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Abstract

We study I(T ), the number of inversions in a tree T with its vertices labeled uniformly
at random, which is a generalization of inversions in permutations. We first show that the
cumulants of I(T ) have explicit formulas involving the k-total common ancestors of T (an
extension of the total path length). Then we consider Xn, the normalized version of I(Tn),
for a sequence of trees Tn. For fixed Tn’s, we prove a sufficient condition for Xn to converge
in distribution. As an application, we identify the limit of Xn for complete b-ary trees. For
Tn being split trees [15], we show that Xn converges to the unique solution of a distributional
equation. Finally, when Tn’s are conditional Galton–Watson trees, we show that Xn converges
to a random variable defined in terms of Brownian excursions. By exploiting the connection
between inversions and the total path length, we are able to give results that are stronger and
much broader compared to previous work by Panholzer and Seitz [45].

1 Introduction

1.1 Inversions in a fixed tree

Let σ1, . . . , σn be a permutation of {1, . . . , n}. If i < j and σi > σj , then the pair (σi, σj) is
called an inversion. The concept of inversions was introduced by Cramer [13] (1750) due to its
connection with solving linear equations. More recently, the study of inversions has been motivated
by its applications in the analysis of sorting algorithms, see, e.g., [36, Section 5.1]. Many authors,
including Feller [20, pp. 256], Sachkov [51, pp. 29], Bender [6], have shown that the number of
inversions in uniform random permutations has a central limit theorem. More recently, Margolius
[41] and Louchard and Prodinger [38] studied permutations containing a fixed number of inversions.

∗This work was partially supported by two grants from the Knut and Alice Wallenberg Foundation and a grant
from the Swedish Research Council.
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The concept of inversions can be generalized as follows. Consider an unlabeled rooted tree T
on node set V . Let ρ denote the root. Write u < v if u is a proper ancestor of v, i.e., the unique
path from ρ to v passes through u and u 6= v. Write u ≤ v if u is an ancestor of v, i.e., either u < v
or u = v. Given a bijection λ : V → {1, . . . , |V |} (a node labeling), define the number of inversions

I(T, λ)
def
=
∑
u<v

1λ(u)>λ(v).

Note that if T is a path, then I(T, λ) is nothing but the number of inversions in a permutation.
Our main object of study is the random variable I(T ), defined by I(T ) = I(T, λ) where λ is chosen
uniformly at random from the set of bijections from V to {1, . . . , |V |}.

The enumeration of trees with a fixed number of inversions has been studied by Mallows and
Riordan [40] and Gessel et al. [24] using the so called inversions polynomial. While analyzing linear
probing hashing, Flajolet et al. [22] noticed that the numbers of inversions in Cayley trees with
uniform random labeling converges to an Airy distribution. Panholzer and Seitz [45] showed that
this is true for conditional Galton–Watson trees, which encompasses the case of Cayley trees.

For a node v, let zv denote the size of the subtree rooted at v. The following representation of
I(T ), proved in Section 2, is the basis of most of our results:

Lemma 1. Let T be a fixed tree. Then

I(T )
d
=
∑
v∈V

Zv, (1.1)

where {Zv}v∈V are independent random variables, and Zv ∼ Unif{0, 1, . . . , zv − 1}.

We will generally be concerned with the centralized number of inversions, i.e., I(T )− E [I(T )].
For any u < v we have P {λ(u) > λ(v)} = 1/2. Let h(v) denote the depth of v, i.e., the distance
from v to the root ρ. It immediately follows that,

E [I(T )] =
∑
u<v

E
[
1λ(u)>λ(v)

]
=

1

2
Υ(T ), (1.2)

where Υ(T )
def
=
∑

v h(v) is called the total path length (or internal path length) of T .

Let κk = κk(X) denote the k-th cumulant of a random variable X (provided it exists); thus
κ1(X) = E [X] and κ2(X) = Var (X) (see [26, Theorem 4.6.4]). We now define Υk(T ), the k-total
common ancestors of T , which allows us to generalize (1.2) to higher cumulants of I(T ). For k
nodes v1, . . . , vk (not necessarily distinct), let c(v1, . . . , vk) be the number of ancestors that they
share, i.e.,

c(v1, . . . , vk)
def
= |{u ∈ V : u ≤ v1, u ≤ v2, . . . , u ≤ vk}| .

We define
Υk(T )

def
=

∑
v1,...,vk

c(v1, . . . , vk), (1.3)

where the sum is over all ordered k-tuples of nodes in the tree. For a single node v, h(v) = c(v)−1,
since v itself is counted in c(v). So Υ(T ) = Υ1(T ) − |V |; i.e., we recover the usual notion of total
path length.
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Theorem 1. Let T be a fixed tree. Let κk(I(T )) be the k-th cumulant of I(T ). Then

E [I(T )] = κ1(I(T )) =
1

2
Υ(T ) =

1

2
(Υ1(T )− |V |), (1.4)

Var (I(T )) = κ2(I(T )) =
1

12
(Υ2(T )− |V |),

and, more generally, for k ≥ 1,

κ2k+1(I(T )) = 0, κ2k(I(T )) =
B2k

2k
(Υ2k(T )− |V |), (1.5)

where Bk denotes the k-th Bernoulli number. Moreover, I(T ) has the moment generating function

E
[
etI(T )

]
=
∏
v∈V

ezvt − 1

zv(et − 1)
, (1.6)

and for the centralized variable we have the estimate

E
[
et(I(T )−E[I(T )])

]
≤ exp

(
1
8 t

2
∑
v∈T

(zv−1)2
)
≤ exp

(
1
8 t

2
∑
v∈T

z2v

)
= exp

(
1
8 t

2Υ2(T )
)
, t ∈ R. (1.7)

Remark 1. Recalling that B1 = −1/2 and B2k+1 = 0 for k ≥ 1, (1.4)–(1.5) can also be written as

κk(I(T )) =
Bk
k

(−1)k(Υk(T )− |V |), k ≥ 1.

Remark 2. Higher moments and central moments can be calculated from the cumulants by standard
formulas [52]. (Note that all odd central moments vanish by symmetry.) For example, recalling
B4 = −1/30, Theorem 1 implies that

E
[
(I(T )− E [I(T )])4

]
= 3κ2(I(T ))2 + κ4(I(T )) =

1

48

(
Υ2(T )− |V |

)2
− 1

120
(Υ4(T )− |V |).

1.2 Inversions in sequences of trees

The total path length Υ(T ) has been studied for random trees like split trees [8] and conditional
Galton–Watson trees [3, Corollary 9]. This leads us to focus on the deviation

Xn =
I(Tn)− E [I(Tn)]

s(n)
,

under some appropriate scaling s(n), for a sequence of (random or fixed) trees Tn, where Tn has
size n.

Fixed trees

Theorem 2. Let Tn be a sequence of fixed trees on n nodes. Let

Xn =
I(Tn)− E [I(Tn)]√

Υ2(Tn)
.
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Assume that for all k ≥ 1,
Υ2k(Tn)

Υ2(Tn)k
→ ζ2k,

for some sequence (ζ2k). Then there exists a unique distribution X with

κ2k−1(X) = 0, κ2k(X) =
B2k

2k
ζ2k, k ≥ 1,

such that Xn
d−→ X and, moreover, E

[
etXn

]
→ E

[
etX
]
<∞ for every t ∈ R.

Remark 3. By Theorem 1, Var (Xn) = (Υ2(Tn) − n)/12s(n)2. Thus, it is natural to consider

s(n) = Θ
(√

Υ2(Tn)− n
)

= Θ
(√

Υ2(Tn)
)
, where we use Υ2(Tn)

def
=
∑

v1,v2
c(v1, v2) ≥ n2.

Remark 4. The functions ψXn(t)
def
= E

[
etXn

]
and ψX(t)

def
= E

[
etX
]

are called moment generating
functions of Xn and X respectively. The convergence ψXn(t)→ ψX(t) <∞ in a neighborhood of 0

implies that Xn
d−→ X and (|Xn|r)n≥1 is uniformly integrable for all r > 0; thus E [|Xr

n|]→ E [|X|r]
for all r > 0 and E [Xr

n]→ E [Xr] for all integers r ≥ 1. See, e.g., [26, Theorem 5.9.5].

As simple examples, we consider two extreme cases.

Example 1. When Pn is a path of n nodes, we have for fixed k ≥ 1

Υk(Pn) ∼ 1

k + 1
nk+1.

Thus Υ2k(Pn)/Υ2(Pn)k → κ2k = 0 for k ≥ 2. So by Theorem 2, Xn converges to a normal
distribution, and we recover the central limit law for inversions in permutations. Also, the vertices
have subtree sizes 1, . . . , n and so we also recover from Theorem 1 the moment generating function∏n
j=1(e

jt − 1)/(j(et − 1)) [51, 41].

Example 2. Let Tn = Sn−1, a star with n−1 leaves, and denote the root by o. We have zo = n and
zv = 1 for v 6= o. Hence, by Lemma 1, or directly, I(Sn−1) ∼ Unif{0, . . . , n− 1}, and consequently(

I(Tn)− E [I(Tn)]
)
/n

d−→ Unif[−1
2 ,

1
2 ].

This follows also by Theorem 2, since Υk(Sn−1) ∼ nk for k ≥ 2 (e.g., by Lemma 3 below).

It is straightforward to compute the k-total common ancestors for b-ary trees. Thus our next
result follows immediately from Theorem 2.

Theorem 3. Let b ≥ 2 and let Tn be the complete b-ary tree of height m with n = (bm+1−1)/(b−1)
nodes. Let

Xn =
I(Tn)− E [I(Tn)]

n
, and X =

∑
d≥0

bd∑
j=1

Ud,j
bd

,

where (Ud,j)d≥0,j≥1 are independent Unif[−1/2, 1/2]. Then Xn
d−→ X and E

[
etXn

]
→ E

[
etX
]
<

∞, for every t ∈ R. Moreover X is the unique random variable with

κ2k−1(X) = 0, κ2k(X) =
B2k

2k

b2k−1

b2k−1 − 1
, k ≥ 1. (1.8)
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Random trees

We move on to random trees. We consider generating a random tree Tn and, conditioning on Tn,
labeling its nodes uniformly at random. The relation (1.2) is maintained for random trees:

E [I(Tn)] = E [E [I(Tn) | Tn]] =
1

2
E [Υ(Tn)] .

The deviation of I(Tn) from its mean can be taken to mean two different things. Consider for some
scaling function s(n),

Xn =
I(Tn)− E [I(Tn)]

s(n)
, Yn =

I(Tn)− E [I(Tn) | Tn]

s(n)
=
I(Tn)− 1

2Υ(Tn)

s(n)
.

Then Xn and Yn each measure the deviation of I(Tn), unconditionally and conditionally. They are
related by the identity

Xn = Yn +Wn/2, (1.9)

where

Wn =
Υ(Tn)− E [Υ(Tn)]

s(n)
.

In the case of fixed trees Wn = 0 and Xn = Yn, but for random trees we consider the sequences
separately.

We consider two classes of random trees — split trees and conditional Galton–Watson trees.

Split trees

The first class of random trees which we study are split trees. They were introduced by Devroye
[15] to encompass many families of trees that are frequently used in algorithm analysis, e.g., binary
search trees [27], m-ary search trees [46], quad trees [21], median-of-(2k + 1) trees [53], fringe-
balanced trees [14], digital search trees [11] and random simplex trees [15, Example 5].

A split tree can be constructed as follows. Consider a rooted infinite b-ary tree where each node
is a bucket of finite capacity s. We place n balls at the root, and the balls individually trickle down
the tree in a random fashion until no bucket is above capacity. Each node draws a split vector
V = (V1, . . . , Vb) from a common distribution, where Vi describes the probability that a ball passing
through the node continues to the ith child. The trickle-down procedure is defined precisely in
Section 4. Any node u such that the subtree rooted as u contains no balls is then removed, and we
consider the resulting tree Tn.

In the context of split trees we differentiate between I(Tn) (the number of inversions on nodes),
and Î(Tn) (the number of inversions on balls). In the former case, the nodes (buckets) are given
labels, while in the latter the individual balls are given labels. For balls β1, β2, write β1 < β2 if the
node containing β1 is a proper ancestor of the node containing β2; if β1, β2 are contained in the
same node we do not compare their labels. Define

Î(Tn) =
∑
β1<β2

1λ(β1)>λ(β2).
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Similarly define Υ̂(Tn) as the total path length on balls, i.e., the sum of the depth of all balls. And
let

X̂n =
Î(Tn)− E

[
Î(Tn)

]
n

, Ŷn =
Î(Tn)− s0Υ̂(Tn)/2

n
, Ŵn =

Υ̂(Tn)− E
[
Υ̂(Tn)

]
n

. (1.10)

Here s0 is a fixed integer denoting the number of balls in any internal node, and we have X̂n =
Ŷn+s0Ŵn/2 (formally justified in Section 4). The following theorem gives the limiting distributions
of the random vector (X̂n, Ŷn, Ŵn). In Section 4.4 we state a similar result for (Xn, Yn,Wn) under
stronger assumptions. Note that the concepts are identical for any class of split trees where each
node holds exactly one ball, such as binary search trees, quad trees, digital search trees and random
simplex trees.

Let d2 denote the Mallows metric, also called the minimal `2 metric (defined in Section 4). Let
Md

0,2 be the set of probability measures on Rd with zero mean and finite second moment.

Theorem 4. Let Tn be a split tree and let V = (V1, . . . , Vb) be a split vector. Define

µ = −
b∑
i=1

E [Vi lnVi] , and D(V) =
1

µ

b∑
i=1

Vi lnVi.

Assume that P {∃i : Vi = 1} < 1 and s0 > 0. Let (X̂, Ŷ , Ŵ ) be the unique solution in M3
0,2 for the

system of fixed-point equations


X̂

Ŷ

Ŵ

 d
=



b∑
i=1

ViX̂
(i) +

s0∑
j=1

Uj +
s0
2
D(V)

b∑
i=1

ViŶ
(i) +

s0∑
j=1

(Uj − 1/2)

b∑
i=1

ViŴ
(i) + 1 +D(V)


. (1.11)

Here (V1, . . . , Vb), U1, . . . , Us0, (X̂(1), Ŷ (1), Ŵ (1)), . . . , (X̂(b), Ŷ (b), Ŵ (b)) are independent, with Uj ∼
Unif[0, 1] for j = 1, . . . , s0, and

(
X̂

(i)
n , Ŷ

(i)
n , Ŵ

(i)
n

)
∼ (X̂, Ŷ , Ŵ ) for i = 1, . . . , b. Then the sequence

(X̂n, Ŷn, Ŵn) defined in (1.10) converges to (X̂, Ŷ , Ŵ ) in d2 and in moment generating function
within a neighborhood of the origin.

The proof of Theorem 4 uses the contraction method, introduced by Rösler [48] for finding the
total path length of binary search trees. The technique has been applied to d-dimensional quad
trees by Neininger and Rüschendorf [43] and to split trees in general by Broutin and Holmgren [8].
The contraction method also has many other applications in the analysis of recursive algorithms,
see, e.g., [49, 50, 44].

Remark 5. We assume that s0 > 0, for otherwise we trivially have X̂n = 0 and Theorem 4 reduces
to Theorem 2.1 in [8].

Remark 6. In a recent paper, Janson [33] showed that preferential attachment trees and random
recursive trees can be viewed as split trees with infinite-dimensional split vectors. Thus we conjecture
that the contraction method should also be applicable for these models and give results similar to
Theorem 4.
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Remark 7. Assume that the constant split vector V = (1/b, . . . , 1/b) is used and each node holds
exactly one ball (a special case of digital search trees, see [14, Example 7]). Then D(V) = −1 and
(1.11) has the unique solution (X̂, Ŷ , Ŵ ) = (X,X, 0), where X has the limiting distribution for
inversions in complete b-ary trees (see Theorem 3). This is as expected, as the shape of a split tree
with these parameters is likely to be very similar to a complete b-ary tree.

Conditional Galton–Watson trees

Finally, we consider conditional Galton–Watson trees (or equivalently, simply generated trees),
which were introduced by Bienaymé [7] and Watson and Galton [54] to model the evolution of
populations. A Galton–Watson tree starts with a root node. Then recursively, each node in the
tree is given a random number of child nodes. The numbers of children are drawn independently
from the same distribution ξ called the offspring distribution.

A conditional Galton–Watson tree Tn is a Galton–Watson tree conditioned on having n nodes.
It generalizes many uniform random tree models, e.g., Cayley trees, Catalan trees, binary trees, b-
ary trees, and Motzkin trees. For a comprehensive survey, see Janson [31]. For recent developments,
see [32, 37, 16, 9].

In a series of three seminal papers, Aldous showed that Tn converges under re-scaling to a
continuum random tree, which is a tree-like object constructed from a Brownian excursion [2, 3, 4].
Therefore, many asymptotic properties of conditional Galton–Watson trees, such as the height and
the total path length, can be derived from properties of Brownian excursions [3]. Our analysis of
inversions follows a similar route. In particular, we relate I(Tn) to the Brownian snake studied by
e.g., Janson and Marckert [35].

In the context of Galton–Watson trees, Aldous [3, Corollary 9] showed that n−3/2Υ(Tn) con-
verges to an Airy distribution. We will see that the standard deviation of I(Tn) − 1

2Υ(Tn) is of

order n5/4 � n3/2, which by the decomposition (1.9) implies that n−3/2I(Tn) converges to the
same Airy distribution, recovering one of the main results of Panholzer and Seitz [45, Theorem
5.3]. Our contribution for conditional Galton–Watson trees is a detailed analysis of Yn under the
scaling function s(n) = n5/4.

Let e(s), s ∈ [0, 1] be the random path of a standard Brownian excursion, and define C(s, t)
def
=

C(t, s)
def
= 2 mins≤u≤t e(u) for 0 ≤ s ≤ t ≤ 1.

We define a random variable, see [30],

η
def
=

∫
[0,1]2

C(s, t)ds dt = 4

∫
0≤s≤t≤1

min
s≤u≤t

e(u). (1.12)

Theorem 5. Suppose Tn is a conditional Galton–Watson tree with offspring distribution ξ such
that E [ξ] = 1, Var (ξ) = σ2 ∈ (0,∞), and E

[
eαξ
]
<∞ for some α > 0, and define

Yn =
I(Tn)− 1

2Υ(Tn)

n5/4
.

Then we have

Yn
d−→ Y

def
=

1√
12σ

√
η N , (1.13)

where N is a standard normal random variable, independent from the random variable η defined in
(1.12). Moreover, E

[
etYn

]
→ E

[
etY
]
<∞ for all fixed t ∈ R.
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The moments of η and Y are known [34], see Section 5.

The rest of the paper is organized as follows. In Section 2, we prove Lemma 1 and Theorem 1.
The results for fixed trees (Theorems 2, 3) are presented in Section 3. Split trees and conditional
Galton–Watson trees are considered in Sections 4 and 5 respectively. Sections 4 and 5 are essentially
self-contained, and the interested reader may skip ahead.

2 A fixed tree

In this section we study a fixed, non-random tree T . We begin with proving Lemma 1, which shows
that I(T ) is a sum of independent uniform random variables.

Proof of Lemma 1. We define Zu =
∑

v:v>u 1λ(u)>λ(v) and note that

I(T )
def
=
∑
u<v

1λ(u)>λ(v) =
∑
u∈V

(∑
v:v>u

1λ(u)>λ(v)

)
=
∑
u∈V

Zu,

showing (1.1). Let Tu ⊆ T denote the subtree rooted at u. It is clear that conditioned on the set
λ(Tu), λ restricted to Tu is a uniformly random labeling of Tu into λ(Tu). Recall that zu denotes
the size of Tu. If the elements of λ(Tu) are `1 < · · · < `zu and if λ(u) = `i, then Zu = i − 1. As
λ(u) is uniformly distributed, so is Zu.

We prove independence of the Zv by induction on V . The base case |V | = 1 is trivial.
Let T1, . . . , Td be the subtrees rooted at the children of the root ρ, and condition on the sets
λ(T1), . . . , λ(Td). Given these sets, λ restricted to Ti is a uniformly random labeling of Ti using
the given labels λ(Ti), and these labelings are independent for different i. Hence, conditioning on
λ(T1), . . . , λ(Td), the d families (Zv)v∈Ti are independent, and each is distributed as the correspond-
ing family for the tree Ti.

Consequently, by induction, still conditioned on λ(T1), . . . , λ(Td), (Zv)v 6=ρ are independent, with
Zv ∼ Unif{0, 1, . . . , zv−1}. Furthermore, Zρ = λ(ρ)−1, and λ(ρ) is determined by λ(T1), . . . , λ(Td)

(as the only label not in
⋃d

1 λ(Ti)). Hence the family (Zv)v 6=ρ of independent random variables is
also independent of Zρ, and thus (Zv)v∈V are independent. This completes the induction, and thus
the proof.

Our first use of the representation in Lemma 1 is to prove Theorem 1, which gives both a
formula for the moment generating function and explicit formulas for the cumulants of I(T ) for a
fixed T . The proof begins with a simple lemma giving the cumulants and the moment generating
function of Zv in Lemma 1, from which Theorem 1 will follow immediately.

Recall that the Bernoulli numbers Bk can be defined by their generating function

∞∑
k=0

Bk
xk

k!
=

x

ex − 1
(2.1)

(convergent for |x| < 2π), see, e.g., [17, (24.2.1)]. Recall also B0 = 1, B1 = −1
2 and B2 = 1

6 , and
that B2k+1 = 0 for k ≥ 1.
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Lemma 2. Let N ≥ 1, and let ZN be uniformly distributed on {0, 1, . . . , N − 1}. Then E [ZN ] =
(N − 1)/2, Var (ZN ) = (N2 − 1)/12 and, more generally,

κk(ZN ) =
Bk
k

(Nk − 1), k ≥ 2, (2.2)

where Bk is the k-th Bernoulli number. The moment generating function of ZN is

E
[
etZN

]
=

eNt − 1

N(et − 1)
. (2.3)

Proof. This is presumably well-known, but we include a proof for completeness. The moment
generating function of ZN is

E
[
etZN

]
=

1

N

N−1∑
j=0

ejt =
eNt − 1

N(et − 1)
, (2.4)

verifying (2.3). The function (et − 1)/t is analytic and non-zero in the disc |t| < 2π, and thus has
there a well-defined analytic logarithm

f(t) := log
et − 1

t
, (2.5)

with f(0) = 0. By (2.4) and (2.5), the cumulant generating function of ZN can be written as

logE
[
etZN

]
= f(Nt)− f(t). (2.6)

Differentiating (2.5) yields (for 0 < |t| < 2π)

f ′(t) =
d

dt

(
log(et − 1)− log t

)
=

et

et − 1
− 1

t
=

1

et − 1
+ 1− 1

t
,

and thus, using (2.1),

tf ′(t) =
t

et − 1
+ t− 1 =

∞∑
k=0

Bk
tk

k!
− 1 + t =

∞∑
k=2

Bk
tk

k!
+

1

2
t.

Consequently,

f(t) =
∞∑
k=2

Bk
k

tk

k!
+

1

2
t, (2.7)

and thus by (2.6)

logE
[
etZN

]
=
∞∑
k=2

Bk
k

(Nk − 1)
tk

k!
+
N − 1

2
t.

The results on cumulants follow. (Of course, E [ZN ] is more simply calculated directly.)

Remark 8. Similarly, using (2.7), or by (2.2) and a limiting argument, if U ∼ Unif[0, 1] or
U ∼ Unif[−1

2 ,
1
2 ], then κk(U) = Bk/k, k ≥ 2.
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Recall that in the introduction, we defined

c(v1, . . . , vk)
def
= |{u : u ≤ v1, . . . , u ≤ vk}|,

i.e., c(v1, . . . , vk) is the number of common ancestors of v1, . . . , vk.

Lemma 3. Let zv denote the number of vertices in subtree rooted at v. Then for k ≥ 1,∑
v

zkv = Υk(T )
def
=

∑
v1,...,vk

c(v1, . . . , vk).

Proof. It is easily seen that ∑
u

zu =
∑
u,v

1{u≤v} =
∑
v

c(v).

Similarly, ∑
u

z2u =
∑
u,v,w

1{u≤v,u≤w} =
∑
v,w

c(v, w).

More generally, ∑
u

zku =
∑
u

k∏
i=1

(∑
vi

1{u≤vi}

)
=

∑
v1,...,vk

c(v1, . . . , vk).

Remark 9. Observe that all common ancestors of the k vertices must lie on a path; stretching
from the last common ancestor to the root. Define a related parameter Υ′k(T ) to be the sum over
all k-tuples of the length of this path (rather than number of vertices in the path). We call this
the k-common path length. Now Υ′1(T ) = Υ(T ) and Υ′2(T ) has appeared in various contexts, see
for example [30] (where it is denoted Q(T )). Let v1 ∧ v2 denote the last common ancestor of the
vertices v1 and v2. It is easy to see that, with n = |T |,

Υ′k(T )
def
=

∑
v1,...,vk

h(v1 ∧ · · · ∧ vk) =
∑

v1,...,vk

(c(v1, . . . , vk)− 1) = Υk(T )− nk,

and by Lemma 3, Υk(T ) =
∑

v z
k
v , so Υ′k(T ) =

∑
v 6=ρ z

k
v .

Remark 10. Let Sk be a star with k leaves `1, . . . , `k and root o. Then Υk(T ) is the number
of embeddings φ : V (Sk) → V (T ) such that φ(o) ≤ φ(`i) for each i. Similarly the k-common
path-length Υ′k(T ) is the number of such embeddings φ such that φ(o) < φ(`i) for each i.

Proof of Theorem 1. Since cumulants are additive for sums of independent random variables, an
immediate consequence of Lemmas 1 and 2 is that

κk(I(T )) =
Bk
k

∑
v∈V

(
zkv − 1

)
=
Bk
k

(Υk(T )− |V |), k ≥ 1.

where the last equality follows from Lemma 3. The fact that E [I(T )] = 1
2Υ(T ) was noted already

in (1.2).

Similarly, (1.6) follows from Lemma 1 and (2.4).

For the estimate (1.7), note first, e.g. by Taylor expansions, that coshx ≤ ex
2/2 for every real

x. It follows that if U is any symmetric random variable with |U | ≤ a, then

E
[
etU
]

= E [cosh(tU)] ≤ ea2t2/2. (2.8)

10



(See [28, (4.16)] for a more general result.) Lemma 1 thus implies, applying (2.8) to each Zv−E [Zv],

E
[
et(I(T )−E[I(T )]

]
=
∏
v

E
[
et(Zv−E[Zv ])

]
≤
∏
v

et
2(zv−1)2/8 = et

2
∑

v(zv−1)2/8,

which yields (1.7), using also Lemma 3.

3 A sequence of fixed trees

In this section, we study

Xn =
I(Tn)− E [I(Tn)]

s(n)
,

where Tn is a sequence of fixed trees and s(n) is an appropriate normalization factor. We start by
proving Theorem 2, a sufficient condition for Xn to converge in distribution when s(n) =

√
Υ2(Tn).

Proof of Theorem 2. First κ1(Xn) = E [Xn] = 0. For k ≥ 2, note that shifting a random variable

does not change its k-th cumulant. Also note that Υk(Tn)
def
=
∑

v1,...,vk
c(v1, . . . , vk) ≥ nk. Therefore,

it follows from Theorem 1 that

κk(Xn) =
κk(I(Tn))

(Υ2(Tn)− n)k/2
=
Bk
k

Υk(Tn)− n
(Υ2(Tn)− n)k/2

∼ Bk
k

Υk(Tn)

Υ2(Tn)k/2
, k ≥ 2.

Recall that all odd Bernoulli numbers except B1 are zero. Thus letting ζk = 0 for all odd k, the
assumption that Υ2k(Tn)/Υ2(Tn)k → ζ2k for all k ≥ 1 implies that

κk(Xn)→ Bk
k
ζk, k ≥ 1.

Since every moment can be expressed as a polynomial in cumulants, it follows that every moment

E
[
Xk
n

]
converges, k ≥ 1. Thus to show that there exists an X such that Xn

d−→ X, it suffices to
show that the moment generating function E

[
etXn

]
stays bounded for all small fixed t; we shall

show that this holds for all real t. In fact, using Lemma 3,∑
v

(zv − 1)2 ≤
∑
v

(z2v − 1) = Υ2(Tn)− n ≤ Υ2(Tn).

Hence, (1.7) yields

E
[
etXn

]
≤ exp

(
1
8

(
t/
√

Υ2(Tn)
)2∑

v

(zv − 1)2
)
≤ exp

(
1
8 t

2
)
, t ∈ R.

This and the moment convergence imply the claims in the theorem.

3.1 The complete b-ary tree

We prove Theorem 3, which asserts that for complete b-ary trees the limiting variable of Xn is
the unique X for which κk(X) = Bk

k
bk−1

bk−1−1 for even k ≥ 2 and zero for odd k. Fix b ≥ 2. In

11



the complete b-ary tree of height m, each node v at depth d ∈ {0, 1, . . . ,m} has subtree size

zv = am,d
def
= (bm−d+1 − 1)/(b− 1). Hence Lemma 1 implies that Xn =

∑m
d=0

∑bd

j=1 Zd,j/n, where

Zd,j ∼ Unif

{
−
am,d − 1

2
,−

am,d − 2

2
, . . . ,

am,d − 2

2
,
am,d − 1

2

}
are independent random variables. Let Ud,j be independent Unif[−1

2 ,
1
2 ]. Approximating Zd,j ≈

Ud,jam,d and noticing that n/am,d ≈ bd, intuitively we should have for large n,

Xn =
m∑
d=0

bd∑
j=1

am,d
n
·
Zd,j
am,d

≈
∑
d≥0

bd∑
j=1

Ud,j
bd

def
= X. (3.1)

It is not difficult to show this rigorously by truncating the sums. Also, it is not difficult to
prove Theorem 3 by showing that E

[
etXn

]
→ E

[
etX
]

for all t ∈ R and checking the cumulants of
X, using Remark 8. But instead we choose the route of computing the k-total common ancestors
of b-ary trees and then applying Theorem 2.

Lemma 4. Assume b ≥ 2. Let Tn be the complete b-ary tree on n = (bm+1 − 1)/(b − 1) nodes.
Then

Υ1(Tn) ∼ n logb n, Υk(Tn) ∼ bk−1

bk−1 − 1
nk, k ≥ 2.

Proof. The height of Tn is m ∼ logb n. It follows from Lemma 3 that

Υ1(Tn) =
∑
v

zv =

m∑
d=0

bd × am,d =
bm+1

b− 1

m∑
d=0

(
1− 1

bm+1−d

)
=
bm+1

b− 1
(m+O(1)) ∼ n logb n.

Similarly, for k ≥ 2,

Υk(Tn) =
∑
v

zkv =

m∑
d=0

bd × akm,d =
b(m+1)k

(b− 1)k

m∑
d=0

1

bd(k−1)

(
1− 1

bm+1−d

)k
∼ nk bk−1

bk−1 − 1
.

Proof of Theorem 3. Let X ′n = (I(Tn)− E [I(Tn)])/
√

Υ2(Tn). By Lemma 4, for fixed k ≥ 1,

Υ2k(Tn)

Υ2(Tn)k
∼
n2k b2k−1

b2k−1−1(
n2 b

b−1

)k =
b2k−1

b2k−1 − 1

(
b− 1

b

)k
.

By Theorem 2, there exists a unique distribution X ′ such that

κ2k−1(X
′) = 0, κ2k(X

′) =
B2k

2k

b2k−1

b2k−1 − 1

(
b− 1

b

)k
, k ≥ 1;

moreover, E
[
etX

′
n

]
→ E

[
etX

′
]
<∞ for every t. Recall that, using Lemma 4 again,

Xn
def
=
I(Tn)− E [I(Tn)]

n
= (1 + o(1))

( b

b− 1

)1/2
X ′n.

Let X ′′ =
(
b/(b− 1)

)1/2
X ′; then E

[
etXn

]
→ E

[
etX

′′
]

for every real t and X ′′ has cumulants

κ1(X
′′) = 0, κk(X ′′) =

Bk
k

bk−1

bk−1 − 1
, k ≥ 2,

as in (1.8). It is not difficult to show that X ′′ has the same distribution as X defined in (3.1) by
checking the cumulants of X, using Remark 8.
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3.2 Balanced b-ary trees

We call a b-ary tree balanced if all but the last level of the tree is full and vertices at the last level
take the leftmost positions. A simple example of a balanced binary tree is Tn in which both the
left and right subtrees are complete b-ary trees but the left subtree has one more level than the
right subtree. Since the left subtree is of size about 2n/3, and the right subtree is of size about
n/3, Theorem 3 and Lemma 1 imply that

Xn =
I(Tn)− E [I(Tn)]

n

d−→ U +
2X ′

3
+
X ′′

3
,

where U ∼ Unif[−1
2 ,

1
2 ] and X ′, X ′′ are independent copies of X. The three terms in the limit

correspond to inversions involving the root, inversions in the left subtree and inversions in the right
subtree.

The above example shows that the limit distribution of Xn in a balanced b-ary tree in which
each subtree of the root is complete should be U plus a linear combination of independent copies
of X. We formalize this observation in the following corollary.

Corollary 1. Let Tn be a balanced b-ary tree. Let Xn and X be as in Theorem 3. Let {x} def= x−bxc.
Assume that

{logb ((b− 1)n)} = logb

(
1 +

b− 1

b
i

)
+ o

(
1

log n

)
, (3.2)

where i ∈ {0, . . . , b} is a constant. We have

Xn
d−→ U +

i∑
j=1

b

b+ i(b− 1)
X(j) +

b∑
j=i+1

1

b+ i(b− 1)
X(j) def= X(b, i),

where U ∼ Unif[−1
2 ,

1
2 ], X(j) ∼ X are all independent. Moreover E

[
etXn

]
→ E

[
etX(b,i)

]
for all

t ∈ R.

Remark 11. Condition (3.2) is equivalent of saying that all the b subtrees of the root of Tn except
one (either the i-th or the (i + 1)-th) are complete b-ary trees and the exceptional subtree differs
from a complete b-ary tree in size by at most o(n/ log(n)).

4 A sequence of split trees

We will now define split trees introduced by Devroye [15]. The random split tree Tn has parameters
b, s, s0, s1,V and n. The integers b, s, s0, s1 are required to satisfy the inequalities

2 ≤ b, 0 < s, 0 ≤ s0 ≤ s, 0 ≤ bs1 ≤ s+ 1− s0. (4.1)

and V = (V1, . . . , Vb) is a random non-negative vector with
∑b

i=1 Vi = 1. We define Tn algorithmi-
cally. Consider the infinite b-ary tree U , and view each node as a bucket with capacity s. Each node
u is assigned an independent copy Vu of the random split vector V. Let C(u) denote the number
of balls in node u, initially setting C(u) = 0 for all u. Say that u is a leaf if C(u) > 0 and C(v) = 0
for all children v of u, and internal if C(v) > 0 for some proper descendant v, i.e., v < u. We add
n balls labeled {1, . . . , n} to U one by one. The j-th ball is added by the following “trickle-down”
procedure.
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1. Add j to the root.

2. While j is at an internal node u, choose child i with probability Vu,i, where (Vu,1, . . . , Vu,b) is
the split vector at u, and move j to child i.

3. If j is at a leaf u with C(u) < s, then j stays at u and we set C(u)← C(u) + 1.

If j is at a leaf with C(u) = s, then the balls at u are distributed among u and its children as
follows. We select s0 ≤ s of the balls uniformly at random to stay at u. Among the remaining
s + 1 − s0 balls, we uniformly at random distribute s1 balls to each of the b children of u.
Each of the remaining s + 1 − s0 − bs1 balls is placed at a child node chosen independently
at random according to the split vector assigned to u. This splitting process is repeated for
any child which receives more than s balls.

For example, if we let b = 2, s = s0 = 1, s1 = 0 and V have the distribution of (U, 1 − U) where
U ∼ Unif[0, 1], then we get the well-known binary search tree.

Once all n balls have been placed in U , we obtain Tn by deleting all nodes u such that the subtree
rooted at u contains no balls. Note that an internal node of Tn contains exactly s0 balls, while a leaf
contains a random amount in {1, . . . , s}. We assume, as previous authors, that P {∃i : Vi = 1} < 1.
We can assume V has a symmetric (permutation invariant) distribution without loss of generality,
since a uniform random permutation of subtree order does not change the number of inversions.

An equivalent definition of split trees is as follows. Consider an infinite b-ary tree U . The split
tree Tn is constructed by distributing n balls (pieces of information) among nodes of U . For a node
u, let nu be the number of balls stored in the subtree rooted at u. Once nu are all decided, we take
Tn to be the largest subtree of U such that nu > 0 for all u ∈ Tn. Let the split vector V ∈ [0, 1]b be
as before. Let Vu = (Vu,1, . . . , Vu,b) be the independent copy of V assigned to u. Let u1, . . . , ub be
the child nodes of u. Conditioning on nu and Vu, if nu ≤ s, then nui = 0 for all i; if nu > s, then

(nu1 , . . . , nub) ∼ Mult(n− s0 − bs1, Vu,1, . . . , Vu,b) + (s1, s1, . . . , s1),

where Mult denotes multinomial distribution, and b, s, s0, s1 are integers satisfying (4.1). Note that∑b
i=1 nui ≤ n (hence the “splitting”). Naturally for the root ρ, nρ = n. Thus the distribution of

(nu,Vu)u∈V (U) is completely defined.

4.1 Outline

In this section we outline how one can apply the contraction method to prove Theorem 4 but leave
the detailed proof to Section 4.2 and Section 4.3. In Section 4.4 we state and outline the proof of
the corresponding theorem for inversions on nodes under stronger assumptions.

Recall that in (1.10), we define

X̂n =
Î(Tn)− E

[
Î(Tn)

]
n

, Ŷn =
Î(Tn)− s0Υ̂(Tn)/2

n
, Ŵn =

Υ̂(Tn)− E
[
Υ̂(Tn)

]
n

.

Let n = (n1, . . . , nb) denote the vector of the (random) number of balls in each of the b subtrees of
the root. Broutin and Holmgren [8] showed that, conditioning on n,

Ŵn
d
=

b∑
i=1

ni
n
Ŵni +

n− s0
n

+ D̂n(n), D̂n(n)
def
= −

E
[
Υ̂(Tn)

]
n

+

b∑
i=1

E
[
Υ̂(Tni)

]
n

. (4.2)
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We derive similar recursions for X̂n and Ŷn. Conditioning on n, Î(Tn) satisfies the recursion

Î(Tn)
d
= Ẑρ +

b∑
i=1

Î(Tni),

where Ẑρ denotes the number of inversions involving balls contained in the root ρ. Therefore, still
conditioning on n, we have

X̂n
d
=

b∑
i=1

ni
n
X̂ni +

Ẑρ
n
−

E
[
Î(Tn)

]
n

+

b∑
i=1

E
[
Î(Tni)

]
n

=

b∑
i=1

ni
n
X̂ni +

Ẑρ
n
− s0

2

E
[
Υ̂(Tn)

]
n

+
s0
2

b∑
i=1

E
[
Υ̂(Tni)

]
n

=
b∑
i=1

ni
n
X̂ni +

Ẑρ
n

+
s0
2
D̂n(n), (4.3)

where we use that
E
[
Î(Tn) | Tn

]
=
s0
2

Υ̂(Tn). (4.4)

(See the proof of Lemma 6.) It follows also from (4.4) that X̂n = Ŷn + s0
2 Ŵn and

Ŷn
d
=

b∑
i=1

ni
n
Ŷni +

Ẑρ
n
− s0

2

n− s0
n

. (4.5)

In Lemma 7 below, we show that

Ẑρ
n

L2

−→ U1 + · · ·+ Us0 ,

where U1, . . . , Us0 are independent and uniformly distributed in [0, 1]. Broutin and Holmgren [8]
have shown that D̂n(n)

a.s.−→ D(V), where

µ = −
b∑
i=1

E [Vi lnVi] , and D(V) =
1

µ

b∑
i=1

Vi lnVi. (4.6)

Together with (n1/n, . . . , nb/n)
a.s.−→ (V1, . . . , Vb) (by the law of large number), we arrive at the

following fixed-point equations (already presented in Theorem 4)


X̂

Ŷ

Ŵ

 d
=



b∑
i=1

ViX̂
(i) +

s0∑
j=1

Uj +
s0
2
D(V)

b∑
i=1

ViŶ
(i) +

s0∑
j=1

(Uj − 1/2)

b∑
i=1

ViŴ
(i) + 1 +D(V)


. (4.7)
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For a random vector X ∈ Rd, let ‖X‖ be the Euclidean norm of X. Let ‖X‖2
def
=

√
E
[
‖X‖2

]
.

Recall that Md
0,2 denotes the set of probability measures on Rd with zero mean and finite second

moment. The Mallows metric on Md
0,2 is defined by

d2(ν, λ) = inf {‖X − Y ‖2 : X ∼ λ, Y ∼ ν} .

Using the contraction method, Broutin and Holmgren [8] proved that Ŵn
d2−→ Ŵ , the unique

solution of the first equation of (4.7) in M1
0,2.

We can apply the same contraction method to show that the vector (X̂n, Ŷn, Ŵn)
d2−→ (X̂, Ŷ , Ŵ ),

the unique solution of (4.7) in M3
0,2. But we only outline the argument here since we will actually

use a result by Neininger [42] which gives us a shortcut. Assume that the independent vectors(
X̂(i), Ŷ (i), Ŵ (i)

)
, i = 1, . . . , b share some common distribution µ ∈M3

0,2. Let F (µ) ∈M3
0,2 be the

distribution of the random vector given by the right hand side of (4.7). Using a coupling argument,
we can show that for all ν, λ ∈M3

0,2,

d2(F (ν), F (λ)) < cd2(ν, λ),

where c ∈ (0, 1) is a constant. Thus F is a contraction and by Banach’s fixed point theorem, (4.7)
must have a unique solution (X̂, Ŷ , Ŵ ) ∈ M3

0,2. Finally, we can use a similar coupling argument

to show that (X̂n, Ŷn, Ŵn)
d2−→ (X̂, Ŷ , Ŵ ).

4.2 Convergence in the Mallows metric

Lemma 5. Let (X̂n, Ŷn, Ŵn) and (X̂, Ŷ , Ŵ ) be as in Theorem 4. Then

d2

(
(X̂n, Ŷn, Ŵn), (X̂, Ŷ , Ŵ )

)
→ 0.

We will apply Theorem 4.1 of Neininger [42], which summarizes sufficient conditions for the
contraction method outlined in the previous section to work. Since the statement of the theorem
is rather lengthy, we do not repeat it here and refer the readers to the original paper.

Neininger’s theorem implies that (X̂n, Ŷn, Ŵn)
d2−→ (X̂, Ŷ , Ŵ ) if the following three conditions

are satisfied: (
Ẑρ
n
,
n1
n
, . . . ,

nb
n
, D̂n(n)

)
d2−→

 s0∑
j=1

Uj , V1, . . . , Vb, D(V)

 , n→∞, (4.8)

b∑
i=1

E
[
V 2
i

]
< 1, (4.9)

E
[
1[ni≤`]∪[ni=n]

(ni
n

)2]
→ 0, n→∞, (4.10)

for all ` ≥ 1 and i = 1, . . . , b. (The three conditions correspond to (11), (12) and (13) in [42].)

Condition (4.9) is satisfied by the assumption that P {∃i : Vi = 1} < 1. Since we assume that
s0 > 0, the event ni = n cannot happen. So the expectation in (4.10) is at most (`/n)2 → 0 and
this condition is also satisfied. The last condition (4.8) follows from the following two lemmas.
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Lemma 6. We have D̂n(n)
L2

−→ D(V) and supn≥1 D̂n(n) is bounded deterministically.

Proof. We first derive an expression for the expected number of inversions. Any internal node
contains s0 balls, so any ball at height h has s0 × h ancestral balls. Let B(Tn) be the set of balls
in Tn. Conditioning on Tn, we have

E
[
Î(Tn) |Tn

]
= E

 ∑
β∈B(Tn)

|{β′ : β′ < β, λ(β′) > λ(β)}|

∣∣∣∣∣∣ Tn
 =

∑
β∈B(Tn)

s0
2
h(β) =

s0
2

Υ̂(Tn).

Thus by Broutin and Holmgren [8, Theorem 3.1],

E
[
Î(Tn)

]
=
s0
2
E
[
Υ̂(Tn)

]
=
s0
2

[
1

µ
n lnn+ n$(lnn) + o(n)

]
, (4.11)

with µ as in (4.6), where $ is a continuous function of period d = sup{a ≥ 0 : P {lnV1 ∈ aZ} = 1}.
In particular, $ is constant if lnV1 is non-lattice, meaning that d = 0.

The convergence of the toll function can now be deduced from the same result on total path
length from [8], but we include the short argument for completeness. Conditioning on the split
vector of the root (V1, . . . , Vn) and noting that (n1/n, . . . , nb/n)

a.s.−→ (V1, . . . , Vb), we have from
(4.2), (4.11),

D̂n(n) = − 1

µ
lnn−$(lnn) +

b∑
i=1

(
1

µ

ni lnni
n

+
ni
n
$(lnni)

)
+ o(1)

=

(
b∑
i=1

1

µ

ni
n

ln
ni
n

)
+

(
b∑
i=1

ni
n
$ (lnVi + lnn)

)
−$(lnn) + o(1)

=
1

µ

b∑
i=1

Vi lnVi + o(1),

where we use that $ is continuous and has the same period as lnVi. So we have

D̂n(n)
a.s.−→ D(V)

def
=

1

µ

b∑
i=1

Vi lnVi,

without conditioning on (V1, . . . , Vb). Note that since for x1, . . . , xb ≥ 0 with
∑b

i=1 xi = 1, we have∑b
i=1 xi ln(xi) ≥ − ln b [12, Theorem 3.1], both D̂n(n) and D(V) are bounded deterministically.

Thus D̂n(n)
L2

−→ D(V) by the dominated convergence theorem.

Lemma 7. For i = 1, . . . , s0, let Ui be a Unif[0, 1] random variable independent of all other random

variables. Then there exists a coupling such that Ẑρ/n
L2

−→
∑s0

i=1 Ui.

Proof. We have Ẑρ =
∑s0

i=1(λi − i), where λ1 < λ2 < · · · < λs0 are the labels for the balls in the
root, chosen uniformly at random from [n] without replacement. Indeed, the ball with label λi
forms an inversion with the balls with labels {λ : λ < λi, λ 6= λj ∀j < i}, a set of size λi − i.

Let λ′i = dnUie for i = 1, . . . , s0. Then λ′1, . . . , λ
′
s0 are chosen independently and uniformly

at random from {1, . . . , n}. Define Ẑ ′ρ =
∑s0

i=1(λ
′
i − i). We couple Ẑ ′ρ to Ẑρ by setting Ẑρ = Ẑ ′ρ
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whenever all λ′i are distinct, and otherwise setting Ẑρ =
∑s0

i=1(λi−i) for some distinct {λ1, . . . , λs0}
chosen uniformly at random. The probability that λ′i = λ′j for some i 6= j is O(1/n). (See the

famous birthday problem [19, Example 3.2.5].) Since Ẑρ ≤ s0n and Ẑ ′ρ ≤ s0n,

E

( Ẑρ
n
−
Ẑ ′ρ
n

)2
 ≤ P

{
∃i 6= j : λ′i = λ′j

}4s20n
2

n2
= O

(
1

n

)
.

As |λ′i/n − Ui| ≤ 1/n, it is clear that Ẑ ′ρ/n =
∑s0

i=1(λ
′
i − i)/n converges in the second moment to∑s0

j=1 Uj . By the triangle inequality, this is also true for Ẑρ/n.

Since (n1/n, . . . , nb/n)
a.s.−→ (V1, . . . , Vb) and ni/n ≤ 1 for all i = 1, . . . , b, the convergence is also

in L2. This together with Lemma 6 and 7 implies (4.8). Therefore, it follows from Theorem 4.1 of

Neininger [42] that (X̂n, Ŷn, Ŵn)
d2−→ (X̂, Ŷ , Ŵ ).

4.3 Convergence in moment generating function

To finish the proof of Theorem 4, it remains to show following lemma:

Lemma 8. There exists a constant L ∈ (0,∞] such that for all fixed t ∈ R3 with ‖t‖ < L,

E
[
exp

(
t · (X̂n, Ŷn, Ŵn)

)]
→ E

[
exp

(
t · (X̂, Ŷ , Ŵ )

)]
<∞,

where · denotes the inner product. If we further assume that P {∃i : Vi = 1} = 0, then L =∞.

Remark 12. The condition P {∃i : Vi = 1} = 0 is necessary for L =∞. Assume the opposite. By
(4.7), for all t ∈ R,

E
[
etX̂
]
≥ E

[
t

(
b∑
i=1

Ui +

b∑
i=1

ViX̂
(i) +

s0
2
C (V)

)∣∣∣∣∣ ∃i : Vi = 1

]
P {∃i : Vi = 1}

= E
[
et

∑b
i=1 Ui

]
P {∃i : Vi = 1}E

[
etX̂
]
,

where Ui are independent Unif[0, 1]. This implies that E
[
etX̂
]

=∞ if we chose t large enough such

that E
[
et

∑b
i=1 Ui

]
P {∃i : Vi = 1} > 1.

The proofs of the next two lemmas are similar to Lemma 4.1 by Rösler [48], which deals with
the total path length of binary search trees. However, we have extended the result to cover general
split trees. Moreover, Lemma 10 can be applied not only to inversions and total path length, but
also to any properties of split trees that satisfies the assumptions.

Lemma 9. Let C1 > 0 be a constant. There exists a constant L such that for all t ∈ (−L,L), there
exists Kt ≥ 0 such that

E
[
exp{C1|t|+ t2KtUn}

]
≤ 1, for all n ∈ N, (4.12)

where

Un
def
= − 1 +

b∑
i=1

(ni
n

)2
.

If we further assume that P {∃i : Vi = 1} = 0, then L =∞.
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Proof. Let p = P {∃i : Vi = 1}. Recalling the assumption that p < 1, we can choose a constant
δ ∈ (0, 1− p). Then for ε small enough

P

{
−1 +

b∑
i=1

V 2
i ≥ −ε

}
≤ P {∃i : Vi = 1}+

δ

2
= p+

δ

2
.

Since Un
a.s.−→ −1 +

∑b
i=1 V

2
i , there exists n0 ∈ N such that

P {Un ≥ −ε} ≤ P

{
−1 +

b∑
i=1

V 2
i ≥ −ε

}
+
δ

2
≤ p+ δ < 1, for all n ≥ n0.

Together with Un ≤ 0, the above inequality implies that for all n ≥ n0, t ∈ (−L,L), and Kt ∈ R,

E
[
1[Un≥−ε] exp

(
C1|t|+ t2KtUn

)]
≤ eC1L (p+ δ) < 1, (4.13)

if L is small enough. On the other hand, we may assume that t 6= 0 and then

E
[
1[Un<−ε] exp

(
C1|t|+ t2KtUn

)]
≤ exp

(
C1|t| − t2Ktε

)
< 1− eC1L(p+ δ), (4.14)

if Kt is large enough. Together (4.13) and (4.14) implies (4.12). Note that if p = 0, then L can be
arbitrarily large.

Lemma 10. Let (Jn)n≥1 be a sequence of d-dimensional random vectors. Let (J
(i)
n )n≥1 for i =

1, . . . , b be independent copies of (Jn). Let A
(i)
n be a diagonal matrix with ni/n on its diagonal. Let

(Bn)n≥1 be a sequence of random Nb → Rd functions. Assume that conditioning on n,

Jn
d
=

b∑
i=1

A(i)
n J

(i)
ni

+Bn(n).

Further assume that supn≥1 ‖Bn(n)‖ < C1 and ‖J1‖ < C2 deterministically for some constants
C1, C2 and that s0 > 0. Then there exists a constant L ∈ (0,∞], such that for all t ∈ Rd with
‖t‖ < L, there exists Kt ≥ 0, such that

E [exp(t · Jn)] ≤ exp(‖t‖2Kt), for all n ∈ N. (4.15)

Moreover, if Jn
d−→ J∗, then for all t ∈ Rd with ‖t‖ < L,

E [exp (t · Jn)]→ E [exp (t · J∗)] <∞. (4.16)

If we further assume that P {∃i : Vi = 1} = 0, then L =∞.

Proof. It follows from Lemma 9 that there exists an L ∈ (0,∞], such that for all t with ‖t‖ < L,
there exists Kt ≥ 0, such that

E
[
exp

(
C1 ‖t‖+Kt ‖t‖2 Un

)]
≤ 1. (4.17)
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Now we use induction on n. Since ‖J1‖ < C2, we can increase Kt such that (4.15) holds for n = 1.
Assuming that it holds also for all Jn′ with n′ < n, we have

E [exp (t · Jn)] = E

[
exp

(
t ·Bn(n) + t ·

b∑
i=1

A(i)
n J

(i)
ni

)]

≤ eC1‖t‖E

[
b∑
i=1

Kt

(
‖t‖ ni

n

)2]
= eKt‖t‖2E

[
exp

(
C1 ‖t‖+Kt ‖t‖2 Un

)]
≤ eKt‖t‖2 ,

where we use (4.17) and that ni < n for i = 1 . . . , b (since s0 > 0). The above inequality implies

that (et·Jn)n≥1, are uniformly integrable (see [26, Theorem 5.4.2]). Therefore Jn
d−→ J∗ implies

(4.16) (see [19, Theorem 5.5.2]).

Proof of Lemma 8. Let Jn = (X̂n, Ŷn, Ŵn). Then (4.3), (4.5), (4.2) can be written as

Jn
d
=

b∑
i=1

A(i)
n J

(i)
ni

+Bn(n),

where A
(i)
n for i = 1, . . . , b are as in Lemma 10 and

Bn(n) =

[
Ẑρ
n

+
s0
2
D̂n(n),

Ẑρ
n
− s0

2

n− s0
n

,
n− s0
n

+ D̂n(n)

]T
,

where T denotes the transposition of a matrix. By Lemma 5, Jn converges in distribution to
(X̂, Ŷ , Ŵ ). Note that ‖Bn(n)‖ is bounded. Therefore Lemma 10 implies that there exists an

L ∈ (0,∞] such that for all t ∈ R3 with ‖t‖ < L, E
[
et·Jn

]
→ E

[
et·(X̂,Ŷ ,Ŵ )

]
<∞.

4.4 Split tree inversions on nodes

We turn to node inversions in a split tree. The main challenge in this context is that the number N
of nodes is random in general. Thus we will limit our analysis to split trees satisfying the following
two assumptions

N

n

L2

−→ α, (4.18)

and
E [Υ(Tn)] =

α

µ
n lnn+ n$(lnn) + o(n), (4.19)

for some constant α ∈ (0, 1] and some continuous periodic function $ with period d = sup{a ≥ 0 :
P {lnV ∈ aZ} = 1} (constant if d = 0), with µ = −

∑
E [V1 lnV1].

These two conditions are satisfied for many types of split trees. Holmgren [29] showed that if
lnV1 is non-lattice, i.e., d = 0, then E [N ] /n = α+ o(1) and furthermore (4.18) holds. However, in
the lattice case, Régnier and Jacquet [47] showed that, for tries (split trees with s0 = 0 and s = 1)
with a fixed split vector (1/b, . . . , 1/b), E [N ] /n does not converge. Thus (4.18) cannot be true for
these trees.

20



Condition (4.19) has been shown to be true for many types of split trees including m-ary search
trees [5, 10, 18, 39]. More specifically, Broutin and Holmgren [8] showed that in the non-lattice
case, if E [N ] /n = α+O(ln−1−ε n) for some ε > 0, then (4.19) is satisfied. However, Flajolet et al.
[23] showed that even in the non-lattice case, there exist tries with some very special parameter
values where E [n] /n− α tends to zero arbitrarily slowly.

We have the following theorem that is similar to Theorem 4:

Theorem 6. Assume the split tree Tn satisfies (4.18) and (4.19) and define

Xn =
I(Tn)− E [I(Tn)]

n
, Yn =

I(Tn)− 1
2Υ(Tn)

n
, Wn =

Υ(Tn)− E [Υ(Tn)]

n
.

Assume that P {∃i : Vi = 1} < 1. Let D(V) be as in (4.6). Let (X,Y,W ) be the unique solution in
M3

0,2 for the system of fixed-point equations

XY
W

 d
=



b∑
i=1

ViX
(i) + αU0 +

α

2
D(V)

b∑
i=1

ViY
(i) + α

(
U0 −

1

2

)
b∑
i=1

ViW
(i) + α+ αD(V)


.

Here (V1, . . . , Vb), U0, (X(1), Y (1),W (1)), . . . , (X(b), Y (b),W (b)) are independent, with U0 ∼ Unif[0, 1]

and
(
X

(i)
n , Y

(i)
n ,W

(i)
n

)
∼ (X,Y,W ) for i = 1, . . . , b. Then (Xn, Yn,Wn)

d2−→ (X,Y,W ). If s0 > 0,

then the convergence is also in moment generating function within a neighborhood of the origin.

The convergence in Mallows metric again follows from Neininger [42, Theorem 4.1]. We leave
the details to the reader as it is rather similar to inversions on balls. However, we emphasize that
the assumption (4.19) is needed to argue that

Dn(n)
def
= − E [Υ(Tn)]

n
+

1

n

b∑
i=1

E [Υ(Tni)]
L2

−→ α

µ

b∑
i=1

Vi lnVi = αD(V).

For convergence in moment generating function, note that s0 > 0 implies N ≤ n and Zρ/n ≤ 1.
Therefore, we can again apply Lemma 10 as in Section 4.3.

5 A sequence of conditional Galton–Watson trees

Let ξ be a random variable with E [ξ] = 1, Var ξ = σ2 <∞, and E
[
eαξ
]
<∞ for some α > 0, (The

last condition is used in the proof below, but is presumably not necessary.) Let Gξ be a (possibly

infinite) Galton–Watson tree with offspring distribution ξ. The conditional Galton–Watson tree T ξn
on n nodes is given by

P
{
T ξn = T

}
= P

{
Gξ = T

∣∣∣ Gξ has n nodes
}
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for any rooted tree T on n nodes. The assumption E [ξ] = 1 is justified by noting that if ζ is such

that P {ξ = i} = cθiP {ζ = i} for all i ≥ 0 then T ξn and T ζn are identically distributed; hence it is
typically possible to replace an offspring distribution ζ by an equivalent one with mean 1, see [31,
Sec. 4].

We fix some ξ and drop it from the notation, writing Tn = T ξn.

In a fixed tree T with root ρ and n total nodes, for each node v 6= ρ let Qv ∼ Unif(−1/2, 1/2),
all independent, and let Qρ = 0. For each node v define

Φv
def
=
∑
u≤v

Qu, and let J(T )
def
=
∑
v∈T

Φv.

In other words, Φu is the sum of Qv for all v on the path from the root to u. For each v 6= ρ
also define Zv = b(Qv + 1/2)zvc, where zv denotes the size of the subtree rooted at v. Then Zv is
uniform in {0, 1, . . . , zv − 1}, and by Lemma 1, the quantity

I∗(T )
def
=
∑
v 6=ρ

(
Zv − E [Zv]

)
is equal in distribution to the centralized number of inversions in the tree T , ignoring inversions
involving ρ. The main part (1.13) of Theorem 5 will follow from arguing that for a conditional
Galton–Watson tree Tn,

J(Tn)

n5/4
d−→ Y

def
=

1√
12σ

√
ηN . (5.1)

Indeed, under the coupling of Qv and Zv above,

J(Tn) =
∑
v

Φv =
∑
v

∑
u:u≤v

Qu =
∑
u

Qu
∑
v:u≤v

1 =
∑
u

Quzu ≤
∑
u6=ρ

(
Zu −

zu
2

+ 1
)
< n+ I∗(Tn),

and similarly J(Tn) > I∗(Tn)− n. As ρ contributes at most n inversions to I(Tn), it follows from
the triangle inequality that |J(Tn)− (I(Tn)−Υ(Tn)/2)| ≤ 2n = o(n5/4). Thus (5.1), once proved,
will imply that

Yn
def
=
I(Tn)−Υ(Tn)/2

n5/4
= o(1) +

J(Tn)

n5/4
d−→ Y.

The quantity J(Tn) and the limiting distribution (5.1) have been considered by several authors.
In the interest of keeping this section self-contained, we will now outline the proof of (5.1) which
relies on the concept of a discrete snake, a random curve which under proper rescaling converges to
a Brownian snake, a curve related to a standard Brownian excursion. This convergence was shown
by Gittenberger [25], and later in more generality by Janson and Marckert [35], whose notation we
use.

Define f : {0, . . . , 2(n−1)} → V by saying that f(i) is the location of a depth-first search (under
some fixed ordering of nodes) at stage i, with f(0) = f(2(n−1)) = ρ. Also define Vn(i) = d(ρ, f(i))
where d denotes distance. The process Vn(i) is called the depth-first walk, the Harris walk or the
tour of Tn. For non-integer values t, Vn(t) is given by linearly interpolating adjacent values. See
Figure 1.

Finally, define Rn(i)
def
= Φf(i) to be the value at the vertex visited after i steps. For non-

integer values t, Rn(t) is defined by linearly interpolating the integer values. Also define R̃n(t)
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ρ

v1 v2

v11 v12 v21

v121

1 8

2 3 4 7

5 6

9 12

10 11

Vn(t)

t

v11

v121

v1

v21

v2

Figure 1: The depth-first walk Vn(t) of a fixed tree.

by R̃n(t)
def
= Rn(t) when t ∈ {0, 1, . . . , 2n}, and

R̃n(t)
def
=

{
Rn(btc), if Vn(btc) > Vn(dte),
Rn(dte), if Vn(btc) < Vn(dte).

In other words, R̃n(t) takes the value of node f(btc) or f(dte), whichever is further from the root.
We can recover J(Tn) from R̃n(t) via

2J(Tn) =

∫ 2(n−1)

0
R̃n(t)dt.

Indeed, for each non-root node v there are precisely two unit intervals during which R̃n(t) draws its
value from v, namely the two unit intervals during which the parent edge of v is being traversed.
Now, since Qv ∼ Unif(−1/2, 1/2) we have |Rn(i)−Rn(i− 1)| ≤ 1/2 for all i > 0 and

J(Tn)

n5/4
=

1

2n5/4

∫ 2(n−1)

0
R̃n(t)dt =

1

2n5/4

∫ 2(n−1)

0
Rn(t)dt+O(n−1/4) =

∫ 1

0
rn(s)ds+ o(1),

where rn(s)
def
= n−1/4Rn(2(n− 1)s). Also normalize vn(s)

def
= n−1/2Vn(2(n− 1)s). Theorem 2 of [35]

(see also [25]) states that (rn, vn)
d−→ (r, v) in C[0, 1]× C[0, 1], with r, v to be defined shortly.

Before defining r and v, we will briefly motivate what they ought to be. Firstly, as the offspring
distribution ξ of Tn satisfies E [ξ] = 1, we expect the tour Vn to be roughly a random walk with zero-
mean increments, conditioned to be non-negative and return to the origin at time 2(n−1), and the
limiting law v ought to be a Brownian excursion (up to a constant scale factor). Secondly, consider
a node u and the path ρ = u0, u1 . . . , ud = u, where d is the depth of u. We can define a random
walk Φu(t) for t = 0, . . . , d by Φu(0) = 0 and Φu(t) =

∑t
i=1Qui for t > 0, noting that Φu = Φu(d).

Under rescaling, the random walk Φu(t) will behave like Brownian motion. For any two nodes
u1, u2 with last common ancestor at depth m, the processes Φu1 ,Φu2 agree for t = 0, . . . ,m, while
any subsequent increments are independent. Hence Cov(Φu1 ,Φu2) = cm for some constant c > 0.
Now, for any i, j ∈ {0, . . . , 2(n− 1)}, the nodes f(i), f(j) at depths Vn(i), Vn(j) have last common
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ancestor f(k), where k is such that Vn(k) is minimal in the range i ≤ k ≤ j. Hence r(s) should be
normally distributed with variance given by v(s), and the covariance of r(s), r(t) proportional to
mins≤u≤t v(u).

We now define r, v precisely. If Var ξ = σ2, then v(s)
def
= 2σ−1e(s), where e(s) is a standard

Brownian excursion, as shown by Aldous [3, 4]. Conditioning on v, we define r as a centered
Gaussian process on [0, 1] with

Cov(r(s), r(t) | v) =
1

12
min
s≤u≤t

v(u) =
1

12σ
C(s, t), s ≤ t.

The constant 1/12 appears as the variance of the random increments Qv. Again, Theorem 2 of [35]

states that (rn, vn)
d−→ (r, v) in C[0, 1]2. We conclude that

lim
n→∞

J(Tn)

n5/4
=

∫ 1

0
rn(t)dt+ o(1)

d−→
∫ 1

0
r(t)dt

def
= Y.

This integral is the object of study in [34], wherein it is shown that

Y
def
=

∫ 1

0
r(t)dt

d
=

1√
12σ

√
η N ,

where N is a standard normal variable, η is given by

η =

∫
[0,1]2

C(s, t)ds dt,

and η,N are independent. The odd moments of Y are zero, as this is the case for N , and by [34,
Theorem 1.1], for k ≥ 0

E
[
Y 2k

]
=

1

(12σ)k
(2k!)

√
π

2(9k−4)/2Γ((5k − 1)/2)
ak,

where a1 = 1 and for k ≥ 2,

ak = 2(5k − 4)(5k − 6)ak−1 +

k−1∑
i=1

aiak−i.

In particular ([34, Theorem 1.2]),

E
[
Y 2k

]
∼ 1

(12σ)k
2π3/2β

5
(2k)1/2(10e3)−2k/4(2k)

3
4
·2k,

as k → ∞, where β = 0.981038 . . . . Further analysis of the moments of η and Y , including the
moment generating function and tail estimates, can be found in [34].

Remark 13. Conditioning on the value of η, the random variable Y has variance η/(12σ). The
random variable η can be seen as a scaled limit of the second common path length Υ2(Tn), which

appeared in our earlier discussion on cumulants. Indeed, recall that Υ2(Tn)
def
=
∑

u,v∈Tn c(u, v),
where c(u, v) denotes the number of common ancestors of u, v.
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5.1 Convergence of the moment generating function

The last bit of Theorem 5 which remains to be proved is that E
[
etYn

]
→ E

[
etY
]

for all fixed t ∈ R.

Since we have already shown Yn
d−→ Y , we can apply the Vitali convergence theorem once we have

shown that the sequence etYn is uniformly integrable. This follows from the following lemma.

Lemma 11. For all n ∈ N and t ∈ R, there exist positive constants C1 and c1 which do not depend
on n such that

E
[
etYn

]
≤ C1e

c1t4 .

Proof. Conditioned on Tn, we have by (1.7)

E
[
etYn | Tn

]
≤ exp

(
1

8

( t

n5/4

)2
Υ2(Tn)

)
= exp

(
t2

8
· Υ2(Tn)

n5/2

)
.

By (1.3), we have

Υ2(Tn) =
∑

u,v∈Tn

c(u, v) ≤ n2(Hn + 1),

where Hn denotes the height of Tn. It follows that

E
[
etYn

]
≤ E

[
exp

(
Υ2(Tn)

n5/2
t2
)]
≤ E

[
exp

(
Hn + 1√

n
t2
)]
≤ et2E

[
exp

(
Hn√
n
t2
)]

.

The random variable Hn has been well-studied. In particular, Addario-Berry et al. [1] showed that
there exist positive constants C2 and c2 such that

P {Hn > x} ≤ C2 exp

(
−c2

x2

n

)
,

for all n ∈ N and x ≥ 0. Therefore, we have

E
[
exp

(
Hn√
n
t2
)]

= 1 +

∫ ∞
0

exP
{
Hn√
n
t2 > x

}
dx ≤ 1 +

∫ ∞
0

exC2 exp

(
−c2

x2

t4

)
dx ≤ 1 + C1t

2ec3t
4

for some positive constants c3 and C1. (For the equality in the above computation, see [19, pp.
56].) Thus the lemma follows.
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