
distribution, for example U [0, 1]. With a given number n of keys, this gives
a random m-ary search tree Tn. (As is customary, we usually omit the word
“random” for convenience. Also, we regard m as fixed, and omit it from
the notation.) Note that only the order of the keys matter; hence we obtain
the same random m-ary search tree Tn also if we instead let the keys be a
uniformly random permutation of {1, . . . , n}.

Note that in Tn we have fixed the number of keys; not the number of
nodes. A node may contain 1, . . . ,m − 1 keys, and the total number of
nodes will be random when m > 3. (The binary case m = 2 is an exception;
each internal node contains exactly one key, so the number of (internal)
nodes equals the number n of keys, and the number of external nodes is
n+ 1.)

In an extended m-ary search tree, say that a node with i 6 m−2 keys has
i+ 1 gaps, while a full node has no gaps. It is easily seen that an extended
m-ary search tree with n keys has n + 1 gaps; the gaps correspond to the
intervals of real numbers between the keys (and ±∞), and a new key has
the same probability 1/(n + 1) of belonging to any of the gaps. Thus the
evolution of the extended m-ary search tree may be described by choosing
a gap uniformly at random at each step. Equivalently, the probability that
the next key is added to a node is proportional to the number of gaps at that
node. For the m-ary search tree (with only internal nodes) the same holds
with minor modifications; a full node now has one gap for each external
node in the extended version, i.e., m− d gaps if there are d children, and a
key added to one of its gaps now starts a new node.
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4. Fringe trees and extended fringe trees

Given a (finite, rooted) tree T , the random fringe tree of T is the random
tree obtained by taking the subtree T v with v chosen uniformly at random
from the nodes of T ; we denote the random fringe tree of T by T ∗.

Consider a sequence Tn of (possibly random) trees such that the random
fringe tree T ∗n converges in distribution to some random tree F :

T ∗n
d−→ F , (4.1)

which simply means (since the set of finite trees is countable)

P(T ∗n ≈ S)→ P(F ≈ S) (4.2)

for every finite rooted tree S. We then say, following Aldous [1], that F (or
rather its distribution) is the asymptotic fringe distribution of Tn.

If the trees Tn are deterministic, then (4.2) can be written

nS(Tn)

|Tn|
→ pS(F), (4.3)

for every tree S; this is equivalent to the seemingly more general

nP(Tn)

|Tn|
→ pP(F), (4.4)

for every property P of a node v that depends only on the subtree T v, i.e.,
on v and its descendants.

In the more general case when Tn are random (which is the case we are
interested in), (4.2) instead can be written

E
nS(Tn)

|Tn|
→ pS(F) (4.5)

or, more generally but equivalently,

E
nP(Tn)

|Tn|
→ pP(F) (4.6)

for properties P as above. In interesting cases, we may typically strengthen
(4.5)–(4.6) to convergence in probability:

nP(Tn)

|Tn|
p−→ pP(F); (4.7)

Aldous [1, Proposition 7] gives a general criterion for this (the distribution
of F is extremal in the set of fringe distributions), but we will instead prove
(4.7) directly in the cases considered here; moreover, we will in our cases
prove convergence almost surely:

nP(Tn)

|Tn|
a.s.−→ pP(F). (4.8)

Remark 4.1. Note that

nS(Tn)

|Tn|
= P

(
T ∗n ≈ S | Tn

)
(4.9)

and, more generally, for a property P as above,

nP(Tn)

|Tn|
= P

(
T ∗n ∈ P | Tn

)
. (4.10)
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It follows from (4.9) that (4.7) and (4.8) (for all properties P considered
there) are equivalent to conditional versions of (4.1):

L
(
T ∗n | Tn

) p−→ L
(
F
)

(4.11)

and

L
(
T ∗n | Tn

) a.s.−→ L
(
F
)
, (4.12)

respectively, with convergence in probability or a.s. of the conditional dis-
tribution, in the space of probability distributions on trees. (Note that any
such property P corresponds to a set of finite rooted trees T , and conversely.)

Results such as (4.11) and (4.12), where we fix a realization Tn of a random
tree and then study the distribution of its fringe tree (or something else),
as a random variable depending on Tn, are usually called quenched, while
results such as (4.1), where we consider the random fringe tree of a random
tree as a combined random event, are called annealed. See further e.g. [41]
and [77].

4.1. Extended fringe trees. The fringe tree T ∗ considers only the descen-
dants of a random node. Aldous [1] introduced also the extended fringe trees
that include the nearest ancestors and other close relatives. If k > 0 and
v ∈ T with h(v) > k, let v(k) be the ancestor of v that is k generations

earlier (i.e., with h(v(k)) = h(v) − k), and let T v,−k be the subtree rooted

at v(k), with the node v marked. (Or, equivalently, with the path from the

root v(k) to v marked.) Thus T v,−k is a rooted tree with a distinguished
node of depth k. (Note that T v,−0 = T v.)

We define the random extended fringe tree T ∗,−k as T v,−k for a uniformly
random node v ∈ T ; this is really not defined when h(v) < k, but we may
define T v,−k in this case too by some supplementary definition, for example
as a path of length k − h(v) with a copy of T attached, with v marked. We
are only interested in asymptotics of the random extended fringe trees for
sequences of trees T such that

h(v)
p−→∞ (4.13)

for a random node v, i.e., P(h(v) < k)→ 0 for every fixed k, and thus each
T ∗,−k is well-defined w.h.p., and then the supplementary definition does not
matter.

Aldous [1] showed that if Tn is a sequence of (possibly random) trees such
that (4.13) holds and an asymptotic fringe distribution exists, i.e., (4.1)

holds, then, more generally, each T ∗,−kn converges in distribution to some
random tree F−k with a distinguished node o of depth k. Note that the trees

T v,−kn are consistent in an obvious way, with T
v,−(k−1)
n a subtree of T v,−kn ,

and thus the same holds for the limits F−k (after a suitable coupling). Hence
it is possible to regard the trees F−k as subtrees of a (random) infinite tree

F̃ with a distinguished node o and an infinite line o, o(1), o(2), . . . of ancestors

of o, such that F−k = F̃o,−k = F̃o(k) . Furthermore, every node in F̃ has a
finite number of descendants; thus there are no other infinite paths from o.
(Aldous [1] calls such a tree a sin-tree, for single infinite path.) We may then

say that the extended fringe trees converge to the random sin-tree F̃ , in the
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sense that T ∗,−kn
d−→ F̃o(k) for each k, or, equivalently, using the product

topology on the set of sequences of (finite) trees,(
T ∗,−kn

)∞
k=0

d−→
(
F̃o(k)

)∞
k=0

. (4.14)

For a random sin-tree F̃ and a property P of nodes, let pP(F̃) be the
probability that the distinguished node o has the property P. Then, cf.
(4.6) (which is the case k = 0), (4.14) implies, and is equivalent to,

E
nP(Tn)

|Tn|
→ pP(F̃), (4.15)

for every property P that depends only on T v,−k for some k, i.e., on v and its
descendants and the descendants of its ancestors at most a fixed number of
generations back. Again, we may typically strengthen (4.15) to convergence
in probability, and in our cases we shall prove convergence a.s.:

nP(Tn)

|Tn|
a.s.−→ pP(F̃). (4.16)

By standard truncation arguments, it may be possible to extend (4.15) or
(4.16) also to some more general properties P, depending on an unlimited
number of ancestors, see Sections 5.1 and 11 for some examples.

Remark 4.2. Similarly to Remark 4.1, (4.16) is equivalent to a conditional
version of (4.14):

L
((
T ∗,−kn

)∞
k=0
| Tn

) a.s.−→ L
((
F̃o(k)

)∞
k=0

)
. (4.17)

5. Family trees of general branching processes

A Crump–Mode–Jagers process is a general branching process defined as
follows, see e.g. [71] for further details and for basic facts used below.

The branching process starts with a single individual born at time 0.
This individual has a random number N of children, born at random times
(ξi)

N
i=1; here 0 6 N 6 ∞, and we assume 0 6 ξ1 6 ξ2 6 · · · . It is con-

venient to describe the birth times {ξi}N1 as a point process Ξ on [0,∞).
Every child that is born evolves in the same way, i.e., every individual x
has its own copy Ξx of Ξ (where now ξi means the age of the mother when
child i is born); these copies are assumed to be independent and identically
distributed. Denote the time an individual x is born by σx.

Recall that formally a point process Ξ is best defined as an integer-valued
random measure, where Ξ(A) is the number of points in a set A, see e.g. [82].

In our setting, Ξ =
∑N

i=1 δξi , where δt is a point mass (Dirac measure) at t.
In particular, we have N = Ξ([0,∞)). Furthermore, for j 6 N , Ξ([0, t]) > j
if and only if ξj 6 t. We let µ := EΞ denote the intensity measure of Ξ, and
write µ(t) := µ([0, t]) = EΞ([0, t]). In particular, µ(∞) = EN .

Usually one also assumes that each individual has a random lifetime λ ∈
[0,∞]; for our purposes this plays no role, so we ignore it. (Formally, we may
assume that λ =∞.) There may also be other random variables associated
to the individuals. Formally, we give each possible individual x its own copy
(Ωx,Fx, µx) of some probability space (Ω,F , µ) on which there are defined
some given functions defining N , ξi (and thus Ξ), and possibly other random
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variables describing the life history such as the marks νi or label `(t) in
Remarks 5.1 and 5.2 below; the branching process then is defined on the
product

∏
x(Ωx,Fx, µx) of these probability spaces. (The individuals may

be labelled in a natural way by strings in V∞ :=
⋃∞
n=0 Nn; hence the set of

individuals that are realized in the branching process is a random subset of
V∞, and we may extend the product over x ∈ V∞.)

Let Zt be the number of individuals at time t > 0; since we assume
no deaths, this equals the number of individuals born in [0, t]. (We follow
standard custom and let all processes be right-continuous; thus an individual
born at t exists at t and is included.) We say that the process is finite (or
dies out) if Z∞ <∞, i.e., only a finite number of individuals are ever born.

Let T∞ be the family tree of the branching process. This is a (gener-
ally infinite) tree obtained from the branching process by ignoring the time
structure; in other words, it has the individuals as nodes, with the initial
individual as the root, and the children of a node in the tree are the same
as the children in the branching process. Let Tt be the subtree consisting of
all individuals born up to time t. Note that the number of nodes |Tt| = Zt.
(We are mainly interested in cases where Zt < ∞ for every finite t, but
Z∞ =∞.)

Remark 5.1. This defines the family tree Tt as an unordered tree. Some-
times we want an ordered tree, so we have to add an ordering of the children
of each individual. This can be done by taking the children in order of birth
(which is the standard custom), but in our examples we rather want a ran-
dom order. In general, we can obtain ordered family trees by assuming
that each individual has a marked point process Ξ∗ (augmenting the plain
Ξ above), where each point ξi has a mark νi ∈ {1, . . . , i} telling at which
position the new child is inserted among the existing ones. (This includes
both the birth order case, with νi = i, and the random order case, with νi
uniform and independent of everything else.)

For the m-ary search trees in Section 7, we want further information;
this is obtained by instead giving each of the m children a distinct mark
νi ∈ {1, . . . ,m} telling the position of the child among all (existing and
future) children. (Equivalently, we may equip each individual with a random
permutation of {1, . . . ,m} giving the order of birth of the children.)

Remark 5.2. We may also have labels on the nodes of Tt; this is important
for our application to m-ary search trees, since they have nodes labelled
with the number of keys, see Section 3. In general, we may assume that
each individual has a label given by some random function `(t) of its age.
We assume that the set of possible labels is countable (with the discrete
topology); we may assume that the labels are integers. We also assume that
the function `(t) ∈ D[0,∞); thus `(t) is constant on some intervals [ti, ti+1).
(As everything else in the branching process, the label may depend on Ξ and
other properties of the same individual, but not on other individuals, and
they have the same distribution for all individuals; this is also a consequence
of the formalism with probability spaces (Ωx,Fx, µx) above.)

A characteristic of an individual, see e.g. [71; 72; 104; 105], is a random
function φ(t) of the age t > 0; we assume that φ(t) > 0 and that φ belongs to
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the space D[0,∞) of right-continuous functions with left limits. (Note that
we consider only t > 0. We may extend φ to (−∞,∞) by setting φ(t) = 0
for t < 0.) We assume that each individual has its own copy φx, and we
at first for simplicity assume that the pairs (Ξx, φx) for all individuals are
independent and identically distributed; this assumption can (and will) be
relaxed, see Remark 5.10 below.

Given a characteristic φ, let

Zφt :=
∑
x:σx6t

φx(t− σx) (5.1)

be the total characteristic at time t of all individuals that have been born
so far. (Recall that x is born at time σx, and thus has age t− σx at time t.)

The random tree Tt has a random size. We are usually interested in
random trees with a given number of nodes, or trees where something else
is given, for example the number of keys in an m-ary search tree. We can
obtain such random trees by stopping the branching process as follows. Fix

a characteristic ψ(t), which we shall call weight, and let τ(n) := inf{t : Zψt >
n}, i.e., the first time the total weight is at least n. (As usual, we define
inf ∅ = ∞.) We exclude the trivial case when ψ(t) = 0 for all t > 0 a.s.
(which would give τ(n) =∞ a.s.). Define Tn := Tτ(n), the family tree at the
time the total weight reaches n (provided this ever happens).

Random trees Tn defined in this way, for some Crump–Mode–Jagers
branching process and some weight ψ(t), are the focus of the present paper.
We shall always denote the weight by ψ and the random tree, stopped as
above, by Tn omitting ψ from the notation for simplicity. (In all our exam-
ples, ψ is integer-valued, so it is natural to let n be an integer. This is not
necessary, however, and all our results are valid for arbitrary real n→∞.)

Example 5.3. If ψ(t) = 1, t > 0, then Zψt = Zt, and Tn is the family tree of
the branching process stopped when there are n nodes or more; if the birth
times have continuous distributions and there are no twins, then a.s. no two
nodes are born simultaneously, and thus we stop when there are exactly n
nodes, so |Tn| = n. (This weight is used in all examples in Section 6, but
not for the m-ary search trees in Section 7.)

We define the Laplace transform of a function f on [0,∞) by

f̂(θ) = θ

∫ ∞
0

e−θtf(t) dt, θ > 0, (5.2)

and the Laplace transform of a measure m on [0,∞) by

m̂(θ) =

∫ ∞
0

e−θtm(dt), −∞ < θ <∞. (5.3)

(Note that there is a factor θ in (5.2) but not in (5.3). A justification of
this difference is that a measure m has the same Laplace transform m̂ as the
function m(t) := m([0, t]), as is easily verified by an integration by parts, or
by Fubini’s theorem for the integral

∫∫
s6t θe

−θtm(ds).)
Some standing assumptions in this paper are:

(A1) µ{0} = EΞ{0} < 1. (This rules out a rather trivial case with explo-
sions already at the start. In all our examples, µ{0} = 0.)
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(A2) µ is not concentrated on any lattice hZ, h > 0. (The results extend to
the lattice case with suitable modifications, but we ignore it.)

(A3) EN > 1. (This is known as the supercritical case.) For simplicity, we
further assume that N > 1 a.s., but see Remark 5.5. (In this case,
every individual has at least one child, so the process never dies out
and Z∞ =∞.)

(A4) There exists a real number α (the Malthusian parameter) such that
µ̂(α) = 1, i.e., ∫ ∞

0
e−αtµ(dt) = 1. (5.4)

(By (A3), α > 0.)
(A5) µ̂(θ) <∞ for some θ < α.
(A6) The random variable supt

(
e−θtφ(t)

)
has finite expectation for some

θ < α.

Nerman [104, Theorem 6.3] (see also Jagers [71, Section 6.10] for related
results) shows that under the conditions (A1)–(A6), as t→∞,

Zφt
Zt

a.s.−→ mφ := E φ̂(α) = Êφ(α) = α

∫ ∞
0

e−αt Eφ(t) dt. (5.5)

The right-hand side of (5.5) is finite by (A6). Thus, if we exclude the trivial
case when φ(t) = 0 for all t > 0 a.s., 0 < mφ <∞.

Note that (A1)–(A5) are conditions on the branching process, while (A6)
is a condition on the characteristic φ (and α), and thus is relevant only
we consider some φ. When discussing trees Tn defined by stopping using a
weight ψ as above, we sometimes want (A6) to hold for ψ; we denote this
version of the condition by (A6ψ). (However, for most of our results, (A6ψ)
is not required. In any case, in Example 5.3 and in all our examples in
Sections 6 and 7, ψ(t) is bounded, so (A6ψ) holds trivially.)

Remark 5.4. As a consequence of (A4), µ(t) <∞ for every t <∞. (How-
ever, µ(∞) = EN may be infinite.) It is a standard result that this implies
that Zt and EZt are finite for every t <∞.

Remark 5.5. We do not really need the assumption N > 1 in (A3); it
suffices that EN > 1. In this case, the extinction probability q := P(Z∞ <
∞) < 1, so there is a positive probability that the process is infinite, and
(5.5) and the results below hold conditioned on the event Z∞ = ∞. (This
is the standard setting in [104; 72; 105].)

Remark 5.6. By (5.4), e−αtµ(dt) is a probability measure on [0,∞). See
Remark 5.22 for an interpretation of this distribution.

Remark 5.7. By the definitions,

Ξ̂(θ) :=

∫ ∞
0

e−θtΞ(dt) =
N∑
i=1

e−θξi . (5.6)

Since µ = EΞ, we have µ̂(θ) = E Ξ̂(θ) and (5.6) yields

µ̂(θ) = E
N∑
i=1

e−θξi . (5.7)
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Thus, (5.4) can be written E Ξ̂(α) = 1, or

E
N∑
i=1

e−αξi = 1. (5.8)

Similarly, (A5) says that the random variable Ξ̂(θ) has finite expectation

E Ξ̂(θ) <∞ for some θ < α.

Remark 5.8. The conditions (A5) and (A6) may be weakened somewhat if

we further assume E Ξ̂(α) log+ Ξ̂(α) <∞, see [104, Conditions 5.1 and 5.2],
but the versions above are sufficient for our applications.

Remark 5.9. The results can be extended to multi-type branching pro-
cesses, see Jagers and Nerman [73].

Remark 5.10. We have for simplicity assumed above that the characteristic
φx(t) associated to an individual x is independent of the life histories of
all other individuals. As shown by [104, Section 7], the results extend to
characteristics φx(t) that may depend also on the descendants of x; we may
let φ0(t) be any non-negative random function that depends on the entire
branching process (and belongs to D[0,∞) and satisfies (A6)), and then
define φx(t) as φ0(t) evaluated for the branching process consisting of x and
its descendants (shifting the origin of time to the birth of x). This will be
important below.

Remark 5.11. Nerman [104] showed also that, under the assumptions
(A1)–(A5) above, there exists a random variable W such that, as t→∞,

e−αtZt
a.s.−→W (5.9)

and, more generally, for every φ satisfying (A6),

e−αtZφt
a.s.−→ mφW. (5.10)

If furthermore
E Ξ̂(α) log+ Ξ̂(α) <∞, (5.11)

which is the case in our applications, then W > 0 a.s. (on the event {Z∞ =

∞}), see also [43], so Zt and Zφt grow exactly at rate eαt; moreover, (5.5)
then follows from (5.9)–(5.10). However, if (5.11) fails, then W = 0 a.s., so

Zφt = o(eαt) a.s.; nevertheless, also in this case

e−θtZφt
a.s.−→∞ (5.12)

for every θ < α, as follows easily by truncating the offspring distribution
Ξ to at most M children, for some large M , and applying (5.10) to the
truncated process. It follows easily from (5.10) and (5.12) that if (A1)–(A6)
hold, then

logZφt /t
a.s.−→ α. (5.13)

(See also [15, Theorem 2.1] for this result under a slightly weaker condition.)

Furthermore, the expectation EZφt always grows as eαt, even when (5.11)
fails so W = 0 a.s.; more precisely [104, Proposition 2.1], with β > 0 is given
by (5.38) below,

EZφt ∼ (αβ)−1mφe
αt. (5.14)
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If (5.11) holds, then
EW = (αβ)−1, (5.15)

so (5.14) says that the expectation converges in (5.9). (However, as just
said, (5.14) holds also when (5.9) holds with W = 0.)

Our main results are now simple consequences of the general results by
Nerman [104] above. We consider the random trees Tn defined by stopping
the branching process according to some fixed weight ψ as above. We begin
by noting that τ(n) <∞ so that Tn really is well-defined. (See e.g. [37].)

Theorem 5.12. (i) Under the assumptions (A1)–(A5), and for any weight

ψ, Zψt
a.s.−→∞ as t→∞; thus a.s. τ(n) <∞ for every n > 0 and Tn := Tτ(n)

is a well-defined finite random tree. Furthermore, τ(n)
a.s.−→∞ as n→∞.

(ii) If moreover (A6ψ) holds, then

|Tn|
n

a.s.−→ 1

mψ
∈ (0,∞) (5.16)

and
τ(n)

log n

a.s.−→ 1

α
. (5.17)

Proof. (i): If (A6ψ) holds, then (5.12) (with θ = 0) shows that Zψt
a.s.−→ ∞.

In general, apply (5.12) to the truncated weight ψ1(t) := ψ(t)∧1 and deduce

Zψt > Zψ1
t

a.s.−→ ∞. Hence, τ(n) < ∞ for every n. Finally, for every finite t,

Zψt <∞ a.s., and thus τ(n) > t for large n; hence τ(n)→∞.
(ii): By the definition of τ(n) (and right-continuity of the process and

ψ), Zψτ(n) > n, while Zψτ(n)−δ < n for any δ > 0. Fix δ > 0 and define the

characteristic ψδ(t) := ψ(t−δ), with ψδ(t) := 0 for t < δ. Then Zψδt = Zψt−δ.
Consequently,

Zψδτ(n) = Zψτ(n)−δ < n 6 Zψτ(n). (5.18)

Recall also that |Tn| = |Tτ(n)| = Zτ(n).
We have assumed (A6) for ψ, and it follows that it holds for ψδ too.

Consequently, (5.5) applies to both ψ and ψδ, which by (5.18) implies

lim sup
n→∞

n

|Tn|
6 lim sup

n→∞

Zψτ(n)

Zτ(n)
= mψ, (5.19)

lim inf
n→∞

n

|Tn|
> lim inf

n→∞

Zψδτ(n)

Zτ(n)
= mψδ . (5.20)

Furthermore,

mψδ = α

∫ ∞
0

e−αt Eψδ(t) dt = α

∫ ∞
δ

e−αt Eψ(t− δ) dt

= α

∫ ∞
0

e−α(u+δ) Eψ(u) du = e−αδmψ. (5.21)

Since δ > 0 is arbitrary, the result (5.16) follows from (5.19)–(5.20) and
(5.21) by letting δ → 0.

Similarly, (5.13) applies to both ψ and ψδ, which by (5.18) yields log n/τ(n)
a.s.−→

α, which is (5.17). �
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Remark 5.13. Note that (5.16) does not hold in the lattice case (in this

paper excluded by (A2)), since then the population and Zψt grow in discrete
steps with asymptotically a fixed factor > 1 each time.

We next study the fringe tree T ∗n . Note that the following theorem (and
its proof) applies both if we consider Tt as an unordered tree and if we
consider it as an ordered (or m-ary) tree as in Remark 5.1; in the latter
case Tn and the fringe tree T ∗n are random ordered (or m-ary) trees, and T
below should be an ordered (or m-ary) tree. We may also have labels on
the nodes, defined by some random function `(t) as in Remark 5.2; then T
should be a tree with (arbitrary) labels on the nodes.

Recall from Section 2 that a property of a node v that depends only on v
and its descendants may also be regarded as a property of rooted trees (and
conversely).

Theorem 5.14 (Jagers, Nerman, Aldous). Under the assumptions (A1)–
(A5), the following hold:

(i) (Annealed version.) The random fringe tree T ∗n converges in distribu-
tion as n→∞ to the random tree T := Tτ , where τ ∼ Exp(α) is a
random time, independent of the branching process.

(ii) (Quenched version.) For every finite tree T , as n→∞,

P
(
T ∗n ≈ T | Tn

)
=
nT (Tn)

|Tn|
a.s.−→ P(T ≈ T ). (5.22)

More generally, for every property P of a node v that depends only on
v and its descendants,

P
(
T ∗n ∈ P | Tn

)
=
nP(Tn)

|Tn|
a.s.−→ pP(T ). (5.23)

Furthermore, for a property of this type,

pP(T ) =

∫ ∞
0

αe−αtpP(Tt) dt = mφ = E φ̂(α), (5.24)

where φ(t) is the characteristic 1{Tt ∈ P}.

More precisely, the characteristic φ in (5.24) is defined as in Remark 5.10
with φ0(t) := 1{Tt ∈ P}.

Proof. This is a special case of the main results in Jagers and Nerman [72]
and [105], and is one of the main examples in Aldous [1], but we give the
simple proof for completeness and in our setting.

Note first that (5.22) is a special case of (5.23), with P = PT , see Sec-
tion 2, and thus φ(t) = 1{Tt ≈ T}. (Some readers might prefer to consider
this case first.)

The function φ(t) is clearly a {0, 1}-valued random function in D[0,∞), so
φ is a characteristic. The assumption (A6) holds trivially since φ is bounded.
Furthermore, (5.24) is a consequence of the definition T := Tτ , the fact that
τ ∼ Exp(α) has the density function αe−αt, Eφ(t) = P(Tt ∈ P) = pP(Tt),
and (5.5).

Moreover, the characteristic φx(t − σx) of x at time t is the indicator
1{T xt ∈ P} that the subtree T xt of Tt rooted at x satisfies P. Thus, the total
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characteristic Zφt is the number of nodes v ∈ Tt such that T vt ∈ P, which

by definition holds if and only if v has the property P; hence, Zφt = nP(Tt).
Consequently, (5.5) yields

nP(Tt)
|Tt|

=
Zφt
Zt

a.s.−→ mφ. (5.25)

By Theorem 5.12, we also have (a.s.) τ(n) <∞ for every n and τ(n)→∞
as n→∞; thus (5.25) implies, as n→∞,

nP(Tn)

|Tn|
=
nP(Tτ(n))

|Tτ(n)|
a.s.−→ mφ. (5.26)

The result (5.22) follows from (5.26) and (5.24). As said above, (5.22) is a
special case, and the annealed version (i) follows by taking the expectation
in (5.22), yielding (by dominated convergence) P(T ∗n ≈ T )→ P(T ≈ T ) for
every fixed tree T . (Recall that there is only a countable set of finite trees
T , so this shows convergence in distribution. Alternatively, one can take the
expectation of (5.23).) �

Remark 5.15. As said above, (5.22) is a special case of (5.23). Conversely,
again because there is only a countable set of finite trees T , (5.22) is equiva-
lent to the a.s. convergence of the distributions in (4.12), and thus to (5.23),
cf. Remark 4.1. (In general, for distributions on a countable sample space,
convergence of the individual point probabilities is equivalent to conver-
gence in total variation [60, Theorem 5.6.4].) Hence, (5.22) and (5.23) are
equivalent. (We state both versions for convenience in later applications.)

Remark 5.16. We have stated the result (5.22) for the stopped trees Tn, but
proved it by proving the corresponding result for the full branching process,
see (5.25) and (5.26). In fact, the two types of results are equivalent; by
choosing the weight ψ = 1 as in Example 5.3, the trees Tt run through the
same (countable) set of trees as t→∞ as Tn does as n→∞; hence (5.25)
and (5.26) are equivalent. The same holds for (5.23) and for (5.43) and
(5.51) in Theorems 5.25 and 5.26 below, where again we state the results
for Tn, in view of our applications in later sections, but the results also hold
for Tt.

Remark 5.17. Note that the asymptotics in Theorem 5.14 do not depend
on the choice of weight ψ; any weight gives the same asymptotic fringe
tree distribution. Of course, this is an immediate consequence of the proof
using (5.26) and (5.25), see also Remark 5.16. Note that for this proof, it
is essential that we consider convergence almost surely (and not, e.g., in
probability).

Remark 5.18. In cases when |Tn| is random, it is often of interest to study
the number nP(Tn) rather than the fraction nP(Tn)/|Tn| in (5.23). Assuming
(A6ψ), we can combine (5.23) and (5.16) and obtain

nP(Tn)

n

a.s.−→ pP(T )

mψ
. (5.27)
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Remark 5.19. Since the fractions in (5.22) and (5.23) are bounded by
1, the a.s. convergence above immediately yields also convergence of the
expectation by the dominated convergence theorem; thus

E
nP(Tn)

|Tn|
→ pP(T ). (5.28)

This is particularly nice in the common case when the weight ψ(t) = 1, so
|Tn| = n deterministically; then (5.28) can be written

EnP(Tn) = pP(T )n+ o(n). (5.29)

For other weights ψ, we can (assuming (A6ψ)) use (5.27). If we furthermore
have a deterministic bound |Tn| 6 Cn for some constant C (which, for
example, is the case for the m-ary search trees in Sections 7.1 and 7.2), then
dominated convergence applies again and yields

EnP(Tn) =
pP(T )

mψ
n+ o(n). (5.30)

We give a simple but important corollary to Theorem 5.14, showing that
the degree distribution in Tn converges to the distribution of D := Ξ([0, τ ])
(with Ξ and τ independent).

Corollary 5.20. Let nk(Tn) be the number of nodes in Tn with outdegree
k. Under the assumptions (A1)–(A5) above,

nk(Tn)

|Tn|
a.s.−→ P(D = k), (5.31)

where D = Ξ([0, τ ]) is the degree of the root of T . In other words, if Dn

denotes the outdegree of a uniformly random node in Tn, then

L(Dn | Tn)
a.s.−→ L(D). (5.32)

Proof. Let P be the property of a node that it has outdegree k. Then
nk(T ) = nP(T ). Hence, (5.23) shows that nk(Tn)/|Tn| a.s. converges to the
probability that the root of T has (out)degree k. However, the root of Tt
has degree Ξ([0, t]), so the degree D of the root of T = Tτ equals Ξ([0, τ ])
and (5.31) follows. �

Remark 5.21. Since D = Ξ([0, τ ]) and τ ∼ Exp(α),

P(D > i) = P(τ > ξi) = E e−αξi . (5.33)

See further Remark 5.23 below.

In order to extend Theorem 5.14 to the extended fringe, we first define

the limiting random sin-tree T̃ ; this is the family tree of the doubly infinite
pedigree process in [105] (doubly infinite stable population process in [72]).
In the latter, we start with an individual o (“ego”) born at time 0, and grow
a branching process starting with it as usual. We also give o an infinite
line of ancestors o(1), o(2), . . . having a modified distribution of their life
histories defined below, and let each child x of each ancestor o(k), except
x = o(k−1), start a new branching process where all individuals have the
original distribution. We denote the (infinite) family tree of this branching

process by T̃t, −∞ < t <∞. Finally, we stop the entire process at a random
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time τ ∼ Exp(α) as before, and let T̃ := T̃τ be the resulting sin-tree, with

distinguished node o. (Note that the subtree of T̃ rooted at o equals T
defined in Theorem 5.14.)

It remains to define the distribution of the life history of an ancestor. This
is really a distribution of a life history with a distinguished child, which we
call the heir. The heir may be any child, but the probability distribution is
weighted by e−ατ , where τ is the time the heir is born. Thus, recalling that
the children are born at times (ξi)

N
i=1, for any event E in the life history,

P(E , and the heir is the i:th child) =

∫
E
e−αξidP, (5.34)

where for i > N we define ξi =∞, so e−αξi = 0. In particular,

qi := P(the heir is the i:th child) = E e−αξi . (5.35)

Note that (5.34) defines a probability distribution, since the total probability
equals

∞∑
i=1

∫
Ω
e−αξidP = E

N∑
i=1

e−αξi = 1 (5.36)

by (5.8).
We may give the children of the ancestor another order as in Remark 5.1,

still using (5.34). Note that then (5.34)–(5.35) hold also if we consider the
i:th child in the final order and redefine ξi as the birth time of that child;
this is seen by summing over all children and combinations of marks νj that
put a certain child in place i at a given time.

The ancestors o(k) are given independent copies of this modified life his-
tory distribution, and are put together so that the heir of o(k) is o(k−1) (with

o(0) = o); this also defines recursively the birth times of all o(k).

Remark 5.22. Let ξ̃∗ denote the age of an ancestor when its heir is born.

Then ξ̃∗ has by (5.34) the distribution e−αtµ(dt), i.e., the distribution in
Remark 5.6. Its Laplace transform is given by

E e−sξ̃
∗

=

∫ ∞
0

e−st−αtµ(dt) = µ̂(α+ s) = E Ξ̂(α+ s), (5.37)

cf. (5.34) and (5.6)–(5.7). Assumption (A5) thus says that E eεξ̃∗ < ∞ for

some ε > 0. In particular, ξ̃∗ has a finite expectation

β := E ξ̃∗ =

∫ ∞
0

te−αtµ(dt) <∞. (5.38)

By (5.37), we also have the formula

β = E ξ̃∗ = − d

ds
E e−sξ̃

∗
∣∣∣
s=0

= −µ̂′(α), (5.39)

and directly from (5.34), or by (5.38),

β = E
N∑
i=1

ξie
−αξi . (5.40)
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Remark 5.23. Let, as in (5.35), qi be the probability that the heir in the
ancestor distribution is child i (in birth order), and let D = Ξ([0, τ ]) be the
degree of the root in T , which by Corollary 5.20 is the limit in distribution
of the outdegree of a random node in Tn. By (5.35) and (5.33),

qi = E e−αξi = P(D > i), (5.41)

so the two distributions are closely related. Note also that (5.41) implies

ED =
∞∑
i=1

P(D > i) =
∞∑
i=1

qi = 1, (5.42)

so the average asymptotic outdegree is always 1. This should not be surpris-
ing; it just is an asymptotic version of the fact that in a tree with n nodes,
there are together n− 1 children, and thus the average outdegree is 1− 1/n;
see also see [1, Lemma 1].

Remark 5.24. Recall that we may regard the node set of T as a subset
of V∞, the node set of the infinite Ulam–Harris tree. Let v ∈ V∞. By
the recursive definition of the branching process Tt and the memoryless
property of the exponential random variable τ , it follows that conditioned
on v ∈ T = Tτ , the subtree of T rooted at v has the same distribution as
T . In particular, conditioned on v ∈ T , the outdegree of v has the same
distribution as D.

It follows from this and (5.42), by induction, that for every k > 0, the
expected number of nodes in the k:th generation of Tt is 1. In particular,
the expected size E |Tt| =∞.

Note also that the outdegrees of two different nodes are not independent,
since they both depend on the common stopping time τ ; it is easy too see
that for any v, w ∈ V∞, conditioned on v, w ∈ T , the outdegrees deg(v) and
deg(w) are (strictly) positively correlated.

In fact, the properties in this remark except the last one hold for any
fringe distribution in the sense of Aldous [1], see [1, Section 2.1]. However,
the positive correlation of node degrees is not general; in particular, it makes
the asymptotic fringe trees T studied in this paper different from the ones
obtained from conditioned Galton–Watson trees, since the latter are just
unconditioned Galton–Watson trees, where all outdegrees are independent,
see [1].

Theorem 5.25 (Jagers, Nerman, Aldous). Under the assumptions (A1)–

(A5), as n→∞, h(v)
p−→∞ for a random node v ∈ Tn and thus each T ∗,−kn

is well-defined w.h.p.; moreover, the following hold:

(i) (Annealed version.) The extended random fringe tree of Tn converges

in distribution as n→∞ to the random sin-tree T̃ defined above, in
the sense (4.14), see Section 4.1.

(ii) (Quenched version.) The convergence in (i) holds also conditioned on
Tn, a.s. Equivalently, for every property P of nodes v that depends
only on v, its descendants and the descendants of its ancestors at most
a fixed number of generations back, we have if v is a uniformly random
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node in Tn,

P(v has P | Tn) =
nP(Tn)

|Tn|
a.s.−→ pP(T̃ ). (5.43)

Proof. Again, this is a special case of the main results in Jagers and Nerman
[72] and [105], and is at least implicit in Aldous [1], but we give the proof
for completeness.

First consider the case of ordered trees (possibly with labels) with the
children taken in order of birth. Fix a finite tree T with a distinguished
node of depth k > 0, and let v0 · · · vk be the path in T from the root to the
distinguished node; also, let vi be the ji:th child of vi−1. Let P = P(T ) be
the property of a node v that it has depth at least k and that, if w is its
k:th ancestor, the subtree Tw, with v as distinguished node, is isomorphic to
T . Then nP(Tn), the number of v ∈ Tn that have this property, equals the
number of w ∈ Tn such that Twn ≈ T , i.e., nT (Tn). Thus, by Theorem 5.14,

nP(T )(Tn)

|Tn|
=
nT (Tn)

|Tn|
a.s.−→ P(T ≈ T ) = P(Tτ ≈ T ). (5.44)

Construct T = Tτ as above, and let ξ(i) = ξvi,ji be the age of vi when
its distinguished child vi+1 is born. The distinguished node vk is thus born

at time V =
∑k−1

i=0 ξ(i). If Tτ ≈ T , then necessarily τ > V . Moreover,
conditioned on τ > V , τ has the same distribution as V +τ ′ with τ ′ ∼ Exp(α)
and independent of everything else. Thus, by conditioning on V ,

P(Tτ ≈ T ) = E
(
e−αV 1{TV+τ ′ ≈ T}

)
= E

(
1{TV+τ ′ ≈ T}

k−1∏
i=0

e−αξ(i)
)
,

(5.45)

By shifting the time parameter in T by V , so that the distinguished node

vk becomes born at time 0, and recalling that the subtree T̃ o(k) has the
modified distribution (5.34) for the ancestors of the distinguished node, we
see that (5.45) equals

P
(
T̃ o(k) ≈ T

)
= pP(T )(T̃ ). (5.46)

Consequently, (5.44)–(5.46) show that

nP(T )(Tn)

|Tn|
a.s.−→ P

(
T̃ o(k) ≈ T

)
= pP(T )(T̃ ) (5.47)

for every finite tree with a distinguished node of depth k.
More generally, for any fixed k > 0 and any set A of finite trees, each

having a distinguished node of depth k, let P = P(A) :=
⋃
T∈A P(T ) be the

property of a node v that it has depth at least k and that Tw ∈ A, where
w is its k:th ancestor. Then as in (5.44), by Theorem 5.14 applied to the
property Tw ∈ A, and using again (5.45)–(5.46),

nP(A)(Tn)

|Tn|
a.s.−→ P(Tτ ∈ A) =

∑
T∈A

P(Tτ ≈ T ) =
∑
T∈A

P
(
T̃ o(k) ≈ T

)
= P

(
T̃ o(k) ∈ A

)
= pP(A)(T̃ ). (5.48)
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In particular, taking A to be the set of all finite trees, P(A) is the property

that h(v) > k and pP(A)(T̃ ) = 1, so (5.48) shows that for any k, P(h(v) >

k) → 1 for a random node v in Tn. Since k is arbitrary, thus h(v)
p−→ ∞.

Moreover, every property P in (5.43) is of the form P(A) for some k and A,
and thus the result (5.43) follows.

As in Theorem 5.14, the annealed case follows from the quenched case by
taking expectations.

The case of unordered trees follows by ignoring the order.
Finally, if Tt is an ordered tree with the order of children defined by

marks νi as in Remark 5.1, we first fix an integer M and consider Tt and

T̃ ordered by birth order and with each node labelled with the sequence
of marks νM := (νi)

M∧N
i=1 (in addition to existing labels, if any). (We use

a cut-off M in order to keep the space of labels countable.) We have just
shown that (5.48) holds for any set A of ordered trees with such a label νM
on each node. Since the birth order and the marks define the true order in
the trees, it follows immediately that (5.47) holds also with the true order

in Tn and T̃ , for any tree T with such marks and with maximum degree at
most M . Since M is arbitrary, it holds with the true order for any T , and
we may then forget the marks. (For an m-ary tree, we keep the marks.)
Then (5.48) and (5.43) follow as above. �

5.1. An extension to some more general properties. In Theorem 5.25,
we consider only properties of a node v that depend only on v, its ancestors
at most a fixed number of generations back, and their descendants. (The-
orem 5.14 is even more restrictive.) In this subsection, we show how this
result can be extended to some properties that depend on all ancestors of
v. A typical example is the property that v has no ancestor with outdegree
1; we consider this and some related examples in Section 11. (This section
can be omitted at the first reading.)

Theorem 5.26. Let P0 and Q be two properties of a node v in a tree, such
that both P0 and Q depend only on v and its descendants. Let P be the
property of a node v that v satisfies P0 but no ancestor of v satisfies Q.
Suppose, in addition to (A1)–(A5), that

E Ξ̂(α)2 <∞ (5.49)

and that if Λ := sup{t : Tt ∈ Q}, then

E eδΛ <∞ (5.50)

for some δ > 0.
Then, as n→∞, if v is a uniformly random node in Tn,

P(v has P | Tn) =
nP(Tn)

|Tn|
a.s.−→ pP(T̃ ). (5.51)

In other words, (5.43) holds also for properties P of this type, although
they are not covered by Theorem 5.25.

Remark 5.27. The assumption (5.50) entails Λ <∞ a.s.; moreover, (5.50)
is equivalent to assuming P(Λ > t) = O

(
e−δt

)
for some (possibly different)
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δ > 0, and thus to

P
(
Tu ∈ Q for some u > t

)
= O

(
e−δt

)
. (5.52)

In the examples in Section 11, the property Q is (or can be taken as)
decreasing in the sense that if it holds for some rooted tree T , then it holds
also for every subtree with the same root; hence if Q holds for Tu with u > t,
then it holds for Tt, so (5.52) can be simplified to

P
(
Tt ∈ Q

)
= O

(
e−δt

)
. (5.53)

Before the proof, we give a lemma.

Lemma 5.28. Suppose that (A1)–(A5) and (5.49) hold. Let Q be a property
of rooted trees such that (5.52) holds for some δ > 0. Then there exists η > 0
and a <∞ such that

1

|Tt|
∑
v∈Tt

|T vt |1+η1{T vt ∈ Q}
a.s.−→ a. (5.54)

Proof. The left-hand side of (5.54) equals Zφt /|Tt|, where φ(t) is the charac-
teristic given as in Remark 5.10 with

φ0(t) := |Tt|1+η1{Tt ∈ Q}. (5.55)

The result thus follows from (5.5), provided we can choose η > 0 such that
(A6) holds for this φ.

To verify (A6), we first note that (5.49) (together with the other condi-
tions) implies

E |Tt|2 6 C1e
2αt, (5.56)

for some C1 < ∞, see [71, Theorem 6.4.3 with Note or Theorem 6.8.1] or
[72, Theorem 3.5].

If 0 < η < 1, we thus have by (5.55), Hölder’s inequality, (5.56) and
(5.52),

E sup
t>0

(
e−θtφ0(t)

)
6
∞∑
n=0

E sup
n6t6n+1

(
e−θtφ0(t)

)
6
∞∑
n=0

e−θn E
(
|Tn+1|1+η1{Tu ∈ Q for some u > n}

)
6
∞∑
n=0

e−θn
(
E |Tn+1|2

)(1+η)/2(P(Tu ∈ Q for some u > n
))(1−η)/2

6
∞∑
n=0

e−θn
(
C1e

2α(n+1)
)(1+η)/2(

C2e
−δn)(1−η)/2

= C3

∞∑
n=0

en(−θ+α(1+η)−δ(1−η)/2), (5.57)

which is finite provided

(1 + η)α < θ + δ(1− η)/2. (5.58)

If 0 < η < min(δ/4α, 1/2), then ηα < δ/4 < δ(1 − η)/2, and thus there
exists θ < α such that (5.58) holds; hence the sum in (5.57) is finite and
(A6) holds, which completes the proof. �
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Proof of Theorem 5.26. For each integer M , let PM be the truncated prop-
erty “v satisfies P0 but no ancestor at most M generations before v satisfies
Q.” Then PM is covered by Theorem 5.25, so

nPM (Tn)

|Tn|
a.s.−→ pPM (T̃ ) (5.59)

as n→∞, for each M . Since P is the intersection of the decreasing sequence

of properties PM , it is clear that pPM (T̃ ) → pP(T̃ ) as M →∞. Further-
more, nP(Tt) 6 nPM (Tt) and for any η > 0, writing w ≺ v when w is an
ancestor of v,

nPM (Tt)− nP(Tt) 6
∑
v∈Tt

∑
w∈Tt

1{w ≺ v, h(w) < h(v)−M and T wt ∈ Q}

6
∑
w∈Tt

∑
v�w

1{|T wt | >M and T wt ∈ Q}

=
∑
w∈Tt

(|T wt | − 1)1{|T wt | >M and T wt ∈ Q}

6M−η
∑
w∈Tt

|T wt |1+η1{T wt ∈ Q}. (5.60)

By Lemma 5.28 we can choose η > 0 and a such that (5.54) holds. Then for
any M , by (5.60) and (5.54), a.s.,

lim sup
n→∞

|nPM (Tn)− nP(Tn)|
|Tn|

6 lim sup
t→∞

|nPM (Tt)− nP(Tt)|
|Tt|

6M−ηa.

(5.61)
Consequently, using also (5.59), a.s.,

lim sup
n→∞

∣∣∣∣nP(Tn)

|Tn|
− pP(T̃ )

∣∣∣∣ 6 lim sup
n→∞

∣∣nPM (Tn)− nP(Tn)
∣∣

|Tn|

+ lim sup
n→∞

∣∣∣∣nPM (Tn)

|Tn|
− pPM (T̃ )

∣∣∣∣+
∣∣pPM (T̃ )− pP(T̃ )

∣∣
6M−ηa+ 0 +

∣∣pPM (T̃ )− pP(T̃ )
∣∣. (5.62)

The right-hand side tends to 0 as M →∞, and the theorem follows. �

6. Examples with uniform or preferential attachment

We begin with a few standard examples, where we repeat earlier results
by other authors, together with some new results on the limiting sin-trees.
In all examples in this section, |Tn| = n, so we stop the branching process
using the weight ψ(t) = 1 as in Example 5.3. Since this weight is bounded,
(A6ψ) holds trivially.

Example 6.1 (random recursive tree). An important example, considered
already by Aldous [1], is the random recursive tree. This tree, usually con-
sidered as an unordered rooted tree, is constructed recursively by adding
nodes one by one, with each new node attached as a child of a (uniformly)
randomly chosen existing node, see [44, Section 1.3.1]. It is easy to see, by
the memoryless property of the exponential distribution, that the random
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recursive tree with n nodes is the tree Tn defined in Section 5 for the branch-
ing process where each individual gives birth with constant intensity 1, i.e.
with independent Exp(1) waiting times between births, and weight function
ψ(t) = 1 as in Example 5.3. In other words, the point process Ξ describing
the births of the children of an individual is a Poisson process with intensity
1. This branching process (or just the sizes (|Tt|)t>0) is often called the Yule
process, so the process (Tt)t of trees is called the Yule tree process [1]. Note
that Yule process formed by the size |Tt| is a pure birth process where the
birth rate λn = n, see Example A.3.

We will need some notation. Let Xi := ξi − ξi−1 (with ξ0 := 0) be the
waiting times between the births of the children of a given individual. Thus
Xi are i.i.d. Exp(1), and ξi =

∑i
j=1Xj ∼ Γ(i, 1) has a Gamma distribution.

The intensity measure µ is Lebesgue measure on [0,∞), so

µ̂(θ) =

∫ ∞
0

e−θt dt =
1

θ
, θ > 0, (6.1)

and (5.4) holds with α = 1. The conditions (A1)–(A5) are trivially verified.
As shown by Aldous [1], the limiting fringe tree T = Tτ can also be

described as a random recursive tree with a random number M nodes, where

P(M = n) =
1

n(n+ 1)
, n > 1. (6.2)

In fact, by symmetry, if M = |T | and we condition T on M = n, we get
a random recursive tree on n nodes. Moreover, if we at some time have
n > 1 individuals in the branching process, then a new child is born with
intensity n, while the process stops (at τ) with intensity 1, so the probability
that the process continues with at least one more individual is n/(n + 1).
In other words, P(M > n + 1) = n

n+1 P(M > n), and thus by induction

P(M > n) = 1/n and (6.2) follows. (For an alternative argument, see
Example 6.4 below.)

As noted by [1], various results for the random recursive tree Tn now
follows from Theorem 5.14. For example, the asymptotic distribution of the
size of a random fringe tree is given by (6.2). Furthermore, the asymptotic
distribution of the outdegree of the nodes in Tn equals by Corollary 5.20
the distribution of the root degree D in T , which is geometric Ge0(1/2)
as an immediate consequence of (5.33). (See (6.3) below and (5.41).) See
Section 10.2 for yet another example.

In order to construct the random sin-tree T̃ , which enables applications
of Theorem 5.25 on the extended fringe, we have to find the distribution of
the life history of the ancestors, given by (5.34). Consider an ancestor and

denote its successive birth times by ξ̃i, i > 1, and let X̃i := ξ̃i − ξ̃i−1 (with

ξ̃0 := 0) be the succesive waiting times. Furthermore, let Ξ̃ be the point

process of all births of children of this ancestor (thus Ξ̃ =
∑

i δξ̃i) and let J

be the number of the heir (in birth order). Then, by (5.35),

P(J = j) = E e−ξj = E e−
∑j

1Xi =

j∏
i=1

E e−Xi = 2−j , j > 1. (6.3)



FRINGE TREES, BRANCHING PROCESSES AND m-ARY SEARCH TREES 25

Thus J has the (shifted) geometric distribution Ge1(1/2). Moreover, con-

ditioned on J = j, the joint density of (X̃1, . . . , X̃m), for any m > j, is by
(5.34)

1

P (J = j)
e−

∑j
1 xi

m∏
i=1

e−xi =

j∏
i=1

2e−2xi

m∏
i=j+1

e−xi . (6.4)

Consequently, conditioned on J = j, the waiting times X̃i between the

births for an ancestor are independent, with X̃i ∼ Exp(2) for i 6 J and

X̃i ∼ Exp(1) for i > J .

We claim that we can describe Ξ̃ in a simpler way as a Poisson process Ξ
with intensity 1, plus an extra point Z ∼ Exp(1), independent of Ξ, with Z

the heir. To see this, note that with this description, the first point of Ξ̃ is
either the first point of Ξ or Z; these two first points are both Exp(1) and

independent, so the first point X̃1, which is the smallest of these two points,
will be Exp(2). Furthermore, with probability 1/2, this point is the heir Z,
so J = 1, and then the rest of the process is Ξ, with independent Exp(1)

waiting times. And with probability 1/2, X̃1 comes from Ξ, and then the

whole process repeats from X̃1, so the next waiting time X̃2 ∼ Exp(2), and
so on. A simple induction shows that this yields both the distribution of J

in (6.3) and the right conditional distribution of (X̃i)
∞
1 given J = j for each

j, which proves the claim.

In particular, an ancestor’s age ξ̃∗ when its heir is born has distribution
Exp(1), which also follows directly from Remark 5.22. As a consequence,

β = E ξ̃∗ = 1, cf. (5.38) and (5.39).

We can thus describe the random sin-tree T̃ as follows: First construct
an infinite chain of ancestors o(1), o(2), . . . of o (backwards in time), with

the times between their births i.i.d. Exp(1); in other word, (o(k))k>1 are
born according to a Poisson process with intensity 1 on (−∞, 0). Then

grow independent Yule tree processes from all o(k), k > 0. Finally, stop
everything at τ ∼ Exp(1). (Cf. Aldous [1, Section 4], where the description
is less explicit.) For an application, see Theorem 11.6.

Example 6.2 (binary search tree). Another important example studied by
Aldous [1] is the (random) binary search tree. This is the case m = 2 of the
m-ary search tree in Section 3, but it is simpler than the general case, so
we treat it separately, using a slightly different but equivalent formulation.
(Since each (internal) node has exactly one key, the number of keys equals
the number of nodes, and we can ignore the keys completely.)

The binary search tree can be grown recursively as follows. (See e.g. [44]
for other, equivalent, constructions.) Start with a single node. Since we
grow a binary tree, each node may have a left child and a right child. When
the tree has n nodes, there are n+ 1 empty places for children (these places
are the external nodes in the description in Section 3). The tree grows by
adding a node to one of these n + 1 places, chosen uniformly at random.
Similarly as in Example 6.1, it is easy to see that the binary search tree is the
tree Tn produced by the branching process where each individual has two
children, labelled left and right and born at age ξL and ξR, say, with ξL and ξR
both Exp(1) and independent; furthermore we use again the weight function
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ψ(t) = 1 as in Example 5.3. (This continuous-time branching process seems
to have been first used to study the binary search tree by Pittel [111], who
considered the height and saturation level, see Section 13.)

We thus have N = 2. Since each child is born with the density function
e−x, the intensity measure µ of Ξ has density 2e−x. Thus

µ̂(θ) =

∫ ∞
0

2e−θx−x dx =
2

1 + θ
, θ > −1, (6.5)

and (5.4) holds with the Malthusian parameter α = 1. The conditions
(A1)–(A5) are trivially verified.

Note that if we order the children in order of birth as usual, then ξ1 =
min(ξL, ξR), and thus ξ1 ∼ Exp(2), while the waiting time ξ2 − ξ1 for the
second child is Exp(1) and independent of ξ1.

We see also that the size |Tt| grows as a pure birth process with birth rate
λn = n+1, see Appendix A. Equivalently, |Tt|+1, which can be interpreted
as the number of external nodes, is a pure birth process with rate λn = n,
i.e., the Yule process in Example A.3, and in Example 6.1, but started at 2
instead of 1.

As shown by Aldous [1], the limiting fringe tree T = Tτ can be described
as a binary search tree with a random number M nodes, where

P(M = n) =
2

(n+ 1)(n+ 2)
, n > 1; (6.6)

cf. the similar result (6.2) for the random recursive tree. To see this we
argue as in Example 6.1; the difference is that when there are n individuals,
there are now n+ 1 places to add a new node, and thus n+ 1 independent
Exp(1) for these, competing with the random time τ that stops the process;
hence the probability of adding another node is (n + 1)/(n + 2) and thus
by induction P(M > n) = 2/(n + 1) and (6.6) follows. (For an alternative
argument, see Example 6.4 below.)

By Theorem 5.14, the asymptotic distribution of the size of a random
fringe tree is given by (6.6). Another simple calculation in [1] shows that
the asymptotic distribution of the outdegree of the nodes in Tn, which by
Corollary 5.20 equals the distribution of the root degree D in T , is uniform
on {0, 1, 2}, see (5.33). This can also be seen without calculation: ξL, ξR and
τ are three i.i.d. Exp(1) random variables, so the three events that τ is the
smallest, the middle, or the largest of these three have by symmetry all the
same probability 1/3. These events equal the events that the root in T has
degree 0, 1, 2.

To find the random sin-tree T̃ , note that by the comments after (5.34)–
(5.35), (5.34) holds also when taking the children in order left–right. For an
individual in T , the pair (ξL, ξR) has the density function e−xL−xR . For an
ancestor, the probability that the heir is the left child is 1/2 (by symmetry
or by (5.35)), and it follows that conditioned on the heir being the left child,
the pair (ξL, ξR) has the density function 2e−xLe−xL−xR = 2e−2xLe−xR . In

other words, for an ancestor, given that the heir is the left child, the age ξ̃∗

when the heir is born is Exp(2) and the age when the other child is born is
Exp(1), and these two ages are independent. The same holds given that the
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heir is the right child. In particular, ξ̃∗ ∼ Exp(2) and thus β = E ξ̃∗ = 1/2,
cf. Remark 5.22.

Consequently, the random sin-tree T̃ can be described as follows, cf. the
case of the random recursive tree in Example 6.1: First construct an infinite
chain of ancestors o(1), o(2), . . . of o (backwards in time), with the times

between their births i.i.d. Exp(2); in other word, (o(k))k>1 are born according
to a Poisson process with intensity 2 on (−∞, 0). Moreover, make a random
choice (uniform and independent of everything else) for each ancestor to
decide whether its heir is the left or right child. Then grow independent
binary tree processes at all empty places (external nodes), with independent
Exp(1) waiting times for all new nodes. Finally, stop everything at τ ∼
Exp(1). (Applications are given in Section 11.)

Example 6.3 (general preferential attachment trees). We can generalise the
preceding examples as follows, see Rudas, Tóth and Valkó [118] and Rudas
and Tóth [117] where this example is studied using the branching process
method described here; see also Bhamidi [10]. (The branching process below
was also earlier used by Biggins and Grey [16] to study the height of these
trees.) We thus give only a summary and some complements, in particular
on sin-trees. Some special cases are treated in Examples 6.4–6.8 below, see
in particular Example 6.6; these cases have been studied by many authors,
using various methods. (Further references are given below, but we do not
attempt a complete history.)

Suppose that we are given a sequence of non-negative weights (wk)
∞
k=0,

with w0 > 0. Grow a random tree Tn (with n nodes) recursively, starting
with a single node and adding nodes one by one. Each new node is added
as a child of some randomly chosen existing node; when a new node is
added to Tn−1, the probability of choosing a node v ∈ Tn−1 as the parent
is proportional to wd+(v), where d+(v) is the outdegree of v in Tn−1. (More
formally, this is the conditional probability, given Tn−1 and the previous
history. The sequence (Tn)∞n=1 thus constitutes a Markov process.) If we
want the trees Tn to be ordered trees, we also insert the new child of v
among the existing d+(v) children in a random position, uniformly chosen
among the d+(v) + 1 possibilities.

The random recursive tree in Example 6.1 is the special case wk = 1,
k > 0, and the binary search tree in Example 6.2 is the special case with
w0 = 2, w1 = 1 and wk = 0, k > 2 (and, furthermore, each first child
randomly assigned to be left or right).

Note that we require w0 > 0 (and w1 > 0 will be implicitly assumed, as a
consequence of (6.12) below), but we allow wm = 0 for some larger m, as in
the example of the binary search tree. In this case, no individual will ever
get more than m children; in fact (provided m is chosen minimal), N = m
a.s. In this case, the weights wm+1, wm+2, . . . are irrelevant, so it suffices to
prescribe wk for k 6 m. (In this case, we interpret 1/wm = ∞ below, and
the infinite sums become finite. We leave such obvious modifications to the
reader.)

In some important examples, for example Example 6.6 below, wk is a
strictly increasing function of k, which means that nodes with a high de-
gree are more likely to attract a new node than nodes with a low degree;
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hence the name preferential attachment, which comes from Barabási and
Albert [6] where this type of model was introduced (in a more general ver-
sion, in general yielding graphs and not trees), see Example 6.6. The tree
version of their model had been studied earlier under a different name by
Szymański [121] and others, see Example 6.5. The model with general wk
was considered by Móri [102].

As in the examples above, the tree Tn can be constructed by a branching
process as in Section 5, again with weight ψ(t) = 1 and taking the birth

times ξi :=
∑i

j=1Xj , now with the waiting times between births Xj =

ξj − ξj−1 ∼ Exp(wj−1) and independent. In other words, the stochastic
process Ξ([0, t]), t > 0, (i.e., the number of children of a given individual
born up to age t) is a pure birth process, starting at 0 and with birth rate
wk when the state is k. (See Appendix A.)

Let ξ∞ := limn→∞ ξn =
∑∞

j=1Xj ∈ (0,∞]. Then

E ξ∞ =
∞∑
j=1

EXj =
∞∑
k=0

1

wk
. (6.7)

We distinguish between two cases, depending on whether this sum is finite
or not.

In the explosive case,

E ξ∞ =
∞∑
k=0

1

wk
<∞. (6.8)

Thus ξ∞ <∞ a.s., i.e., an individual will have an infinite number of children
in a finite time (the point process Ξ explodes). In this case, the branching
process will explode in finite time, and several of the assumptions in Section 5
fail. Nevertheless, this case can be treated separately. It turns out that the
random fringe tree T ∗n is asymptotically degenerate and w.h.p. consists of

a single node only, i.e., |T ∗n |
p−→ 1, see Theorem 6.11 below. (Equivalently,

the proportion of leaves in the tree Tn tends to 1.) The case wk = (k + 1)p

for some p > 1 is studied by Krapivsky, Redner and Leyvraz [88], Krapivsky
and Redner [87] and (rigorously and in detail) by Oliveira and Spencer [108],
who show that if p > 2 (but not if 1 < p 6 2), the random tree process Tn,
n > 1, is even more strongly degenerate: a.s. there exists a (random) n0 and
a node v ∈ Tn0 such that all nodes added after time n0 become children of
v (and thus remain leaves forever). See also Athreya [3].

In the sequel we consider the non-explosive case
∞∑
k=0

1

wk
=∞. (6.9)

In this case, by (6.7), E ξ∞ = ∞; moreover, it is easy to see that ξ∞ =
limn→∞ ξn =∞ a.s., for example by calculating

E e−λξ∞ =
∞∏
j=1

E e−λXj =
∞∏
k=0

wk
λ+ wk

=
∞∏
k=0

1

1 + λ/wk
= 0 (6.10)

for any λ > 0, see [3]. Hence, an individual has a.s. only a finite num-
ber of children in each finite interval, i.e., Ξ([0, t]) < ∞ for every t < ∞.



FRINGE TREES, BRANCHING PROCESSES AND m-ARY SEARCH TREES 29

Furthermore, using (5.7),

µ̂(θ) = E
∞∑
n=1

e−θξn =
∞∑
n=1

n∏
j=1

E e−θXj =
∞∑
n=1

n−1∏
k=0

1

1 + θ/wk
. (6.11)

We assume that there exists θ > 0 such that 1 < µ̂(θ) <∞, i.e.,

1 <

∞∑
n=0

n∏
k=0

1

1 + θ/wk
<∞. (6.12)

(This is also easily seen to imply (6.9).) This implies, by dominated conver-
gence, that λ 7→ µ̂(λ) is continuous on [θ,∞], with µ̂(∞) = 0, and thus there
exists α > θ such that µ̂(α) = 1. Hence the assumptions (A4) and (A5) hold.
The remaining assumptions are trivially satisfied, and thus Theorems 5.14
and 5.25 apply.

The asymptotic degree distribution is by Corollary 5.20 and (5.33) given
by

P(D > i) = E e−αξi =
i∏

j=1

E e−αXj =
i−1∏
k=0

wk
wk + α

(6.13)

and thus

P(D = i) = P(D > i)− P(D > i+ 1) =
(

1− wi
wi + α

)
P(D > i)

=
α

wi + α

i−1∏
k=0

wk
wk + α

. (6.14)

This can also be seen as an example of Theorem A.4.
To describe the life of an ancestor, let Ei be the event that the heir of the

ancestor is child i. We note first that if we fix M < ∞, then in the point
process ξ, the waiting times X1, . . . , XM have the joint density function∏M
j=1wj−1e

−wj−1xj . It follows from (5.34) that for any i and M with 1 6

i 6 M , conditioned on Ei, the waiting times (X̃j)
M
j=1 between the M first

children of the ancestor have a joint density function that is proportional to

e−α
∑i
j=1 xj

M∏
j=1

e−wj−1xj =
i∏

j=1

e−(wj−1+α)xj

M∏
j=i+1

e−wj−1xj . (6.15)

Furthermore, by (5.41) and (6.13) (or by tracking constants in the argument
just given),

qi := P(Ei) =
i−1∏
k=0

wk
wk + α

, i > 1. (6.16)

Consequently, the point process Ξ̃ describing the births of the children of
an ancestor can be constructed as follows: Select the number I of the heir
at random, with the distribution (6.16). Then, conditioned on I = i, let

the waiting times X̃j be independent exponential variables, with X̃j ∼
Exp(wj−1 + α) for j 6 i and X̃j ∼ Exp(wj−1) for j > i.

The limiting random sin-tree T̃ then is constructed as in Section 5.
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In Examples 6.1 and 6.2, we have seen alternative, simpler, constructions

of Ξ̃. This will be extended to the linear case in Example 6.4 and Theo-
rem 6.9, but it does not seem possible to extend it further. In particular,

we show in Theorem 6.10 that the age ξ̃∗ when the heir is born has an ex-
ponential distribution only in the linear case. See also Example 6.8 for a
simple non-linear example.

Example 6.4 (linear preferential attachment). The simplest, and most
studied, case of preferential attachment as in Example 6.3 is the linear case

wk = χk + ρ, (6.17)

for some real parameters χ and ρ, with ρ = w0 > 0. Note that we obtain the
same random trees Tn if we multiply all wk by a positive constant. (In the
branching processes, only the time scale changes.) Hence, only the quotient
χ/ρ matters, and it suffices to consider χ ∈ {1, 0,−1}.

The case χ = 0 is the (non-preferential) random recursive tree in Exam-
ple 6.1. (In this case ρ is irrelevant and we take ρ = 1.)

The case χ = 1 (the increasing case) is studied in Example 6.6.
In the case χ = −1, so wk = ρ − k, wk is eventually negative. This is

impossible, and violates our basic assumption in Example 6.3. However, this
is harmless if (and only if) ρ = m is an integer; then wm = 0 and, as said
above in Example 6.3, the values wk for k > m do not matter. This is the
m-ary case studied in Example 6.7; the binary search tree in Example 6.2
is the special case χ = −1, ρ = 2.

We continue with some results valid for any linear weight (6.17), and
refer to Examples 6.1, 6.6 and 6.7 for further results for the different cases
χ = 0, 1,−1.

Since Ξ([0, t]) is a pure birth process with a rate that is a linear function
χk + ρ of the current state k, and with initial value 0, it is easy to see, see
Theorem A.6, that the expectation EΞ([0, t]) = µ(t) is given by

µ(t) =

{
ρ
χ

(
eχt − 1

)
, χ 6= 0,

ρt, χ = 0.
(6.18)

Hence, µ has density ρeχt (also when χ = 0), cf. (A.15), and thus

µ̂(θ) =

∫ ∞
0

ρeχt−θt dt =
ρ

θ − χ
, θ > χ. (6.19)

It follows that (6.12) holds, and that (5.4) holds with

α = χ+ ρ = w1. (6.20)

(Alternatively, (6.19) can be verified algebraically, see (6.30) and (6.41) be-
low.)

By Remark 5.22 and (6.20), the age ξ̃∗ when an heir is born to an ancestor

has density e−αtµ(dt) = e−αtρeχt dt = ρe−ρt dt; thus ξ̃∗ has an exponential
distribution Exp(ρ). (This also follows from (6.19) and the formula for the
Laplace transform in Remark 5.22.) As a consequence, generalizing the
values of β found in Examples 6.1 and 6.2,

β = E ξ̃∗ = ρ−1 = w−1
0 . (6.21)
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We claim that the life history Ξ̃ of an ancestor can be described as follows
(as a simpler alternative to the general construction in Example 6.3), cf. the
special cases in Examples 6.1–6.2; we postpone the proof to Theorem 6.9
below: For an ancestor, the ordinary children are born according to a point
process Ξ′ which is a pure birth process, with birth rate wk+1 = wk+χ when
the state (number of ordinary children so far) is k, and the heir is born at

an age ξ̃∗ ∼ Exp(ρ), independent of Ξ′. Consequently, the limiting random

sin-tree T̃ can be constructed as follows, generalising the constructions in
Examples 6.1–6.2: First construct an infinite chain of ancestors o(1), o(2), . . .
of o (backwards in time), with the times between their births i.i.d. Exp(ρ); in

other word, (o(k))k>1 are born according to a Poisson process with intensity ρ
on (−∞, 0). Give each ancestor additional children according to independent
copies of Ξ′ (where the intensities are shifted from Ξ, as said above). Then,
every other individual gets children according to independent copies of Ξ.
Finally, stop everything at τ ∼ Exp(α) = Exp(χ+ ρ).

The linear case (6.17) treated in this example is simpler than the general
case in Example 6.3 in several ways. For example, we have shown that the

age ξ̃∗ when the heir of an ancestor is born has an exponential distribution,
and (as said earlier) it will be shown in Theorem 6.10 that this holds only
in the linear case. An important reason (perhaps the main reason) that the
linear case is simpler is that the total weight in a tree depends only on the
size of the tree: if |T | = n, then the total weight of the nodes in T , which
we may label by 1, . . . , n, is

n∑
i=1

wd+(i) =
n∑
i=1

(χd+(i) + ρ) = χ
n∑
i=1

d+(i) + nρ = χ(n− 1) + nρ = nα− χ.

(6.22)
This property has several important consequences. First, it follows (as re-
marked for the random recursive tree and the binary search tree above) that
if M = |T | and we condition T on M = n, we get the random tree Tn. (The
property called coherence by Aldous [1, Section 2.6].) The distribution of
M can be found by the same argument as for the random recursive tree in
Example 6.1, which now, using (6.22) and (6.20), yields

P(M > n) =
ρ

nα− χ
=

ρ

(n− 1)α+ ρ
(6.23)

and hence

P(M = n) =
ρα

((n− 1)α+ ρ)(nα+ ρ)
=

κ

(n+ κ− 1)(n+ κ)
(6.24)

with

κ :=
ρ

α
=

ρ

χ+ ρ
=
w0

w1
. (6.25)

Consequently, T can be described as the random tree TM with a random
size M given by (6.24).

An alternative way to see (6.24) is to note that (6.22) implies that the
size Zt = |Tt| of the branching process is a pure birth process with birth
rates λn = nα− χ = n(χ+ ρ)− χ, and thus |Tt| − 1 is a pure birth process
with birth rates λn = (n+1)α−χ = nα+ρ. (The special case χ = 0, ρ = 1,
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when |Tt| is a Yule process, was noted in Remark 6.1.) Theorem A.5 shows
that

|T | − 1 = |Tτ | − 1 ∼ HG(ρ/α, 1; (ρ+ α)/α+ 1) = HG(κ, 1;κ+ 2), (6.26)

which by (B.3) and (B.5), or simpler by (B.10), yields (6.24). Note also that
Theorem A.7 shows that the size |Tt| at a fixed time, minus 1, has a negative
binomial distribution.

Furthermore, (6.22) implies that if we label the nodes of Tn by 1, . . . , n
in the order they are added to the tree, so that Tn becomes an increasing
tree (or recursive tree [44, Section 1.3]), then the probability that Tn equals
a given ordered increasing tree T (with |T | = n) is, by the definition and a
simple rearrangement, ∏n

i=1

(
1

d+(i)!

∏d+(i)−1
k=0 wk

)∏n−1
j=1 (jα− χ)

(6.27)

which is proportional to
∏n
i=1 φd+(i) with φd := 1

d!

∏d−1
k=0wk. Hence Tn has

the distribution of a simply generated random increasing tree [44, Section

1.3.3], with weight sequence φd = 1
d!

∏d−1
k=0wk. Conversely, a simply gener-

ated random increasing tree can be generated by a random evolution where
nodes are added one by one only when its weight sequence is of this form,
for some wk of the form (6.17) [89], [110]. (Such trees are called very simple
increasing trees in [89], [110].) In other words, the random increasing tree
generated by a general sequence of weights wk (as in Example 6.3) is a sim-
ply generated increasing tree if and only if the weights are of the linear type
(6.17). (I.e., we are in the case of the present example.)

Finally, (6.22) is very useful when using martingale methods (which we
do not do in the present paper).

Example 6.5 (plane oriented recursive tree). A random plane oriented
recursive tree, introduced by Szymański [121], is constructed similarly to
the random recursive tree in Example 6.1, but we now consider the trees as
ordered; an existing node with k children thus has k+ 1 position in which a
new node can be added, and we give all possible positions of the new node
the same probability. The probability of choosing a node v as the parent
is thus proportional to d+(v) + 1, so the plane oriented recursive tree is
the case wk = k + 1 of Example 6.3. This is the special case χ = ρ = 1
of Example 6.4, and thus the special case ρ = 1 of the following example
(Example 6.6), where some results and further references are given.

Example 6.6 (positive linear preferential attachment). Consider the case
χ = 1 of (6.17), i.e.,

wk = k + ρ, k > 0, (6.28)

where ρ > 0 is a parameter.
Thus, wk is a strictly increasing function of k, so this is a model with pref-

erential attachment as mentioned in Example 6.3. This is a popular model,
that has been studied by many authors (often by methods different from the
branching processes used here). The original preferential attachment model
by Barabási and Albert [6] was the case ρ = 1, so wk = k + 1; thus the
probability of attaching a new node to an existing node v is proportional



FRINGE TREES, BRANCHING PROCESSES AND m-ARY SEARCH TREES 33

to d+(v) + 1 = d(v), the total degree of the node (except for the root). As
said above, trees of this type had earlier been studied by Szymański [121].
(Barabási and Albert [6] considered a more general model where a new node
may be attached to more than one existing node, thus creating graphs that
are not trees. We only consider the tree case here.) Bollobás, Riordan,
Spencer and Tusnády [18] made a precise formulation of the definition, and
found (and proved rigorously) the asymptotic degree distribution (in the
general, graph case). See also van der Hofstad [64, Chapter 8], with many
details and references. The tree model with a general ρ was studied by Móri
[102]. See also Athreya, Ghosh, and Sethuraman [4] for an extension with
multiple edges, treated by an extension of the methods used here. Rudas,
Tóth and Valkó [118] and Rudas and Tóth [117] also used the branching
process method described here.

In the case (6.28), (6.11) becomes a hypergeometric series

µ̂(θ) =
∞∑
n=1

n−1∏
k=0

k + ρ

k + ρ+ θ
= F (ρ, 1; ρ+ θ; 1)− 1, (6.29)

where F is a hypergeometric function, see (B.1) in Appendix B; the series
converges for θ > 1, and then (6.29) and (B.2) yield

µ̂(θ) =
Γ(ρ+ θ)Γ(θ − 1)

Γ(ρ+ θ − 1)Γ(θ)
− 1 =

ρ+ θ − 1

θ − 1
− 1 =

ρ

θ − 1
, (6.30)

as we have seen by another method in (6.19). Consequently, or by (6.20),
the Malthusian parameter is

α = ρ+ 1. (6.31)

The asymptotic degree distribution is by (6.13)–(6.14) and (6.31) given
by

P(D > i) =

i−1∏
k=0

k + ρ

k + 2ρ+ 1
=

Γ(2ρ+ 1)Γ(i+ ρ)

Γ(ρ)Γ(i+ 2ρ+ 1)
, i > 0, (6.32)

and thus

P(D = i) = P(D > i)− P(D > i+ 1) =
(ρ+ 1)Γ(2ρ+ 1)Γ(i+ ρ)

Γ(ρ)Γ(i+ 2ρ+ 2)
, i > 0.

(6.33)

This is the hypergeometric distribution HG(ρ, 1; 2ρ+ 2), see Definition B.1.
(This also follows from Theorem A.5, using Example A.1 and (6.31).) This
degree distribution has a power-law tail: (6.33) implies, see Theorem B.7,

P(D = i) ∼ c(ρ)i−ρ−2, as i→∞, (6.34)

for the constant c(ρ) = (ρ+1)Γ(2ρ+1)/Γ(ρ), as shown by Móri [102]. (Note
that this power-law is quite sensitive to the choice of wk, with the exponent
depending on the constant term ρ in (6.28).)

In the special case ρ = 1, D ∼ HG(1, 1; 4) and (6.33) becomes

P(D = i) =
4

(i+ 1)(i+ 2)(i+ 3)
, i > 0, (6.35)
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found by Szymański [121] (showing the annealed version); see also Mah-
moud, Smythe and Szymański [97], Lu and Feng [91], Bollobás, Riordan,
Spencer and Tusnády [18] (quenched version), and Janson [75].

By (5.41) and (6.32),

qi = P(D > i) =

i−1∏
k=0

k + ρ

k + 2ρ+ 1
=

ρ

i+ 2ρ

i−2∏
k=0

k + ρ+ 1

k + 2ρ+ 1
i > 1, (6.36)

which in the special case ρ = 1 simplifies to

qi =
2

(i+ 1)(i+ 2)
, i > 1. (6.37)

Again using Definition B.1, this says that if I is the index of the heir of an
ancestor, then I − 1 ∼ HG(ρ+ 1, 1; 2ρ+ 2).

The limiting random sin-tree is given by the construction in Example 6.4.

Example 6.7 (m-ary increasing tree, negative linear preferentialattach-
ment). We may generalise the binary case Example 6.2 and grow a random
m-ary tree as follows, for any m > 2. This is sometimes called an m-ary
increasing tree. Note that for m > 2, this will not give the m-ary search
tree defined in Section 3. (One difference is that we here fix the number of
nodes to be n, while the m-ary search tree has a random number of nodes,
but this is a minor technicality, see Remark 7.1. A more essential difference
is seen in the asymptotic degree distribution D, see Theorem 7.14)

Start with a single node. Let each node have m positions for children,
labelled 1, . . . ,m. Add each new node to an empty child position in the tree,
chosen uniformly at random. (We may, as in Section 3, regard the empty
child positions as external nodes.)

Since a node with outdegree d has m−d empty positions for children, this
is an instance of the general preferential attachment in Example 6.4, with

wk = m− k, k = 0, . . . ,m. (6.38)

This is thus the case χ = −1 of the linear case in Example 6.4 (with ρ = m),
so all results there hold. In particular, by (6.19)–(6.20), µ has density me−t,

µ̂(θ) =
m

θ + 1
(6.39)

and
α = m− 1. (6.40)

Also in the case (6.38), (6.11) becomes a hypergeometric series; in this
case we obtain, cf. (6.29) and (B.1),

µ̂(θ) =

∞∑
n=1

n−1∏
k=0

m− k
m− k + θ

= 2F1(−m, 1;−m− θ; 1)− 1. (6.41)

(This is a case where the hypergeometric series is finite.) Gauss’ formula
(B.2) yields another proof of (6.39).

The asymptotic degree distribution is by (6.13)–(6.14) and (6.40) given
by

P(D > i) =

i−1∏
k=0

m− k
2m− 1− k

=
m! (2m− 1− i)!

(2m− 1)! (m− i)!
=

(
2m−1−i
m−1

)(
2m−1
m−1

) (6.42)
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and thus

P(D = i) =
(m− 1)m! (2m− 2− i)!

(2m− 1)! (m− i)!
=

(
2m−2−i
m−2

)(
2m−1
m−1

) , i = 0, . . . ,m. (6.43)

Thus, using Definition B.1 or Remark B.2, D has the hypergeometric dis-
tribution HG(−m, 1, 2− 2m). (Again, this also follows by Theorem A.5 and
Example A.1.) Note that the distribution (6.43) is the same as the distribu-
tion of balls in a given box when m indistinguishable balls are distributed in
m distinguishable boxes, with all distributions having the same probability
(Bose–Einstein statistics, see Example B.12); equivalently, it is the distribu-
tion of the first term in a random composition of m into m (possibly empty)
parts.

It follows easily from (6.43) that as m→∞, the distribution of D con-
verges to the Geometric distribution Ge0(1/2), which is the distribution of
D for the random recursive tree. (Cf. [76, Example 12.2 and Theorem 11.7].)

The point process Ξ contains m points, with successive exponential wait-
ing times with rates m, m−1, . . . ,1. As is well-known, this process can also
be constructed by taking m i.i.d. ξ̄1, . . . , ξ̄m ∼ Exp(1) and ordering them as
ξ1 < · · · < ξm. Since the construction of the m-ary tree also involves ran-
domly labelling the children, it follows that if ξ̄i denotes the age when child
at position i is born, then ξ̄1, . . . , ξ̄m are i.i.d. Exp(1). The growing tree Tt
is thus the subtree of the (rooted) infinite m-ary tree, where each child of
each node is born after an Exp(1) waiting time (with all these waiting times
independent).

Similarly, for an ancestor, the process Ξ′ of its ordinary children described
in Example 6.4 and Theorem 6.9 simply consists of m−1 i.i.d. Exp(1) points.

Furthermore, the age ξ̃∗ when the heir is born is Exp(m) and independent of

Ξ′. Consequently, the description of the limiting random sin-tree T̃ in Exam-
ple 6.4 can be simplified as follows, cf. the binary case in Example 6.2: Con-
struct an infinite chain of ancestors o(1), o(2), . . . of o (backwards in time),

with the times between their births i.i.d. Exp(m); in other word, (o(k))k>1

are born according to a Poisson process with intensity m on (−∞, 0). More-
over, make a random choice (uniform and independent of everything else)
for each ancestor to decide which of its m children that is its heir. Then
grow independent m-ary tree processes at all empty places (external nodes),
with independent Exp(1) waiting times for all new nodes. Finally, stop
everything at τ ∼ Exp(m− 1).

The examples above are all cases of Example 6.3, and all except the
general Example 6.3 itself are special cases of Example 6.4. We have seen

that in the latter cases, the age ξ̃∗ when the heir is born to an ancestor has
an exponential distribution, and is independent of the births of the other
children. We give a simple example showing that this is not always the case.

Example 6.8 (Binary pyramids). Let w0 = w1 = 1 and wk = 0 for k > 1.
Thus no node ever gets more than 2 children, and we can regard the result as
a binary tree by randomly labelling children as left or right as in Example 6.2,
but the difference is that we here have w0 = w1; hence, when adding a new
node, the parent of the new node is chosen uniformly among all existing
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nodes with less than 2 children. (I.e., as in Example 6.1 but with a cut-off
at 2 children.) This random tree was called a binary pyramid by Mahmoud
[94] who studied their height. (The name comes from pyramid schemes for
chain letters, see Gastwirth and Bhattacharya [57]. As said in [94], the
definition can be generalized to an arbitrary cut-off m > 2; we leave this
case to the reader.)

We have ξ1 = X1 ∼ Exp(1) with density e−x and ξ2 = X1 +X2 ∼ Γ(2, 1)
with density xe−x. Hence, the intensity µ has density (1+x)e−x and Laplace
transform, by (5.7) or (6.11),

µ̂(θ) =
1

1 + θ
+

1

(1 + θ)2
, θ > −1. (6.44)

Hence (5.4) is satisfied with α = (
√

5− 1)/2 (the inverse golden ratio). By

Remark 5.22, the age ξ̃∗ when an heir is born has the density (1+t)e−(1+α)t =

(1 + t)e−
1
2

(
√

5+1)t, and thus, or by (5.39), β = E ξ̃∗ = (3
√

5− 5)/2.
Furthermore, by (5.35),

q1 = 1/(1 + α) = α = (
√

5− 1)/2, (6.45)

q2 = 1/(1 + α)2 = α2 = 1− α = (3−
√

5)/2. (6.46)

Thus, by (5.34), Ξ̃, describing the life history of an ancestor, can be described
as a mixture: with probability q1 = (

√
5 − 1)/2, an heir is born at age

ξ̃1 ∼ Exp(1+α), and then another child is born after an independent waiting

time ξ̃2− ξ̃1 ∼ Exp(1); with probability 1− q1, first another child is born at

age ξ̃1 ∼ Exp(1 + α), and then an heir is born after an independent waiting

time ξ̃2 − ξ̃1 ∼ Exp(1 + α). We obtain also, by this or directly from (5.34),
the joint density f(x, y) of the ages when the ordinary child and the heir is
born as

f(x, y) =

{
e−x−αy, 0 < y < x,

e−(1+α)y, 0 < x < y.
(6.47)

Consequently, the two births are not independent (unlike the linear case in
Example 6.4).

Since ξ̃∗ is not exponential, the times of births of the ancestors o(1), o(2), . . .
do not form a Poisson process on (−∞, 0).

The asymptotic degree distribution is by (5.41) given by P(D = 0) =
P(D = 2) = 1− α = (3−

√
5)/2, P(D = 1) = 2α− 1 =

√
5− 2.

We end this section by proving some claims made above. First the ances-
tor in the linear case.

Theorem 6.9. For the linear preferential attachment in Example 6.4, with

weights wk = χk + ρ, the life history Ξ̃ of an ancestor consists of an heir

born at age ξ̃∗ ∼ Exp(ρ) together with ordinary children born according to
a pure birth process Ξ′, with rate wk+1 when there are k ordinary children,

with ξ̃∗ and Ξ′ independent.

Proof. Consider an ancestor, let ξ̃∗ be its age when the heir is born, and
denote its age at the births of the other children by ξ′1 < ξ′2 < . . . . (Also, let
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ξ′0 = 0.) Let Ei be the event that the heir is child i. Thus Ei a.s. equals the

event {ξ′i−1 < ξ̃∗ < ξ′i}; furthermore, if this event holds, then ξ̃∗ = ξ̃i and

ξ′j =

{
ξ̃j , j < i,

ξ̃j+1, j > i.
(6.48)

Fix i and M > i. For an ordinary individual, the joint distribution of
(ξ1, . . . , ξM+1) has density, on {0 < x1 < · · · < xM+1} and with x0 = 0,

M∏
j=0

wje
−wj(xj+1−xj) =

M∏
k=0

wk · e
∑M
j=1(wj−wj−1)xj−wMxM+1

=

M∏
k=0

wk · e
∑M
j=1 χxj−wMxM+1 . (6.49)

Hence, for an ancestor, (5.34) shows that restricted to the event Ei, the joint

density of (ξ̃1, . . . , ξ̃M+1) is, on {0 < x1 < · · · < xM+1},

e−αxi
M∏
k=0

wk · e
∑M
j=1 χxj−wMxM+1 =

M∏
k=0

wk · eχ
∑M
j=1 xj−wMxM+1−αxi (6.50)

and, using (6.48), the joint distribution of (ξ′1, . . . , ξ
′
M , ξ̃

∗) on the set {0 <
x1 < · · · < xi−1 < y < xi < · · · < xM} is, recalling (6.20) and w0 = ρ,

M∏
k=0

wk · eχ(
∑M−1
j=1 xj+y)−wMxM−αy = w0

M∏
k=1

wk · e
∑M−1
j=1 χxj−wMxM−ρy

= ρe−ρy
M∏
k=1

wk · e
∑M−1
j=1 (wj+1−wj)xj−wMxM

= ρe−ρy
M−1∏
j=0

wj+1e
−wj+1(xj+1−xj). (6.51)

This equals the joint density of the first M points of the birth process Ξ′

defined in the statement, together with an independent ξ̃∗ ∼ Exp(ρ). The
result follows, since M is arbitrary. �

We have shown in Example 6.4 that the age ξ̃∗ when the heir is born to
an ancestor has an exponential distribution in the linear case. We now show
the converse: this happens only in the linear case. (Recall that if wm = 0
for some m, the weights wk for k > m are irrelevant.)

Theorem 6.10. Consider a general preferential attachment tree defined as

in Example 6.3 by a sequence (wk)
∞
0 of weights. If the age ξ̃∗ when an

ancestor gets an heir has an exponential distribution, then wk = χk + ρ for
some χ ∈ R and ρ > 0 (at least until wk = 0, if that ever happens).

Proof. The Laplace transform of ξ̃∗ is by (5.37) µ̂(s + α). Hence, if ξ̃∗ ∼
Exp(λ) for some λ > 0, then for all s > 0,

µ̂(s+ α) = E e−sξ̃
∗

=
λ

λ+ s
. (6.52)
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Consequently, by (6.11),

w0

w0 + s
+

w0

w0 + s
· w1

w1 + s
+ · · · = µ̂(s) =

λ

λ− α+ s
, (6.53)

at least for s > α.
Consider, more generally, the equation

w0

w0 + s
+

w0

w0 + s
· w1

w1 + s
+ · · · = a

b+ s
. (6.54)

for some real a and b, and all large s. Multiply (6.54) by (w0 + s)/w0. This
yields

1 +
w1

w1 + s
+

w1

w1 + s
· w2

w2 + s
+ · · · = a(w0 + s)

w0(b+ s)
. (6.55)

Now let s→∞. On the left-hand side, each term except the first decreases
to 0, and by dominated convergence, the sum converges to 1 + 0 + . . . ; thus
(6.55) implies

1 = 1 + 0 + · · · = lim
s→∞

a(w0 + s)

w0(b+ s)
=

a

w0
. (6.56)

Consequently, (6.54) implies w0 = a. Use this in (6.55) and subtract 1 to
obtain

w1

w1 + s
+

w1

w1 + s
· w2

w2 + s
+ · · · = w0 + s

b+ s
− 1 =

w0 − b
b+ s

. (6.57)

If w1 = 0, then the left-hand side vanishes, so w0− b = 0. Otherwise, (6.57)
is of the same type as (6.54), with the weights (wk) shifted to (wk+1), and
a replaced by w0 − b. Hence, the argument above yields w1 = w0 − b.

Thus, in both cases w1 = w0 − b. Moreover, if w1 6= 0, we can iterate
the argument, and find w2 = w1 − b, w3 = w2 − b, and so on, as long as
the weights are non-zero. Thus wk = w0 − kb = χk + ρ, with χ = −b and
ρ = w0. �

Finally, we prove the result claimed above in the explosive case (6.8).

Theorem 6.11. Let Tn be a general preferential attachment tree, defined by
a sequence wk, and assume that the explosion condition (6.8) holds. Then

P(|T ∗n | = 1)
a.s.−→ 1.

Proof. Let T∞ := Tτ(∞), the (infinite) tree obtained by stopping when the
process explodes. Thus Tn ⊂ T∞ for every n. Let, for 1 6 i 6 n 6 ∞,
Ii,n := 1{d+

Tn
(vi) > 0}, the indicator of the event that the i:th node (in

order of appearance) vi has at least one child in Tn.
Fix δ > 0, and let Ei,δ be the event that the i:th individual (in order of

birth) in the branching process gets at least one child before age δ, i.e., that
it has ξ1 < δ. Further, let Ji,δ := 1{Ei,δ}. The events Ei,δ are independent
and have the same probability P(ξ1 < δ) = P(X1 < δ). Thus, by the law of
large numbers, ∑n

i=1 Ji,δ
n

a.s.−→ P(X1 < δ) = 1− e−w0δ < w0δ. (6.58)

Furthermore, a.s. τ(∞) < ∞, and then σi > τ(∞) − δ for all but a finite
number of i, i.e., all but a finite number of individuals have age less than δ
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when the process explodes. Hence, Ii,∞ 6 Ji,δ for all but a finite number of
i and, a.s.,

lim sup
n→∞

∑n
i=1 Ii,∞
n

6 lim
n→∞

∑n
i=1 Ji,δ
n

< w0δ. (6.59)

Since δ > 0 is arbitrary, this shows lim supn→∞
∑n

i=1 Ii,∞/n = 0 a.s. Fur-
thermore, the finite tree Tn is a subtree of T∞; hence, a.s.,

P
(
|T ∗n | > 1

)
=

∑n
i=1 Ii,n
n

6

∑n
i=1 Ii,∞
n

→ 0 (6.60)

�

7. m-ary search trees and branching processes

In this section, as always when we discuss m-ary search trees, m is a
fixed integer with m > 2. We apply the general theory in Section 5 to
the m-ary search tree in Section 3. Recall from Section 3 that besides the
m-ary search tree, we may also consider the extended m-ary search tree
(including external nodes). It turns out that both versions can be described
by stopped branching processes. It is easy to go between the two versions,
but we find it instructive to treat them separately, and describe the two
related but different branching processes connected to them. The reader is
recommended to compare the two versions, even when we do not explicitly
do so.

Remark 7.1. The random m-ary search tree is defined as in Section 3 to
have a given number of keys, which makes the number of nodes random
(in general). We can also define a random m-ary search tree with a given
number of nodes, by adding keys until the desired number of nodes is ob-
tained. This is obtained by the branching processes below, stopping when
the number of nodes is a given number n; we thus use the weight ψ(t) = 1
in Example 5.3 (as in Section 6). The asymptotics are the same for this
version, see Remark 5.17. We therefore ignore this version in the sequel,
and consider only the standard version with a given number of keys.

7.1. Extended m-ary search tree. Recall from Section 3 that we can
grow an extended m-ary search tree by starting with an empty tree (a sin-
gle external node) and then adding keys, each new key added with equal
probability to each existing gap. Hence, we can also grow the extended
m-ary search tree in continuous time by adding a key to each gap after
an exponential Exp(1) waiting time (independent of everything else). By
the construction of the extended m-ary search tree in Section 3, this is a
Crump–Mode–Jagers branching process, where the life of each individual is
as follows (Pittel [112]):

An individual is born as an external node with no keys. It acquires
m − 1 keys after successive independent waiting times Y1, . . . , Ym−1, where
Yi ∼ Exp(i) (since the node has i gaps when there are i − 1 keys). When
the (m− 1):th key arrives, the individual immediately gets m children.

We let ψ(t) be the number of keys stored at the individual at age t. Thus

Zψt is the total number of keys at time t and τ(n) is the time the n:th key
is added. Hence Tn is a random m-ary search tree with n keys, as we want.
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Let Sk :=
∑k

i=1 Yi, k = 0, . . . ,m−1; for 1 6 k 6 m−1, this is the time the
k:th key arrives. Let further Sm := ∞. Then ψ(t) = k for Sk 6 t < Sk+1.
For θ > 0 (in fact, for θ > −1) and k 6 m− 1,

E e−θSk =
k∏
i=1

E e−θYi =
k∏
i=1

i

i+ θ
=

k!∏k
i=1(i+ θ)

. (7.1)

(See also Theorem C.1, which further gives more the distribution of Sk; in

the notation used in Appendix C, Sk
d
= Vk,k.)

Furthermore, all children are born at the same time with ξ1 = · · · = ξm =

Sm−1, and thus the random variable Ξ̂(θ) in Remark 5.7 equals me−θSm−1 .
Hence, see (5.7) and (7.1),

µ̂(θ) = mE e−θSm−1 =
m!∏m−1

i=1 (i+ θ)
, θ > −1. (7.2)

In particular, we see that µ̂(1) = 1, so the Malthusian condition (5.4) is
satisfied with α = 1. It is easy to see that all other conditions (A1)–(A5)
are satisfied. (Note that in this case, N = m is non-random. Furthermore, ψ
is bounded, so (A6ψ) holds too.) Consequently, Theorem 5.14 applies, and
shows (in particular) that the random fringe tree T ∗n converges in distribution
to T , which is obtained by running the branching process above and stopping
it after a random time τ ∼ Exp(1).

Similarly, Theorem 5.25 applies. In order to find the sin-tree T̃ , note that
since all children of an individual are born at the same time, so ξ1 = · · · =
ξm = Sm−1, it does not matter which one is the heir. It thus follows from

(5.34), that if we let Ỹ1, . . . , Ỹm−1 be the successive waiting times between

the arrival of keys for an ancestor, so all m children are born at time ξ̃ =∑m−1
i=1 Ỹi, then Ỹ1, . . . , Ỹm−1 have joint density

me−(y1+···+ym−1)
m−1∏
i=1

ie−iyi = m!
m−1∏
i=1

e−(i+1)yi =
m−1∏
i=1

(i+ 1)e−(i+1)yi . (7.3)

Thus Ỹ1, . . . , Ỹm−1 are independent with Ỹi ∼ Exp(i + 1). (Cf. (6.4) and
the proof of Theorem 6.9, with similar calculations in different but related
situations.) The m children are numbered 1, . . . ,m, with the heir chosen
uniformly at random among them.

Remark 7.2. The age ξ̃∗ when the heir is born is ξ̃∗ =
∑m−1

i=1 Ỹi, with mean

β = E ξ̃∗ =

m−1∑
i=1

E Ỹi =

m−1∑
i=1

1

i+ 1
= Hm − 1, (7.4)

whereHm :=
∑m

1
1
i denotes them:th harmonic number. (See also (5.39) and

(7.2).) The distribution of ξ̃∗ is given by Theorem C.1; using the notation
there

ξ̃∗ =

m−1∑
i=1

Ỹi
d
=

m∑
i=2

Yi
d
= Vm,m−1. (7.5)

In particular, ξ̃∗ is not exponentially distributed unless m = 2.
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In the construction of Tt above, the number of gaps is always 1 + the
number of keys, and we add keys (and thus gaps) with an intensity equal
to the number of gaps. Hence, the number of gaps at time t forms a pure
birth process with birth rates λk = k, starting at 1 (this is again the Yule
process in Example 6.1, see Example A.3), and thus the number of keys at
time t forms a pure birth process with birth rates λk = k+ 1, starting at 0.
(Note that this is independent of the choice of m.)

Since τ has the same distribution Exp(1) here as in Example 6.1, it fol-
lows that the number of gaps in T = Tτ has the same distribution as the
number of nodes M in Tτ in Example 6.1, given by (6.2). Moreover, by
symmetry, conditioned on the number of keys K = k in Tτ = T , T has the
same distribution as the random extended m-ary search tree Tk with k keys.
Hence, we get the following result:

Theorem 7.3. The number K of keys in the asymptotic fringe tree T has
the distribution

P(K = k) = P(M = k + 1) =
1

(k + 1)(k + 2)
, k > 0. (7.6)

Furthermore, T can also be described as an extended m-ary search tree with
a random number K keys, where K has the distribution (7.6). �

Remark 7.4. Using the notation in Definition B.1, K ∼ HG(1, 1; 3). (This
also follows from Theorem A.5, with χ = ρ = α = 1.)

The property in the second part of the theorem, describing the asymptotic
fringe tree T as an extended m-ary search tree with a random number K
keys is called coherence by Aldous [1, Section 2.6], and was seen also in
Example 6.4. (In the present case with respect to the number of keys; we
might call this key-coherent.)

We proceed to derive some properties of the random extended m-ary
search tree Tn. Note that, unlike the examples in Section 6, Tn does not
have n nodes; n is the number of keys, while the number of nodes is random
for m > 3. (For m = 2, the number of nodes is 2n + 1, of which n are
internal, see Section 3.) To find the asymptotic number of nodes, we use
Theorem 5.12 and obtain the following result.

Theorem 7.5. For the extended m-ary search tree Tn with n keys,

|Tn|
n

a.s.−→ 1

mψ
=

1

Hm − 1
. (7.7)

The asymptotic value of the expectation E |Tn|/n was found by Baeza-
Yates [5]. We do not know any reference where (7.7) is stated explicitly, but
closely related results for the number of internal nodes have been shown in
several papers, see Remark 7.12; the result follows also immediately from
the main result by Kalpathy and Mahmoud [83].

Proof. This follows from Theorem 5.12(ii), except for the value of mψ, which

we calculate as follows. Since ψ(t) =
∑m−1

i=1 1{Si 6 t},

ψ̂(1) =

∫ ∞
0

e−tψ(t) dt =
m−1∑
i=1

∫ ∞
0

e−t1{Si 6 t} dt =

m−1∑
i=1

e−Si . (7.8)
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By (7.1),

E e−Si =
i!

(i+ 1)!
=

1

i+ 1
, i = 0, . . . ,m− 1, (7.9)

and thus,

mψ = E ψ̂(1) =

m−1∑
i=1

E e−Si =

m−1∑
i=1

1

i+ 1
= Hm − 1. (7.10)

�

Theorem 7.6. Let Nk(Tn) be the number of nodes in Tn with k keys, for
k = 0, . . . ,m− 1. Then,

Nk(Tn)

|Tn|
a.s.−→

{
1

(k+1)(k+2) , 0 6 k < m− 1,
1
m , k = m− 1.

(7.11)

Again, we do not know any reference where this is stated explicitly; the
asymptotic values of the expectations ENk(Tn)/n were found by Baeza-
Yates [5]; see also the references in Remark 7.12. The result can also easily
be shown using Pólya urns, see [74, Example 7.8], [83] and [67].

Proof. Nk(Tn) = nP(Tn), where P is the property of a node v that it contains
k keys. Hence, pP(T ) is the probability that the root of T = Tτ contains
k keys, i.e., that ψ(τ) = k or, equivalently, Sk 6 τ < Sk+1. We apply
Theorem 5.14, and note that the characteristic φ there is φ(t) = 1{ψ(t) =
k} = 1{Sk 6 t < Sk+1}. By (5.24), arguing similarly to (7.8)–(7.10) and in
particular using (7.9), and recalling that Sm :=∞,

pP(T ) = E φ̂(1) = E
∫ ∞

0
e−t1{Sk 6 t < Sk+1} dt = E

(
e−Sk − e−Sk+1

)
=

{
1

k+1 −
1

k+2 , 0 6 k < m− 1,
1

k+1 , k = m− 1. (7.12)

The result follows by Theorem 5.14. (Alternatively, one can use Theo-
rem A.4.) �

Remark 7.7. In particular, the fraction of external nodes

N0(Tn)

|Tn|
a.s.−→ 1

2
. (7.13)

and thus the same holds for the number of internal nodes; the numbers
of external and internal nodes are thus asymptotically the same. (Perhaps
surprisingly, the asymptotic fractions of external and internal nodes are thus
independent of m.)

Remark 7.8. The asymptotic degree distribution D is not very interesting
for the extended m-ary search tree, since every internal node has outdegree
m and every external node has outdegree 0; thus, as a corollary of (7.13),
P(D = 0) = P(D = m) = 1/2.
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7.2. m-ary search tree, internal nodes only. Usually, we consider an
m-ary search tree as consisting only of the internal nodes. This can be
obtained from the tree with external nodes in Section 7.1 by deleting all
external nodes, but it may also be constructed directly as follows, using a
different Crump–Mode–Jagers process.

We now start with a node containing a single key. Thus each individual
is born as a node with 1 key. It acquires more keys after successive waiting
times Y2, . . . , Ym−1, where Yi ∼ Exp(i). At the arrival of the (m − 1):th

key, at time S :=
∑m−1

i=2 Yi, the individual becomes fertile; it then gets
m children, marked by 1, . . . ,m, with child i born after a further waiting
time Xi, i.e., at time ξi = S + Xi, where X1, . . . , Xm are independent and
Exp(1). (The children are here marked by their final positions in the tree,
see Remark 5.1.)

Alternatively, taking the children in order of birth, we may say that after
the (m− 1):th key, there are m children born after successive waiting times
X ′1, . . . , X

′
m, with X ′i ∼ Exp(m+ 1− i), all waiting times independent.

We let again the weight ψ(t) be the number of keys at time t in an
individual. It is easy to see that then Tn is a random m-ary search tree with
n keys, as defined in Section 3.

The random variable Ξ̂(θ) in Remark 5.7 is now given by

Ξ̂(θ) =
m∑
j=1

e−θ(S+Xj) =
m∑
j=1

e−θ(
∑m−1
i=2 Yi+Xj). (7.14)

Its distribution is not the same as in Section 7.1, but the mean E Ξ̂(θ) = µ̂(θ)
is easily seen to be the same as in (7.2), and thus we still have α = 1;
similarly, by (5.39), β is the same as in (7.4), i.e.,

β = Hm − 1. (7.15)

(That α has to be the same for the m-ary search tree with and without
external nodes is rather obvious, since the number of internal nodes in Tt
is the same for both versions, and grows like eαt by (5.10) and (7.13).)
The conditions (A1)–(A5) and (A6ψ) are satisfied, and Theorem 5.14 shows
that the random fringe tree T ∗n converges in distribution to T , which is
obtained by running this branching process and stopping it after a random
time τ ∼ Exp(1).

Moreover, the random sin-tree T̃ is constructed by the general procedure
in Section 5. To find the distribution of an ancestor, we note that by symme-
try, each child has the same probability 1/m of being the heir. Furthermore,

using Ỹi and X̃j to denote the waiting times (corresponding to Yi and Xj

above) for an ancestor, it follows from (5.34) that conditioned on the heir

being the child marked k, the joint distribution of Ỹ2, . . . , Ỹm−1, X̃1, . . . , X̃m

has density

me−
∑m−1
i=2 yi−xk

m−1∏
i=2

ie−iyi
m∏
j=1

je−jxj
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=
m−1∏
i=2

(i+ 1)e−(i+1)yi
∏
j 6=k

je−jxj · 2e−2xk . (7.16)

Consequently, Ỹi ∼ Exp(i + 1) and, given that the heir is child k, X̃k ∼
Exp(2) while X̃j

d
= Xj ∼ Exp(1) for j 6= k, all waiting times independent

(conditioned on k).

Remark 7.9. The distributions of the birth times can be obtained from

Theorem C.1; it follows that using the notation there, S
d
= Vm−1,m−2, and

ξi
d
= Vm−1,m−1 (with marks as above), while the i:th child in birth order is

born at time ξ′i = S + Vm,i, with S and Vm,i independent.

Similarly, an ancestor becomes fertile at time S̃ =
∑m−1

i=2 Ỹi ∼ Vm,m−2

and the heir is born at time

ξ̃∗ = S̃ + X̃k
d
=

m∑
j=2

Yj ∼ Vm,m−1. (7.17)

Thus ξ̃∗ has the same distribution as for the extended m-ary search tree,
see (7.5). (This is not surprising since we really construct the same trees in
two somewhat different ways.)

As for the extended m-ary search tree in Section 7.1, the number of gaps

in the process (= 1 + the number of keys, i.e., 1 +Zψt ) forms a Yule process
(see Example A.3), but in the present case it starts at 2, while it starts with
1 for the extended m-ary search tree in Section 7.1. (In other words, the
number of gaps is the sum of two independent standard Yule processes.) The
number of keys in Tt thus evolves in exactly the same way for every m > 2,
and hence is the same as for the binary case m = 2 treated in Example 6.2.
In particular, since also τ ∼ Exp(1) is the same for all m, the number K of
keys in Tτ has the distribution (6.6). Moreover, as for the extended m-ary
search tree, if we condition on K = k, then T has the same distribution as
the random m-ary search tree Tk with k keys. Hence, we get the following
result:

Theorem 7.10. The number K of keys in the asymptotic fringe tree T has
the distribution

P(K = k) =
2

(k + 1)(k + 2)
, k > 1. (7.18)

Furthermore, T can also be described as an m-ary search tree TK with a
random number K keys, where K has the distribution (7.18). �

Cf. (7.6), the similar result for the extended m-ary search tree, and note
that the distribution (7.18) equals the distribution (7.6) conditioned on K >
1. Furthermore, the number of keys thus grows as et, so the number of nodes
has to grow at the same rate, which again shows that α = 1. Note that the
second part of the theorem is another instance of key-coherence.

As for the extended m-ary search tree in Section 7.1, the number of nodes
is random for m > 3. We can again find the asymptotics from Theorem 5.12,
yielding the following theorem. (Alternatively, we can obtain the result from
(7.7) and (7.11) for the extended m-ary search tree.)
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Theorem 7.11. For the m-ary search tree Tn with n keys,

|Tn|
n

a.s.−→ 1

mψ
=

1

2(Hm − 1)
. (7.19)

In other words, the average number of keys per node converges a.s. to
2(Hm−1 − 1).

Remark 7.12. This result was first shown, in a weaker form with con-
vergence in probability, by Mahmoud and Pittel [95]; convergence of the
expectation had been shown earlier by Knuth [85, answer to exercise 6.2.4-
8] and Baeza-Yates [5].

For the variance and asymptotic distribution (which we do not consider
in the present paper), there is an interesting phase transition: the variance
is linear in n and the distribution asymptotically normal if m 6 26 but not
if m > 27, see [95], [90], [30], [29].

Proof. For the present branching process, ψ(t) = 1+
∑m−1

i=2 1{S′i 6 t}, where

S′i :=
∑i

j=2 Yj is the time the i:th key comes to the node. Arguing as in

(7.8)–(7.10) we find (omitting some details)

ψ̂(1) =

∫ ∞
0

e−tψ(t) dt = 1 +

m−1∑
i=2

e−S
′
i (7.20)

and thus,

mψ = E ψ̂(1) = 1 +

m−1∑
i=2

i∏
j=2

E e−Yj = 1 +

m−1∑
i=2

2

i+ 1
= 2(Hm − 1). (7.21)

Hence, Theorem 5.12(ii) yields

|Tn|
n

a.s.−→ 1

mψ
=

1

2(Hm − 1)
. (7.22)

�

The asymptotic number of nodes with a given number of keys can be
found similarly. Note that the tree is constructed so that each node contains
at least one key. (This theorem is also an immediate corollary of results by
Kalpathy and Mahmoud [83], shown using a Pólya urn, see also [74, Example
7.8].)

Theorem 7.13. Let Nk(Tn) be the number of nodes in Tn with k keys, for
k = 1, . . . ,m− 1. Then,

Nk(Tn)

|Tn|
a.s.−→

{
2

(k+1)(k+2) , 1 6 k 6 m− 2,
2
m , k = m− 1.

(7.23)

Proof. This follows either from (7.11) for the extended m-ary search tree or
by a similar argument as in the proof of Theorem 7.6 (which we omit). �

Finally, we give the asymptotic degree distribution D. (This was found,
using a Pólya urn, by Kalpathy and Mahmoud [83], generalizing the special
case of leaves (k = 0) given in [67].)
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Theorem 7.14. Let nk(Tn) be the number of nodes of outdegree k in Tn.
Then

nk(Tn)

|Tn|
a.s.−→ P(D = k) =

{
m−1
m+1 , k = 0,

2
m(m+1) , 1 6 k 6 m.

(7.24)

The asymptotic degree distribution is thus uniform on {1, . . . ,m}, but
with a large proportion of the nodes being leaves (outdegree 0). (For m = 2,
the distribution is uniform on {0, 1, 2}.) Note that ED = 1, as always, see
(5.42).

Proof. This follows by straightforward calculations from (5.33) and Re-
mark 7.9, for example using Theorem C.1. However, we find it illuminating
to instead give a less computational proof, using the properties of the ex-
ponential distributions. Recalling that D is the degree of the root of T , we
consider the life of an individual (the root), stopped at τ ; we regard τ as an
exponential clock (the doomsday clock) that strikes at a random time, and
then stops the process.

After the creation (at t = 0, and with a single key), the next thing that
happens is either the arrival of the second key, or that the doomsday clock
strikes. Since the second key arrives with intensity 2 and the clock strikes
with intensity 1, the probability is 2/3 that the second key will arrive before
the clock strikes. Conditioned on this event, the same argument shows that
the probability that also the third key arrives before the clock strikes is 3/4,
and so on. It follows that the probability that the node acquires all m − 1
keys before the clock strikes is

2

3

3

4
· · · m− 1

m
=

2

m
. (7.25)

(Note that this argument also yields another proof of Theorem 7.13.)
After the arrival of all m − 1 keys, assuming that the doomsday clock

still has not struck, we wait for the m children. Each child arrives with
intensity 1, and the clock strikes with the same intensity, so by symmetry
(and independence), the order of the m births and the strike of the clock is
uniform among all (m + 1)! possibilities. In particular, the position of the
clock strike is uniform among these m+1 events, i.e., the number of children
born before the clock strikes is uniform on {0, . . . ,m}. Combining this and
(7.25) we obtain, for 1 6 k 6 m,

P(D = k) =
2

m

1

m+ 1
(7.26)

and, including the cases where less than m− 1 keys arrive before the clock
strikes,

P(D = 0) = 1− 2

m
+

2

m

1

m+ 1
. (7.27)

The result follows. �

Remark 7.15. Note that the degree distribution in (7.24) differs from the
degree distribution (6.43) for the random m-ary tree defined in Example 6.7;
as said there, the two different types of random m-ary trees are thus not
even asymptotically equivalent.



FRINGE TREES, BRANCHING PROCESSES AND m-ARY SEARCH TREES 47

8. Median-of-(2`+ 1) binary search tree

Let ` > 1 be a fixed integer. The random median-of-(2`+1) binary search
tree, see e.g. [36], is a modification of the binary search tree in Example 6.2,
where each internal node still contains exactly one key, but each external
node can contain up to 2` keys. (We can also include the case ` = 0;
this is just the extended binary search tree, i.e., the special case m = 2 of
Section 7.1.)

The tree is grown recursively, starting with a single external node without
any keys. The first 2` keys are placed in this node. When the (2` + 1):th
key arrives to the node (or to another external node later in the process),
the node becomes an internal node with two new external nodes as children,
say vL and vR; moreover, the median of the 2`+ 1 keys now at the node is
found and put in the internal node, while the ` keys that are smaller than
the median are put in the left child vL and the ` keys that are larger than
the median are put in the right child vR.

In order to model this by a branching process, we start the tree with ` keys
in the root. (This is no restriction, since the first ` keys always go there.)
Then each external node will contain between ` and 2` keys, throughout
the process, and the median-of-(2` + 1) binary search tree is produced by
a branching process with the following life histories: An individual is born
as an external node with ` keys. It acquires ` + 1 additional keys after
successive independent waiting times Y1, . . . , Y`+1, where Yi ∼ Exp(` + i)
(since the node has ` + i gaps when there are ` + i − 1 keys). When the
(`+ 1):th key arrives, the individual immediately gets 2 children.

We let the weight ψ(t) be the number of keys stored at the individual at

age t. Thus Zψt is the total number of keys at time t and τ(n) is the time the
n:th key is added. Hence, assuming n > `, Tn is a random median-of-(2`+1)
binary search tree with n keys.

Note that this construction is very similar to the one for the extended
m-ary search tree in Section 7.1, and we analyse it in the same way. Let

Sk :=
∑k

i=1 Yi, k = 0, . . . , `+ 1; this is the time the node gets its (`+ k):th
key. Then

ψ(t) =

{
`+ k, Sk 6 t < Sk+1, 0 6 k 6 `,

1, Sk+1 6 t.
(8.1)

For θ > −`− 1 and k 6 `+ 1,

E e−θSk =
k∏
i=1

E e−θYi =
k∏
i=1

`+ i

`+ i+ θ
=

〈`+ 1〉k
〈`+ 1 + θ〉k

. (8.2)

(See also Theorem C.1; in the notation used in Appendix C, Sk
d
= V`+k,k.)

Furthermore, ξ1 = ξ2 = S`+1, and thus the random variable Ξ̂(θ) in
Remark 5.7 equals 2e−θS`+1 . Hence, see (5.7) and (7.1),

µ̂(θ) = 2E e−θS`+1 =
2〈`+ 1〉`+1

〈`+ 1 + θ〉`+1
=

〈`+ 2〉`+1

〈`+ 1 + θ〉`+1
. (8.3)

In particular, we see that µ̂(1) = 1, so the Malthusian condition (5.4) is
satisfied with α = 1. (Again, α = 1 has to hold since the number of keys
is a Yule process, although now started with ` keys.) It is easy to see that
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all other conditions (A1)–(A5) are satisfied. Consequently, Theorem 5.14
applies; the asymptotic random fringe tree T is obtained by running the
branching process above and stopping it after a random time τ ∼ Exp(1).

Theorems 7.5 and 7.6 can be adapted with minor modifications as follows;
we omit the proofs which are similar to the ones in Section 7.1, now using
(8.2).

Theorem 8.1. For the median-of-(2`+1) binary search tree Tn with n keys,

|Tn|
n

a.s.−→ 1

mψ
=

1

(`+ 1)(H2`+2 −H`+1)
. (8.4)

�

Theorem 8.2. Let N e
k(Tn) be the number of external nodes in Tn with k

keys, for k = `, . . . , 2`, and let N i
k(Tn) be the number of internal nodes (all

having one key). Then, for the median-of-(2`+ 1) binary search tree,

N e
k(Tn)

|Tn|
a.s.−→ `+ 1

(k + 1)(k + 2)
, ` 6 k 6 2`, (8.5)

N i
k(Tn)

|Tn|
a.s.−→ 1

2
. (8.6)

�

Remark 8.3. Chern, Hwang and Tsai [31] consider (using different meth-
ods) a more general class of trees, where an external node has up to r − 1
keys; when the r:th key arrives to the node, a pivot is selected among them
at random, such that its rank R (i.e., its number if the r keys are ordered)
has some fixed distribution on {1, . . . , r}. (The case above is thus r = 2`+1
and R = ` + 1; in this case R is deterministic.) The pivot is put in the
internal node, and its children get R − 1 and r − R keys. Translated to
the branching process, this means (in general) that the individuals start
with different number of keys, which would require a multi-type version of
the results above (see Remark 5.9). However, it is possible to modify the
branching process by including the external nodes in the life of their parent.
Thus the individuals now are the internal nodes. (Properties of external
nodes can be found using suitable characteristics.) The life of an individual
starts with r keys; these are immediately split up with a random R as above,
and we regard the individual as carrying two unborn children (fetuses) with
initially R − 1 and r − R keys. The fetuses get new keys, independently of
each other and each with rate 1 + the number of existing keys, and each is
born when it has got r keys. We omit the details.

Example 8.4. An m-ary generalisation, introduced by Hennequin [63] and
further studied by e.g. [30], [31], [26] and [49], has internal nodes with m−1
keys and external nodes with up to m` + m − 2 keys. (Here m > 2 and
` > 0.) When an external node gets m`+m− 1 keys, it is converted to an
internal node with m external children; the m` + m − 1 keys are ordered
and keys number ` + 1, 2(` + 1), . . . , (m − 1)(` + 1) are put in the internal
node, while the external children get ` keys each. The m-ary search tree in
Section 7.1 is the case ` = 0.
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This version can be treated as above; again each individual starts with
` keys, but now it acquires (m − 1)(` + 1) more keys, after waiting times
Yi ∼ Exp(`+ i), i = 1, . . . , (m− 1)(`+ 1). At time S(m−1)(`+1), m children
are born. Note that (7.1)–(7.2) generalize to, cf. the special case (8.3),

µ̂(θ) = mE e−θS(m−1)(`+1) = m

(m−1)(`+1)∏
i=1

E e−θYi

= m

(m−1)(`+1)∏
i=1

i+ `

i+ `+ θ
=

m〈`+ 1〉(m−1)(`+1)

〈`+ 1 + θ〉(m−1)(`+1)

=
〈`+ 2〉(m−1)(`+1)

〈`+ 1 + θ〉(m−1)(`+1)
(8.7)

and hence again α = 1. It then follows from (8.7) and (5.39) that

β =

(m−1)(`+1)∑
i=1

1

i+ `+ 1
= Hm`+m −H`+1, (8.8)

cf. (7.4) for the case ` = 0. Results for this model can be derived as above,
but we leave this to the readers.

More generally, one can similarly make an m-ary version of the model
with random pivot in Remark 8.3, see [31]; a corresponding Crump–Mode–
Jagers branching process (with the internal nodes as individuals) can be
constructed as there.

9. Fragmentation trees

Another type of example is provided by the following fragmentation pro-
cess, introduced by Kolmogorov [86], see also Bertoin [9, Chapter 1] and
Janson and Neininger [80], and the further references given there. Fix b > 2
and the law for a random vector V = (V1, . . . , Vb); this is commonly called
the dislocation law. We assume that 0 6 Vj 6 1, j = 1, . . . , b, and

b∑
j=1

Vj = 1, (9.1)

i.e., that (V1, . . . , Vb) belongs to the standard simplex. For simplicity we
also assume that each Vj < 1 a.s. (We allow Vj = 0.)

Starting with an object of mass x0 > 1, break it into b pieces with masses
V1x0, . . . , Vbx0. For a given threshold x1 ∈ (0, x0], continue recursively with
each piece of mass > x1, using new (independent) copies of the random
vector (V1, . . . , Vb) each time. The process terminates a.s. after a finite
number of steps, leaving a finite set of fragments of masses < x1. We regard
the fragments of mass > x1 that occur during this process as the (internal)
nodes of a (random) tree, the fragmentation tree; the resulting fragments of
mass < x1 can be added as external nodes.

Obviously, the fragmentation tree depends only on the ratio x0/x1, so we

denote it by T̂x0/x1 . (We may assume either x0 = 1 or x1 = 1 without loss
of generality, but we prefer to be more flexible.)
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We can translate the fragmentation process to a Crump–Mode–Jagers
branching process by regarding a fragment of mass x as born at time log(x0/x);
an individual will have b children, born at ages ξ1, . . . , ξb with ξi := − log Vi.
(If some Vi = 0, we get ξi = ∞, meaning that this child is not born at all,
so there are fewer than b children. Note also that in this section, we do not
require that ξ1, ξ2, . . . are ordered in increasing order.) It is easy to see that

the fragmentation tree T̂x0/x1 defined above for a threshold x1 is the same
as the family tree Tlog(x0/x1) of this branching process at time log(x0/x1).

The relation (9.1) can be written as

b∑
j=1

e−ξi = 1. (9.2)

Taking the expectation we find, see (5.7), µ̂(1) = 1, so the Malthusian
parameter α = 1. It is easy to see that the assumptions (A1)–(A5) hold,
except possibly (A2); we say that the fragmentation process is non-lattice
if (A2) holds, i.e., if not every Vi is concentrated on {r, r2, r3 . . . } for some
r ∈ (0, 1). (A sufficient condition for (A2) is thus that V1 has a continuous
distribution.)

Furthermore, (9.2) and (5.6) say that Ξ̂(α) = 1 is non-random. This
has the consequence that the random variable W in Remark 5.11 also is
deterministic; more precisely, see [71, Theorem (6.8.1)],

W = 1/β, (9.3)

where by (5.40),

β = E
b∑

j=1

ξje
−ξj = E

b∑
j=1

Vj log(1/Vj). (9.4)

Remark 9.1. The Laplace transform Ψ(s) := E e−sW of the limit W in
Remark 5.11 satisfies the functional equation

Ψ(s) = E
N∏
i=1

Ψ
(
se−αξi

)
, (9.5)

and this equation together with (5.15) (provided (5.11) holds) determines
W uniquely, see [43]. Assuming α = 1 (which can be regarded as a normal-
isation of the time scale), it is easy to see that a constant W satisfies (9.5)
if (9.2) holds, which gives an alternative proof of (9.3). Yet another proof
of (9.3) is obtained by noting that when (9.2) holds, the martingales Rn
and Yt in [104] are constant 1, and then (9.3) follows from [104, Corollary
3.2]. (The related intrinsic martingale in [9] is constant 1 too, see [9, Section
1.2.2].) Note also that the converse holds: W is constant (and then 1/β) if
and only if (9.2) holds; this too follows from the functional equation (9.5).

Remark 9.2. Note that unlike the trees studied in the previous sections, we
consider the family tree Tt at a fixed time t = log(x0/x1) instead of stopping

when some weight Zψt reaches a given value. However, since W is constant,
this makes a very small difference. In fact, by (5.9) and (9.3), Zt ∼ β−1et
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a.s., and thus, if we use the characteristic ψ(t) = 1 again, the stopping time
τ(n) when the tree has n nodes satisfies a.s.

τ(n) = log(βn) + o(1) = log n+ log β + o(1). (9.6)

We may define a fragmentation tree Tn of fixed size n by stopping at τ(n);
in the original formulation this means that we choose the threshold x1 to
be the size of the n:th largest fragment in the process, so that there will
be exactly n fragment of size > x1 (unless there is a tie). We see from
(9.6) that asymptotically, this is almost the same as taking a constant time
t = log n+log β. For more precise results on |Zt|, and thus on τ(n), see [80].

Theorem 9.3. Let T̂x0/x1 be a random fragmentation tree defined as above,
for a non-lattice fragmentation process. Then Theorem 5.14 holds also (as
x0/x1 →∞, and with other obvious notational modifications) for the random

fringe tree T̂ ∗x0/x1.

The limiting random fringe tree T can be constructed by the fragmentation
process above, starting at x0 = 1 and with a random threshold x1 = U ∼
U(0, 1), with U independent of the fragmentation.

Proof. By the equivalence above of the fragmentation process and the Crump–

Mode–Jagers branching process, T̂x0/x1 = Tlog(x0/x1), and the first part fol-
lows from Theorem 5.14 (and its proof).

The limiting fringe tree T is obtained by stopping the branching process
Tt at a random time τ ∼ Exp(1); by the equivalence above, this is equivalent
to starting the fragmentation process at x0 = 1 and stopping at a threshold
x1 = exp(−τ). This completes the proof, since exp(−τ) ∼ U(0, 1). �

Similarly, Theorem 5.25 holds, and the random sin-tree T̃ can be defined
by a suitable extension of this random fragmentation process; we leave the
details of the general case to the reader, and discuss only one case in the
example below.

Example 9.4 (Binary splitting). Let b = 2 and V = (V1, V2) = (V1, 1−V1)
with V1 ∼ U(0, 1). Thus, at each fragmentation event, the object is split
into two parts, with uniformly random sizes.

In the corresponding Crump–Mode–Jagers branching process, each indi-
vidual gets two children, born at ages ξ1 and ξ2, where ξ1, ξ2 ∼ Exp(1) and
one of them determines the other by

e−ξ1 + e−ξ2 = 1. (9.7)

Note the similarities with the Crump–Mode–Jagers branching process for
the binary search tree in Example 6.2; the difference is that there ξ1 and ξ2

are independent, while here they are dependent. For properties that depend
only on the individual (marginal) distributions of ξ1, ξ2 and not on their
joint distribution, we thus have the same results for both processes; some

examples are the intensity µ, the distribution of ξ̃∗ ∼ Exp(2) and its mean
β = 1/2, and the expected size of the population EZt = 2(et−1). However,
many properties really depend on the joint distribution of the times of birth
of the children, and are thus in general different for the two processes. For
example, although EZt is the same for both processes, the distributions
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of Zt are not: for the present process, there is by (9.7) always one child
of the root born before time log 2, so Zlog 2 > 2, while for the process in
Example 6.2, P(Zt = 1) = e−2t > 0 for every t > 0. Also the fringe tree
distributions will be different, as is seen below.

Let us first consider the asymptotic outdegree distribution in the frag-
mentation tree, which equals the distribution of the root D in T . We have,
using the construction of T in Theorem 9.3,

D = 0 ⇐⇒ U > max(V1, 1− V1)

D = 1 ⇐⇒ min(V1, 1− V1) < U 6 max(V1, 1− V1)

D = 2 ⇐⇒ U < min(V1, 1− V1)

(9.8)

and simple calculations yield

P(D = 0) = P(1− U 6 V1 6 U) = E(2U − 1)+ = 1/4 (9.9)

and similarly P(D = 1) = 1/2 and P(D = 2) = 1/4. Consequently, D ∼
Bi(2, 1/2) has a binomial distribution. (This differs from Example 6.2, where
D has a uniform distribution.)

Furthermore, let X1 := V1/U and X2 := (1− V1)/U be the masses of the
two children of the root, relative to the threshold U . Then X1, X2 > 0 and
X1 + X2 > 1, and a calculation of the Jacobian of the mapping (U, V1) 7→
(X1, X2) shows that in this region, (X1, X2) has the density f(x1, x2) =
(x1 + x2)−3. This enables us to again compute the distribution of D; for
example, D = 0 ⇐⇒ X1, X2 < 1. Moreover, we can now easily find the
distribution of nodes in the second generation too; we give a few examples.

Denote the children of the root by v1 and v2. Then T contains v1 but
not v2 if and only if X1 > 1 > X2; denote this event by E1. Conditioned on
E1, the density of X1 is, by a small calculation, 2

(
x−2 − (x + 1)−2

)
, x > 1.

Furthermore, the outdegree of v1 is given by (9.8) with U replaced by 1/X1

(and V1 by an independent copy V11); hence, in analogy to (9.9),

P
(
deg(v1) = 0 | E1

)
= E

(( 2

X1
− 1
)

+

∣∣∣ E1

)
=

∫ 2

1

(2

x
− 1
)( 2

x2
− 2

(x+ 1)2

)
dx

=
3

2
− 8 log 2 + 4 log 3 ≈ 0.34927, (9.10)

and, similarly,

P
(
deg(v1) = 1 | E1

)
= 2E

(
min

( 1

X1
, 1− 1

X1

) ∣∣∣ E1

)
= 1 + 12 log 2− 8 log 3 ≈ 0.52887, (9.11)

P
(
deg(v1) = 2 | E1

)
= E

((
1− 2

X1

)
+

∣∣∣ E1

)
= −3

2
− 4 log 2 + 4 log 3 ≈ 0.12186. (9.12)

Recall that if we just condition on v1 ∈ T , its outdegree distribution equals
the unconditional distribution of D, i.e., Bin(2, 1/2); hence, (9.10)–(9.12)
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illustrate the dependencies between the outdegrees of different nodes (in
this case, o and v1), see Remark 5.24.

We obtain also P(|T | = 1) = P(D = 0) = 1/4 and, from (9.10),

P(|T | = 2) = 2P
(
E1 and deg(v1) = 0

)
= 2P

(
deg(v1) = 0 | E1

)
P(E1)

=
3

4
− 4 log 2 + 2 log 3 ≈ 0.17464. (9.13)

Again, this differs from the binary search tree in Example 6.2. We do not
know any general formula for the probability distribution of the size |T |.

The irrational probabilities in (9.10)–(9.12) and (9.13) seem to exclude
any simple combinatorial construction or interpretation of the asymptotic
fringe tree T .

To construct the limiting sin-tree T̃ in Theorem 5.25, we note that the

heir ξ̃∗ of an ancestor has distribution Exp(2) by (5.34) (as in Example 6.2).

Going back to the mass scale, we note that Y := exp(ξ̃∗) has the Pareto(2)
distribution

P(Y > x) = P(ξ̃∗ > log x) = x−2, x > 1. (9.14)

The random sin-tree T̃ can thus be constructed as follows: Start with a root
o of mass 1 (as in Theorem 9.3) and give it an infinite sequence of ancestors
of mass Y1, Y1Y2, Y1Y2Y3, . . . , where Yi are i.i.d. with the distribution (9.14);
the other child of the ancestors thus has mass Y1−1, Y1(Y2−1), Y1Y2(Y3−1),
. . . . Grow independent fragmentation trees from these other children and
from o, using uniformly random binary splittings, and stop at a common
threshold x1 = U ∼ U(0, 1).

Remark 9.5. We have, for simplicity, assumed that the branching factor b
is a constant finite integer. (Although we may allow fewer than b fragments
by letting some Vi = 0.) We can also allow b = ∞, or a random b (which
can be reduced to b = ∞ by adding variables Vi that are 0). The results
above extend, provided (A5) holds.

Remark 9.6. As noted in Section 5, the results extend also to the lattice
case, with minor modifications, but for simplicity we ignore that case. Only
very special fragmentation processes are lattice; one trivial example is the
deterministic symmetric binary splitting V1 = V2 = 1/2. More generally, the
deterministic binary splitting V1 = p, V2 = q = 1 − p is lattice if and only
if log p/ log q is rational. For a random example, let r = (

√
5 − 1)/2, take

b = 3 and let (V1, V2, V3) be either (r, r2, 0) or (r2, r2, r3) with probability
1/2 each.

Remark 9.7. The split trees defined by Devroye [38] are related to frag-
mentation trees. A split tree is a b-ary tree defined using a number of balls
that enter the root and are distributed (randomly and recursively) to the
subtrees of the root and further down in the tree according to certain rules
that are based on a splitting law V = (V1, . . . , Vb) satisfying (9.1), see [38]
for details. (A splitting law is thus the same as a dislocation law.) Far away
from the fringe, where there are many balls and the law of large numbers
applies, the numbers of balls in different subtrees are distributed asymptot-
ically as the masses in the corresponding fragmentation tree, so there are
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many similarities between the two types of random trees. However, at the
fringe, the details differ, and the asymptotic fringe distributions are in gen-
eral not the same. For example, the binary search tree in Example 6.2 can
be defined as a split tree, where the splitting law V = (V1, V2) = (V1, 1−V2)
with V1 ∼ U(0, 1) uniform. The corresponding fragmentation tree is thus
the tree studied in Example 9.4, and as noted there the asymptotic fringe
tree distribution is not the same as for the binary search tree; for exam-
ple, the degree distributions differ. Fringe distributions of split trees will be
studied in another paper.

10. Rank

Define, following Bóna and Pittel [20], the rank of a node in a rooted tree
to be the smallest distance to a descendant that is a leaf. Thus a leaf has
rank 0, while a non-leaf has rank > 1. A node with rank > k is also said to
be k-protected. (For example, 1-protected = non-leaf; 2-protected = non-leaf
and no child is a leaf.) The simplest “non-trivial” case is 2-protected, which
sometimes is called just protected. There has in recent years been a number
of papers on the number of 2-protected nodes in various random trees, or
(equivalently) the probability that a random node is 2-protected, and a few
papers on k-protected nodes for higher k; see e.g. Devroye and Janson [41]
and the references therein. Such results can equivalently be described as
results on the distribution of the rank of a random node.

For a tree T (deterministic or random), letR(T ) be the rank of a uniformly
random node in T , and let R0(T ) be the rank of the root of T . (Thus R(T )
is a random variable, while R0(T ) is deterministic if T is.) Since the rank of
v depends only on the subtree T v, R(T ) = R0(T ∗), the rank of the root of
the random fringe tree T ∗. This reduces the study of rank and k-protected
nodes to the study of random fringe trees. (This was the method by Devroye
and Janson [41], there applied to several classes of random trees, including
random recursive trees and binary search trees but also conditioned Galton–
Watson trees which are not of the type considered in the present paper.)

For the random trees considered here, Theorem 5.14 applies, for any fixed
k > 0, to the property that a node has rank > k (i.e., is k-protected); we
denote this property by Pk (in this section) and deduce the following. (Note
that, depending on one’s point of view, (10.1) can be seen both as a limit
result for the distribution of the rank, and as a limit result for the proportion
of k-protected nodes.)

Theorem 10.1. Suppose that (A1)–(A5) hold. Then, for any k > 0, as
n→∞,

P
(
R(Tn) > k | Tn

)
=
nPk(Tn)

|Tn|
a.s.−→ Pk := P

(
R0(T ) > k

)
. (10.1)

In other words, the conditioned random variables
(
R(Tn) | Tn

)
converge in

distribution a.s. as n→∞,

L
(
R(Tn) | Tn

) a.s.−→ L
(
R0(T )

)
. (10.2)

In particular, the same holds for the unconditioned random variables, i.e.,

R(Tn)
d−→ R0(T ). (10.3)
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Proof. An immediate application of Theorem 5.14. �

10.1. m-ary search tree. We consider here the rank and k-protected nodes
in the m-ary search tree in Section 7.2. (The binary case m = 2 has been
studied by Mahmoud and Ward [98], Bóna [19], Devroye and Janson [41],
Bóna and Pittel [20], Holmgren and Janson [66]; the casem = 3 by Holmgren
and Janson [67] and some higher m by Heimbürger [62].)

We let as in (10.1) Pk = Pk(m) := P
(
R0(T ) > k

)
. Thus, by (10.1), the

fraction of k-protected nodes in an m-ary search tree Tn converges a.s. to
Pk(m). Recall that (for m > 3) the number of nodes |Tn| is random. Hence
it is interesting to study not only the fraction of k-protected nodes, but also
the (random) number nPk(Tn) of them in Tn. (The results are formulated
in this way in some of the references above.) We note that, as an immediate
consequence of (10.1) and (7.19), see Remark 5.18,

nPk(Tn)

n

a.s.−→ Pk(m)

2(Hm − 1)
. (10.4)

Note also that this implies asymptotics for the expectation EnPk(Tn), see
Remark 5.19.

We proceed to the calculation of the numbers Pk(m). It will be convenient
to use the extended m-ary search tree in Section 7.1, but note that we really
are interested in the subtree of internal nodes; to emphasize this we say
internally k-protected for the k-protected nodes in the tree of internal nodes.
As usual, m is fixed and will often be omitted from the notation.

With this in mind, define, for k > 0,

hk(t) := P(the root of Tt is internal and internally k-protected). (10.5)

The root becomes an internal node at time S1 ∼ Exp(1), when it receives
its first key. Every node is 0-protected, so h0(t) is the probability that the
root is internal; thus

h0(t) = P(S1 6 t) = 1− e−t. (10.6)

Recall that all m children of the root are born at time ξ = Sm−1. Let
f(t) be the density function of ξ = Sm−1. For k > 1, the root of Tt is
internal and internally k-protected if and only if t > ξ and the m children
of the root either are external or internally (k − 1)-protected, but not all
external. Conditioned on ξ, with ξ < t, the m subtrees of the root of Tt
are independent, and distributed as Tt−ξ. Hence, the conditional probability
(given ξ) that a given child is internally (k−1)-protected is hk−1(t−ξ), while

the probability that it is external is 1− h0(t− ξ) = e−(t−ξ). Consequently,

hk(t) =

∫ t

0
f(s)

(
(hk−1(t− s) + e−(t−s))m − e−m(t−s)) ds. (10.7)

This can be written as a convolution

hk(t) = f(t) ∗
(
(hk−1(t) + e−t)m − e−mt

)
. (10.8)

Furthermore, f(t) is the density function of the sum Sm−1 =
∑m−1

i=1 Yi of
independent random variables, and thus f(t) is itself a convolution of their
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densities ie−it. Hence, (10.8) can be written

hk(t) =
(
(hk−1(t) + e−t)m − e−mt

)
∗ m−1∗
i=1

ie−it. (10.9)

This, with the initial (10.6), makes it possible to calculate any hk(t) by
recursion (preferably using computer algebra).

By Theorem 5.14 and (10.5), the fraction of nodes in Tn that are internal
and internally k-protected converges a.s. to

P(the root of T is internal and internally k-protected) =

∫ ∞
0

hk(t)e
−t dt.

(10.10)

Recall that we are really interested in the internal nodes only. By (7.13),
asymptotically half of the nodes in the extended m-ary search tree are in-
ternal, and thus the fraction of k-protected nodes in the (internal) m-ary
search tree Tn converges a.s. to

Pk = Pk(m) := 2

∫ ∞
0

hk(t)e
−t dt. (10.11)

This can be regarded as a value of a Laplace transform. Since the Laplace
transform transforms convolutions to multiplications, and

∫∞
0 f(t)e−t dt =

E e−Sm−1 = 1/m by (7.9), we have by (10.8) also the alternative formula
(that might be better for numerical calculations)

Pk =
2

m

∫ ∞
0

e−t
(
(hk−1(t) + e−t)m − e−mt

)
dt. (10.12)

In the binary case m = 2, these formulas are equivalent to the formu-
las derived by a very similar argument in Devroye and Janson [41]. (The
function rk(t) in [41] equals 1− e−t − hk(t).) For a different method to find
Pk(2), see Bóna [19] and Bóna and Pittel [20].

Consequently, Theorem 10.1 says that for an m-ary search tree the as-
ymptotic distribution of the rank is

P(R(Tn) = k | Tn)
a.s.−→ P(R0(T ) = k) = Pk − Pk+1, (10.13)

where Pk is given by (10.11)–(10.12).
Note that (by induction), each hk(t) is a polynomial in e−t and t with

rational coefficients. Hence, each Pk(m) is a rational number.
Trivially, P0 = 1 for every m by (10.1).
For k = 1, h0(t) + e−t = 1 by (10.6), and thus by (10.12),

P1 =
2

m

∫ ∞
0

e−t(1− e−mt) dt =
2

m

(
1− 1

m+ 1

)
=

2

m+ 1
, (10.14)

in accordance with (7.24) (recall that the 1-protected nodes are precisely
the non-leaves).

Also for P2, we may deduce a rather simple formula.

Lemma 10.2. For the m-ary search tree, with m > 2,

h1(t) = (1− e−t)m. (10.15)
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Proof. We extend the notation of Section 7.1 and let Sj :=
∑j

i=1 Yi for any
integer j > 0, where Yi ∼ Exp(i) are independent. (We thus change the
earlier special definition of Sm.) By Theorem C.1,

Sj
d
= Vj,j = max

16i6j
Ei, (10.16)

where E1, E2, . . . , Ej ∼ Exp(1) are i.i.d.
Since h1(t)+e−t = 1 by (10.6), (10.8) yields, recalling that f is the density

function of Sm−1 and using (10.16),

h1(t) = f(t) ∗ (1− e−mt) = f(t) ∗ P(Ym > t) =

∫ t

0
f(s)P(Ym 6 t− s) ds

= P(Sm−1 + Ym 6 t) = P(Sm 6 t) = P
(

max
16i6m

Ei 6 t
)

=
m∏
i=1

P(Ei 6 t) = (1− e−t)m. �

Theorem 10.3. The asymptotic probability that a random node in an m-ary
search tree Tn is 2-protected is

P2 = P2(m) =
2

m

m−1∑
`=0

m!

(m− `)!
· (m(m− `))!

(m(m− `) + `+ 1)!
. (10.17)

Proof. By (10.12), a binomial expansion, (10.15), the change of variables
x = e−t and a standard evaluation of a beta integral,

P2 =
2

m

∫ ∞
0

e−t
m−1∑
`=0

(
m

`

)
h1(t)m−`e−`t dt

=
2

m

m−1∑
`=0

(
m

`

)∫ ∞
0

(1− e−t)m(m−`)e−(`+1)t dt

=
2

m

m−1∑
`=0

(
m

`

)∫ 1

0
(1− x)m(m−`)x` dt

=
2

m

m−1∑
`=0

(
m

`

)
B
(
m(m− `) + 1, `+ 1

)
=

2

m

m−1∑
`=0

(
m

`

)
(m(m− `))! `!

(m(m− `) + `+ 1)!
. (10.18)

�

Remark 10.4. We can also prove this result using a more combinatorial
proof with balls and boxes. We recall from Theorem 7.10 that the asymptotic
fringe tree T can be constructed as an m-ary search tree with a random
number K of keys, where by (7.18) P(K = k) = 2

(k+1)(k+2) = 1/
(
k+2

2

)
,

k > 1. We condition on K = k and find the probability that the root of Tk
is 2-protected.

Recall that a node is 2-protected if it is not a leaf and has no child that
is a leaf. Thus, the root of Tk is 2-protected if and only if it is filled with
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m− 1 keys and each of the m subtrees of the root has the property that it
is either empty or contains at least m keys, and at least one of the subtrees
is nonempty; in particular, we must have k > 2m− 1.

For k > 2m − 1 we order the keys in increasing order and represent the
k−m+ 1 keys that are distributed to the m subtrees of the root by 0’s and
the m − 1 keys that stay in the root by 1’s. We also add two additional
1’s first and last. This gives a string of length k + 2, beginning and ending
with 1, and with m− 1 additional 1’s. There are

(
k

m−1

)
such strings, and all

occur with the same probability.
Furthermore, the corresponding tree Tk is 2-protected if and only if be-

tween every pair of 1’s in the string, there is either no 0’s, or at least m 0’s.
In other words, the 1’s appear in clusters, separated by at least m 0’s. Let
the number of clusters be r + 1, and note that 1 6 r 6 m. To count the
number of strings of length k+ 2 such that these properties are satisfied for
a given r, we first distribute the m+ 1 1’s into r+ 1 boxes, such that no box
is empty. This gives

(
m
r

)
different choices. We then distribute the k−m+ 1

0’s into the r gaps between the clusters; it is required that there should be
at least m 0’s in each gap, but the remaining k − m + 1 − mr 0’s can be

distributed arbitrarily into the r gaps. This can be done in
(
k+r−m(r+1)

r−1

)
ways. Hence, summing over r and k and using (7.18), we obtain

P2 = P2(m) =
m∑
r=1

∞∑
k=m(r+1)−1

(
m
r

)(
k+r−m(r+1)

r−1

)(
k+2

2

)(
k

m−1

) . (10.19)

The sum over k can be written as a hypergeometric sum (B.1), which using
Gauss’ formula (B.2) simplifies and yields

P2(m) =
m∑
r=1

2

(
m

r

)
(m− 1)! (mr)!

(mr +m+ 1)!
F (mr + 1, r;mr +m+ 2; 1)

= 2
m∑
r=1

(m− 1)! (mr)!

r! (mr +m− r + 1)!
, (10.20)

which is equivalent to (10.17) by letting r = m− `.

We can find the asymptotics of P2(m) as m→∞ from (10.17).

Theorem 10.5. As m→∞, the probability P2 = P2(m) in Theorem 10.3
is

P2(m) =
2

m3
+O

(
m−4

)
. (10.21)

Proof. Write (10.17) as

P2(m) =
2

m

m−1∑
`=0

a`(m) (10.22)

with

a`(m) =
m!

(m− `)!
· (m(m− `))!

(m(m− `) + `+ 1)!
. (10.23)

In particular,

a0(m) =
(m2)!

(m2 + 1)!
=

1

m2 + 1
. (10.24)



FRINGE TREES, BRANCHING PROCESSES AND m-ARY SEARCH TREES 59

For each fixed `, as m→∞,

a`(m) ∼ m`(m(m− `))−`−1 ∼ m`m−2(`+1) = m−`−2. (10.25)

Furthermore, rather crudely, if ` 6 m/2, then

a`(m) 6 m` 1

(m(m− `))`+1
6

m`

(m2/2)`+1
=

2`+1

m`+2
(10.26)

and thus
m/2∑
`=1

a`(m) 6
22

m3

(
1− 2

m

)−1
= O

(
m−3

)
. (10.27)

If m/2 < ` 6 m− 1, we instead note that `−m/4 +O(1) > m/4 +O(1) of
the factors (m− i), i = 0, . . . , `− 1, are less than 3

4m, and thus, similarly to
(10.26),

a`(m) 6
(3

4

)m/4+O(1)
m` 1

(m(m− `))`+1
6
(3

4

)m/4+O(1)
(10.28)

and thus
m−1∑

`=bm/2c+1

a`(m) = O

(
m
(3

4

)m/4)
= O

(
m−3

)
. (10.29)

Consequently, by (10.24), (10.27) and (10.29),

m−1∑
`=0

a`(m) = a0(m) +O
(
m−3

)
=

1

m2
+O

(
m−3

)
(10.30)

and the result follows from (10.22). �

Remark 10.6. The proof shows that
∑m−1

`=k+1 = O
(
m−k−3

)
for any fixed

k, and thus

P2(m) =
2

m

k∑
`=0

a`(m) +O
(
m−k−4

)
(10.31)

which together with (10.23) gives an asymptotic expansion of P2(m) in pow-
ers of m−1 to arbitrary precision. For example, taking k = 2,

P2(m) =
2

m

( 1

m2 + 1
+

m

〈m2 −m+ 1〉2
+

m(m− 1)

〈m2 − 2m+ 1〉3

)
+O

(
m−6

)
=

2

m3
+

2

m4
+

4

m5
+O

(
m−6

)
. (10.32)

We give some numerical examples for small m and k, calculated by Maple

using (10.11), (10.12) or (for k = 2) (10.17). Recall that P0(m) = 1 and
P1(m) = 2/(m+1) by (10.14). The value P2(2) was first found by Mahmoud
and Ward [98]. Bóna [19] found also P3(2) and P4(2) in an equivalent form;
in our notation he computed P(R0(T ) = k) for k 6 4; this was extended to
k 6 6 by Bóna and Pittel [20], see also Devroye and Janson [41]. For m > 2,
P2(m) was found using Pólya urns for m = 3 by Holmgren and Janson [67]
and for m = 4, 5, 6, 7 by Heimbürger [62]. The values of P3(3) and P3(4)
are new. (We have also calculated e.g. P4(3) and P3(5), but they have too
many digits to fit on a line.)

P2(2) = 11
30
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P3(2) = 1249
8100

P4(2) = 103365591157608217
2294809143026400000

P5(2) = 28988432119470126428745503472450231049113704894255010839147852677
3353377025022449199852900725670960067418280803797231788288000000000

P2(3) = 19
140

P3(3) = 1550707922167467531619
109171218839281719120000

P2(4) = 54731
1021020

P3(4) = 18669293609273671848329391002724727078204420654827428710651571011801
10647619779410811926633805505705710276401405786992612983909862200000000

P2(5) = 3491
145860

P2(6) = 760687429
61618399920

P2(7) = 30706935422593
4254556530624400

P2(8) = 351290243384177
75964420635503400

P2(9) = 4396518809902327
1391843538882476680

P2(10) = 2342020375280850167304355177
1036489488884911417519833710040

P2(13) = 26484106080648861012732023951265705943439
26631299618409351014679549721918492033886700

P2(15) = 3345241368583279619305030461877889463409229379479549149
5237499866293002299315802678302280652458939709867850337600

P2(18) = 291057072374356381926366502629609543999495527334257770304419581448683067
798438501453518964732193240994834409677783210033312650160515213913065316400

The numerators and denominators of these rational numbers evidently
grow very rapidly with k; Bóna and Pittel [20] note that (in our notation) the
denominator of P6(2) has 274 digits, but the largest prime factor is only 61,
and they show that in general, the largest prime factor of the denominator
of Pk(2) is at most 2k + 1. This can be generalized to arbitrary m, using
the recursion above; this also gives a new and simpler proof for m = 2.
(Nothing similar seems to hold for the numerators; they typically have only
a few and often large prime factors in these examples. The numerator of
P2(13) happens to be a prime with 41 digits.)

Theorem 10.7. The largest prime factor of the denominator of Pk(m) is
at most mk + 1, for any k > 1 and m > 2.

Proof. A simple calculation shows that for integers j, a, b > 0 with a 6= b, the

convolution tje−at∗e−bt is of the form
∑j

i=0 cit
ie−at+c′e−bt with coefficients

ci, c
′ ∈ (b − a)−j−1Z; if a = b, we obtain instead 1

j+1 t
j+1e−at. It follows by

(10.9), (10.15) and induction that for k > 1, hk(t) is a polynomial in e−t

and t of degree mk in e−t and of degree (at most) 1 + m + · · · + mk−2 =
(mk−1− 1)/(m− 1) in t, with rational coefficients whose denominators have
all their prime factors < mk. The result then follows from (10.11). �

For the binary case m = 2, the probabilities Pk(2) where shown to have
an exponential decay by Bóna and Pittel [20]. We conjecture that this holds
for m > 3 too, but leave that as an open problem.

10.2. Random recursive tree. Consider the random recursive tree in Ex-
ample 6.1. This has been studied by Mahmoud and Ward [99] and Devroye
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and Janson [41]; we follow here [41]. Let Tt be the Yule tree process in
Example 6.1 and define

pk(t) := P(R0(Tt) > k), (10.33)

the probability that the root of Tt is k-protected. By the construction of the
fringe tree T = Tτ , with τ ∼ Exp(1), the limit Pk in (10.1) is given by

Pk =

∫ ∞
0

pk(t)e
−t dt. (10.34)

The functions pk(t) can, in principle, be found by recursion. The children
of the root in Tt arrive according to a Poisson process with intensity 1, and
a child that is born at time s 6 t is not (k − 1)-protected at time t with
probability 1− pk−1(t− s). Hence, for any k > 1, the number of children of
the root in Tt that are not (k− 1)-protected at time t is Poisson distributed

with mean
∫ t

0

(
1 − pk−1(t − s)

)
ds =

∫ t
0

(
1 − pk−1(s)

)
ds. Since the root is

k-protected if and only if there is no such child, but there is at least one
child, and the probability that there is no child at all is e−t, we obtain the
recursion

pk(t) = exp

(
−
∫ t

0

(
1− pk−1(s)

)
ds

)
− e−t

= e−t
(

exp

(∫ t

0
pk−1(s) ds

)
− 1

)
, k > 1, t > 0, (10.35)

with p0(t) = 1.
Taking k = 1 in (10.35) we obtain the obvious p1(t) = 1 − e−t. Taking

k = 2 in (10.35), we then find

p2(t) = exp
(
e−t − 1

)
− e−t (10.36)

and thus by (10.34)

P2 =

∫ ∞
0

exp
(
e−t − 1

)
e−t dt−

∫ ∞
0

e−2t dt

=

∫ 1

0
exp(x− 1) dx− 1

2
=

1

2
− e−1, (10.37)

in accordance with Mahmoud and Ward [99].
In principle, the recursion (10.35) yields pk(t) and Pk for larger k too, but

we do not know any closed form for k > 3.

11. Maximal clades in m-ary search trees

We define a clade in an m-ary tree to be a node with less than m children.
(In the formulation using extended m-ary search trees with external nodes,
a clade is thus a node with at least one external child.) A maximal clade is
a clade such that no ancestor is a clade.

Remark 11.1. The reason for this somewhat strange terminology comes
from applications of the binary case m = 2 to mathematical biology, where
the clade is regarded as a set of external nodes, see e.g. Blum and François
[17], Durand, Blum and François [50], Chang and Fuchs [25], Durand and
François [51], Drmota, Fuchs and Lee [46] and (for the elementary equiv-
alence with the definition here) Janson [78]. We consider here the natural
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extension to m-ary trees. (As a mathematically interesting example; we do
not claim any biological applications.)

The number of clades is thus the number of nodes with outdegree less
than m, and the fraction of such nodes is by Theorem 5.14 asymptotically
given by the probability that the root of the asymptotic fringe tree T has
outdegree less than m. (This is found to be 1− 2

m(m+1) in Theorem 7.14.)

The property that a clade is maximal, however, depends also on its an-
cestors, and therefore we need the extended fringe and the random sin-tree

T̃ ; moreover, we have to consider all ancestors, so Theorem 5.25 does not
apply and we use Theorem 5.26.

Theorem 11.2. Let nmc(T ) be the number of maximal clades in T . If Tn
is a random m-ary search tree with n keys, then

nmc(Tn)

|Tn|
a.s.−→ Pmc = Pmc(m) = P

(
o is a maximal clade in T̃

)
. (11.1)

Proof. We apply Theorem 5.26 with P0 = Q = “the outdegree is < m”, i.e.,
the property that a node is a clade. Then P in Theorem 5.26 is the property
that a node is a maximal clade. The assumption (5.49) holds trivially, since

Ξ̂(α) 6 m. The random variable Λ is the time the root of Tt gets it final
child; by Remark 7.9, this can be written as a sum of a number of exponential
variables (with different rates), and thus (5.50) holds for some small δ > 0.
(In fact, for all δ < 1, by Remark 7.9 and Theorem C.1.)

Hence, Theorem 5.26 applies and the result follows. �

The constant Pmc(2), i.e., the asymptotic proportion of maximal clades
in a binary search tree, was found to be (1−e−2)/4 by Durand and François
[51], see also [46] and [78]. We give a different proof of this, using the

properties of the sin-tree T̃ in Example 6.2.

Theorem 11.3.

Pmc(2) =
1− e−2

4
. (11.2)

Proof. Recall the general construction of the sin-tree T̃ in Section 5 and the
specific version for the binary search tree in Example 6.2. In the construc-

tion, we stop the tree at τ ∼ Exp(1), but we first consider the tree T̃t at a
fixed time t > 0. (Equivalently, we condition on τ = t.)

We thus want to compute the probability P
(
o is a maximal clade in T̃t

)
.

We first note that o is a clade unless it already has got its two children; each
child has appeared with probability 1− e−t and thus

P
(
o is a clade in T̃t

)
= 1− (1− e−t)2 = 2e−t − e−2t. (11.3)

We also require that no ancestor is a clade, i.e., that each ancestor has
two children. Note that each ancestor has an heir, so it is not a clade if and
only if the other child is not yet born. Suppose that the ancestors are born
at times −η1,−η2, . . . , and condition on these times. Ancestor o(i) thus has
age ηi + t at time t, so the probability that it is not a clade is e−(ηi+t).
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Consequently, using the independence of different parts of the sin-tree,

P
(
o is a maximal clade in T̃t | η1, . . .

)
=
(
2e−t − e−2t

) ∞∏
i=1

(
1− e−(ηi+t)

)
.

(11.4)
The next step is to find the expectation of (11.4) over all {ηi}. In the

present case, this is not difficult since, by Example 6.2, {−ηi} is a Poisson
process with intensity 2 on (−∞, 0), and thus {ηi} is a Poisson process with
intensity 2 on (0,∞). For any Poisson process Ξ = {ξi} on some space S,
with intensity measure λ, and any function f on S with 0 6 f(x) 6 1, there
is a standard formula

E
∏
ξ∈Ξ

f(ξ) = e−
∫
S(1−f(x))λ(dx). (11.5)

(See e.g. [82, Lemma 12.2]. Or note that (11.5) follows easily if f takes
only a finite number of values, and the general case follows by monotone
convergence.) Consequently, taking f(x) = 1− e−x−t, (11.4) yields

P
(
o is a maximal clade in T̃t

)
=
(
2e−t − e−2t

)
E
∞∏
i=1

f(ηi)

=
(
2e−t − e−2t

)
e−

∫∞
0 e−x−t2 dx

=
(
2e−t − e−2t

)
e−2e−t . (11.6)

Finally, recalling that T̃ = T̃τ with τ ∼ Exp(1),

P
(
o is a maximal clade in T̃

)
=

∫ ∞
0

(
2e−t − e−2t

)
e−2e−te−t dt

=

∫ 1

0

(
2x− x2

)
e−2x dx =

1

4
− 1

4
e−2. (11.7)

�

For further, somewhat surprising, results on the number of maximal clades
in the binary case (moments and asymptotic distribution), see Drmota,
Fuchs and Lee [46] and Janson [78].

Problem 11.4. Unfortunately, we do not know how to compute Pmc(m)
for m > 2, and we leave this as an open problem. Using the description

in Section 7.2 of T̃ , it is straightforward to modify (11.3)–(11.4) (although
the result is more complicated since the birth times do not have exponential
distributions, see Remark 7.9), but the birth times of the ancestors do not
form a Poisson process so (11.5) does not apply and we do not know how
compute the expectation.

We can use the same method for other, related, problems. We give two
examples. Let us first consider again the binary search tree, but we simplify
the property of being a maximal clade studied above by considering only the
condition for the ancestors but ignoring the number of children. Thus, let
Px be the property of a node that none of its ancestors has only one child,
and let nx(T ) be the number of nodes in T with this property.
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Theorem 11.5. If Tn is a random binary search tree with n keys, then

nx(Tn)

|Tn|
a.s.−→ 1− e−2

2
. (11.8)

Proof. We apply Theorem 5.26 as in the proof of Theorem 11.2, but with
P0 the trivial property “true”. This yields convergence almost surely, to

the limit P(o has Px in T̃ ). This probability is computed as in the proof of
Theorem 11.3, replacing the factor (11.3) by 1, which yields the result∫ ∞

0
e−2e−te−t dt =

∫ 1

0
e−2x dx =

1

2
− 1

2
e−2. (11.9)

�

The property Px, as formulated above, can be studied also in other trees.
We consider the random recursive tree as a different simple example.

Theorem 11.6. If Tn is a random recursive tree with n keys, then

nx(Tn)

|Tn|
a.s.−→ 1− e−1. (11.10)

Proof. We argue as in the proof of Theorem 11.5, now using the description

of the sin-tree T̃ in Example 6.1. In this sin-tree, the ancestors form a
Poisson process with intensity 1 on (−∞, 0), and, as in the binary search
tree case, for an ancestor, the time until birth of the first non-heir is Exp(1).

Hence the limit P(o has Px in T̃ ) can be calculated by the method above,
now yielding, cf. (11.9),∫ ∞

0
e−e

−t
e−t dt =

∫ 1

0
e−x dx = 1− e−1. (11.11)

�

12. Restricted sampling and sampling by a random key

We have so far considered the properties of a random node in the tree Tn.
As pointed out by Jagers and Nerman [72], one can similarly obtain results
for a random node sampled with some restriction. (For example, a random
leaf, a random non-leaf, a random node with no sibling, . . . .)

In general, let Q be a property of the type in Theorem 5.14 or 5.25 and
sample v uniformly among all nodes in Tn that satisfy Q. If P is another
such property, then, by Theorem 5.25,

P(v has P | Tn) =
nP∧Q(Tn)

nQ(Tn)

a.s.−→ pP∧Q(T̃ )

pQ(T̃ )
. (12.1)

If we let T̃Q denote T̃ conditioned on o ∈ Q, then we can write (12.1) as

P(v has P | Tn) =
nP∧Q(Tn)

nQ(Tn)

a.s.−→ pP(T̃Q). (12.2)

If Theorem 5.14 applies, we can replace T̃ by T in (12.1)–(12.2).
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Example 12.1. We have already seen an example of this in the first sug-
gested proof of Theorem 7.13, where we note that sampling a node uniformly
in an m-ary search tree is the same as sampling an internal node uniformly
in the corresponding extended m-ary search tree. Thus Tn is the extended
m-ary search tree and Q is “internal”. Furthermore, P = Pk is the property
of having exactly k keys. (In this example, Q is the complement of P0, so
P0 ∧Q is the empty property while Pk ∧Q = Pk for k > 1.)

Let us consider the example of sampling a random leaf v in more detail.
Of course, the fringe tree T v rooted at v is trivial, so the interest is in
the extended fringe and in properties of the type in Theorem 5.25. For
example, Drmota, Gittenberger, Panholzer, Prodinger and Ward [47] study
the number of internal nodes (and the number of leaves) in the subtree
rooted at the father of a randomly chosen leaf, for a variety of different
types of random trees.

We have the following general result.

Theorem 12.2. Suppose that (A1)–(A5) hold, and that P is a property as
in Theorem 5.25. If v is a uniformly random leaf in Tn, then

P(v has P | Tn)
a.s.−→ pP(T̃leaf), (12.3)

where T̃leaf is T̃ conditioned on o being a leaf.

The random sin-tree T̃leaf may be constructed directly from the tree process

(T̃t) in Section 5 by removing all descendants of o and stopping at a random
time τo with the density function

e−αt P(ξ1 > t)∫∞
0 e−αt P(ξ1 > t) dt

, t > 0, (12.4)

where ξ1 is the time of birth of the first child of an individual in the branching
process. In particular, if ξ1 ∼ Exp(a) for some a > 0, then τo ∼ Exp(a+α).

Proof. Let Q be the property of a node that it is a leaf. Then (12.3) is the

same as (12.2), with T̃leaf = T̃Q, i.e., T̃ conditioned on o being a leaf.

To see that T̃leaf can be constructed as stated, note that in the construction

of the tree process (T̃t) in Section 5, the descendants of o and the rest of

the tree are independent. Since T̃ is obtained by stopping T̃t at τ , it follows

that if we ignore descendants of o, T̃leaf is obtained by stopping T̃t at an
independent random time τo having the distribution of τ conditioned on o

being a leaf in T̃τ . Moreover, if the first child of o is born at ξ1, then o is a

leaf in T̃ = T̃τ if and only if ξ1 > τ . Since τ has the density function αe−αt,
it follows that conditioned on the event ξ1 > τ , τ has the density function
(12.4). �

Example 12.3. Let Tn be an extended binary search tree with n internal
nodes, let v be a (uniformly) randomly chosen external node in Tn and let

Xn be the number of internal nodes in T v,−1
n , i.e., the number of internal

nodes that are descendants of the parent of v. Equivalently, if v′ denotes
the sister of v, Xn is 1 plus the number of internal nodes in the subtree
T vn . It follows from Theorem 12.2 that if X similarly is the number of

internal nodes of T̃leaf that are descendants of the parent o(1) of o, then
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P(Xn = k | Tn)
a.s.−→ P(X = k) for every k > 1, i.e., Xn

d−→ X, also

conditioned on Tn in the sense L(Xn | Tn)
a.s.−→ L(X), cf. Remark 4.1.

For the extended binary search tree, we use the branching process in
Section 7.1 (with m = 2), where each individual gets 2 children at the same
time, at age ξ1 ∼ Exp(1). Hence, the last statement of Theorem 12.2 applies
with a = 1. Furthermore, α = 1, and thus τo ∼ Exp(2).

Since X equals 1 plus the number of internal nodes in the subtree T̃ o′leaf

rooted at the sister o′ of o, we do not have to consider the ancestor o(1);
we just note that o′ and o are twins, and thus o′ too is born at time 0.

The number of internal nodes in T̃ o′t is a pure birth process with birth rates
λk = k + 1, started at 0. (In other words, it is Yt − 1, where Yt is a
Yule process, see Example A.3.) Stopping this at τo ∼ Exp(2) we find by
Theorem A.5 (with χ = ρ = 1, α = 2) X − 1 ∼ HG(1, 1; 4). In other words,
using (B.3)–(B.5),

P(X = k) =
4

(k + 1)(k + 2)(k + 3)
, k > 1. (12.5)

This limit distribution was found by Drmota, Gittenberger, Panholzer, Prod-
inger and Ward [47] (in a slightly different setting, keeping track of the
position of the nodes).

Example 12.4. Let Tn be a random recursive tree with n nodes, as in

Example 6.1, let v be a uniformly random leaf in Tn and let T̂ 1
n := T v,−1

n \{v},
the random tree consisting of the parent v(1) of v and all its decendants

except v. Further, let Xn := |T̂ 1
n |, the number of nodes that are descendants

of the parent of v, including the parent but excluding v.
As in Example 12.3, it follows from Theorem 12.2 that if X similarly is the

number of nodes in T̂ 1 := T̃ o,−1
leaf \ {o}, then P(Xn = k | Tn)

a.s.−→ P(X = k)

for every k > 1, and thus L(Xn | Tn)
a.s.−→ L(X), cf. Remark 4.1.

By the description at the end of Example 6.1, the tree process T̃ o,−1
leaf,t ,

minus o and its descendants, is a Yule tree process, starting at time −ξ̃∗
when the parent o(1) is born. Furthermore, ξ̃∗ ∼ Exp(1). We stop this
tree process at time τo, where by the last statement in Theorem 12.2 (with

a = α = 1), τo ∼ Exp(2). Consequently, X
d
= Y

ξ̃∗+τo
, a Yule process (started

at time 0 as usual) stopped at ξ̃∗ + τo, with ξ̃∗ ∼ Exp(1) and τo ∼ Exp(2)
independent.

A simple calculation shows that ξ̃∗+ τo has the density function 2e−t
(
1−

e−t
)
, t > 0, while Yt ∼ Ge1(e−t), see Example A.8. Hence, for any k > 1,

with x = e−t,

P(X = k) = 2

∫ ∞
0

P(Yt = k)e−t
(
1− e−t

)
dt

= 2

∫ ∞
0

e−t(1− e−t)k−1e−t
(
1− e−t

)
dt = 2

∫ 1

0
x(1− x)k dx

=
2

(k + 1)(k + 2)
. (12.6)
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We have here considered only the number of nodes in T̂ 1. However, it
is furthermore clear from the symmetry of the Yule tree process that given

X = |T̂ 1|, the random tree T̂ 1 is distributed as a random recursive tree

of order X, i.e., T̂ 1 is a random recursive tree with random order X given

by (12.6). This describes, at least in principle, any properties of T̂ 1. For

example, we may as in [47] count leaves and non-leaves separately in T̂ 1. It
is easy to see by induction that if k > 2, then

P(Tk has i leaves) = P(Tk has i non-leaves) =

〈
k−1
i−1

〉
(k − 1)!

, (12.7)

where
〈
k−1
i−1

〉
denotes the Eulerian number (see e.g. [59] or [107]); i.e., the

number of leaves in Tk is distributed as 1 + the number of ascents in
a random permutation of length k − 1. (In fact, both random vectors
(#leaves,#non-leaves) and (1 + #ascents, 1 + #descents) evolve when k
is increased as generalized Pólya urns with balls of two colours where we
draw a ball and return it together with a ball of the opposite colour.) Con-
sequently we find, for k > 2 and 1 6 i 6 k,

P
(
T̂ 1
n has i non-leaves and k − i leaves

)
a.s.−→ P

(
T̂ 1 has i non-leaves and k − i leaves

)
=

2

(k + 1)(k + 2)

〈
k−1
i−1

〉
(k − 1)!

=
2k
〈
k−1
i−1

〉
(k + 2)!

. (12.8)

Let pi := P
(
T̂ 1 has i non-leaves

)
. Summing (12.8) over k we find for exam-

ple, after short calculations (partly assisted by Maple), p1 = 6− 2e ≈ 0.563,
p2 = 11− 4e ≈ 0.127, p3 = 857

54 − 5e− 1
2e

2 + 2
27e

3 ≈ 0.072.

Using [107, (26.14.6)], it is easy to see that pi is a polynomial in e with
rational coefficients, of degree at most i, but we do not know any simple
general formula for pi.

12.1. Sampling a random key. Similarly, in an m-ary search tree, one
might sample a key uniformly at random and consider the properties of the
node containing that key.

Theorem 12.5. Let Tn be a random m-ary search tree, and let P be a
property as in Theorem 5.14. Sample a random key uniformly, and let v
be the node containing that key. Then, as n→∞, letting R(T ) denote the
number of keys in the root of T ,

P
(
v has P

) a.s.−→
E
(
R(T )1{T ∈ P}

)
ER(T )

=
E
(
R(T )1{T ∈ P}

)
2(Hm − 1)

. (12.9)

Proof. Let Qk be the property of a node v that it contains k keys. Then,
by Theorem 5.14,

P
(
v has P

)
=

∑
k knP∧Qk(Tn)∑
k knQk(Tn)

a.s.−→
∑

k k P(T ∈ P ∧ Qk)∑
k k P(T ∈ Qk)

=
E
(∑

k k1{T ∈ P ∧ Qk}
)

E
(∑

k k1{T ∈ Qk}
) , (12.10)
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which equals the second term in (12.9) because T ∈ Qk ⇐⇒ R(T ) = k.
Furthermore, for the same reason,∑

k knQk(Tn)

|Tn|
a.s.−→

∑
k

k P(T ∈ Qk) = ER(T ). (12.11)

Since
∑

k knQk(Tn) = n, the total number of keys, (12.11) and Theorem 7.11
imply

ER(T ) = 2(Hm − 1) (12.12)

which completes the proof. (Alternatively, (12.12) follows from Theorem 7.13,
noting that the limits in (7.23) are the probabilities P(R = k).) �

Remark 12.6. Theorem 12.5 extends to properties as in Theorem 5.25 (or
Theorem 5.26) with only notational changes: replace R(T ) by the number
of keys in the distinguished node o and 1{T ∈ P} by 1{o has P}.

Example 12.7. Let K ′ be the number of keys in the node containing a
random key in an m-ary search tree Tn. Theorems 12.5 and 7.13 imply that

P(K ′ = k)
a.s.−→

{
1

Hm−1
k

(k+1)(k+2) , 1 6 k 6 m− 2,
m−1

m(Hm−1) , k = m− 1.
(12.13)

For m = 3, 4, 5, this yields the limit distributions
(

1
5 ,

4
5

)
,
(

2
13 ,

2
13 ,

9
13

)
, and(

10
77 ,

10
77 ,

9
77 ,

48
77

)
.

Example 12.8. Let D′ be the number of children (the outdegree) of the
node containing a random key in an m-ary search tree Tn. It follows from
Theorems 12.5 and 7.14, noting that a node with outdegree different from 0
always contains m− 1 keys,

P(D′ = k)
a.s.−→

{
1− (m−1)

(m+1)(Hm−1) , k = 0,
(m−1)

m(m+1)(Hm−1) , 1 6 k 6 m.
(12.14)

Form = 3, 4, 5, this yields the limit distributions
(

2
5 ,

1
5 ,

1
5 ,

1
5

)
,
(

29
65 ,

9
65 ,

9
65 ,

9
65 ,

9
65

)
and

(
37
77 ,

8
77 ,

8
77 ,

8
77 ,

8
77 ,

8
77

)
.

13. Height, profile and typical depth

We consider in this paper fringe properties of random trees. However,
the connection with Crump–Mode–Jagers branching processes has also been
used very fruitfully to study properties related to the distance to the root, in
particular the height of the tree. This was pioneered by Devroye [32] using
results by Kingman [84] and Biggins [11; 13] for branching random walks
with discrete time (based on Galton–Watson processes), see also Devroye
[33], Mahmoud [93], the survey Devroye [37], and Broutin and Devroye
[21]. (Partial results for the binary search tree had been proved earlier by
Pittel [111], using the same continuous-time branching process as [32] in
a somewhat different way.) The method was further developed by Biggins
[14; 15] using the continuous-time Crump–Mode–Jagers branching processes
used in the present paper. We give in this section a description of the
method and some applications and examples; see the papers just mentioned
for further details and results. (In particular, note the second order results
in [33; 37].)
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Recall that the depth h(v) of a node v is its distance from the root. The
height H(T ) of a tree T is defined as maxv∈T h(v), the maximum depth of a
node. If we consider m-ary trees, we define the saturation level S(T ) (also
called fill-up level) to be the last generation that is full, i.e., the largest k
such that there are mk nodes of depth k; this equals the minimum depth of
a node with outdegree < m.

The key idea that makes it possible to apply results on branching random
walks is to plot the individuals in a branching process in the plane, using two
coordinates that we call time and position; time is the usual time of birth
in the branching process and position is an additional variable. We assume
that for each individual is defined, besides the sequence (ξi)

N
i=1 of birth times

of the children (relative to the birth of the parent), also a sequence (ηi)
N
i=1

(of the same length N) of random displacements, with −∞ < ηi < ∞; if
the parent is born at time and position (σ, y), then child i is born at time
and position (σ + ξi, y + ηi). (The general results in [14], [15] allow also a
further random component, describing a random motion of each individual
during its life. For our purposes, we put that motion equal to 0 and let each
individual be static.)

Results for branching random walks have been applied to the height (and
other properties) of random trees in two different ways. In the original ap-
plication of Devroye [32], see also [33; 37], the “position” is what we have
called time in the Crump–Mode–Jagers branching process, while “time” is
the number of the generation, i.e., the depth in the family tree Tt. This
means that “time” is discrete and that we consider a Galton–Watson pro-
cess where each individual has a position that is its time of birth in the
Crump–Mode–Jagers process studied elsewhere in the present paper. (Fur-
thermore, in this application, the Galton–Watson process is deterministic;
in the original application to binary search trees, we consider an infinite
binary tree.) Note that H(Tt) > n if and only if the minimum position of an
individual in generation n is 6 t, which gives the required connection with
the theorems on branching random walks.

The alternative approach, described by Biggins [15], reverses the two co-
ordinates and lets “time” be time in the Crump–Mode–Jagers branching
process while “position” is the generation number, i.e., the depth in the
family tree. The offsets ηi are thus non-random with ηi = 1. (We some-
times reverse signs and take η = −1.) We use this approach in the present
section, referring to [15] for further details on branching random walks and
to [14] for proofs of the theorems used here.

13.1. Height. Let Bt be the maximum of the positions yx of all individuals
x that are born before or on time t, i.e., with birth time σx 6 t. In our case
with ηi ≡ 1, yx is the generation number of x, and thus Bt = H(Tt), the
height of Tt.

Define the two-dimensional Laplace transform, for ζ, θ ∈ (−∞,∞),

m(ζ, θ) := E
N∑
i=1

e−ζηi−θξi ∈ (0,∞]. (13.1)
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Note that by (5.7), m(0, θ) = µ̂(θ). In our case with ηi ≡ 1, we thus simply
have

m(ζ, θ) = e−ζ µ̂(θ). (13.2)

Furthermore, let

γ = inf
{
a : inf

ζ<0
logm(ζ,−aζ) < 0

}
. (13.3)

One of the main results of Biggins [14, 15] is the following (valid for general
ηi under some conditions that are satisfied in our case, cf. Remark 13.22
below):

Theorem 13.1 (Biggins [14; 15]). As t→∞,

Bt/t
a.s.−→ γ. (13.4)

�

In our case H(Tt) = Bt, so this yields the asymptotic height of Tt; this
translates to the height of Tn = Tτ(n) as follows.

Theorem 13.2. Under the assumptions (A1)–(A5) and (A6ψ), as n→∞,

H(Tn)

log n

a.s.−→ γ̄ :=
γ

α
. (13.5)

Proof. By Theorem 13.1, H(Tn)/τ(n)
a.s.−→ γ, and the result follows by (5.17).

�

Remark 13.3. The fragmentation trees in Section 9 are of a slightly dif-
ferent type than the trees Tn that are our main object of study, since they
appear as the family tree Tt stopped at a fixed time t = log(x0/x1) instead
of a random time τ(n), see Remark 9.2. This means that asymptotics for
the height of fragmentation trees follow directly from Theorem 13.1 rather
than from Theorem 13.2. In this section we usually consider only trees of
the type Tn, and leave corresponding results for fragmentation trees to the
reader.

Remark 13.4. Also the split trees defined by Devroye [38], see Remark 9.7,
are in general not exactly of the type of trees studied here, but for the
purpose of studying the height, they can be approximated by fragmentation
trees and similar results can be obtained, see Broutin and Devroye [21] and
Broutin, Devroye and McLeish [22].

By (13.5), γ > 0, and thus the fundamental constant γ in (13.3) and
(13.5) can also be evaluated as

γ = inf
{
a > 0 : inf

ζ<0
logm(ζ,−aζ) < 0

}
= inf

{
a > 0 : inf

θ>0
logm(−θ/a, θ) < 0

}
. (13.6)
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In our case, when (13.2) holds, this simplifies to

γ = inf
{
a > 0 : inf

θ>0

{
θ/a+ log µ̂(θ)

}
< 0
}

= inf
{
a > 0 : inf

θ>0

{1

a
+

log µ̂(θ)

θ

}
< 0
}

= inf
{
a > 0 :

1

a
< − inf

θ>0

log µ̂(θ)

θ

}
(13.7)

and thus

γ−1 = − inf
θ>0

log µ̂(θ)

θ
= − inf

θ>α

log µ̂(θ)

θ
. (13.8)

Geometrically, (13.8) says that −γ−1 is the slope of the tangent from the
origin to the curve log µ̂(θ), θ > 0, provided such a tangent exists. (Oth-
erwise, −γ−1 is the slope of the asymptote, as follows from Lemma 13.5(ii)
and Remark 13.6 below.) Analytically, γ can be found as follows.

Lemma 13.5. 0 < β−1 6 γ <∞.

(i) If θ > 0 is a solution of the equation

θ
µ̂′(θ)

µ̂(θ)
= log µ̂(θ), (13.9)

then

γ−1 = − log µ̂(θ)

θ
= − µ̂

′(θ)

µ̂(θ)
= −

(
log µ̂

)′
(θ). (13.10)

Furthermore, (13.9) has at most one positive solution.
(ii) If (13.9) has no positive solution, then

γ−1 = − lim
θ→∞

log µ̂(θ)

θ
= sup{x : µ[0, x) = 0}. (13.11)

Proof. Since log µ̂(θ) < 0 for θ > α, (13.8) yields γ−1 > 0 and thus γ <∞.
It is easy to see, see Lemma 13.7(i) below, that log µ̂(θ) is convex and

that it is differentiable in the interval (A−,∞) for some A− < α, and thus
in particular at θ = α; furthermore, using (5.39),(

log µ̂
)′

(α) =
µ̂′(α)

µ̂(α)
= µ̂′(α) = −β. (13.12)

Hence, for any real θ,

log µ̂(θ) > log µ̂(α) + (θ − α)(log µ̂)′(α) = −β(θ − α) > −βθ. (13.13)

Hence, for θ > 0, log µ̂(θ)/θ > −β, and (13.8) yields γ−1 6 β. Thus γ > β−1.
Next, for any differentiable convex function f(θ) defined on an interval

I ⊆ (0,∞), the function g(θ) := θf ′(θ) − f(θ) is increasing since g′(θ) =

θf ′′(θ) > 0. Hence, g(θ) has at most one zero in I, and since
(
f(θ)/θ

)′
=

g(θ)/θ2, a zero of g(θ) is a global minimum point of f(θ)/θ in I. Taking
f(θ) := log µ̂(θ) on I := {θ > 0 : µ̂(θ) < ∞}, we see that g(θ) = 0 is
equivalent to (13.9). If (13.9) has a positive solution, it is thus unique and
a minimum point of log µ̂(θ)/θ which yields (13.10) by (13.8) and (13.9).

On the other hand, if (13.9) has no positive solution, then g(θ) has a fixed
sign in I. Since g(α) = α(log µ̂)′(α) < 0, g(θ) < 0 for all θ ∈ I and f(θ)/θ is
strictly decreasing. Thus, the infimum in (13.8) is the limit as θ →∞, which
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yields the first equality in (13.11). The final equality is a straightforward
property of Laplace transforms. �

Remark 13.6. The case (ii) in Lemma 13.5 is exceptional. We see from
(13.11) that µ has no mass in [0, γ−1), so no child is ever born to a parent

of age less than γ−1. Moreover, by (13.8), µ̂(θ) > e−γ
−1θ for all θ > 0, and

it follows easily that µ{γ−1} > 1, so µ has a point mass at γ−1. This case
is thus exceptional, and does not appear in any of our examples.

The formula (13.3) for γ is given in [14; 15], where it is shown that it
is equivalent to the following definition, which is more indirect but perhaps
more fundamental, involving some other quantities of interest (see e.g. Sec-
tion 13.4 below). Let

α(ζ) := inf{θ : m(ζ, θ) 6 1} = inf
{
θ : µ̂(θ) 6 eζ

}
= inf

{
θ : log µ̂(θ) 6 ζ

}
,

(13.14)
noting that α(0) = α, and define its one-sided Legendre transform

α∗(x) := inf
ζ<0

{
xζ + α(ζ)

}
. (13.15)

Then
γ = inf{x : α∗(x) < 0}. (13.16)

Using (13.14), we can rewrite (13.15) as, for x > 0,

α∗(x) = inf
ζ<0

log µ̂(θ)6ζ

{
xζ + θ

}
= inf

µ̂(θ)<1

{
x log µ̂(θ) + θ

}
= inf

θ>α

{
x log µ̂(θ) + θ

}
. (13.17)

We collect some elementary properties of these functions in a lemma.
(Some of these extend to general ηi, but not all; cf. [14].) Define

A− := inf{θ : µ̂(θ) <∞} ∈ [−∞,−∞). (13.18)

Thus µ̂(θ) < ∞ for θ > A−, but note that in the case A− > −∞, both
µ̂(A−) =∞ and µ̂(A−) <∞ are possible. Note also that (A5) says that

−∞ 6 A− < α. (13.19)

Furthermore, define x̄+ ∈ (0,∞] and x̄− ∈ [0,∞) by

x̄−1
+ = sup{y > 0 : µ[0, y) = 0}, (13.20)

x̄−1
− = inf{y > 0 : µ(y,∞) = 0}, (13.21)

i.e., the lower and upper limits of the support of µ. Note that in all our
examples in Sections 6–8, x̄+ = ∞ and x̄− = 0. By (13.20)–(13.21), a.s.

each ξi ∈ [x̄−1
+ , x̄−1

− ]. In particular, see Remark 5.22, ξ̃∗ ∈ [x̄−1
+ , x̄−1

− ] a.s.,

and since ξ̃∗ is not concentrated at a single value as a consequence of (A2),

β = E ξ̃∗ ∈ (x̄−1
+ , x̄−1

− ), see also (5.40) and (5.8). In other words,

0 6 x̄− < β−1 < x̄+ 6∞. (13.22)

Lemma 13.7. (i) log µ̂(θ) is a convex and decreasing function on (−∞,∞)
with −∞ < log µ̂(θ) 6∞.

On (A−,∞), log µ̂(θ) is analytic, strictly decreasing and strictly convex
with (log µ̂)′(θ) < 0 and (log µ̂)′′(θ) > 0. If A− > −∞, then log µ̂(θ) is
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right-continuous at A− in the sense that limθ↘A− log µ̂(θ) = log µ̂(A−) 6∞;
hence log µ̂(θ) is continuous on [A−,∞).

Furthermore,

log µ̂(−∞) := lim
θ→−∞

log µ̂(θ) =∞. (13.23)

log µ̂(∞) := lim
θ→∞

log µ̂(θ) = log µ{0} ∈ [−∞, 0), (13.24)

and

lim
θ→−∞

log µ̂(θ)

−θ
= x̄−1

− ∈ (0,∞], (13.25)

lim
θ→∞

− log µ̂(θ)

θ
= x̄−1

+ ∈ [0,∞). (13.26)

(ii) α(ζ) is a convex and decreasing function on (−∞,∞) with −∞ <
α(ζ) 6∞.

On the interval Iα := (logµ{0}, log µ̂(A−)), α(ζ) is the inverse function of
log µ̂ : (A−,∞)→ Iα; hence, on Iα, α(ζ) is analytic and strictly decreasing
with α′(ζ) < 0 and α′′(ζ) > 0. Furthermore, 0 ∈ Iα and α(0) = α; hence
α(ζ) > α for ζ < 0 and α(ζ) < α for ζ > 0.

Moreover, see (5.39),

α′(0) =
1

µ̂′(α)
= − 1

β
, (13.27)

and

α(−∞) := lim
ζ→−∞

α(ζ) =∞. (13.28)

α(∞) := lim
ζ→∞

α(ζ) = A− ∈ [−∞, α), (13.29)

and α(ζ) =∞ if −∞ < ζ 6 logµ{0} and α(ζ) = A− if log µ̂(A−) 6 ζ <∞.
In particular, α(ζ) < ∞ ⇐⇒ ζ > logµ{0}; hence α(ζ) < ∞ for all ζ if
and only if µ{0} = 0. Furthermore, α(ζ) <∞ for some ζ < 0.

(iii) α∗(x) is a concave and decreasing function on (−∞,∞) with −∞ 6
α∗(x) <∞. We have {

α∗(x) = α, x 6 1/β,

α∗(x) < α, x > 1/β
(13.30)

and

lim
x→∞

α∗(x) = −∞. (13.31)

Furthermore, where the last two cases apply only when x̄+ <∞,
α∗(x) > −∞, x < x̄+,

α∗(x) = x̄+ logµ{x̄−1
+ } > −∞, x = x̄+,

α∗(x) = −∞, x > x̄+,

(13.32)

In particular, if the birth times ξi can be arbitrarily small (as in all our
examples), so x̄+ = +∞, then α∗(x) > −∞ for every real x.

Consequently, α∗(x) : R → [−∞,∞) is continuous everywhere except
possibly at x̄+, and left-continuous everywhere.
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Proof. (i): The log-convexity of µ̂ is well-known and follows from Hölder’s
inequality. The remaining statements are also well-known properties of
Laplace transforms, and follow easily from the definition (5.3), using mono-
tone and dominated convergence together with (A1) and (A5) (or (A4)) for
(13.23)–(13.24) and simple estimates for (13.25)–(13.26); note also that (A2)
implies that µ is not concentrated at one point.

(ii): That α is convex follows easily from (13.14) and the convexity of
log µ̂. Furthermore, (13.14) implies that α is decreasing. The remaining
properties also follow easily from (13.14) and (i); that 0 ∈ Iα follows from
(A1) and (A5), and the fact that α(ζ) is the inverse function of log µ̂(θ)
implies

α′(ζ) =
1

(log µ̂)′(α(ζ))
=
µ̂(α(ζ))

µ̂′(α(ζ))
=

eζ

µ̂′(α(ζ))
, ζ ∈ Iα, (13.33)

which in particular yields (13.27).
(iii): That α∗ is concave and decreasing follows from (13.15). Further-

more, by (ii), α(ζ) < ∞ for some ζ < 0, and thus α∗(x) 6 xζ + α(ζ) < ∞
for every x. This implies also (13.31) by letting x→∞ (with ζ < 0 fixed).

Since α(ζ) is convex, (13.27) implies that α′(ζ) 6 −1/β for ζ < 0. It
follows that the infimum in (13.15) is attained at ζ = 0 if x 6 1/β, but
at some ζ < 0 (possibly −∞) if x > 1/β, and (13.30) follows, recalling
α(0) = α.

Next, (13.17) implies that for any x > 0,

exp
(
α∗(x)/x

)
= inf

θ>α

{
exp(θ/x)µ̂(θ)

}
= inf

θ>α

{∫ ∞
0

eθ(x
−1−t)µ(dt)

}
. (13.34)

If x = x̄+ < ∞, then t > x−1 on the support of µ by (13.20); hence the
integral in (13.34) is a decreasing function of θ, and dominated convergence
as θ → ∞ shows that the infimum equals µ{x̄−1

+ }. Similarly, if x > x̄+,
then the infimum in (13.34) is 0. On the other hand, if x < x̄+, then∫∞

0 eθ(x
−1−t)µ(dt) > µ{t : t 6 x−1} > 0 for every θ > 0, and thus the

infimum in (13.34) is positive. This shows (13.32).
It follows that α∗(x) is concave and finite for x ∈ (−∞, x̄+), and thus

continuous there. By (13.32), α∗(x) is also trivially continuous for x >
x̄+. Finally, α∗(x) is left-continuous everywhere since the definition (13.15)
implies

lim
y↗x

α∗(y) = inf
y<x

α∗(y) = inf
y<x, ζ<0

{yζ + α(ζ)} = inf
ζ<0
{xζ + α(ζ)} = α∗(x).

(13.35)
�

Example 13.8. For the random recursive tree in Example 6.1, originally
treated by Devroye [33] in a related but somewhat different way, see also
[37], we have µ̂(θ) = 1/θ, θ > 0, see (6.1). Consequently, (13.9) is

−1 = − log θ (13.36)

with the solution θ = e, and then (13.10) yields

γ−1 = −
(
log µ̂

)′
(θ) =

1

θ
= e−1 (13.37)
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i.e., γ = θ = e. Since α = 1, the limit in (13.5) is γ̄ = γ.
Furthermore, (13.14) and (13.15) yield after short calculations,

α(ζ) := inf
{
θ > 0 :

1

θ
6 eζ

}
= e−ζ , (13.38)

α∗(x) = inf
ζ<0

{
xζ+e−ζ

}
= inf

t>0

{
−xt+et

}
=

{
1, x 6 1,

−x log x+ x, x > 1.
(13.39)

Since β = 1, this agrees with (13.30).

Example 13.9. For the binary search tree in Example 6.2, originally treated
by Devroye [32], see also [33], [15] and [37], we have µ̂(θ) = 2/(1+θ), θ > −1,
see (6.5). Consequently, (13.9) is

− θ

1 + θ
= log

2

1 + θ
(13.40)

and (13.10) is

γ−1 = −
(
log µ̂

)′
(θ) =

1

1 + θ
, (13.41)

i.e., γ = 1 + θ. Since α = 1, γ̄ = γ. We may substitute (13.41) in (13.40),
noting that θ > 0 corresponds to γ > 1, and obtain

γ−1 − 1 = log
(
2γ−1

)
= − log(γ/2) (13.42)

or

γ log(γ/2) + 1− γ = 0, (13.43)

which has the root γ
.
= 4.311070. (The theory above implies that (13.43)

has a unique root γ > 1.)
Furthermore, (13.14) and (13.15) yield after short calculations,

α(ζ) = inf
{
θ > 0 :

2

1 + θ
6 eζ

}
= 2e−ζ − 1, (13.44)

α∗(x) = inf
ζ<0

{
xζ + 2e−ζ − 1

}
= inf

t>0

{
−xt+ 2et − 1

}
=

{
1, x 6 2,

−x log(x/2) + x− 1, x > 2.
(13.45)

Since β = 1/2 for the binary search tree, this agrees with (13.30).

Example 13.10. More generally, consider a linear preferential attachment
tree as in Example 6.4, with weights wk = χk + ρ as in (6.17). (This was
originally treated by Pittel [112], at least in the case χ > 0; see also Biggins
and Grey [16].) Since only the quotient χ/ρ matters, and ρ > 0, we may
and shall for simplicity assume ρ = 1. (It follows that (13.50) below holds
also in the general case provided we replace χ by χ/ρ.)

We then have µ̂(θ) = 1/(θ − χ) by (6.19), and thus (13.9) is, with θ > χ,

− θ

θ − χ
= − log(θ − χ) (13.46)

and (13.10) is

γ−1 =
1

θ − χ
, (13.47)
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i.e., γ = θ − χ. We may substitute this in (13.46) and obtain

log γ =
θ

θ − χ
=
γ + χ

γ
(13.48)

or
γ log γ − γ = χ. (13.49)

The limit in (13.5) is γ̄ := γ/α; we have α = χ + 1 by (6.20), and thus
(13.49) yields

γ̄ log
(
(χ+ 1)γ̄

)
− γ̄ =

χ

χ+ 1
. (13.50)

Example 13.8 is the case χ = 0. For the binary search tree in Example 13.9
we have χ = −1 and ρ = 2, which is equivalent to χ = −1

2 and ρ = 1; thus

we take χ = −1
2 above. Indeed, (13.50) with χ = −1

2 is the same as (13.43).
More generally, the m-ary increasing tree in Example 6.7 is obtained by
χ = −1/m. For this m-ary tree, (13.50) yields, cf. the binary case (13.43),

γ̄ log
(m− 1

m
γ̄
)
− γ̄ +

1

m− 1
= 0. (13.51)

The height of the m-ary increasing tree was found by Broutin, Devroye,
McLeish and de la Salle [23], see also Drmota [44, Theorem 6.47].

Example 13.11. A somewhat more complicated example is the m-ary
search tree in Section 7.1 or 7.2. (For this example, it does not matter
whether we include external nodes or not, since this only changes the height
by 1. Furthermore, µ is the same for both versions, so the calculations are
the same.) This was originally treated by Devroye [34], see also Mahmoud
[93], Pittel [112], Biggins [15] and Devroye [37].

Recall that α = 1, so γ̄ = γ. By (7.2),

log µ̂(θ) = logm!−
m−1∑
i=1

log(i+ θ). (13.52)

Hence (13.9) is

θ
m−1∑
i=1

1

θ + i
−
m−1∑
i=1

log(θ + i) + logm! = 0 (13.53)

and (13.10) is

γ−1 =
m−1∑
i=1

1

θ + i
, (13.54)

which yields γ after (numerically) finding the unique positive root of (13.53).

Example 13.12. We can extend Example 13.11 for m-ary search trees to
the generalization in Example 8.4. (The case m = 2, the median-of-(2`+ 1)
binary search tree, was treated by Devroye [36]; the general case was studied,
by different methods, by Chauvin and Drmota [26], see also Drmota [44,
Section 6.5.2].) We still have α = 1, so γ̄ = γ. It follows from (8.7) that
(13.9) is

(m−1)(`+1)∑
i=1

θ

θ + i+ `
−

(m−1)(`+1)∑
i=1

log(θ + i+ `) + log
(m`+m)!

(`+ 1)!
= 0 (13.55)
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and (13.10) is

γ−1 =

(m−1)(`+1)∑
i=1

1

θ + i+ `
. (13.56)

Example 13.13. Another example is the binary pyramids in Example 6.8,
where the height was found by Mahmoud [94] by similar methods, see also
Biggins and Grey [16] and Broutin, Devroye and McLeish [22]. The equa-
tions, now using (6.44), become a bit involved; we refer to [94], [16] and [22]
for a numerical solution.

Example 13.14. For the fragmentation tree in Example 9.4, we have a
branching process that differs from the one for the binary search tree in
Example 13.9, but the intensity µ is the same, so all calculations in Exam-
ple 13.9 are valid for this tree too. Thus, see Theorem 13.1 and Remark 13.3,

H(Tt)/t
a.s.−→ γ with γ given by (13.43). Furthermore, if we stop at n nodes

as in Remark 9.2, H(Tn)/ log n
a.s.−→ γ, just as for the binary search tree.

More precise results for the height of this fragmentation tree, and m-ary
generalizations of it, are given by Chauvin and Drmota [26].

13.2. Moment convergence. We can also obtain moment convergence in
Theorem 13.2, in particular convergence of the expectation EH(Tn)/ log n
to γ̄, at least if we assume the following additional condition on the birth
times for an individual in the Crump–Mode–Jagers process.

(A*) There exists δ > 0 such that E eδξ2 <∞.

In other words, each individual gets at least two children (N > 2), and the
age when the second child is born has an exponential moment. (Equivalently,
it has exponentially decreasing tails.)

The condition (A*) is satisfied in all examples in Sections 6–8, since ξ2 is
the sum of one or several exponential waiting times.

Remark 13.15. We use (A*) in the proof of Lemma 13.17 below. Some
extra condition is clearly needed for Lemma 13.17 (at least E eδξ1 < ∞ for
some δ > 0, since τ(n) > ξ1 if n > 1 and, say, ψ(t) = 1.) However, we do
not know whether (A*) really is needed for Lemmas 13.18 and 13.19 and for
Theorem 13.20. In fact, we conjecture that Theorem 13.20 holds assuming
only (A1)–(A5) and (A6ψ).

We begin with some lemmas. The first two are stated somewhat more
generally than actually needed here.

Lemma 13.16. For every r > 0, there exists cr such that, for large t,

P
(
H(Tt) > crt

)
6 e−rt. (13.57)

Proof. Let Nt[x,∞) be the number of nodes in Tt that have depth > x, and
let ηt[x,∞) := E

(
Nt[x,∞)

)
. Then, by [14, Theorem 4 and its proof], for

any real x,

lim sup
t→∞

log ηt[tx,∞)

t
6 α∗(x). (13.58)

In fact, [14, Theorem 4] shows that the limit exists and equals α∗(x) except
possibly for one exceptional x. The upper bound (13.58) (for every x) is the
simple part of the proof and follows from [14, Corollary 1].
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By (13.31), we can choose cr such that α∗(cr) < −r, and then (13.58)
yields log ηt[crt,∞) 6 −rt for large t. This yields the result (13.57), since

P
(
H(Tt) > crt

)
= P

(
Nt[crt,∞) > 1

)
6 ηt[crt,∞) 6 e−rt. (13.59)

�

Lemma 13.17. Assume (A1)–(A5) and (A*). Then, for every r > 0 there
exists c′r such that P

(
τ(n) > c′r log n

)
= O

(
n−r

)
.

Proof. First, if (A6ψ) holds, then τ(n)/ log n
a.s.−→ α−1 by Theorem 5.12.

In general, we may as in the proof of Theorem 5.12 consider the trunca-
tion ψ1(t) := ψ(t) ∧ 1 and the corresponding stopping time τ1(n). Then

τ1(n)/ log n
a.s.−→ α−1 and τ(n) 6 τ1(n). Hence, in any case, if b := 2α−1,

then P(τ(n) < b log n) → 1; in particular, if n is large enough (which we
assume in the rest of the proof; the result is trivial for small n),

P(τ(n) > b log n) < e−1. (13.60)

Let L := dr log ne. Let v0 = o, the root, and let vi be the second child of
vi−1, i > 1. (Thus, denoting the individuals by strings in V∞ :=

⋃∞
n=0 Nn,

see Section 5, the nodes vi are ∅, 2, 22, 222, . . . .) Let τL := σvL , the time vL
is born. Let A := E eδξ2 , which is finite by (A*), and let B := r(logA+1)/δ.
Then,

P(τL > B log n) 6 e−δB logn E eδτL = e−δB logn
(
E eδξ2

)L
= e−δB lognAL

6 e−δB logn+(1+r logn) logA = An−δB+r logA = An−r.
(13.61)

Let wi be the first child of vi−1, i > 1. Then wi is born before (or at
the same time as) vi, so w1, . . . , wL are all born before (or at) τL. Each wi

starts an independent copy T (i)
t of the branching process and its family tree

(we do not distinguish between these two), with local time t = 0 when wi is

born, i.e., at global time σwi . Let Z
ψ,(i)
t be the total weight of T (i)

t and let

τ (i)(n) be the corresponding stopping time τ (i)(n) := inf{t : Z
ψ,(i)
t > n}.

For every t > 0, the individuals (nodes) in T (i)
t form a subset of Tσwi+t,

and they have the same ages in both trees; hence the definition (5.1) implies

that Zψσwi+t
> Z

ψ,(i)
t . Consequently, Zψ

σwi+τ
(i)(n)

> n and thus, for every

i 6 L,

τ(n) 6 σwi + τ (i)(n) 6 τL + τ (i)(n). (13.62)

In other words,

τ(n) 6 τL + min
i6L

τ (i)(n). (13.63)

Moreover, the stopping times τ (i)(n) are independent, and have the same
distribution as τ(n). Hence, (13.60) implies that

P
(
min
i6L

τ (i)(n) > b log n
)

= P
(
τ(n) > b log n

)L
< e−L 6 n−r. (13.64)

Combining (13.63), (13.61) and (13.64), we obtain

P
(
τ(n) > (b+B) log n

)
6 (A+ 1)n−r. (13.65)

�
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The next lemma will immediately be improved in Lemma 13.19. Lemma
13.19 is trivially true for n = 1 too; however, we assume n > 2 since as
said in Section 5, in principle we do not require n to be an integer; any real
positive n is possible. (We use this in the proof of Lemma 13.19 below, for
convenience, when we do not round m to an integer.)

Lemma 13.18. Assume (A1)–(A5) and (A*). Then there exists c such
that, for all n

P
(
H(Tn) > c log n

)
= O

(
n−1

)
. (13.66)

Proof. Let c1 and c′1 be as in Lemmas 13.16 and 13.17 with r = 1; we may
assume c′1 > 1. Then by Lemmas 13.17 and 13.16, recalling that Tn := Tτ(n),
for large n,

P
(
H(Tn) > c1c

′
1 log n

)
6 P

(
τ(n) > c′1 log n

)
+ P

(
H(Tc′1 logn) > c1c

′
1 log n

)
6 O

(
n−1

)
+ e−c

′
1 logn = O

(
n−1

)
. (13.67)

This completes the proof, since (13.66) is trivial for small n. �

Lemma 13.19. Assume (A1)–(A5) and (A*). Then there exists C such
that, for all n > 2 and t > 1,

P
(
H(Tn) > Ct log n

)
6 n−t. (13.68)

Proof. By Lemma 13.18, there exists c and A such that, for all n,

P
(
H(Tn) > c log n

)
6 A/n. (13.69)

We may assume A > 1.
Given n > 2 and t > 1, let m := Ant. Then m > n and thus τ(m) > τ(n)

and H(Tm) > H(Tn). Consequently, (13.69) applied to m yields

P
(
H(Tn) > c logm

)
6 P

(
H(Tm) > c logm

)
6 A/m = n−t. (13.70)

Moreover, logm = logA + t log n 6 (1 + logA/ log 2)t log n. Hence, with
C := c(1 + logA/ log 2), (13.70) implies

P
(
H(Tn) > Ct log n

)
6 P

(
H(Tn) > c logm

)
6 n−t. (13.71)

�

Theorem 13.20. Assume (A1)–(A5), (A6ψ) and (A*). Then the conver-
gence in (13.5) holds also in Lr for every r > 0, i.e.,

E |H(Tn)/ log n− γ̄|r → 0. (13.72)

In particular,
E
(
H(Tn)r

)
logr n

→ γ̄r, r > 0. (13.73)

Proof. Let Xn := H(Tn)/ log n. By Lemma 13.19, for n > 2 and t > 1,
P(Xn > Ct) 6 n−t 6 2−t 6 21−t, which obviously holds also for t < 1.
Hence, for r > 0,

EXr
n = r

∫ ∞
0

tr−1 P(Xn > t) dt 6 r
∫ ∞

0
tr−121−t/C dt <∞. (13.74)

This shows that each moment EXr
n is uniformly bounded for n > 2. As

is well-known, this implies uniform integrability of Xr
n for each r, and thus
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also of |Xn − γ̄|r; since Xn
a.s.−→ γ̄ by Theorem 13.2, this implies (13.72) and

(13.73). (See e.g. [60, Theorems 5.4.2 and 5.5.2] for uniform integrability.)
�

In particular, Theorem 13.20 shows that EH(Tn) ∼ γ̄ log n, and similarly
for higher moments, in Examples 13.8–13.13. We obtain also corresponding
results for the fragmentation tree in Example 13.14, using Lemma 13.16.

Remark 13.21. It follows from (13.72), with r = 2, that the variance
E |H(Tn)− EH(Tn)|2 = o(log2 n). In the case of a binary search tree, Reed
[113] showed the much sharper result that E |H(Tn) − EH(Tn)|2 = O(1);
this was extended to higher central moments and to m-ary search trees by
Drmota [45].

13.3. Saturation level. In this subsection we will often assume that the
random tree is m-ary; more precisely, that N = m for some (non-random)
integer m, i.e., every individual in the branching process gets m children.
(There is no risk of confusion between the integer parameter m and the
function m in (13.1); they never appear together.) We call this the m-ary
case in the present section. (We have previously defined an m-ary tree to
be a tree where the children of each nodes have labels in the set {1, . . . ,m}.
In the present section, such labels are irrelevant, as are the order of the
children, so we can use this simpler definition.)

In the m-ary case, the infinite complete family tree T∞ is thus a complete
m-ary tree; however, we are interested in the trees Tt for finite t, and in
particular in Tn, and there the outdegrees may be smaller than m (but
never larger); note that any given node will get m children eventually (i.e.,
for large t or n). As said above, the saturation level S(Tn) is defined as the
last level (generation) k where all possible mk nodes exist; equivalently, it
is the first generation where some node has less than m children.

We study the saturation level in basically the same way as the height in
the preceding subsection, but now using a feature of Biggins [14, 15] that
was not needed above: Let χ be a 0–1 characteristic, i.e. a characteristic that
takes the values 0 and 1 only (excluding the trivial case when a.s. χ(t) = 0
for all t > 0), and now let Bt be the maximum of the position yx of all
individuals x born at time t such that the characteristic χx(t − σx) = 1.
(I.e., only individuals with χ = 1 count.) Then Theorem 13.1 still holds, for
general ηi, provided the following two conditions are satisfied [14; 15]:

(B1) α(ζ) <∞ for some ζ < 0.
(B2) For every ζ < 0 such that α(ζ) <∞,

E sup
t>0

(
e−α(ζ)tχ(t)

)
<∞. (13.75)

(The property (B2) is called well-regulated in [15].)

Remark 13.22. The case considered in Section 13.1 above is the special
case when χ(t) = 1 for all t > 0, and further ηi = 1. We noted (B1) in
Lemma 13.7(ii), and (B2) is trivial (for this choice of ηi) since α(ζ) > α > 0
when ζ < 0, as also noted in Lemma 13.7(ii).

Remark 13.23. The characteristics treated in Biggins [14] are independent
of the life histories of all other individuals. However, the proofs hold also
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for the more general characteristics in Remark 5.10 that may depend on
the entire process of descendants of the individual. (The proofs in [14] use
[104, Theorem 5.4], which is shown in [104, Section 7] to extend to such
characteristics.)

Example 13.24. In the m-ary case, denote, as usual, the birth times of the
children of a typical individual by ξ1 6 . . . 6 ξm, and define the character-
istic

χ(t) := 1{t < ξm}, (13.76)

the indicator that not all m children are born. Furthermore, let ηi = −1 for
every i. Then −Bt is the minimum generation number of an individual that
does not have m children at time t, i.e., −Bt = S(Tt), the saturation level
of Tt.

To study the saturation level, we thus intend to use Example 13.24 and
apply Theorem 13.1 with ηi = −1. For later use, we continue to use the
notations in (13.1)–(13.3) and (13.14)–(13.15) for the case ηi = 1, and let
m̌(ζ, θ), γ̌, α̌(ζ) and α̌∗(x) be the corresponding quantities for ηi = −1 (for
general branching processes satisfying our conditions; not just in the m-ary
case); furthermore, let γ− := −γ̌. Thus, cf. (13.2),

m̌(ζ, θ) = eζ µ̂(θ) = m(−ζ, θ) (13.77)

and consequently, cf. (13.14)–(13.16) and (13.3),

α̌(ζ) = inf
{
θ : µ̂(θ) 6 e−ζ

}
= α(−ζ), (13.78)

α̌∗(x) = inf
ζ<0

{
xζ + α(−ζ)

}
= inf

ζ>0

{
−xζ + α(ζ)

}
, (13.79)

γ− = −γ̌ = − inf
{
a : inf

ζ<0
log m̌(ζ,−aζ) < 0

}
(13.80)

= − inf{x : α̌∗(x) < 0} = sup{x : α̌∗(−x) < 0}. (13.81)

For x < 0 we also have, using (13.14), in analogy with (13.17),

α̌∗(x) = inf
ζ>0

log µ̂(θ)6ζ

{
−xζ + θ

}
= inf

θ

{
−x log+ µ̂(θ) + θ

}
= inf

θ6α

{
−x log µ̂(θ) + θ

}
. (13.82)

We give some properties of these functions in Lemma 13.31 below, but
we first state the main result for the saturation level in the m-ary case.

Theorem 13.25. In the m-ary case N = m, under the assumptions (A1)–
(A5) and (A6ψ),

S(Tn)

log n

a.s.−→ γ̄− :=
γ−
α
. (13.83)

Proof. By (13.78) and Lemma 13.7(ii), α̌(ζ) = α(−ζ) <∞ for every ζ < 0,
so (B1) holds for α̌.

Furthermore, (13.75) (with α̌(ζ)) is trivial if α̌(ζ) > 0, so assume α̌(ζ) < 0.
Then (13.76) and (5.7) yield

E sup
t>0

(
e−α̌(ζ)tχ(t)

)
= E e−α̌(ζ)ξm 6 µ̂(α̌(ζ)). (13.84)

Recall A− := inf{θ : µ̂(θ) <∞} defined in (13.18). There are three cases:
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(i) A− = −∞. Then µ̂(θ) < ∞ for every real θ. Furthermore, α̌(ζ) =
α(−ζ) > −∞, see Lemma 13.7(ii), and thus µ̂(α̌(ζ)) <∞.

(ii) A− > −∞ and µ̂(A−) < ∞. Then α̌(ζ) > A− for every ζ, and thus
µ̂(α̌(ζ)) 6 µ̂(A−) <∞.

(iii) A− > −∞ and µ̂(A−) =∞. Then, by monotone convergence, µ̂(ζ)→
∞ as ζ ↘ A− and thus α̌(ζ) > A− for every ζ, see (13.78); hence
µ̂(α̌(ζ)) <∞.

Consequently, in all three cases, µ̂(α̌(ζ)) < ∞ for all real ζ such that
α̌(ζ) < 0 (and, in fact, for all real ζ), and thus (13.84) shows that (B2)
holds for α̌.

Consequently, Theorem 13.1 applies to our ηi = −1 and χ in (13.76),
which yields

−S(Tt)
t

=
Bt
t

a.s.−→ γ̌ = −γ− (13.85)

and the result follows by (5.17) as in the proof of Theorem 13.2. �

As a corollary, we obtain moment convergence and convergence in Lr as
in Theorem 13.20, assuming also (A*).

Theorem 13.26. Assume (A1)–(A5), (A6ψ) and (A*) and N = m. Then
the convergence in (13.83) holds also in Lr for every r > 0. In particular,

E
(
S(Tn)r

)
logr n

→ γ̄r−, r > 0. (13.86)

Proof. Since S(Tn) 6 H(Tn) + 1, Lemma 13.19 holds also for S(Tn); hence
the result follows from Theorem 13.25 by the argument in the proof of The-
orem 13.20. (In fact, in all cases of m-ary trees with |Tn| = n and in many
other cases, e.g. for m-ary search trees, S(Tn) 6 C log n deterministically
for some C; then the results follow from Theorem 13.25 by dominated con-
vergence without using (A*) and Lemma 13.19.) �

Remark 13.27. We see that (B2) (or some similar condition) is needed for
Theorem 13.1; if we let ηi = −1 as above but take χ(t) = 1 for all t > 0 (as
in Section 13.1), then obviously Bt = 0, and Bt/t does not converge to γ̌ (in
general), so Theorem 13.1 does not hold.

We give some formulas for γ−, similar to Lemma 13.5.

Lemma 13.28. We have

γ−1
− = inf

θ<0

log µ̂(θ)

−θ
= inf

A−<θ<0

log µ̂(θ)

|θ|
. (13.87)

Furthermore, 0 6 γ− 6 β−1, and with A− given by (13.18):

(i) If A− > 0, then γ− = 0.
(ii) If A− < 0, then 0 < γ− 6 β−1. Moreover, if θ ∈ (A−, 0) is a solution

of the equation (13.9), then

γ−1
− =

log µ̂(θ)

−θ
= − µ̂

′(θ)

µ̂(θ)
= −

(
log µ̂

)′
(θ). (13.88)

Furthermore, (13.9) has at most one negative solution.
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(iii) If A− < 0 but (13.9) has no negative solution, then

γ−1
− = lim

θ→A−

log µ̂(θ)

|θ|
. (13.89)

Proof. By (13.80) and (13.77), γ̌ = inf{a : a ∈ E}, where

E :=
{
a ∈ R : inf

ζ<0

(
ζ + log µ̂(−aζ)

)
< 0
}
. (13.90)

If a > 0, then as ζ → −∞, log µ̂(−aζ)→ log µ̂(∞) < 0, see (13.24), and thus
ζ + log µ̂(−aζ)→ −∞; hence a ∈ E . Consequently γ̌ 6 0, so γ− = −γ̌ > 0.

(i): If A− > 0, then µ̂(θ) = ∞ for every θ < 0, and it follows from the
definition (13.90) that a /∈ E for every a < 0; hence γ− = γ̌ = 0. In this
case, (13.87) is trivial.

(ii): If A− < 0, then µ̂(θ) < ∞ for some θ < 0; furthermore, µ̂(θ) >
µ̂(0) = EN > 1 by (A3). Taking first ζ < − log µ̂(θ) < 0 and then a =
−θ/ζ < 0, we see that a ∈ E and thus γ̌ 6 a < 0; hence γ− > 0. In this case
we have

γ̌ = inf{a < 0 : a ∈ E} = inf
{
a < 0 : inf

ζ<0

(
ζ + log µ̂(−aζ)

)
< 0
}

(13.91)

and thus,

γ− = −γ̌ = sup
{
x > 0 : inf

ζ<0

(
ζ + log µ̂(xζ)

)
< 0
}

= sup
{
x > 0 : inf

θ>0

{
−θ/x+ log µ̂(−θ)

}
< 0
}

= sup
{
x > 0 : inf

θ>0

{
−1

x
+

log µ̂(−θ)
θ

}
< 0
}

= sup
{
x > 0 :

1

x
> inf

θ>0

log µ̂(−θ)
θ

}
. (13.92)

Hence,

γ−1
− = inf

θ>0

log µ̂(−θ)
θ

(13.93)

which yields (13.87).
Extreme points of log µ̂(θ)/θ are given by (13.9), and the argument in

the proof of Lemma 13.5, applied to f(θ) = log µ̂(−θ), shows that there
is at most one extreme point in (A−, 0) and that any extreme point is a
minimum; this yields (13.88). Similarly, if there is no negative solution of
(13.9), then log µ̂(θ)/|θ| is increasing on (A−, 0) and (13.89) follows.

Finally, if θ < 0, then, (13.13) implies log µ̂(θ)/|θ| > β and thus (13.87)
yields γ−1

− > β, so γ− 6 β−1. �

Remark 13.29. Geometrically, (13.87) says that −γ−1
− is the slope of the

tangent from the origin to the curve log µ̂(θ), θ < 0, provided such a tangent
exists. Consequently, −γ−1 and −γ−1

− are the slopes of the two tangents
from the origin to this curve, provided there are two such tangents. (I.e.,
when (13.9) has one negative and one positive solution, which typically is
the case.) Note that, analytically, γ and γ− are given by the same formula
(13.10) or (13.88), with θ the positive or negative root of (13.9).
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Remark 13.30. Lemma 13.28 shows that γ− > 0 ⇐⇒ A− < 0, i.e.,
γ− > 0 if and only if µ̂(θ) < ∞ for some θ < 0. In the m-ary case N = m,
this is by (5.7) equivalent to E esξi < ∞ for every i and some s > 0, i.e.,
that the child birth ages ξi, i = 1, . . . ,m, have some exponential moment.
(With the usual ordering ξ1 6 . . . 6 ξm; this is equivalent to ξm having an
exponential moment.)

We give some properties of α̌(ζ) and α̌∗(x), cf. Lemma 13.7.

Lemma 13.31. (i) α̌(ζ) = α(−ζ) is a convex and increasing function on
(−∞,∞) with −∞ < α̌(ζ) 6 ∞. Furthermore, α̌(0) = α, α̌(ζ) < α for
ζ < 0 and α̌(ζ) > α for ζ > 0.

(ii) α̌∗(x) is a concave and decreasing function on (−∞,∞) with −∞ 6
α̌∗(x) <∞. Moreover, 

α̌∗(x) = α, x 6 −1/β,

α̌∗(x) < α, x > −1/β,

α̌∗(x) = A−, x = 0,

α̌∗(x) = −∞, x > 0,

(13.94)

and furthermore
α̌∗(x) > −∞, x < −x̄−,
α̌∗(x) = x̄− logµ{x̄−1

− } > −∞, x = −x̄− 6= 0,

α̌∗(x) = A− > −∞, x = −x̄− = 0,

α̌∗(x) = −∞, x > −x̄−,

(13.95)

and thus

sup{x : α̌∗(−x) = −∞} = x̄−. (13.96)

In particular, if the birth times ξi are unbounded (as in all our examples),
so x̄− = 0, then α̌∗(x) > −∞ for every x < 0.

Consequently, α̌∗(x) : R → [−∞,∞) is continuous everywhere except
possibly at −x̄−, and left-continuous everywhere.

Proof. (i): Follows directly from (13.78) and Lemma 13.7(ii).
(ii): Since α(ζ) is convex, (13.27) implies α′(ζ) > −1/β for ζ > 0, with

equality for ζ = 0. It follows that the second infimum in (13.79) is attained at
ζ = 0 (extending the infimum to ζ > 0) if x 6 −1/β, but not if x > −1/β,
and thus the two first cases in (13.94) follow, recalling α(0) = α. The
third case follows directly from (13.79) by (13.29) and the fact that α(ζ)
is decreasing, and the fourth case follows by letting ζ → ∞ in the second
infimum in (13.79).

Next, (13.82) implies that for any x < 0,

exp
(
α̌∗(x)/|x|

)
= inf

θ6α

{
exp(θ/|x|)µ̂(θ)

}
= inf

θ6α

{∫ ∞
0

eθ(|x|
−1−t)µ(dt)

}
.

(13.97)

We argue as in the proof of (13.32) in Lemma 13.7. If x = −x̄− < 0, then
t 6 |x|−1 on the support of µ by (13.21); hence the integral in (13.97) is an
increasing function of θ, and dominated convergence as θ → −∞ shows that
the infimum equals µ{x̄−1

− }. Similarly, if −x̄− < x < 0, then the infimum
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in (13.97) is 0. On the other hand, if x < −x̄−, then
∫∞

0 eθ(|x|
−1−t)µ(dt) >

µ{t : t > |x|−1} > 0 for every θ 6 0, and thus the infimum in (13.97) is
positive. This shows (13.95) for x < 0; the case x > 0 follows from the last
two parts of (13.94). Obviously, (13.96) follows from (13.95).

Since α̌∗ is concave, it follows from (13.95) that it is continuous except pos-
sibly at −x̄−. The left-continuity of α̌∗(x), or equivalently right-continuity
of α̌∗(−x), follows from (13.79) which yields, cf. (13.35),

lim
y↘x

α̌∗(−y) = inf
y>x

α̌∗(−y) = inf
y>x, ζ>0

{yζ + α(ζ)} = α̌∗(−x). (13.98)

�

Remark 13.32. By (13.81) and (13.95),

γ− > x̄−. (13.99)

Remark 13.33. Let, cf. (13.15) and (13.79),

α∗∗(x) := min
(
α∗(x), α̌∗(−x)

)
= inf
−∞<ζ<∞

{
xζ + α(ζ)

}
. (13.100)

By (13.30) and (13.94), for every x, max
(
α∗(x), α̌∗(−x)

)
= α and thus one

of α∗(x) and α̌∗(−x) equals α∗∗(x) while the other equals α; which one that
equals α∗∗(x) depends on whether x is smaller or greater than 1/β. (For
x = 1/β, α∗∗(x) = α∗(x) = α̌∗(−x) = α; for all other x, α∗∗(x) < α and
α∗(x) 6= α̌∗(−x).)

For x > 0, we also have by (13.17) and (13.82),

α∗∗(x) = inf
−∞<θ<∞

{
x log µ̂(θ) + θ

}
. (13.101)

Furthermore, by (13.32) and (13.95), α∗∗(x) is finite in (x̄−, x̄+) but −∞
outside [x̄−, x̄+].

By the convexity of α(ζ) and log µ̂(θ), with strict convexity in Iα and
(A−,∞) and continuity on (−∞,∞) and [A−,∞), respectively, see Lemma
13.7, it follows that for x ∈ (x̄−, x̄+), where α∗∗(x) thus is finite, the infima in
(13.100) and (13.101) are attained at some (unique) finite ζ and θ. Moreover,
if A− > −∞ (which implies x̄− = 0) and both µ̂(A−) and the right derivative
µ̂′(A−+) are finite, let

x̄0 :=
1

−(log µ̂)′(A−+)
=

µ̂(A−)

−µ̂′(A−+)
> 0 = x̄−; (13.102)

otherwise, let x̄0 := x̄−. In the case x ∈ (x̄−, x̄0], the infimum in (13.100)
is attained at ζ = log µ̂(A−), and the infimum in (13.101) is attained at
θ = A−, so α∗∗(x) = x log µ̂(A−) + A−. For x ∈ (x̄0, x̄+), the infimum in
(13.100) is attained at the ζ = ζ(x) for which α′(ζ) = −x, and it follows from
Lemma 13.7 that ζ(x) is an analytic function of x, and thus α∗∗(x) is analytic
in (x̄0, x̄+). (Similarly, in this case, the infimum in (13.101) is attained at
θ = θ(x) > −A− with (log µ̂)′(θ) = −1/x.) Hence, the function α∗∗(x) is
analytic in (x̄−, x̄+) except that in the case x̄0 > x̄−, i.e. when (13.102)
applies, it is not analytic at x̄0. Note also that x̄−1

0 = −(log µ̂)′(A−+) >
−(log µ̂)′(α) = β, so x̄0 < β−1.

Example 13.34. Consider the binary search tree in Example 6.2. By
Theorem 13.25, the saturation level satisfies S(Tn) ∼ γ− log n a.s. (since
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α = 1). For the constant γ−, we obtain from Lemma 13.28 the same equa-
tions (13.40) and (13.41) as for γ (and the height) in Example 13.9, but now
with −1 < θ < 0 and thus γ− < 1. Consequently, γ− is the (unique) root
of (13.43) in the interval (0, 1). Numerically, γ−

.
= 0.37336. (This result for

the saturation level was shown by Devroye [32].)
Furthermore, by simple calculations, cf. (13.44)–(13.45),

α̌(ζ) = α(−ζ) = 2eζ − 1, (13.103)

α̌∗(x) =


1, x 6 −2,

x log(|x|/2)− x− 1, −2 6 x 6 0,

−∞, x > 0.

(13.104)

Note that α̌∗(−x) for 0 6 x 6 2 and α∗(x) for x > 2 are given by the
same analytic expressions, but for different ranges of x; this is in accordance
with Remark 13.33, which shows that both functions are restrictions of the
single analytic function α∗∗(x), which in this case is given by, cf. (13.45) and
(13.104),

α∗∗(x) =

{
−∞, x < 0,

−x log(x/2) + x− 1, x > 0.
(13.105)

The maximum is α∗∗(2) = 1 = α attained at x = 2 = β−1.

Example 13.35. More generally, for the m-ary search tree in Section 7.2,
Theorem 13.25 and Lemma 13.28 show that the saturation level satisfies
S(Tn) ∼ γ− log n a.s., where the constant γ− is given by the same equations
(13.53) and (13.54) as for γ in Example 13.11, but now with −1 < θ < 0.

Similarly, for the generalization in Example 8.4, γ− is given by (13.55)
and (13.56), with −`− 1 < θ < 0.

These results were, as the corresponding results for the height, proved
by a different method by Chauvin and Drmota [26], see also Drmota [44,
Section 6.5.2].

13.4. Profile. We have in this section so far considered the height and the
saturation level, which are the maximum and minimum depths of nodes, in
the latter case considering only nodes that are not full, i.e., with less than
the maximum number of children. The results of Biggins [14, 15] are more
general, and yield also results for the distribution of intermediate depths;
the distribution of depths of the nodes is called the profile of the tree.

Let in this section, for a rooted tree T and a real number s,

n6s(T ) :=
∣∣{v ∈ T : h(v) 6 s}

∣∣, (13.106)

n>s(T ) :=
∣∣{v ∈ T : h(v) > s}

∣∣, (13.107)

the number of nodes of depth 6 s and > s, respectively. We later consider
also the number of nodes with exactly a given depth, see (13.172).

More generally, for a branching random walk with general offsets ηi and
a 0–1 characteristic χ as in Section 13.3, let Nχ

>s(t) be the number of indi-
viduals at time t that have χ = 1 and position > s, i.e.,

Nχ
>s(t) :=

∣∣{x : χx(t− σx) = 1 and yx > s}
∣∣. (13.108)
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This includes the two quantities just defined by suitable choices of the offsets
ηi and taking the characteristic χ(t) = 1 (for all t > 0):

n>s(Tt) = Nχ
>s(t), ηi = 1 and χ(t) = 1, (13.109)

n6s(Tt) = Nχ
>−s(t), ηi = −1 and χ(t) = 1. (13.110)

One of the main results of Biggins [14, 15] is the following, which we for
convenience state first in the original form (valid for general ηi, with the
corresponding α∗).

Theorem 13.36 (Biggins [14, 15]). Suppose that ηi and χ are such that
(B1) and (B2) hold. If x ∈ R is such that α∗(x) > 0 and α∗(x + ε) > −∞
for some ε > 0, then

logNχ
>xt(t)

t

a.s.−→ α∗(x). (13.111)

�

We shall use the following version of Theorem 13.36, for the special cases
ηi = ±1 of interest to us. (The uniform convergence a.s. in (13.112) means

that supx6x1
∣∣logNχ

>xt(t)/t− α∗(x)
∣∣ a.s.−→ 0, and similarly in (13.113).)

Theorem 13.37. (i) Consider the case ηi = 1. If x < γ, then,

logNχ
>xt(t)

t

a.s.−→ α∗(x). (13.112)

Moreover, this holds uniformly for x ∈ (−∞, x1] for any x1 < γ.
(ii) Consider the case ηi = −1, and assume that χ is such that (B2)

holds. If x < γ̌, then,

logNχ
>xt(t)

t

a.s.−→ α̌∗(x). (13.113)

Moreover, this holds uniformly for x ∈ (−∞, x1] for every x1 < γ̌.

Proof. (i): Let 0 < x1 < γ and let ε > 0. Since the function α∗(x) is
concave, it is continuous on any open set where it is finite, and in particular
on (−∞, γ), see Lemma 13.7(iii) and (13.16). Hence, α∗(x) is continuous on
the compact set [0, x1], and it follows that we can choose an integer M such
that |α∗(x′)−α∗(x′′)| < ε whenever 0 6 x′ < x′′ 6 x1 with x′′−x′ 6 x1/M .
Let zi := ix1/M , i = 0, . . . ,M . Then thus∣∣α∗(zi)− α∗(zi−1)

∣∣ < ε, i = 1, . . . ,M. (13.114)

If x 6 x1 and ε′ < γ − x1, then x + ε′ < γ so α∗(x + ε′) > 0 > −∞ by
(13.16). Furthermore, this implies α∗(x) > 0 by (13.30) and the concavity of
α∗. Moreover, (B1) and (B2) hold, see Remark 13.22. Hence, Theorem 13.36
applies and yields

logNχ
>xt(t)

t

a.s.−→ α∗(x). (13.115)

Consequently, there exists a.s. t0 such that for t > t0,∣∣∣ logNχ
>zit(t)

t
− α∗(zi)

∣∣∣ < ε, i = 0, . . . ,M. (13.116)
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If x ∈ [0, x1], then zi−1 6 x 6 zi for some i and thus, for t > t0, by (13.116)
and (13.114) and the fact that α∗ is decreasing,

logNχ
>xt(t)

t
6

logNχ
>zi−1t

(t)

t
< α∗(zi−1) + ε < α∗(x) + 2ε (13.117)

and, similarly,

logNχ
>xt(t)

t
>

logNχ
>zit(t)

t
> α∗(zi)− ε > α∗(x)− 2ε. (13.118)

Consequently, (13.115) holds uniformly for x ∈ [0, x1], for any x1 < γ. This
extends trivially to x < 0 too, since then Nχ

>xt(t) = Nχ
>0(t) and α∗(x) =

α∗(0), see (13.30).
(ii): This is similar to part (i), using (13.81) and (13.94). The most impor-

tant difference is that (B2) now is not automatic, and has to be assumed. (It
was noted in the proof of Theorem 13.25 that (B1) always holds.) Further-
more, fix x1 < γ̌ and some x2 < −γ, and consider first x ∈ [x2, x1], showing
(13.113) uniformly for such x by the argument above. The result extends

to x < x2 too, since each position is > −H(Tt) and −H(Tt)/t
a.s.−→ −γ > x2

by Theorem 13.1; thus a.s., for large t, −H(Tt) > x2t and then all po-
sitions are > x2t, so Nχ

>xt(t) = Nχ
>x2t(t) for every x < x2; furthermore,

α̌∗(x) = α = α̌∗(x2) by (13.94). (Recall that γ <∞ by Lemma 13.5, which
also implies x2 < −γ 6 −β−1.) �

We immediately get results for the upper part of the profile.

Theorem 13.38. Under the assumptions (A1)–(A5) and (A6ψ), for every
x < γ/α, as n→∞, a.s.

n>x logn(Tn) = nα
∗(αx)/α+o(1). (13.119)

Moreover, (13.119) holds uniformly for x ∈ [0, x1] for every x1 < γ/α.

Proof. Let x1 < γ/α and fix x′ with x1α < x′ < γ.
Take ηi = 1 and χ(t) = 1, as in (13.109). Then (13.109) and (13.112)

yield

log n>xt(Tt)
t

=
logNχ

>xt(t)

t

a.s.−→ α∗(x), (13.120)

uniformly on [0, x′]. Replace t by τ(n) and x by x log n/τ(n) in (13.120).

Since log n/τ(n)
a.s.−→ α by (5.17), it follows that a.s., uniformly for 0 6 x 6

x1,

log n>x logn(Tn)

τ(n)
= α∗(x log n/τ(n)) + o(1) = α∗(xα) + o(1), (13.121)

again using the fact that α∗ is continuous on (at least) (−∞, γ). Using
(5.17) again, this yields

log n>x logn(Tn)

log n
= α∗(xα)/α+ o(1), (13.122)

uniformly for x ∈ [0, x1], a.s., which is (13.119). The case x < 0, included
for completeness, follows trivially from the case x = 0 and (13.30). �
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Remark 13.39. Theorem 13.38 does not hold (in general) for x > γ/α.
Indeed, for such x, by Theorem 13.2, a.s. H(Tn) < x log n for large n
and thus n>x logn(Tn) = 0 and log

(
n>x logn(Tn)

)
/ log n = −∞, while typ-

ically α∗(αx) > −∞, see (13.20). Furthermore, Theorem 13.38 fails for
x = γ/α too, as is seen for example by the binary search tree, where it
follows from Biggins [12] that H(Tn)− (γ/α) log n→ −∞ a.s., and thus a.s.
n>(γ/α) logn(Tn) = 0 for all large n; see [101] and [113] for more precise re-
sults. (Consequently, (13.119) does not hold uniformly on (−∞, γ/α); only
on closed subintervals (−∞, x1].)

Remark 13.40. By (13.30), the exponent α∗(αx)/α in (13.119) is less than
1 for x > (αβ)−1; hence only a polynomially small fraction of the nodes have
depth at least x log n for such x. On the other hand, for x 6 (αβ)−1, (13.119)

is pretty useless and says only that a fraction no(1) of all nodes have depth
at least (αβ)−1. We shall see in Section 13.5 below the stronger fact that
most nodes have depth

(
(αβ)−1 + o(1)

)
log n.

Remark 13.41. The proof shows that (13.119) holds also if we count nodes
according to some 0–1 characteristic χ. For example, we may choose χ(t) :=
1{t < ξ1} and consider leaves only. Similarly, in the m-ary case N = m we
may use (13.76) and count only nodes that are not full, as in Section 13.3.
For the m-ary search tree in Section 7.1, we may similarly consider external
nodes (i.e., nodes without a key) only; this yields the external profile.

For the lower part of the profile, we cannot use Theorem 13.37 directly,
since (B2) does not hold for χ = 1, but we can use other characteristics.
Before proceeding, we define yet another function α̃∗(x), for x > 0, by

α̃∗(x) :=

{
x supy>x

α̌∗(−y)
y , x > 0,

max
(
α̌∗(0), 0

)
, x = 0.

(13.123)

Recall that α̌∗(0) = α(∞) = A−, see (13.94) and (13.29).
Furthermore, if µ̂(0) and the right derivative µ̂′(0+) are finite, let

γ∗ :=
1

−(log µ̂)′(0+)
=

µ̂(0)

−µ̂′(0+)
> 0; (13.124)

if µ̂(0) or µ̂′(0+) is infinite, let γ∗ := 0. (If A− < 0, then µ̂(θ) is analytic at 0,
and we may simply write µ̂′(0).) Note that µ̂(0) = EN by (5.7), which also
implies, using the monotone convergence theorem, that the right derivative

µ̂′(0+) = − lim
θ↘0

µ̂(0)− µ̂(θ)

θ
= − lim

θ↘0
E

N∑
i=1

1{i 6 N}1− e−θξi
θ

= −E
N∑
i=1

ξi. (13.125)

Hence, when γ∗ > 0, or more generally when EN <∞,

γ∗ =
EN

E
∑N

i=1 ξi
. (13.126)
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Lemma 13.42. (i) The constant γ∗ satisfies

0 6 x̄− 6 γ− 6 γ∗ < β−1. (13.127)

and furthermore either

0 6 γ− < γ∗ or 0 = γ− = γ∗. (13.128)

(ii) The function α̃∗(x) is increasing and continuous on [0,∞), and it is
the least non-negative concave majorant of α̌∗(−x) on [0,∞).

(iii) We have

α̃∗(x) =


x log µ̂(0) = x log(EN), 0 6 x 6 γ∗ and γ∗ > 0,

α̌∗(−x), x > γ∗,

α, x > β−1,

(13.129)

with

α̃∗(x) < x log(EN), x > γ∗. (13.130)

and

α̃∗(x) < α, 0 6 x < β−1. (13.131)

Consequently, if γ∗ > 0, then α̃∗(x) is analytic except at the two points γ∗
and β−1.

Furthermore,

α̃∗(0) = 0 ⇐⇒ α̌∗(0) 6 0 ⇐⇒ A− 6 0. (13.132)

(iv) If x > 0, or if x > 0 and A− 6 0, then

α̃∗(x) = inf
06θ6α

{
x log µ̂(θ) + θ

}
, (13.133)

where the infimum is attained at θ = 0 for x 6 γ∗, at θ = α for x > β−1

and in (0, α) for x ∈ (γ∗, β
−1).

(v) If A− < 0, then α̃∗(x) > α̌∗(−x) for 0 6 x < γ∗ and α̃∗(x) = α̌∗(−x)
for x > γ∗. On the other hand, if A− > 0, then α̃∗(x) = α̌∗(−x) for all
x > 0.

Proof. (i): If γ− = 0, then (13.128) is trivial. Suppose now γ− > 0. Then,
by Lemma 13.28, A− < 0. Furthermore, by Lemma 13.7, log µ̂(θ) is strictly
convex on (A−,∞). Thus (13.124) applies, and, moreover, for θ ∈ (A−, 0),

log µ̂(θ)

|θ|
=

log µ̂(0)

|θ|
− log µ̂(0)− log µ̂(θ)

−θ
>

log µ̂(0)

|θ|
− (log µ̂)′(0). (13.134)

Hence, the infimum of log µ̂(θ)/|θ| over any finite subinterval of (A−, 0) is
strictly larger than −(log µ̂)′(0) = γ−1

∗ . Moreover, if A− = −∞, then the
strict convexity also implies

lim
θ→−∞

log µ̂(θ)

|θ|
= − lim

θ→−∞
(log µ̂)′(θ) > −(log µ̂)′(0). (13.135)

Hence, in any case, (13.87) yields γ−1
− > γ−1

∗ and thus γ− < γ∗ when γ− > 0,
which completes the proof of (13.128).

By (13.128) and (13.99), 0 6 x̄− 6 γ− 6 γ∗, so to show (13.127), it
remains only to verify γ∗ < β−1. This is trivial if γ∗ = 0, so assume γ∗ > 0.
Then (13.124) holds and A− 6 0. Hence log µ̂(θ) is strictly convex on [0, α]



FRINGE TREES, BRANCHING PROCESSES AND m-ARY SEARCH TREES 91

by Lemma 13.7 and thus (log µ̂)′(0) < (log µ̂)′(α), and thus by (13.124) and
(13.12),

γ−1
∗ = −(log µ̂)′(0) > −(log µ̂)′(α) = β. (13.136)

(iii): First, (13.132) is immediate by (13.123) and (13.94).
We now show (13.129). For x > β−1, (13.94) yields α̌∗(−y) = α for every

y > x, and thus (13.123) yields α̃∗(x) = α = α∗(−x). Hence it suffices
to consider 0 6 x 6 β−1. In this range, we have α̌∗(−x) = α∗∗(x), see
Remark 13.33, and it follows that for such x, we may replace α̌∗(−y) by
α∗∗(y) in (13.123), which will be a (minor) convenience. Note first that by
(13.101), for x > 0,

α∗∗(x)

x
= inf
−∞<θ<∞

{
log µ̂(θ) +

θ

x

}
. (13.137)

Assume that x̄− < x < x̄+ and let θ(x) be the (unique) θ where the infima in
(13.101) and (13.137) are attained, see Remark 13.33. Let f be the convex
function f(θ) := x log µ̂(θ) + θ in (13.101), and note that if γ∗ > 0, then
(13.124) implies that the right derivative

f ′(0+) = x
µ̂′(0+)

µ̂(0)
+ 1 = − x

γ∗
+ 1. (13.138)

Suppose first that γ∗ 6 x 6 β−1 and x > 0. If γ∗ > 0, then (13.138)
yields f ′(0+) = −x/γ∗ + 1 6 0; if γ∗ = 0, then f(0) =∞ or f ′(0+) = −∞.
In all three cases, the minimum point satisfies θ(x) > 0. Hence, if y > x,
then by (13.137),

α∗∗(y)

y
6 log µ̂(θ(x)) +

θ(x)

y
6 log µ̂(θ(x)) +

θ(x)

x
=
α∗∗(x)

x
. (13.139)

Thus, α∗∗(x)/x is decreasing on [γ∗,∞) ∩ (0,∞) (and so is α̌∗(−x)/x), and
it follows from (13.123) that α̃∗(x) = α∗∗(x) = α̌∗(−x) for x > γ∗ with
0 < x 6 β−1. Thus, the second line of (13.129) holds for x > γ∗ with x > 0.

On the other hand, if x̄− < x 6 γ∗ (which entails γ∗ > 0 and thus
A− 6 0), we similarly have by (13.138) f ′(0) > 0, and thus the minimum
point θ(x) 6 0. Hence, if also 0 < z 6 x, then by (13.137),

α∗∗(z)

z
6 log µ̂(θ(x)) +

θ(x)

z
6 log µ̂(θ(x)) +

θ(x)

x
=
α∗∗(x)

x
. (13.140)

If x̄− = 0, we have shown that α∗∗(x)/x is increasing on (0, γ∗]. If x̄− > 0, we
have shown that α∗∗(x)/x is increasing on [x̄−, γ∗], and since α∗∗(x) = −∞
for x < x̄− by (13.100) and (13.95), α∗∗(x)/x is increasing on (0, γ∗] in this
case too.

Hence, if γ∗ > 0, then α∗∗(x)/x is increasing on (0, γ∗] and decreasing on
[γ∗,∞); consequently it has a maximum at γ∗ and, for every x ∈ (0, γ∗],

max
y>x

α∗∗(y)

y
=
α∗∗(γ∗)

γ∗
. (13.141)

Moreover, again by (13.138), if x = γ∗ > 0, then f ′(0+) = 0, and thus the
infimum in (13.137) is attained at θ = 0. This yields the value

α∗∗(γ∗)

γ∗
= log µ̂(0) = log µ[0,∞) = log(EN), γ∗ > 0. (13.142)
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It follows from (13.141)–(13.142) and (13.123) that the first line of (13.129)
holds for 0 < x 6 γ∗.

Finally, consider x = 0. By Lemma 13.31(ii), α̌∗(0) = A−. If γ∗ > 0, then
µ̂(0) <∞ and thus A− 6 0; hence (13.123) yields α̃∗(0) = 0. (Cf. (13.132).)
Similarly, if γ∗ = 0, then µ̂(0) or µ̂′(0) is infinite, and thus A− > 0; hence
(13.123) yields α̃∗(0) = A− = α̌∗(0). In both cases (13.129) holds. This
completes the proof of (13.129).

Moreover, if γ∗ < x 6 β−1, then (13.138) yields f ′(0+) < 0, and thus
the infimum in (13.101) is not attained at 0; hence α∗∗(x) < x log µ̂(0).
Furthermore, by (13.129) and Remark 13.33, α∗(x) = α̌∗(−x) = α∗∗(x);
hence (13.130) holds for γ∗ < x 6 β−1. This extends to x > β−1 since α̃∗(x)
is constant there by (13.129).

Furthermore, it follows from (13.129) and (13.94) that α̃∗(x) < α if γ∗ 6
x < β−1; if γ∗ > 0, this extends to 0 6 x < β−1, because γ∗ < β−1 and
α̃∗(x) is increasing on [0, γ∗] by (13.129). Hence (13.131) holds.

(ii): By (13.129), α̃∗(x) is linear, continuous, and increasing on [0, γ∗].
Furthermore, by Lemma 13.31, α̌∗(−x) is concave, increasing and continuous
on [x̄−,∞); hence, by (13.127) and (13.129), α̃∗(x) = α̌∗(−x) is concave,
increasing and continuous on [γ∗,∞). Consequently, α̃∗(x) is increasing and
continuous on [0,∞), and to show that it is concave, it suffices to verify
that, in the case γ∗ > 0, the left derivative at γ∗ is at least as large as the
right derivative. To see this, note that α̃∗(x) = x log(EN) for 0 6 x 6 γ∗ by
(13.129), while α̃∗(x) = α∗∗(x) 6 x log(EN) for γ∗ 6 x 6 β−1 by (13.129)
and (13.141)–(13.142); hence the left derivative equals log(EN), and the
right derivative cannot be larger.

Moreover, α̃∗(x) is by the definition (13.123) a non-negative majorant of
α̌∗(−x), and we have just shown that it is concave. It follows easily from
(13.123) that it is the least concave non-negative majorant.

(iv): If x = 0 and A− 6 0, then (13.133) follows by (13.132), so we may
assume x > 0. If 0 < x 6 γ∗, then we have as above f ′(0+) > 0 by (13.138)
and thus the convex function f(θ) is increasing on [0,∞), so the infimum in
(13.133) is attained at θ = 0 and equals x log µ̂(0), which verifies (13.133) in
this case by (13.129). Similarly, if x > β−1, then, recalling (5.39) and (A4),

f ′(α) = x
µ̂′(α)

µ̂(α)
+ 1 = −xβ + 1 6 0 (13.143)

and thus f(θ) is decreasing for θ 6 α, so the infimum in (13.133) is attained
at θ = α and equals x log µ̂(α) + α = α, which verifies (13.133) in this case,
again using (13.129). If 0 < γ∗ < x < β−1, then f ′(0) < 0 < f ′(α) so the
minimum point θ(x) in (13.101) satisfies 0 < θ(x) < α, and a minor variation
yields 0 < θ(x) < α also when 0 = γ∗ < x < β−1. Hence, if γ∗ < x < β−1,
then the infima in (13.101) and (13.133) are equal and (13.133) follows in
this case too. (Cf. (13.82).)

(v): By (13.123), α̃∗(x) > α̌∗(−x) for every x, and equality holds for
x > γ∗ by (iii).

For x = 0, (13.123) yields α̃∗(0) = α̌∗(0) ⇐⇒ α̌∗(0) > 0, and the result
follows since α̌∗(0) = A− by (13.94).
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It remains to consider 0 < x < γ∗. If A− > 0, then µ̂(θ) = ∞ for θ < 0.
Hence (13.82) and (13.133) yield

α̌∗(−x) = inf
−∞<θ6α

{
x log µ̂(θ) + θ

}
= inf

06θ6α

{
x log µ̂(θ) + θ

}
= α̃∗(x).

(13.144)
On the other hand, if A− < 0, then f(θ) is analytic at θ = 0, and f ′(0) > 0
by (13.138); hence the infimum in (13.101) is strictly less than the value at
θ = 0, i.e.,

α∗∗(x) < x log µ̂(0), (13.145)

which yields α∗∗(x) < α̃∗(x) by (13.129). �

Theorem 13.43. Under the assumptions (A1)–(A5) and (A6ψ), as n→∞,
a.s.,

n6x logn(Tn) = nα̃
∗(αx)/α+o(1), (13.146)

uniformly in x > x0 for every x0 > 0; if further A− 6 0, then (13.146) holds
uniformly for all x > 0.

Proof. Let χ be the 0–1 characteristic

χ(t) := 1{0 6 t < 1}, (13.147)

meaning that we count only individuals that are less than one unit old.
In the present proof we consider both this characteristic χ and the charac-

teristic 1, and both offsets ηi = 1 and ηi = −1; we therefore introduce more
notation to distinguish between the different cases. Let Nχ

>s(t) and N1
>s(t)

denote the number in (13.108) counted with the characteristic χ in (13.147)
and the characteristic 1, respectively, in both cases for the offsets ηi = 1.
We similarly let Nχ

6s(t) and N1
6s(t) denote the corresponding numbers of in-

dividuals with position less that s. Finally, we let Ňχ
>s(t) and Ň1

>s(t) denote
the corresponding numbers for the offsets ηi = −1. Note that

Nχ
6s(t) = Ňχ

>−s(t) and N1
6s(t) = Ň1

>−s(t). (13.148)

Furthermore,

Nχ
>s(t) = N1

>s(t)−N1
>s(t− 1). (13.149)

Note further that (B2) holds trivially for χ and ηi = −1, since α̌(ζ) =
α(−ζ) > −∞ for each ζ by Lemma 13.31(i) and thus

sup
t>0

(
e−α(ζ)tχ(t)

)
= max

{
0, e−α(ζ)

}
<∞. (13.150)

Consequently, Theorem 13.37(ii) applies to χ and ηi = −1 and yields, for
every x < γ̌,

log Ňχ
>xt(t)

t

a.s.−→ α̌∗(x). (13.151)

Using (13.148), this means that for every x > γ− = −γ̌,

logNχ
6xt(t)

t
=

log Ňχ
>−xt(t)

t

a.s.−→ α̌∗(−x) 6 α̃∗(x). (13.152)

Furthermore, if 0 6 x < γ−, then Theorem 13.1 can be used as in the proof
of Theorem 13.25, see (13.85), to show that a.s. Nχ

6xt(t) = Ňχ
>−xt(t) = 0 for
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all large t, and thus

logNχ
6xt(t)

t

a.s.−→ −∞ 6 α̃∗(x). (13.153)

(Alternatively, we may use [14, Theorem 5(i)] directly.) Finally, if x = γ−,
then for any ε > 0, by (13.152),

lim sup
t→∞

logNχ
6xt(t)

t
6 lim sup

t→∞

logNχ
6(x+ε)t(t)

t
6 α̃∗(x+ ε). (13.154)

Since α̃∗ is continuous by Lemma 13.42 and ε > 0 in (13.154) is arbitrary,
it follows from (13.152)–(13.154) that for every x > 0,

lim sup
t→∞

logNχ
6xt(t)

t
6 α̃∗(x). (13.155)

(See also [14, Theorem 5 and the comment after it on the upper bound].)
Note also that for x1 = γ + 1, say, a.s. for large t, H(Tt) 6 x1t and thus
Nχ
6xt(t) = Nχ

6x1t(t) for all x > x1. Since α̃∗(x) is continuous, the argument
in the proof of Theorem 13.38 shows that a.s., (13.155) holds uniformly for
all x > 0.

In other words, for any δ > 0, there exists a.s. t0 > 0 such that for all
t > t0 and all x > 0,

logNχ
6xt(t) 6

(
α̃∗(x) + δ

)
t. (13.156)

Hence, for all s > 0 and t > u > t0,

logNχ
6s(u) 6

(
α̃∗(s/u) + δ

)
u =

α̃∗(s/u)

s/u
s+ δu

6
α̃∗(s/t)

s/t
s+ δt =

(
α̃∗(s/t) + δ

)
t, (13.157)

using the fact that by (13.123), α̃∗(x)/x is decreasing for x > 0. Further-
more, (13.157) holds for s = 0 too, again by (13.156).

We now return to the characteristic 1. By (13.149), for t > t0,

N1
6s(t) =

bt−t0c∑
i=0

Nχ
6s(t− i) +N1

6s(t− bt− t0c − 1)

6
bt−t0c∑
i=0

Nχ
6s(t− i) + Zt0 , (13.158)

since t− bt− t0c − 1 6 t0. With t0 as above, we thus have by (13.157) a.s.,
for t > t0 and all s > 0,

N1
6s(t) 6

bt−t0c∑
i=0

e(α̃∗(s/t)+δ)t + Zt0 6 (t+ 1)e(α̃∗(s/t)+δ)t + Zt0 (13.159)

and consequently, for all x > 0,

logN1
6xt(t)

t
6 α̃∗(x) + δ +

log(t+ 1)

t
+
Zt0
t
. (13.160)
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Hence, a.s. there exists t1 > t0 such that for all t > t1 and all x > 0,

logN1
6xt(t)

t
6 α̃∗(x) + 2δ. (13.161)

Consequently, a.s.,

lim sup
t→∞

logN1
6xt(t)

t
6 α̃∗(x), (13.162)

uniformly for all x > 0.
For a lower bound, consider first x > 0. For a given y > x > 0 and any

t > 0, let t′ := tx/y. Then t′ 6 t and

N1
6xt(t) = N1

6yt′(t) > N
1
6yt′(t

′) > Nχ
6yt′(t

′). (13.163)

Consequently, letting t→∞ and using (13.152),

logN1
6xt(t)

t
>

logNχ
6yt′(t

′)

t
=

logNχ
6yt′(t

′)

yt′/x

a.s.−→ x
α̌∗(−y)

y
. (13.164)

Hence, a.s.,

lim inf
t→∞

logN1
6xt(t)

t
> x

α̌∗(−y)

y
, (13.165)

for every y > x, and thus by (13.123), a.s.,

lim inf
t→∞

logN1
6xt(t)

t
> α̃∗(x). (13.166)

For x = 0, we have N1
60(t) = 1 for all t > 0, and thus logN1

60(t)/t = 0.
Hence, (13.166) holds for x = 0 too if (and only if) α̃∗(0) = 0, which by
(13.132) holds if and only if A− 6 0.

Note that n6xt(Tt) = N1
6xt(t), cf. (13.110) and (13.148). Hence, combin-

ing (13.162) and (13.166) we obtain

log n6xt(Tt)
t

=
logN1

6xt(t)

t

a.s.−→ α̃∗(x) (13.167)

for every x > 0, and in the case α̃∗(0) = 0 for every x > 0. Again, by the
argument in the proof of Theorem 13.37, (13.167) holds a.s. uniformly on
every interval [x0,∞) with x0 > 0, and in the case α̃∗(0) = 0, uniformly on
[0,∞).

Finally, the proof is completed as the proof of Theorem 13.38. �

Remark 13.44. The lower part of the profile is thus described by the
function α̃∗(x) and not by α̌∗(−x). (By Lemma 13.42(v), there is a difference
only if A− < 0, and only for x < γ∗.) However, if we count only nodes
described by a 0–1 characteristic χ for which (B2) holds, then (13.152)
holds. For example, this applies to non-full nodes in an m-ary search tree,
using the characteristic (13.76); we use this in the proof of Theorem 13.57
below. Similarly, it applies to external nodes in an m-ary search tree, and
to leaves in any tree generated by a branching process with N > 1 (using
the argument in the proof of Theorem 13.25 to verify (B2)).
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Example 13.45. In the m-ary case N = m, we have µ̂(0) = EN = m, so
A− 6 0. Furthermore, (13.126) holds and shows that

γ∗ =
m∑m

i=1 E ξi
. (13.168)

In particular, with the usual ordering ξ1 6 . . . 6 ξm, γ∗ > 0 ⇐⇒ E ξm <∞.
(This holds for all our examples of m-ary trees, including the m-ary search
trees.)

For the m-ary search tree, we can as well use a random labelling of the
children as in Section 7.2, which yields (with the notation there) E ξi =
E(S +Xi) = Hm−1, and thus

γ∗ = 1/Hm−1 (13.169)

by (13.168). In particular, for the binary search tree, γ∗ = 1.
In the m-ary case with γ∗ > 0, by Lemma 13.42, α̃∗(x) = x logm for

x ∈ [0, γ∗]. Hence, Theorem 13.43 yields, a.s., uniformly for k 6 (γ∗/α) log n,

n6k(Tn) = nα̃
∗(αk/ logn)/α+o(1) = nk logm/ logn+o(1) = mk+o(logn). (13.170)

Equivalently, a.s., uniformly for k/ log n ∈ [δ, γ∗/α] for any δ > 0,

n6k(Tn) = mk+o(k). (13.171)

We can interpret this as saying that, a.s., a “large part” (in a logarithmic
sense) of all possible nodes of depth 6 k are filled for k 6 (γ∗/α) log n, but
not for (substantially) larger k as a consequence of (13.130). Compare with
Theorem 13.25, which says that all possible nodes are filled up to depth
S(Tn) ∼ γ̄− log n a.s., and note that γ̄− < γ∗/α by (13.128), except in the
trivial case γ∗ = 0.

A stronger result will be proved in Theorem 13.57.

Remark 13.46. In the case A− > 0, when α̃∗(0) > 0 by (13.132), (13.146)
is evidently false for x = 0. If we consider x = x(n) > 0 with x → 0
as n→∞, the situation is more complicated. There are examples where
(13.146) fails due to irregular growth of the tree, see Example 13.54, but in
other, more regular cases, (13.146) holds uniformly for all x > 0 such that
x log n > 1, see Theorem 13.55. (The upper bound (13.162) always holds;
the problem is the lower bound.)

So far we have considered the number of nodes of depth 6 s and > s, for
a given s. We are also interested in the number of nodes with depth exactly
a given value, and we thus define, for a tree T and an integer k > 0,

nk(T ) :=
∣∣{v ∈ T : h(v) = k}

∣∣. (13.172)

We shall see that the asymptotics of these numbers are governed by the
function α̂∗(x) defined by

α̂∗(x) := min
{
α∗(x), α̃∗(x)

}
. (13.173)

Note that α̂∗(x) = α̃∗(x) for 0 6 x 6 β−1 and α̂∗(x) = α∗(x) for x > β−1,
see (13.30) and (13.129).
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Lemma 13.47. The function α̂∗(x) is concave on [0,∞); it is finite for
x < x̄+ and −∞ for x > x̄+, and it is continuous except possibly at x̄+.
Moreover, α̂∗(x) has a global maximum at x = 1/β, with α̂∗(1/β) = α and
α̂∗(x) < α for x 6= 1/β. Furthermore,

α̂∗(x) =

{
x log µ̂(0) = x log(EN), 0 6 x < γ∗,

α∗∗(x), x > γ∗.
(13.174)

Hence, α̂∗(x) is analytic on (0, x̄+), except at γ∗ (if γ∗ > 0), where it is not
analytic. Also,

α̂∗(0) = 0 ⇐⇒ A− 6 0. (13.175)

If x > 0, or if x > 0 and A− 6 0, then also

α̂∗(x) = inf
06θ<∞

{
x log µ̂(θ) + θ

}
. (13.176)

Proof. Simple consequences of the definition (13.173) and Lemmas 13.7(iii)
and 13.42 together with (13.100) and Remark 13.33, with (13.176) following
directly from (13.173), (13.17) and (13.133). �

Remark 13.48. Compare the formulas (13.17), (13.82) (with−x), (13.101),
(13.133) and (13.176), expressing various quantities as the infimum of the
same function over different ranges.

Theorem 13.49. Assume (A1)–(A5) and (A6ψ). If 0 < x < γ/α, then
a.s., as n→∞,

nbx lognc(Tn) = nα̂
∗(αx)/α+o(1). (13.177)

Moreover, this hold uniformly for x in any compact subset of (0, γ/α). Fur-
thermore, if further A− 6 0, then (13.177) holds uniformly for x in any
compact subset of [0, γ/α).

Proof. We will show the result in the form

log nbxtc(Tt)
t

a.s.−→ α̂∗(x), (13.178)

uniformly for x in any compact subset of (0, γ), and if A− 6 0, uniformly
for x in any compact subset of [0, γ). This implies (13.177) by the usual
argument using (5.17). Furthermore, since α̂∗(x) is continuous on [0, γ), it
suffices to consider the case when xt is an integer, i.e.,

log nk(Tt)
t

= α̂∗(k/t) + o(1), (13.179)

uniformly for k/t in any compact subset of (0, γ) or [0, γ), respectively.
The upper bound is easy. Since nk(Tt) 6 n6k(Tt) and nk(Tt) 6 n>k(Tt),

we get the upper bound

lim sup
t→∞

log nk(Tt)
t

6 α̂∗(k/t), (13.180)

from Theorems 13.43 and 13.38, or more precisely from (13.162) and (13.120),
uniformly for 1 6 k 6 x′t for any x′ < γ.

For the corresponding lower bound, we first consider the special case when
the number of offspring N in the branching process is bounded, N 6M for
some constant M . (This implies µ̂(0) = EN 6M <∞, and thus A− 6 0.)
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Let δ > 0. On the interval [0, β−1], α̂∗(x) = α̃∗(x) is strictly increasing, and
thus, by compactness, there exists ε > 0 such that if 0 6 x 6 y 6 β−1 with
y − x > δ, then α̃∗(y) − α̃∗(x) > 3ε. Consequently, (13.167) implies that
a.s., for t large and for all x ∈ [0, β−1 − δ],

n6(x+δ)t(Tt)− n6xt(Tt) > e(α̃∗(x+δ)−ε)t − e(α̃∗(x)+ε)t

> eα̃
∗(x)t

(
e2εt − eεt

)
> eα̃

∗(x)t. (13.181)

Furthermore, if x = k/t for an integer k, then each node v in Tt with depth
h(v) ∈ [xt, (x + δ)t) has an ancestor v′ with depth k = xt, and at most∑δt

i=0M
i 6M2δt such nodes v have the same ancestor v′; hence

nk(Tt) >M−2δt
(
n6(x+δ)t(Tt)− n6xt(Tt)

)
> eα̃

∗(x)t−2δt logM (13.182)

and thus

log nk(Tt)
t

> α̃∗(x)− 2δ logM = α̂∗(k/t)− 2δ logM. (13.183)

Similarly, on the interval [β−1, γ), α̂∗(x) = α∗(x) is strictly decreasing,
and thus, by compactness, for any x1 < γ, there exists ε > 0 such that if
β−1 6 x 6 y 6 x1 with y − x > δ, then α∗(x) − α∗(y) > 3ε. We may also
assume ε 6 δ. Consequently, (13.120) implies that a.s., for t large and for
all x ∈ [β−1, x1 − δ],

n>xt(Tt)− n>(x+δ)t(Tt) > e(α∗(x)−ε)t − e(α∗(x+δ)+ε)t

> eα
∗(x)t

(
e−εt − e−2εt

)
> eα

∗(x)t−2εt > eα
∗(x)t−2δt.

(13.184)

Hence, arguing as above, a.s. for large t, if x = k/t for an integer k with
x ∈ [β−1, x1 − δ], then

nk(Tt) >M−2δt
(
n>xt(Tt)− n>(x+δ)t(Tt)

)
> eα

∗(x)t−2δt−2δt logM (13.185)

and thus

log nk(Tt)
t

> α∗(x)− 2δ(logM + 1) = α̂∗(k/t)− 2δ(logM + 1). (13.186)

Finally, if k/t ∈ [β−1 − δ, β−1], we similarly obtain from (13.184)

nk(Tt) >M−3δt
(
n>β−1(Tt)− n>(β−1+δ)t(Tt)

)
> eα

∗(β−1)t−2δt−3δt logM

(13.187)

and thus, using α∗(β−1) = α > α̂∗(k/t),

log nk(Tt)
t

> α̂∗(k/t)− δ(3 logM + 2). (13.188)

Combining (13.183), (13.186) and (13.188), we see that a.s., (13.188) holds
for all k ∈ [0, (x1 − δ)t] and all t > t0 (with t0 random and depending on
δ and x1, but not on k). Since δ and x1 are arbitrary, this implies that for
any x2 < γ, a.s.,

log nk(Tt)
t

> α̂∗(k/t) + o(1) (13.189)

uniformly for k/t ∈ [0, x2], which together with the upper bound proved
above yields (13.179) in the special case when N is bounded.
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The general case follows by pruning the branching process and the cor-
responding tree Tt. Let M be a large integer and let each individual keep
only at most M children, for example by discarding all children after the

M first of every individual. We denote the pruned tree by T (M)
t , and write

similarly µ(M) and so on for other quantities for the pruned version. Note
that, by monotone convergence and (5.7),

µ̂(M)(θ)↗ µ̂(θ) as M →∞. (13.190)

for every θ. It is easy to verify that (A1)–(A5) except (A2) hold for the
pruned process too, provided M is large enough. Furthermore, also (A2)
holds except in some exceptional cases; in those cases we can modify the
pruning by selecting the M surviving children by a suitable random proce-
dure that preserves both (A2) and (13.190); we omit the details. (Alterna-
tively, it seems probable that (A2) is not really needed for the proofs in the

present section, but we have not verified this in detail.) Moreover, T (M)
t is

a subtree of Tt, and thus, by (13.189) for the special case just treated,

log nk(Tt)
t

>
log nk(T

(M)
t )

t
> α̂∗(M)(x) + o(1), (13.191)

a.s. for large t, uniformly for k/t ∈ [0, x1]. The result (13.179) now follows
from the following lemma. �

Lemma 13.50. Let α̂∗(M)(x) be α̂∗ for the branching process pruned to at
most M children for each individual, using a pruning such that (13.190)
holds. If 0 < x < γ, then, as M →∞,

α̂∗(M)(x)↗ α̂∗(x), (13.192)

and this holds uniformly for x in any compact subset of (0, γ); if A− 6 0, it
holds uniformly in any compact subset of [0, γ).

Proof. By (13.190) and (13.176), α̂∗(M)(x) is increasing inM and α̂∗(M)(x) 6
α̂∗(x) for every x > 0. If A− 6 0, then also α̂∗(0) = 0 = α̂∗(M)(0) for every
M by (13.175). Let ε > 0 and let x > 0, or x = 0 and A− 6 0. We shall
show that there exists a neighbourhood Ux of x, and an M ′ <∞, such that
for all y ∈ Ux and all M >M ′,

α̂∗(y)− α̂∗(M)(y) < ε. (13.193)

This implies the result by a standard compactness argument.
Let, for x > 0 and θ > 0,

fx(θ) := x log µ̂(θ) + θ. (13.194)

Let A0 := max{A−, 0}. By Lemma 13.7, fx(θ) = ∞ if 0 6 θ < A0 and
fx(θ) <∞ if θ > A0. Thus, (13.176) can be written

α̂∗(x) = inf
θ>0

fx(θ) = inf
θ>A0

fx(θ). (13.195)

Lemma 13.7 also implies that fx(θ) is continuous and strictly convex on
[A0,∞). (We allow fx(A0) = ∞.) If x < γ, then x + η < γ for some small
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η > 0, which by (13.16) implies α∗(x+η) > 0 and thus by (13.17), for every
θ > α, (x+ η) log µ̂(θ) + θ > 0 or log µ̂(θ) > −θ/(x+ η); this yields

fx(θ) > −x θ

x+ η
+ θ =

ηθ

x+ η
→∞ as θ →∞. (13.196)

It follows that if 0 < x < γ, then the strictly convex function fx(θ) attains
its minimum at a unique point θ(x) ∈ [A0,∞).

Assume first θ(x) > A0. Choose θ1 and θ2 with A0 < θ1 < θ(x) < θ2 <∞.

Then fx(θ1) > fx(θ(x)) < fx(θ2). Since f
(M)
x (θ) → fx(θ) for every θ by

(13.190), it follows that for some δ > 0, some M0 <∞ and all M >M0,

f (M)
x (θ1) > f (M)

x (θ(x)) + δ < f (M)
x (θ2). (13.197)

If θ ∈ [θ1, θ2] and M >M0, then

µ̂(M0)(θ2) 6 µ̂(M)(θ2) 6 µ̂(M)(θ) 6 µ̂(M)(θ1) 6 µ̂(θ1) (13.198)

and thus

| log µ̂(M)(θ)| 6 C := max
{
| log µ̂(M0)(θ2)|, | log µ̂(θ1)|

}
. (13.199)

Let δ1 = δ/(3C). By (13.194) and (13.199), if |y − x| < δ1, M > M0 and

θ ∈ [θ1, θ2], then |f (M)
x (θ) − f (M)

y (θ)| 6 C|x − y| 6 δ/3. Hence, (13.197)
implies

f (M)
y (θ1) > f (M)

y (θ(x)) < f (M)
y (θ2). (13.200)

Since f
(M)
y (θ) is convex, this implies that the minimum of f

(M)
y (θ) is attained

at some θ(M)(y) ∈ [θ1, θ2], and the same holds for fy(θ). Consequently, if
|y − x| < δ1 and M >M0, then, using (13.194) again,

α̂∗(y)− α̂∗(M)(y) = inf
θ∈[θ1,θ2]

fy(θ)− inf
θ∈[θ1,θ2]

f (M)
y (θ)

6 sup
θ∈[θ1,θ2]

(
fy(θ)− f (M)

y (θ)
)

6 (x+ δ1) sup
θ∈[θ1,θ2]

(
log µ̂(θ)− log µ̂(M)(θ)

)
. (13.201)

Since µ̂(θ1) <∞, it follows easily by (5.7) and dominated convergence that

µ̂(M)(θ) → µ̂(θ) uniformly on [θ1, θ2] as M →∞, and thus it follows from
(13.201) that (13.193) holds if M is large enough, for all y > 0 with |y−x| <
δ1.

Next, assume x > 0 and θ(x) = A0. (This entails fx(A0) < ∞ and thus
µ̂(A0) <∞.) If A0 = 0, we choose θ1 = 0 and some θ2 > θ(x) = 0; we then
can argue as above with minor modifications. Again, for y−x small and M
large, the infima are attained on [θ1, θ2] and (13.201) holds.

If θ(x) = A0 = A− > 0, we choose θ1 and θ2 with 0 < θ1 < θ(x) < θ2 <∞.
Then the argument above leading to (13.200), but ignoring θ1, shows that
if |y − x| is small and M large, then

f (M)
y (A−) < f (M)

y (θ2). (13.202)

Furthermore, µ̂(M)(θ1) ↗ µ̂(θ1) = ∞, and it follows from (13.194) that

f
(M)
x/2 (θ1)→∞ as M →∞. Consequently, M is large enough and |y − x| <
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x/2, then

f (M)
y (θ1) > f (M)

x/2 (θ1) > f2x(A−) > fy(A−) > f (M)
y (A−). (13.203)

Hence we see again that if |y− x| is small and M large, then (13.200) holds

and thus the minimum of f
(M)
y (θ) is attained in [θ1, θ2]. Similarly, in analogy

with (13.203), fy(A−) < fy(θ2) if |y− x| is small, and then the minimum of
fy(θ) is attained in [A−, θ2] (since fy(θ) =∞ for θ < A−).

Furthermore, since µ̂(θ) is decreasing, we have for θ 6 A− and any y > 0

f (M)
y (θ) > y log µ̂(M)(A−) + θ = f (M)

y (A−)− (A− − θ). (13.204)

Consequently, provided we have chosen θ1 > A− − ε/2,

inf
θ∈[θ1,θ2]

f (M)
y (θ) > inf

θ∈[A−,θ2]
f (M)
y (θ)− ε/2. (13.205)

It follows that if |y − x| is small and M large, then

α̂∗(y)− α̂∗(M)(y) = inf
θ∈[A−,θ2]

fy(θ)− inf
θ∈[θ1,θ2]

f (M)
y (θ)

6 inf
θ∈[A−,θ2]

fy(θ)− inf
θ∈[A−,θ2]

f (M)
y (θ) + ε/2

6 sup
θ∈[A−,θ2]

(
fy(θ)− f (M)

y (θ)
)

+ ε/2

6 (x+ δ1) sup
θ∈[A−,θ2]

(
log µ̂(θ)− log µ̂(M)(θ)

)
+ ε/2.

(13.206)

In the present case µ̂(A−) <∞ and it follows that µ̂(M)(θ)→ µ̂(θ) uniformly
on [A−, θ2], cf. the statement after (13.201). Hence, the right-hand side of
(13.206) is smaller than ε if M is large enough, so (13.193) holds in this case
too for |y − x| small and M large.

Finally, assume x = 0 and A− 6 0. Then α̂∗(0) = 0 by (13.175) and since
α̂∗(x) is continuous at 0 by Lemma 13.47, there exists δ such that α̂∗(y) < ε
for 0 6 y < δ. Consequently, for such y and all M ,

α̂∗(y)− α̂∗(M)(y) 6 α̂∗(y) < ε. (13.207)

This completes the proof that (13.193) holds in all cases, for y in a neigh-
bourhood of x and large M . �

Example 13.51. For the binary search tree already treated in Examples
13.9 and 13.34 we have, by (13.169), γ∗ = 1, and thus by (13.174) and
(13.105)

α̂∗(x) =

{
x log 2, 0 6 x 6 1,

x log 2− x log x+ x− 1, x > 1.
(13.208)

The profile is asymptotically given by (13.177), with α = 1, uniformly for x
in any compact subset of [0, γ). In particular, we see as in Example 13.45
that for k 6 log n, a “large part” of all 2k possible nodes at depth k are
occupied; see also Theorem 13.57 and Example 13.59 below. More precise
results (obtained by other methods) are given by [27], [28], [48], [40], [56],
[49] and [44, Section 6.5].
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Example 13.52. For the random recursive tree in Example 13.8 we have,
by (6.1), µ̂(θ) = 1/θ, θ > A− = 0. Hence, µ̂(0) = ∞, and thus γ∗ = 0.
Consequently, by (13.174) and (13.101), cf. (13.39),

α̂∗(x) = α∗∗(x) = −x log x+ x, x > 0. (13.209)

The profile is asymptotically given by (13.177), with α = 1, uniformly for x
in any compact subset of [0, γ). In this case, more precise results (obtained
by other methods) are given by [40], [56] and [44, Section 6.3].

Example 13.53. For a simple example with A− > 0, consider the (positive)
linear preferential attachment tree in Example 6.6, with a parameter ρ > 0
and, by (6.30), µ̂(θ) = ρ/(θ − 1) for θ > A− = 1. Recall that α = ρ+ 1 and
β = ρ−1 by (6.31) and (6.21). Since µ̂(0) = ∞, we have γ∗ = 0. A simple
calculation shows that for x > 0, the infima in (13.101) and (13.176) are
attained at θ = 1 + x, and thus

α̂∗(x) = α∗∗(x) = x log ρ− x log x+ x+ 1, x > 0. (13.210)

We obtain also, by (13.17) and (13.82), or by Remark 13.33 and (13.210),
see also (13.30) and (13.94),

α∗(x) =

{
ρ+ 1, x 6 ρ,

x log ρ− x log x+ x+ 1, x > ρ,
(13.211)

α̌∗(−x) =


−∞, x < 0,

x log ρ− x log x+ x+ 1, 0 6 x 6 ρ,

ρ+ 1, x > ρ.

(13.212)

The profile is asymptotically given by (13.177), with α = ρ+1, uniformly
for x in any compact subset of (0, γ); note that (13.177) does not hold for
x = 0, since α̂∗(0) = 1 while n0(Tn) = 1. However, this is the only exception,
and (13.177) extends, uniformly, to all x 6 x1 < γ/α satisfying the obvious
condition x log n > 1, see Theorem 13.55 and Example 13.56 below. (More
precise results, obtained by other methods, in the case ρ = 1, i.e. the plane
oriented recursive tree in Example 6.5, are given by [70] and [120].)

The following example shows that if A− > 0, the restriction in Theo-
rem 13.49 that x lies in a compact subset of (0, γ), and thus stays away
from 0, is necessary; the theorem does not hold in general for x = x(n)→ 0,
even if we assume k = x log n > 1 or x log n→∞.

Example 13.54. Let (tj) be a rapidly increasing sequence with t1 = 1 and
tj+1 > tj + 1, j > 1. Let each individual get betj − etj−1c children born at
uniformly random times in [tj − 1, tj ] for each j > 1. (Let here t0 := −∞,
say.) Then

µ̂(1) >
∞∑
j=1

betj − etj−1ce−tj =∞ (13.213)

while for any θ > 1,

µ̂(θ) 6
∞∑
j=1

betj − etj−1ce−θ(tj−1) <∞. (13.214)
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Hence, A− = 1. It is easy to verify (A1)–(A5).
At time t = tj+1 − 1, each individual has at most etj children, and thus

nk(Tt) 6 ektj for every k > 0; hence

log nk(Tt)
t

6
ktj

tj+1 − 1
6

2ktj
tj+1

. (13.215)

For any given function ω(t) with ω(t) = o(t) as t→∞, we can choose (tj)
such that ω(tj+1)/tj+1 < 1/(jtj), and then (13.215) shows that

lim inf
t→∞

log nk(Tt)
t

= 0 (13.216)

uniformly for k 6 Cω(t), for any fixed C.
As a consequence, using the weight ψ = 1 in Example 5.3 (and assuming

as we may that ω(t)/t is decreasing), it follows that

lim inf
t→∞

log nk(Tn)

log n
= 0 (13.217)

uniformly for k 6 ω(log n). In particular, (13.177) does not hold for all
x = x(n) → 0, so it does not hold uniformly for x > 0 (even assuming
x log n > 1). (In this case, α̂∗(αx)→ α̂∗(0) = A− > 0.)

The same argument applies also to n6k and shows that (13.146) does not
hold uniformly for all x > 0 such that x log n > 1.

In Example 13.54, the birth times are distributed very irregularly, and
(13.177) fails already for depth x log n = 1, the children of the root. In more
regular cases, (13.177) holds for depth 1; the following theorem shows that
then it holds for all depths x log n > 1 with x 6 x′ for some x′ < γ/α.

Theorem 13.55. Suppose that the point process Ξ is such that a.s.

Ξ([0, t]) = e(A−+o(1))t. (13.218)

as t→∞. Then a.s., for any x1 < γ, as t→∞,

log nk(Tt)
t

= α̂∗(k/t) + o(1), (13.219)

uniformly for 1 6 k 6 x1t. Furthermore, (13.146) holds uniformly for all x
such that x log n > 1, and (13.177) holds uniformly for all x in any compact
subset of [0, γ/α) such that x log n > 1.

Proof. Recall first that by Theorem 13.1, H(Tt)/t
a.s.−→ γ. Hence, if we let

b := γ/2, then there exists t0 such that with probability at least 1/2,

H(Tt) > bt for all t > t0. (13.220)

Say that an individual x in the branching process is good if (13.220) holds
for the subtree rooted at x (with time measured from the birth of x), and
let G(t) be the number of children of the root in Tt that are good. Since
the total number of children of the root is Ξ([0, t]), and each is good with
probability at least 1/2 and these events are independent of each other, the
law of large numbers implies that a.s. G(t) > 1

3Ξ([0, t]) for large t.
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Let 0 < δ < 1. We have seen that a.s., for large t, the number of good
children of the root at time (1− δ)t is, using the assumption (13.218),

G
(
(1− δ)t

)
>

1

3
Ξ([0, (1− δ)t]) = eA−(1−δ)t+o(t). (13.221)

Each of these good children sprouts a tree that at time t has age at least
δt and thus, by the definition of good, has at least one node in each of
the following dbδte generations (provided t > t0/δ). Hence, for large t, if
1 6 k 6 bδt, then nk(Tt) > G

(
(1− δ)t

)
and thus, by (13.221),

log nk(Tt)
t

> A−(1− δ)− δ = α̂∗(0)− (A− + 1)δ. (13.222)

Let ε > 0. Since α̂∗(x) is continuous, we can find some small δ > 0 such
that if 0 6 x 6 bδ, then α̂∗(x) < α̂∗(0) + ε. We may furthermore assume
that δ < ε/(A− + 1), and then (13.222) implies that, with x0 = bδ, for any
k with 1 6 k 6 x0t,

log nk(Tt)
t

> α̂∗(k/t)− 2ε. (13.223)

For any x1 < γ, the same inequality (13.223) holds, for large t, also for
k/t ∈ [x0, x1] by (the proof of) Theorem 13.49, so (13.223) extends, for
large t, to 1 6 k 6 x1t. Together with the upper bound (13.180), this yields
(13.219). The usual argument using the stopping times τ(n) yields (13.177)
uniformly for 1 6 x log n 6 x′ log n, for any x′ < γ/α. �

Example 13.56. For the linear preferential attachment in Example 13.53,
the children are born according to a pure birth process with birth rates λk =
k+ρ. From the birth of the first child, this process stochastically dominates
the Yule process (Yt) in Example A.3 (with the standard rate α = 1), which
is a birth process with rates λk = k. Conversely, the process describing the
births is dominated by a Yule process started with dρe individuals, i.e., the
sum of dρe independent Yule processes. It follows from (A.3) that a.s.

0 < lim inf
t→∞

(
e−tΞ([0, t])

)
6 lim sup

t→∞

(
e−tΞ([0, t])

)
<∞, (13.224)

and in particular (13.218) holds. Thus, Theorem 13.55 shows that if x′ <
γ/α, then (13.177) extends, uniformly, to all x 6 x′ satisfying the obvious
condition x log n > 1, as said in Example 13.53 above.

The same arguments show that (13.146) extends to all x satisfying x log n >
1, now using the uniform upper bound (13.162).

In the m-ary case, we can give a sharper result for the lower part of the
profile, showing that in the range k < (γ∗/α) log n, the estimate mk+o(logn)

in (13.170) in Example 13.45 can be improved to mk(1+o(1)), at least in the
case A− < 0. (I.e., when the birth times ξi have some exponential moment.)

Theorem 13.57. In the m-ary case N = m, assume (A1)–(A5) and (A6ψ),
and also A− < 0. Then, 0 < γ− < γ∗ and for every x1 ∈ (γ−, γ∗], a.s.,

nk(Tn) = mk − nα̌∗(−αk/ logn)/α+o(1) (13.225)

uniformly for αk/ log n ∈ [x1, γ∗]. Hence, for every ε > 0, a.s.

nk(Tn) = mk(1 + o(1)) (13.226)

uniformly for k 6 (γ∗/α− ε) log n.
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Proof. For an m-ary tree T , and k > 0, let nk(T ) := mk − nk(T ), i.e., the
number of potential nodes of depth k that are not in T . Furthermore, let
V 0
k (T ) be the set of nodes in T with depth k that have outdegree less than
m, and let n0

k(T ) := |V 0
k (T )|. We similarly define n0

6s(T ) for real s > 0.
Every potential node that is not in T has a unique ancestor in T with

outdegree less than m, i.e., an ancestor in
⋃∞
j=0 V

0
j (T ), and for every j < k,

each node in V 0
j (T ) is the ancestor of between mk−j−1 and mk−j potential

nodes of depth k that are not in T . Hence,

k−1∑
j=0

mk−j−1n0
j (T ) 6 nk(T ) 6

k−1∑
j=0

mk−jn0
j (T ). (13.227)

Since A− < 0, we have γ− > 0 by Lemma 13.28, and thus γ∗ > γ− by
(13.128). Furthermore, since α̌∗(−x) is right-continuous by Lemma 13.31,
(13.81) implies that α̌∗(γ−) > 0. Define, for this proof,

α̃∗1(x) :=

{
α̌∗(−x), x > γ−,

α̌∗(−γ−)− (γ− − x) logm, x 6 γ−.
(13.228)

Recall that α̌∗(−x) is continuous on [x̄−,∞) by Lemma 13.31 and γ− > x̄−
by (13.99); hence α̃∗1(x) is continuous on (−∞,∞). Furthermore, α̃∗1(x)
is differentiable at every point except γ−, β−1 and, perhaps, x̄0, see Re-
mark 13.33. By Lemma 13.42(v) and (13.129), α̃∗1(x) = α̌∗(−x) 6 α̃∗(x) =
x logm for x ∈ [γ−, γ∗], with equality for x = γ∗, and thus the left deriv-
ative (α̃∗1)′(γ∗−) > logm. Since α̌∗(−x) is convex, (α̃∗1)′(x) > logm for
x ∈ (γ−, γ∗), and by the definition (13.228), this trivially holds for x < γ−
too. Consequently,

α̃∗1(y) 6 α̃∗1(x)− (x− y) logm, y 6 x 6 γ∗. (13.229)

We use Theorem 13.37(ii) with characteristic χ given by (13.76), noting
that (B2) holds by the proof of Theorem 13.25. This shows that, for x ∈
(γ−,∞),

log n0
6xt(Tt)
t

a.s.−→ α̌∗(−x) = α̃∗1(x). (13.230)

Since α̃∗1(x) is continuous, we now can argue as in the proof of Theo-
rem 13.43, see (13.152)–(13.155), and obtain, a.s.,

lim sup
t→∞

log n0
6xt(Tt)
t

6 α̃∗1(x), (13.231)

uniformly for x > 0. (For x < γ−, the limsup is actually −∞, since a.s.
n0
6xt(Tt) = 0 for large t.) Consequently, by (5.17), a.s.

lim sup
n→∞

log n0
6x logn(Tn)

log n
= lim sup

n→∞

log n0
6x(logn/τ(n))τ(n)(Tτ(n))

τ(n)
.
τ(n)

log n

6 α̃∗1(αx)/α, (13.232)

uniformly for x ∈ [0, x1], for any fixed x1.
Consequently, for any δ > 0, a.s., for large n

n0
6x logn(Tn) 6 nα̃

∗
1(αx)/α+δ, 0 6 x 6 γ∗/α. (13.233)
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For such n and any k 6 (γ∗/α) log n, we then have, by (13.227) and (13.229),

nk(Tn) 6
k−1∑
j=0

mk−jnα̃
∗
1(αj/ logn)/α+δ =

k−1∑
j=0

n(k−j) logm/ logn+α̃∗1(αj/ logn)/α+δ

6 (γ∗/α) log n · nα̃∗1(αk/ logn)/α+δ. (13.234)

Since δ > 0 is arbitrary, this shows that a.s., for large n, uniformly for
k 6 (γ∗/α) log n,

nk(Tn) 6 nα̃
∗
1(αk/ logn)/α+o(1). (13.235)

Similarly, for any x1 > γ−/α, (13.230) implies

lim
n→∞

log n0
6x logn(Tn)

log n
= α̌∗(−αx)/α, (13.236)

uniformly for x ∈ [x1, γ∗/α], a.s. for any fixed x1. This yields, by (13.227),
a.s.

nk(Tn) > n0
6k−1(Tn) = nα̌

∗(−αk/ logn)/α+o(1), (13.237)

uniformly for αk/ log n ∈ [x′1, γ∗], for any x′1 > x1. Combining (13.235) and
(13.237) (and changing x1), we obtain (13.225).

Let y ∈ (γ−/α, γ∗/α) and define k := by log nc. Then αk/ log n → αy ∈
(γ−, γ∗), and thus, using Lemma 13.42(v)(iii),

α̌∗(−αk/ log n)→ α̌∗(−αy) < α̃∗(αy) = αy logm. (13.238)

Hence, for some δ = δ(y) > 0 and large n,

nα̌
∗(−αk/ logn)/α 6 ny logm−δ 6 nk logm/ logn−δ = mkn−δ. (13.239)

For large n, (13.225) applies and yields by (13.239), a.s.,

nk(Tn)/mk = 1−O
(
n−δ+o(1)

)
= 1− o(1). (13.240)

Furthermore, for any m-ary tree T , nk(T )/mk is a decreasing function of k,
and thus (13.226) holds uniformly for all k 6 y log n. �

Define, for an m-ary tree T ,

S1/2(T ) := max
{
k : nk(T ) > 1

2m
k
}

(13.241)

i.e., the last level that is at least half-full. (We could consider any other
fixed fraction.)

Corollary 13.58. Assume N = m, (A1)–(A5), (A6ψ) and A− < 0. Then

S1/2(Tn)/ log n
a.s.−→ γ∗/α.

Proof. By (13.226), for every ε > 0, a.s. S1/2(Tn) > (γ∗/α−ε) log n for large
n.

Conversely, if x = γ∗/α + ε, with ε > 0, then α̃∗(αx) < αx logm by
(13.130), and consequently, for some δ > 0, (13.146) yields, with k :=
bx log nc, a.s.,

nk(Tn) 6 n6x logn(Tn) = nx logm−δ+o(1) = mkn−δ+o(1) = o
(
mk
)
. (13.242)

Consequently, a.s., for large n, S1/2(Tn) < k 6 x log n. �
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Example 13.59. For the m-ary search tree, we have α = 1 and γ∗ =
1/Hm−1, where Hm−1 as usual is the harmonic number. Thus, Corol-
lary 13.58 and, in more detail, Theorem 13.57, show that most possible
nodes exist up to depth ≈ γ∗ log n = H−1

m−1 log n, but not further. In con-
trast, by Theorem 13.25, all possible nodes exist only up to depth≈ γ− log n,
where γ− < γ∗. In the binary case, γ−

.
= 0.37336 by Example 13.34, while

γ∗ = 1.

Remark 13.60. Since nk(Tn) 6 |Tn| = O(n) a.s. by Theorem 5.12, it
follows from (13.226) that in the m-ary case, γ∗/α 6 1/ logm. This can also
easily be seen analytically, and with strict inequality. In fact, since log µ̂(θ)
is strictly convex on [0, α],

γ−1
∗ = −(log µ̂)′(0+) > − log µ̂(α)− log µ̂(0)

α
=

logm

α
(13.243)

Hence,
γ∗ < α/ logm. (13.244)

13.5. Typical depth. Given a rooted tree T , let the random variable h∗(T )
denote the depth of a random node, i.e., h∗(T ) := h(v) where v is chosen
uniformly at random among the nodes of T . It follows from the results on
the profile in Section 13.4 that a typical node in Tn has depth ≈ (αβ)−1 log n.
More precisely, we can show the following.

Theorem 13.61. Assume (A1)–(A5) and (A6ψ). Then, for every ε > 0,
there exists δ > 0 such that a.s., conditioning on the tree Tn,

P
(∣∣h∗(Tn)/ log n− (αβ)−1

∣∣ > ε | Tn
)

= o
(
n−δ

)
. (13.245)

In particular, (
h∗(Tn)/ log n | Tn

) p−→ (αβ)−1 a.s. (13.246)

Furthermore, for any r > 0,

E
(
h∗(Tn)r | Tn

)
/ logr n

a.s.−→ (αβ)−r. (13.247)

Proof. By Theorems 13.38 and 13.43, assuming as we may ε < (αβ)−1 and
(αβ)−1 + ε < γ/α, and using also (5.16), a.s.

P
(
|h∗(Tn)/ log n− (αβ)−1| > ε | Tn

)
=
n>((αβ)−1+ε) logn(Tn) + n6((αβ)−1−ε) logn(Tn)

|Tn|

=
nα
∗(β−1+εα)/α+o(1) + nα̃

∗(β−1−εα)/α+o(1)

n1+o(1)

= n−δ1+o(1), (13.248)

where

δ1 := 1−max
{
α∗(β−1 + εα)/α, α̃∗(β−1 − εα)/α

}
> 0 (13.249)

by (13.30) and (13.131). Hence (13.245) holds for every δ < δ1.
Obviously, (13.245) implies (13.246).
Furthermore, by Theorem 13.2, a.s. for all large n,

h∗(Tn)/ log n 6 H(Tn)/ log n 6 γ/α+ 1 <∞. (13.250)



108 CECILIA HOLMGREN AND SVANTE JANSON

Consequently, the sequence of random variables
(
h∗(Tn)r/ logr n | Tn

)
is a.s.

bounded, and thus (13.246) implies (13.247) by dominated (or bounded)
convergence. �

In (13.247), we consider the conditional distribution and conditional mo-
ments given Tn. (This is the quenched version, see Remark 4.1.) We can
also consider the unconditional distribution and moments (i.e., the annealed
version); this means that we first sample a random Tn and then a random
node v in Tn, and consider the depth of v in Tn.

Theorem 13.62. Assume (A1)–(A5) and (A6ψ). Then

h∗(Tn)/ log n
p−→ (αβ)−1. (13.251)

Moreover, if also (A*) holds, then, for any r > 0,

E
(
h∗(Tn)r

)
/ logr n→ (αβ)−r. (13.252)

Proof. The unconditional convergence (13.251) follows from (13.245) (or
(13.246)) by taking the expectation.

Moreover, we have h∗(Tn) 6 H(Tn). Hence, Lemma 13.19 holds also for
h∗(Tn), and (13.252) follows from (13.251) by the argument in the proof of
Theorem 13.20. �

Remark 13.63. For an m-ary search tree, we can also consider the depth
of a uniformly random key. Since the number of keys per node is bounded,
and (5.5) (with φ = ψ) holds, it is easy to see that Theorem 13.61 holds in
this setting too.

Similarly, one might consider e.g. the depth of a random leaf in Tn.

Remark 13.64. Jagers [71, Section 8.5, in particular Corollary 8.5.4] has
shown much more refined results for a fixed time t, showing that the genera-
tion number is asymptotically normally distributed under some conditions.
(See also [100] for a special case.) However, as remarked there, the results
proved in [71] do not show a.s. convergence as t→∞, and thus we can-
not obtain results for Tn = Tτ by our usual technique. We conjecture that
results analoguous to the ones in [71, Section 8.5] hold, so that the depth
is asymptotically normal with variance Θ(n) under very general conditions,
but we leave this as an open problem.

Remark 13.65. Consider the m-ary case N = m. Since Tn has about n
nodes by Theorem 5.12, and most of them have depth ≈ (αβ)−1 log n, we
necessarily have (αβ)−1 > 1/ logm in order to have room for all nodes. This
can also easily be seen analytically, with strict inequality. Let ξ̄ be the birth
time ξi of a randomly chosen child. (I.e, i is chosen uniformly at random in
{1, . . . ,m}.) Then, recalling (5.8),

E e−αξ̄ =
1

m

m∑
i=1

E e−αξi =
1

m
. (13.253)

Jensen’s inequality with the strictly convex function x log x yields, with strict
inequality since ξ̄ is not concentrated at a single value by (A2), using (5.40),

1

m
log

1

m
< E

(
−αξ̄e−αξ̄

)
= −α 1

m

m∑
i=1

E
(
ξie
−αξi

)
= −αβ

m
. (13.254)
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Thus αβ < logm, and (αβ)−1 > 1/ logm. Compare Remark 13.60.

13.6. Total path length. The total path length L is defined (for any rooted
tree) as the sum of the depths of all nodes:

L(T ) :=
∑
v∈T

h(v). (13.255)

The total path length is closely connected to the typical depth h∗(T ) studied
in Section 13.5; it follows from the definitions of h∗(T ) and L(T ) that for
any fixed rooted tree T ,

E
(
h∗(T )

)
=

∑
v∈T h(v)

|T |
=
L(T )

|T |
. (13.256)

For a random tree, we thus obtain the same result for the conditional ex-
pectation:

E
(
h∗(T ) | T

)
=
L(T )

|T |
. (13.257)

In other words, L(T ) equals the conditional expectation of h∗(T ) times the
number of nodes.

Theorem 13.66. (i) Assume (A1)–(A5) and (A6ψ). Then

L(Tn)

n log n

a.s.−→ 1

αβmψ
. (13.258)

(ii) If furthermore |Tn| 6 Cn (deterministically) for some constant C,
then also

EL(Tn)

n log n

a.s.−→ 1

αβmψ
. (13.259)

Proof. (i): Applying (13.257) to Tn, we obtain

L(Tn)

n log n
=
|Tn|
n
·
E
(
h∗(Tn) | Tn

)
log n

(13.260)

and the result follows by (5.16) and (13.247).
(ii): By (13.255), L(T ) 6 |T |H(T ). Hence, the assumption implies

L(Tn)/(n log n) 6 CH(Tn)/ log n, and (13.259) follows from (13.258) and
Lemma 13.19 by the argument in the proof of Theorem 13.20. �

Example 13.67. For the binary search tree in Example 6.2, we use the
weight ψ = 1 and thus mψ = 1; furthermore α = 1 and β = 1/2. Hence,
L(Tn) ∼ 2n log n a.s. In this case, much more detailed results are known,
see e.g. [114], [115] and [116].

Remark 13.68. We can similarly study versions of the path length with
the summation (13.255) only over a subset of all nodes v, for example just
summing over the set of leaves v. We leave the details to the reader. In an
extended m-ary search tree, two standard examples are the internal path
length and the external path length. Another version for the m-ary search
tree is the sum of the depths of all keys, cf. Remark 13.63, see e.g., [5] and
[92]. This is more natural in the case of m-ary search trees since this is the
natural measure for the efficiency of the corresponding sorting algorithm.
The total path length using the sum over all nodes was considered in e.g.,
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[65] for studying cuttings in split trees (there the m-ary search tree was
given as one example). Both versions of the path lengths i.e., the sum over
all keys, respectively the sum over all nodes were considered in e.g., [24] (for
the analysis of general split trees).

14. Asymptotic normality?

As said in the introduction, it is natural to try to show asymptotic normal-
ity of the number of fringe trees of a given type. There are several previous
results of this type for special cases. Central limit laws for fringe trees have
been shown, by several different methods, for binary search trees in e.g. [35],
[39], [54], [55], [25] and [66], and for random recursive trees in e.g. [55] and
[66]. For m-ary search trees, the situation is more complicated: no results
for general fringe trees have been published (this is work in progress [68]),
but some special cases (such as the degree distribution and the number of
fringe trees of a given size) and related quantities (the number of internal
nodes) have been treated, and it turns out that central limit theorems hold
for m 6 26 but not for m > 27, see e.g. [95], [93], [90], [30], [69], [29], [53],
[74] and [67]. Further examples of asymptotic normality include the degree
distribution of plane oriented recursive trees (preferential attachment trees,
see Example 6.5) [8], [96], [74], [75], and the number of internal nodes in
median-of-(2`+ 1) binary search tree for ` 6 58, but not for ` > 59, see [30],
[31].

The examples of m-ary search tree and median-of-(2`+ 1) binary search
trees thus show that central limit theorems do not always hold for fringe trees
of the random trees generated by Crump–Mode–Jagers branching processes
as in the present paper.

Problem 14.1. Find a characterization of the Crump–Mode–Jagers pro-
cesses that yield asymptotic normality for the number of fringe trees of a
given type.

Using the methods of Section 5, Problem 14.1 can be seen as a special
case of the following problem for branching processes:

Problem 14.2. Find a characterization of the Crump–Mode–Jagers branch-
ing processes such that for suitable characteristics φ and ψ, and with τ(n)

as in Section 5, Zφτ(n) is asymptotically normal as n→∞.

Problem 14.2 considers a stopped branching process. It is closely related
to the following problem for fixed times:

Problem 14.3. Find a characterization of the Crump–Mode–Jagers branch-

ing processes such that for suitable characteristics φ, (Zφt −mφZt)/
√
Zt is

asymptotically normal as t→∞.

This problem has been studied, at least for some branching processes. As-
mussen and Hering [2, Theorems VIII.3.1 and VIII.12.1] give a central limit
theorem of this type for a somewhat different class of branching processes,
viz. multi-type Markov branching processes. In principle, as pointed out in
[2], this class includes the Crump–Mode–Jagers branching processes studied
here (with the “type” taken as the entire previous history of the individual),
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but the resulting type space is typically so large that the technical condi-
tions in [2] are not satisfied. (In particular, “Condition (M)”.) However, for
the Crump–Mode–Jagers branching processes used in the examples above,
with life histories that are composed of one or several independent waiting
times, the process can be described using a finite dimensional type space. It
seems that the results in [2] then apply and can be translated to conditions
for these Crump–Mode–Jagers branching processes. Presumably, the same
conditions then apply to Problems 14.1 and 14.2 too, but that remains an
open problem.

Moreover, it seems likely that the same type of conditions apply to much
more general Crump–Mode–Jagers branching processes. The conditions in
[2] are stated in terms of eigenvalues of a certain operator A defined by the
process, and the result says (under some technical assumptions) that if λ1 is
the largest eigenvalue of A (this eigenvalue is real), then we have asymptotic
normality if every other eigenvalue λ has Reλ 6 1

2λ1, but (typically, at least)
not otherwise. The same condition also appears in the different but closely
related context of generalized Pólya urns, see [74]. We conjecture that this
condition (in a suitable form) applies to rather general Crump–Mode–Jagers
branching processes. This has been proved in the discrete-time case [79], but
the continuous-time case relevant here is more challenging.

Remark 14.4. In contrast, for conditioned Galton–Watson trees (see Re-
mark 1.1), asymptotic normality for fringe trees holds in general, see [77].
(Such trees are not treated in the present paper.)

Acknowledgements

We thank Peter Jagers and Olle Nerman for helpful comments on branch-
ing processes and Shankar Bhamidi for suggesting the use of the limiting
sin-tree to compute the constant in Theorem 11.3.

Appendix A. Birth processes

Recall that a pure birth process with birth rates λk > 0 is a continuous-
time stochastic process (Xt)t>0, taking values in Z>0 and with some given
initial value X0 = x0 (usually 0 or 1), which is Markov and such that when
Xt = k, the process jumps to k + 1 with rate λk; equivalently, the process
jumps from k to k + 1 after an exponential waiting time Yk ∼ Exp(λk),
and all these waiting times are independent. (We allow λk = 0; we then let
Yk =∞.) Thus, the time the process jumps to k is

Sk :=

k−1∑
i=x0

Yi, k > x0 + 1, (A.1)

and, for k > x0, with Sx0 := 0,

X (T ) = k ⇐⇒ Sk 6 t < Sk+1. (A.2)

Example A.1. In the branching process corresponding to a general pref-
erential attachment tree in Example 6.3, the children of an individual are
born at the jumps of a pure birth process (with birth rates λk = wk); the
birth process Xt is thus the number of children at time t.
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Example A.2. As a special case (see Example 6.1), the counting process
Ξ[0, t] corresponding to a Poisson process Ξ with intensity 1 is a pure birth
process with constant intensity λk = 1, started at 0. More generally, a pure
birth process with constant birth rate λk = λ, started at 0, is a Poisson
process with intensity λ. (We have earlier defined a Poisson process as a
point process; the corresponding pure birth process considered here is also
called a Poisson process. There is an obvious equivalence between the two
points of view, and hardly any risk of confusion.)

Example A.3. The Yule process in e.g. Example 6.1 is a pure birth process
with birth rates λk = k, started at 1. More generally, for a Crump–Mode–
Jagers process where each individual gets children according to a Poisson
process with intensity α > 0, the total size (number of individuals Zt) is a
pure birth process with birth rates λk = αk, started at 1; we call this a Yule
process with rate α > 0. (It evidently differs from the standard case α = 1
only by a simple change of time.)

If (Yt) is a Yule process with rate α, it thus follows from (5.9) that

e−αtYt →W (A.3)

for some random variable W . (Note that the intensity measure µ is αdt, so
(5.4) holds and the Malthusian parameter α equals the rate α.) It is easy to
verify (5.11) and thus W > 0 a.s.; in fact, it follows from (A.23) below that
W ∼ Exp(1). (This is one of the few cases with a simple explicit distribution
for the limit W .)

We state a general result on stopping a pure birth process by an expo-
nential clock τ .

Theorem A.4. Let (Xt) be a pure birth process with birth rates λk > 0,
started at X0 = 0. Furthermore, let τ ∼ Exp(α) be independent of the birth
process. Then X := Xτ has the distribution

P(X = k) =
α

λk + α

k−1∏
i=0

λi
λi + α

=
α
∏k−1
i=0 λi∏k

i=0(λi + α)
, k > 0. (A.4)

We give two different proofs (both simple) to illustrate different ways of
arguing with exponential random variables; the first proof is more direct
probabilistic and the second more analytic. (The second proof is essentially
the same as (6.13)–(6.14) given in Example 6.3; it was there given for a
special case but the argument is general, as is shown below.)

First proof of Theorem A.4. Regard τ as an exponential random clock that
strikes and stops the process. When Xt = k and τ > t, so the process has
not yet stopped, the next event that happens is either that the clock strikes
(rate α), and then X = k, or that Xt jumps to k + 1 (rate λk), and then
X > k. Consequently,

P(X = k | X > k) =
α

α+ λk
, (A.5)

P(X > k + 1 | X > k) =
λk

α+ λk
. (A.6)
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By (A.6) and induction,

P(X > k) =
k−1∏
i=0

λi
λi + α

, (A.7)

and the result follows by (A.5). �

Second proof of Theorem A.4. With the notation above, we have by (A.2)

P(X > k) = P(Xτ > k) = P(Sk 6 τ). (A.8)

Conditioning on Sk, we have P(Sk 6 τ | Sk) = e−αSk , and taking the
expectation we find, using (A.1) and independence of Y1, . . . , Yk−1,

P(X > k) = E e−αSk =
k−1∏
i=0

E e−αYi =
k−1∏
i=0

λi
λi + α

. (A.9)

The result follows by taking the difference P(X > k)− P(X > k + 1). �

We consider in particular the linear case, when

λk = χk + ρ, (A.10)

for some constants χ and ρ. (As in Example 6.4, only the ration χ/ρ matters,
up to a change of time scale, so we might assume χ ∈ {1, 0,−1}, but we
shall not require this.) Note that Examples A.2 and A.3 both are of this
type, with (χ, ρ) = (0, ρ) and (1, 0) (or (α, 0)), respectively.

Note that ρ = λ0 > 0, while χ can be any real number. As in Example 6.4,
if χ < 0, we have to assume that ρ = m|χ| for a non-negative integer m (and
X0 6 m); then λm = 0 and the process stops when it reaches m, so the values
λk, k > m, can be ignored.

Theorem A.5. Let (Xt) be a pure birth process with birth rates λk = χk +
ρ as in (A.10), for some χ and ρ, started at X0 = 0. Furthermore, let
τ ∼ Exp(α) be independent of the birth process. Then X := Xτ has the
distribution, when χ 6= 0,

P(X = k) =
α
∏k−1
i=0 (χi+ ρ)∏k

i=0(χi+ ρ+ α)

=
α

ρ+ α
· 〈ρ/χ〉k
〈(ρ+ α)/χ+ 1〉k

, k > 0. (A.11)

Thus, using the notation in Definition B.1, X has the hypergeometric dis-
tribution HG

(
ρ/χ, 1; (ρ+ α)/χ+ 1

)
.

In the special case χ = 0 (so λk = ρ is constant), we have instead

P(X = k) =
α

ρ+ α

(
ρ

ρ+ α

)k
, k > 0. (A.12)

Thus, in this case X has the geometric distribution Ge0

(
α/(α+ ρ)

)
.

Proof. An immediate corollary of Theorem A.4. �

In the linear case, it is also easy to find the distribution of Xt for a fixed
t. We begin with the expectation.
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Theorem A.6. Let (Xt) be a pure birth process with birth rates λk = χk+ρ
as in (A.10), for some χ and ρ, started at X0 = x0. Then, for every t > 0,

EXt =

{(
ρ
χ + x0

)
eχt − ρ

χ χ 6= 0,

ρt+ x0, χ = 0.
(A.13)

Consequently, for every χ and every t > 0,

d

dt
EXt = (ρ+ χx0)eχt. (A.14)

Proof. Since Xt grows with a rate that is a linear function χk + ρ of the
current state k, its expectation EXt grows at rate χEXt + ρ, i.e.,

d

dt
EXt = χEXt + ρ. (A.15)

This differential equation, with the initial value EX0 = x0, has the solution
(A.13). (The reader that finds this argument too informal may note that

Xt −
∫ t

0 (χXs + ρ) ds is a martingale, and take the expectation to obtain
(A.15).) �

We give the distribution of Xt only for the case x0 = 0, leaving the general
case to the reader.

Theorem A.7. Let (Xt) be a pure birth process with birth rates λk = χk+ρ
as in (A.10), for some χ 6= 0 and ρ, started at X0 = 0. Then, for all t > 0
and k > 0,

P(Xt = k) =
〈ρ/χ〉k
k!

(1− e−χt)ke−ρt = (−1)k
(
−ρ/χ
k

)
(1− e−χt)ke−ρt.

(A.16)
Equivalently, the probability generating function is given by

E zXt = e−ρt
(
1− z(1− e−χt)

)−ρ/χ
=

(
e−χt

1− z(1− e−χt)

)ρ/χ
. (A.17)

In the case χ > 0, this says Xt ∼ NBin(ρ/χ, e−χt), a negative binomial
distribution.

In the case χ < 0, when necessarily ρ = m|χ| for some positive integer
m, (A.16) can be written

P(Xt = k) =

(
m

k

)
(1− e−|χ|t)ke−(m−k)|χ|t, (A.18)

and thus Xt ∼ Bin(ρ/|χ|, 1− e−|χ|t), a binomial distribution.
In the case χ = 0, we have instead

P(Xt = k) =
(ρt)k

k!
e−ρt (A.19)

and

E zXt = e(z−1)ρt. (A.20)

Thus Xt ∼ Po(ρt), a Poisson distribution, when χ = 0.

Note the well-known fact for the Poisson process in Example A.2, we thus
have (A.19), yielding a Poisson distribution Po(ρt).



FRINGE TREES, BRANCHING PROCESSES AND m-ARY SEARCH TREES 115

Proof. With pk(t) := P(Xt = k), we have the initial values p0(0) = 1,
pk(0) = 0, k > 1, and the Kolmogorov forward equation (with p−1 := 0)

p′k(t) = λk−1pk−1(t)−λkpk(t) = (χ(k−1)+ρ)pk−1(t)−(χk+ρ)pk(t). (A.21)

This system of differential equations determines pk(t) uniquely for k =
0, 1, . . . , and it is easily verified that the functions in (A.16) and (A.19)
give a solution. The probability generating functions (A.17) and (A.20)
follow by summation. (Alternatively, one may derive and solve a partial
differential for g(z, t) := E zXt .)

In the case χ < 0 and ρ = m|χ| = −mχ, (A.16) can be written as

P(Xt = k) =

(
m

k

)
(e|χ|t − 1)ke−m|χ|t (A.22)

and (A.18) follows. �

Example A.8. Let Yt be a Yule process, see Example A.3. This birth
process starts at Y0 = 1, so we consider instead Yt− 1 which is a pure birth
process started at 0, with birth rates λk = k+1, k > 0. Theorem A.7 applies
with χ = ρ = 1 and yields the well-known result Yt − 1 ∼ NBin(1, e−t) =
Ge0(e−t), and thus

Yt ∼ Ge1(e−t), t > 0. (A.23)

For the expectation we get from (A.23), or directly from Theorem A.6 with
χ = 1, ρ = 0 and x0 = 1, EYt = et.

Similarly, Theorem A.5 applied to Yt − 1 shows that if τ ∼ Exp(α) is
independent of the Yule process, then

Yτ − 1 ∼ HG(1, 1;α+ 2). (A.24)

Appendix B. Hypergeometric functions and distributions

Recall that the hypergeometric function F (a, b; c; z) (also denoted by

2F1(a, b; c; z)) is defined by the sum

F (a, b; c; z) :=
∞∑
n=0

〈a〉n〈b〉n
〈c〉n

· z
n

n!
, (B.1)

see e.g. [107, §15.2] or [59, §5.5]. In general, the parameters a, b, c can be
arbitrary complex numbers (except that c = 0,−1,−2, . . . is allowed only
in special cases), and z may be a complex number, but we are here only
interested in real a, b, c and z. If a ∈ Z60 or b ∈ Z60, then the hypergeometric
terms in (B.1) vanish for n > |a| or n > |b|, respectively, so F (a, b; c; z) is
a polynomial; otherwise the series (B.1) converges for |z| < 1 and diverges
for |z| > 1. (The hypergeometric function F (a, b; c; z) extends by analytic
continuation to z ∈ C \ [1,∞), but we have no use for this extension here.)

The hypergeometric series (B.1) converges for z = 1 if and only if a ∈ Z60,
b ∈ Z60 (in these cases the sum is finite, as said above) or Re(c− a− b) >
0, and then its sum is, as shown by Gauss [58], see also [107, (15.4.20),
(15.4.24)],

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

. (B.2)
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We say that a random variable has a (general) hypergeometric distibution
if its probability generating function is, up to a normalization constant,
a hypergeometric function F (a, b; c; z), for some a, b, c. We denote such
a distribution by HG(a, b; c). (There seems to be no standard notation.)
Some such distributions appear above in the study of random trees, and
we give here some general properties and examples of such distributions, as
a background and for easy reference. See further e.g. Johnson, Kemp and
Kotz [81, Chapter 6] and the references given there.

We repeat the definition somewhat more formally:

Definition B.1. The general hypergeometric distribution HG(a, b; c) is the
distribution of a non-negative integer-valued random variable X such that

P(X = k) = C
〈a〉k〈b〉k
〈c〉k k!

, k > 0, (B.3)

for some constant C. Equivalently, the probability generating function is

E zX = CF (a, b; c; z). (B.4)

By (B.4), the normalizing constant C is necessarily 1/F (a, b; c; 1) and
thus, by (B.2),

C =
1

F (a, b; c; 1)
=

Γ(c− a)Γ(c− b)
Γ(c)Γ(c− a− b)

. (B.5)

Furthermore, the probability generating function (B.4) is

E zX =
F (a, b; c; z)

F (a, b; c; 1)
. (B.6)

Note the symmetry HG(a, b; c) = HG(b, a; c).

Remark B.2. The definition (B.3) is equivalent to

P(X = k + 1)

P(X = k)
=

(k + a)(k + b)

(k + c)(k + 1)
, k > 0, (B.7)

with a suitable interpretation if P(X = k) = 0.

A hypergeometric distribution HG(a, b; c) does not exist for all real pa-
rameters a, b, c. We see from (B.3) and (B.5) that a necessary and sufficient
condition for the existence of HG(a, b; c) is that 〈a〉k〈b〉k/〈c〉k > 0 and that
F (a, b; c; 1) <∞. We do not give precise necessary and sufficient conditions
for this here, see e.g. [81], but we note the following cases where HG(a, b; c)
exists; these comprise all cases of interest to us (and to others as far as we
know), if we recall that a and b can be interchanged.

(i) a, b > 0, c > a+ b. The distribution has support Z>0. (Examples are
(6.33) and Theorem A.5 for χ > 0.)

(ii) a ∈ Z60, b > 0, c < a + 1. The distribution has support {0, . . . , |a|}.
(Examples are (6.43) and Theorem A.5 for χ < 0.)

(iii) a ∈ Z60, b < a + 1, c > 0. The distribution has support {0, . . . , |a|}.
(One example is Example B.4 below. Typically, as there, we have both
a, b ∈ Z60 and c > 0; then, if we do not assume b 6 a, the support is
{0, . . . ,min(|a|, |b|)}.)
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Remark B.3. As said above, the hypergeometric function (B.1) in general
does not exist when c ∈ Z60. However, it is still possible to define HG(a, b; c)
is some cases. We assume that also a ∈ Z60. (Of course, the case b ∈ Z60

is similar, by symmetry.) If c < a (and b > 0, included in (ii)), there is
no problem with the definition (B.3), letting X have support {0, . . . , |a|}.
Also the case c = a is interpreted in this way; in particular, note that
HG(−n, 1;−n) is the uniform distribution on {0, . . . , |a|} [81, §6.10.1].

In the case a, c ∈ Z60 and a < c, (B.3) does not make sense, since it would
yield infinite values. We can extend the definition to this case by rewriting
(B.3) as

P(X = k) = C ′
〈a〉k〈b〉k

Γ(c+ k) k!
, k > 0, (B.8)

cf. (2.1), where now C ′ = Γ(c)C = Γ(c)/F (a, b; c; 1), which exists by conti-
nuity also for c ∈ Z60. (The function F (a, b; c; z)/Γ(c) is denoted F(a, b; c; z)
in [107].) With this interpretation, we can define HG(a, b; c) also in this case,
for suitable b. (See Example B.4 for an example.) Note that for this case,
P(X = k) = 0 for 0 6 k 6 |c|. It is easily verified that if X ∼ HG(a, b; c) with
c = −n ∈ Z60, then X = X ′+n+1 with X ′ ∼ HG(a+n+1, b+n+1;n+2).
(This makes it possible to reduce to the case c /∈ Z60.)

Example B.4. The classical hypergeometric distribution describes the num-
ber of red balls in a sample of m balls drawn (without replacement) from a
population of N balls, of which n are red; see e.g. [52, Section II.6]. (Here
n,m,N are integers with 0 6 n 6 N and 0 6 m 6 N .) The probability
function is

P(X = k) =

(
n
k

)(
N−n
m−k

)(
N
m

)
=

n! (N − n)! (N −m)!m!

k! (n− k)! (m− k)! (N −m− n+ k)!N !

=
(N −m)! (N − n)!

N ! (N −m− n)!
· 〈−m〉k〈−n〉k
〈N −m− n+ 1〉k

. (B.9)

(In the case m+n > N , the final line in (B.9) is not valid, but it can be in-
terpreted as in Remark B.3.) This is thus the distribution HG(−m,−n;N −
m− n+ 1).

Remark B.5. In the case a = −n ∈ Z60, when X ∼ HG(a, b; c) satisfies 0 6
X 6 n, it is easy to see that n−X ∼ HG(a, a−c+1; a−b+1) = HG(−n, 1−
n− c; 1− n− b). (Natural examples can be seen from Example B.4.)

Remark B.6. Most hypergeometric distributions in this paper are of the
special form HG(a, 1; c), i.e., with b = 1. In this case, (B.3) and (B.5)
simplify and yield

P(X = k) =
c− a− 1

c− 1
· 〈a〉k
〈c〉k

. (B.10)

Such distributions are also called Waring distributions [81, §6.10.4].

As said above a hypergeometric variable X ∼ HG(a, b; c) with a ∈ Z60 or
b ∈ Z60 is bounded, and thus has moments of all orders. If a, b /∈ Z60, the
distribution has a power-law tail, and thus only a finite number of moments.
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We give a precise asymptotic formula for P(X = k) and then formulas for
(factorial) moments.

Theorem B.7. Suppose that X ∼ HG(a, b; c), and that a, b /∈ Z60. Then,
as k →∞,

P(X = k) ∼ Γ(c− a)Γ(c− b)
Γ(a)Γ(b)Γ(c− a− b)

ka+b−c−1. (B.11)

Proof. By (B.3) (or (B.8)), (B.5) and (2.1),

P(X = k) =
Γ(c− a)Γ(c− b)

Γ(a)Γ(b)Γ(c− a− b)
· Γ(k + a)Γ(k + b)

Γ(k + c)Γ(k + 1)
. (B.12)

The result follows since Γ(x+ s)/Γ(x) ∼ xs as x→∞ for every fixed s. �

Theorem B.8. Suppose X ∼ HG(a, b; c) and m ∈ Z>0.

(i) If a, b /∈ Z60 and m > c − a − b, then the moment EXm and the
factorial moment E(X)m are infinite.

(ii) If a ∈ Z60, b ∈ Z60 or m < c− a− b, then

E(X)m =
〈a〉m〈b〉m

〈c− a− b−m〉m
. (B.13)

In particular, for a ∈ Z60, b ∈ Z60 or c > a+ b+ 1,

EX =
ab

c− a− b− 1
(B.14)

and, for a ∈ Z60, b ∈ Z60 or c > a+ b+ 2,

VarX =
ab(c− a− 1)(c− b− 1)

(c− a− b− 1)2(c− a− b− 2)
. (B.15)

Proof. (i): Follows from Theorem B.7.
(ii): It follows from (B.1), using (B.2) and (2.1), that

E(X)m =
dm

dzmF (a, b; c; z)|z=1

F (a, b; c; 1)
=
〈a〉m〈b〉m
〈c〉m

· F (a+m, b+m; c+m; 1)

F (a, b; c; 1)

=
〈a〉m〈b〉m

〈c− a− b−m〉m
.

This proves (B.13). Taking m = 1 we find (B.14), and the cases m = 1 and
m = 2 yield (B.15) after a small calculation, using VarX = E(X)2 + EX −
(EX)2. �

We see from Theorems A.5 and A.7 that a hypergeometric distribution
can arise as a mixture NBin(a, e−χτ ) of negative binomial distributions, or

a mixture Bin(m, 1 − e−|χ|τ ) of binomial distributions. In this case, τ ∼
Exp(α), so the random parameter e−|χ|τ in the negative binomial or binomial

distribution has the beta distribution B(α/|χ|, 1), and 1 − e−|χ|τ has the
beta distribution B(1, α/|χ|). This extends to mixing using arbitrary beta
distributions.

Theorem B.9. (i) Let a, b, r > 0 be real numbers. Let X have a distribu-
tion that is a mixture of the negative binomial distribution NBin(r, p) with
p ∼ B(a, b). Then X ∼ HG(r, b; r + a+ b).
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(ii) Let a, b,m > 0, with m an integer. Let X have a distribution that
is a mixture of the binomial distribution Bin(m, p) with p ∼ B(a, b). Then
X ∼ HG(−m, a; 1− b−m).

Proof. The proofs of both parts are similar: we use the definitions of the
negative binomial, binomial and beta distributions, evaluate a beta integral
and make some manipulations using (2.1) and (2.2). It is not difficult to
keep track of the constant factors during the calculations (and, indeed, this
is a useful check, which we leave to the reader), but it is simpler to ignore
them, since the final factor is determined by (B.5) and thus does not need
to be computed; we thus just write C1, . . . for various constants (depending
on the parameters but not on k).

(i):

P(X = k) =

∫ 1

0

〈r〉k
k!

pr(1− p)k · p
a−1(1− p)b−1

B(a, b)
dp

=
〈r〉k
k!

B(r + a, k + b)

B(a, b)
= C1

〈r〉kΓ(b+ k)

k! Γ(r + a+ b+ k)

= C2
〈r〉k〈b〉k

〈r + a+ b〉kk!
. (B.16)

(ii):

P(X = k) =

∫ 1

0

(m)k
k!

pk(1− p)m−k · p
a−1(1− p)b−1

B(a, b)
dp

=
(m)k
k!

B(k + a,m− k + b)

B(a, b)
= C3

(m)kΓ(k + a)Γ(b+m− k)

k!

= C4
(m)kΓ(k + a)

(b+m− 1)kk!
= C5

〈−m〉k〈a〉k
〈1− b−m〉kk!

. (B.17)

�

Remark B.10. In this context the resulting hypergeometric distributions
are known as beta-negative binomial distributions and beta-binomial distri-
butions. (Note that we can obtain any distribution of type (i) or (ii) above.)
There are also several other names used for various cases of the general
hypergeometric distribution, see [81]; in particular, case (ii) is sometimes
called negative hypergeometric.

Example B.11. Yule [122] considered a simple model of evolution, where
each existing species creates new species in the same genus with a constant
rate λs, and also (independently) new species in new genera with another
rate λg. What is the limiting distribution of the number of species in a
random genus?

Note that the evolution of all species, ignoring their genus, is a Crump–
Mode–Jagers branching process, where each individual gets children accord-
ing to a Poisson process with intensity λs + λg. Hence, assuming that we
start with a single species, the total number of species forms a Yule process
with rate λs + λg, see Example A.3. Similarly, the number of species in the
same genus as the root (the original species) forms a Yule process with rate
λs.
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One way to treat this problem is to consider each genus as an individual
in a Crump–Mode–Jagers process, where each individual has an internal
Yule process Yt with rate λs (the number of species in the genus), and
new births occur with rate λgYt. Since EYt = eλst, see Theorem A.6, the

offspring process has intensity µ(dt) = λge
λst dt, from which it follows that

(5.4) holds with the Malthusian parameter α = λs + λg. The assumptions
(A1)–(A5) hold, and Theorem 5.14 shows that the number of species in a
random genus converges in distribution to Yτ , the number of species in the
root at time τ ∼ Exp(λs + λg). The Yule process Yt starts as 1, but we
may as in Example A.8 (which is the case λs = 1) apply Theorem A.5 to
Yt − 1, with χ = ρ = λs, and it follows that the asymptotic distribution
of the number of species in a given genus is 1 + HG(1, 1; 3 + λg/λs). (One
can, as said above, also use Theorem B.9(i), since Theorem A.7 implies
that Yt− 1 has the geometric distribution NBin(1, e−λst) = Ge0(e−λst), and
e−λsτ ∼ B((λs + λg)/λs, 1).)

This result was found by Yule [122] (by a different method), and a dis-
tribution of the form 1 + HG(1, 1; c) is therefore called a Yule distribution,
see further [119] and [81, §6.10.3]. (Here c > 2. Often one writes c = 2 + ρ,
with ρ > 0; in the present example, thus ρ = (λs + λg)/λs.) Note that the
case c = 3 appears in (6.2) and (shifted to HG(1, 1; 3)) in (7.6).

An alternative method to treat this example is to consider the Yule process
(with rate λs + λg) of all species. Call the first species in each genus the
progenitor of the genus, and give each progenitor a mark; then each species
(except the original one) is marked with probability p = λg/(λs + λg), and
these marks are independent of each other and of everything else. Hence, we
obtain the same asymptotic distribution of fringe trees (except for the mark
at the root) if we sample a random progenitor as if we sample a random
species, cf. Section 12. Using Theorem 5.14 it follows that the number
of species in a random genus converges in distribution to the number of
descendants in the same genus of a fixed individual stopped at a random
age τ ∼ Exp(λs + λg). This yields the same result as above.

Note also that if we erase the edges between different genera and only keep
the edges between species in the same genus in Yule’s model, we obtain a
growing forest. If we let Fn be this forest when it has reached n nodes,
we obtain a growing forest process which is the same as UGROW defined
by Devroye, McDiarmid and Reed [42]. Results for the size of the subtree
rooted at a given node in UGROW are given by Devroye, McDiarmid and
Reed [42] and Pakes [109].

Example B.12. Let n indistinguishable balls be distributed in m > 2
labelled boxes, so that each of the

(
n+m−1
m−1

)
possibilities has the same prob-

ability. (This is called Bose–Einstein statistics, see e.g. [52, page 39] or [76,
Example 12.2].) Equivalently, we consider a uniformly random composition
of n into m (possibly empty) parts.

The number X1 of balls in a given box, say box 1, has the distribution

P(X1 = k) =

(
n−k+m−2

m−2

)(
n+m−1
m−1

) =
(m− 1)(n)k

(n+m− 1)(n+m− 2)k
, k = 0, . . . , n,

(B.18)
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which shows that X1 ∼ HG(−n, 1; 2− n−m). See [81, Chapter 10.4.2].

Example B.13. Pólya’s urn contains balls of different colours. We draw
a ball uniformly at random and replace it together with c new balls of the
same colour. This is repeated n times. Let W be the number of white balls
drawn, assuming that the urn initially contains w white and b black (or
non-white) balls.

We assume c 6= 0, to avoid the trivial case c = 0 when W has a binomial
distribution, but c < 0 is allowed, meaning that balls are removed. In
particular, c = −1 gives drawing without replacement, when W has the
classical hypergeometric distribution in Example B.4. (It is natural to let
c, b, w be integers, but the model has a natural interpretation also for real
values of these parameters, see e.g. [74, Remark 4.2].) In the case c < 0, we
assume that b, w and n are such that we never can be required to remove
a ball of a colour that is no longer present, or draw a ball when the urn is
empty.

It is easy to see that P(X = k) is proportional to

(
n

k

) k∏
i=1

(w + (i− 1)c)
n−k∏
j=1

(b+ (j − 1)c) =

(
n

k

)
cn〈w/c〉k〈b/c〉n−k

= cn〈b/c〉n
(n)k〈w/c〉k

k! (b/c+ n− 1)k
(B.19)

and thus W ∼ HG(−n,w/c; 1− n− b/c), see [81, §6.2.4].
For a connection with Example B.12, suppose instead that the urn starts

with one ball each of m colours (including white), and that c = 1. The
number W of white balls drawn is the same as if we start with 1 white
and m − 1 black balls, and thus W ∼ HG(−n, 1; 2 − n −m). On the other
hand, it is easy to see by induction, that for each n, the composition of the
urn is uniform over all possible colour combinations. Thus W has the same
distribution as X1 in Example B.12 (with colours corresponding to boxes).

Appendix C. Order statistics of exponential variables

Let, for 1 6 k 6 m, Vm,k be the k:th smallest of m i.i.d. Exp(1) random
variables E1, . . . , Em; further, let Vm,0 = 0.

Theorem C.1. Let 1 6 k 6 m. Then the following holds.

(i) If Yi ∼ Exp(i) are independent, then

Vm,k
d
=

m∑
i=m−k+1

Yi. (C.1)

(ii) Vm,k has the density function

m!

(m− k)! (k − 1)!
e−(m−k+1)x(1− e−x)k−1, x > 0. (C.2)

(iii) e−Vm,k has the beta distribution B(m− k + 1, k).
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(iv) For any θ > −(m− k + 1),

E e−θVm,k =

m∏
i=m−k+1

i

i+ θ
=

(m)k
(m+ θ)k

. (C.3)

Proof. (i): Consider m independent exponential clocks that strike at E1, . . . ,
Em. As is well-known, by the lack of memory for exponential distributions,
the waiting times Wi := Vm,i − Vm,i−1 between the strikes are independent
and exponentially distributed, with Wi ∼ Exp(m − i + 1) since there are
m − i + 1 clocks left. Let Yi := Wm−i+1 ∼ Exp(i) and note that Vm,k =∑k

i=1Wi.
(iii): Let Ui := e−Ei . Then U1, . . . , Um ∼ U(0, 1) are m i.i.d. uniform

random variables, and e−Vm,k is the k:th largest of them; it is well-known
that this has the beta distribution B(m− 1 + k, k).

(ii): By (iii), e−Vm,k has the density

Γ(m+ 1)

Γ(m− k + 1)Γ(k)
xm−k(1− x)k−1 =

m!

(m− k)! (k − 1)!
xm−k(1− x)k−1,

(C.4)
for 0 < x < 1, and (C.2) follows.

(iv): A simple consequence of (i), or alternatively of (iii). �
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[6] Albert-László Barabási and Réka Albert, Emergence of scaling in ran-
dom networks. Science 286 (1999), no. 5439, 509–512.
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[19] Miklós Bóna, k-protected vertices in binary search trees. Adv. in Appl.
Math. 53 (2014), 1–11.
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