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Abstract. We give explicit bounds for the tail probabilities for sums of
independent geometric or exponential variables, possibly with different
parameters.

1. Introduction and notation

Let X =
∑n

i=1Xi, where n > 1 and Xi, i = 1, . . . , n, are independent geo-
metric random variables with possibly different distributions: Xi ∼ Ge(pi)
with 0 < pi 6 1, i.e.,

P(Xi = k) = pi(1− pi)k−1, k = 1, 2, . . . . (1.1)

Our goal is to estimate the tail probabilities P(X > x). (Since X is integer-
valued, it suffices to consider integer x. However, it is convenient to allow
arbitrary real x, and we do so.)

We define

µ := EX =
n∑
i=1

EXi =
n∑
i=1

1

pi
, (1.2)

p∗ := min
i
pi. (1.3)

We shall see that p∗ plays an important role in our estimates, which roughly
speaking show that the tail probabilities of X decrease at about the same
rate as the tail probabilities of Ge(p∗), i.e., as for the variable Xi with
smallest pi and thus fattest tail.

Recall the simple and well-known fact that (1.1) implies that, for any
non-zero z such that |z|(1− pi) < 1,

E zXi =

∞∑
k=1

zk P(Xi = k) =
piz

1− (1− pi)z
=

pi
z−1 − 1 + pi

. (1.4)

For future use, note that since x 7→ − ln(1− x) is convex on (0, 1) and 0
for x = 0,

− ln(1− x) 6 −x
y

ln(1− y), 0 < x 6 y < 1. (1.5)
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Remark 1.1. The theorems and corollaries below hold also, with the same
proofs, for infinite sums X =

∑∞
i=1Xi, provided EX =

∑
i p
−1
i <∞.
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2. Upper bounds for the upper tail

We begin with a simple upper bound obtained by the classical method of
estimating the moment generating function (or probability generating func-
tion) and using the standard inequality (an instance of Markov’s inequality)

P(X > x) 6 z−x E zX , z > 1, (2.1)

or equivalently
P(X > x) 6 e−tx E etX , t > 0. (2.2)

(Cf. the related “Chernoff bounds” for the binomial distribution that are
proved by this method, see e.g. [3, Theorem 2.1], and see e.g. [1] for other
applications of this method. See also e.g. [2, Chapter 2] or [4, Chapter 27]
for more general large deviation theory.)

Theorem 2.1. For any p1, . . . , pn ∈ (0, 1] and any λ > 1,

P(X > λµ) 6 e−p∗µ(λ−1−lnλ). (2.3)

Proof. If 0 6 t < pi, then e−t − 1 + pi > pi − t > 0, and thus by (1.4),

E etXi =
pi

e−t − 1 + pi
6

pi
pi − t

=
(

1− t

pi

)−1
. (2.4)

Hence, if 0 6 t < p∗ = mini pi, then

E etX =

n∏
i=1

E etXi 6
n∏
i=1

(
1− t

pi

)−1
(2.5)

and, by (2.2),

P(X > λµ) 6 e−tλµ E etX 6 exp

(
−tλµ+

n∑
i=1

− ln
(

1− t

pi

))
. (2.6)

By (1.5) and 0 < p∗/pi 6 1, we have, for 0 6 t < p∗,

− ln
(

1− t

pi

)
6 −p∗

pi
ln
(

1− t

p∗

)
. (2.7)

Consequently, (2.6) yields

P(X > λµ) 6 exp

(
−tλµ− ln

(
1− t

p∗

) n∑
i=1

p∗
pi

)
= exp

(
−tλµ− p∗µ ln

(
1− t

p∗

))
. (2.8)
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Choosing t = (1− λ−1)p∗ (which is optimal in (2.8)), we obtain (2.3). �

As a corollary we obtain a bound that is generally much cruder, but has
the advantage of not depending on the pi’s at all.

Corollary 2.2. For any p1, . . . , pn ∈ (0, 1] and any λ > 1,

P(X > λµ) 6 λe1−λ = eλe−λ. (2.9)

Proof. Use µ > 1/pi for each i, and thus µp∗ > 1 in (2.3). (Alternatively,
use t = (1− λ−1)/µ in (2.8).) �

The bound in Theorem 2.1 is rather sharp in many cases. Also the cruder
(2.9) is almost sharp for n = 1 (a single Xi) and small p∗ = p1; in this case
µ = 1/p1 and

P(X > λµ) = (1− p1)dλµe−1 = exp
(
λ+O(λp1)

)
. (2.10)

Nevertheless, we can improve (2.3) somewhat, in particular when p∗ =
mini pi is not small, by using more careful estimates.

Theorem 2.3. For any p1, . . . , pn ∈ (0, 1] and any λ > 1,

P(X > λµ) 6 λ−1(1− p∗)(λ−1−lnλ)µ. (2.11)

The proof is given below. We note that Theorem 2.3 implies a minor
improvement of Corollary 2.2:

Corollary 2.4. For any p1, . . . , pn ∈ (0, 1] and any λ > 1,

P(X > λµ) 6 e1−λ. (2.12)

Proof. Use (2.11) and (1− p∗)µ 6 e−p∗µ 6 e−1. �

We begin the proof of Theorem 2.3 with two lemmas yielding a minor
improvement of (2.1) using the fact that the variables are geometric. (The
lemmas actually use only that one of the variables is geometric.)

Lemma 2.5. (i) For any integers j and k with j > k,

P(X > j) > (1− p∗)j−k P(X > k). (2.13)

(ii) For any real numbers x and y with x > y,

P(X > x) > (1− p∗)x−y+1 P(X > y). (2.14)

Proof. (i). We may without loss of generality assume that p∗ = p1. Then,
for any integers i, j, k with j > k,

P(X > j | X −X1 = i) = P(X1 > j − i) = (1− p∗)(j−i−1)+ , (2.15)

and similarly for P(X > k | X −X1 = i). Since (j − i− 1)+ 6 j − k + (k −
i− 1)+, it follows that

P(X > j | X −X1 = i) > (1− p∗)j−k P(X > k | X −X1 = i) (2.16)

for every i, and thus (2.13) follows by taking the expectation.
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(ii). For real x and y we obtain from (2.13)

P(X > x) = P(X > dxe) > (1− p∗)dxe−dye P(X > dye)
> (1− p∗)x−y+1 P(X > y). (2.17)

�

Lemma 2.6. For any x > 0 and z > 1 with z(1− p∗) < 1,

P(X > x) 6
1− z(1− p∗)

p∗
z−x E zX . (2.18)

Proof. Since z > 1, (2.13) implies that for every k > 1,

E zX > E(zX · 1{X > k}) = E
((

zk + (z − 1)

X−1∑
j=k

zj
)
1{X > k}

)

= E
(
zk1{X > k}+ (z − 1)

∞∑
j=k

zj1{X > j + 1}
)

= zk P(X > k) + (z − 1)

∞∑
j=k

zj P(X > j + 1)

> zk P(X > k)

(
1 + (z − 1)

∞∑
j=k

zj−k(1− p∗)j+1−k
)

= zk P(X > k)

(
1 +

(z − 1)(1− p∗)
1− z(1− p∗)

)
= zk P(X > k)

p∗
1− z(1− p∗)

. (2.19)

The result (2.18) follows when x = k is a positive integer. The general case
follows by taking k = max(dxe, 1) since then P(X > x) = P(X > k). �

Proof of Theorem 2.3. We may assume that p∗ < 1. (Otherwise every pi = 1
and Xi = 1 a.s., so X = n = µ a.s. and the result is trivial.) We then choose

z :=
λ− p∗
λ(1− p∗)

, (2.20)

i.e.,

z−1 =
λ(1− p∗)
λ− p∗

= 1− (λ− 1)p∗
λ− p∗

; (2.21)

note that z−1 6 1 so z > 1 and z−1 > 1− p∗ > 1− pi for every i. Thus, by
(1.4),

E zX =
n∏
i=1

E zXi =
n∏
i=1

pi
z−1 − 1 + pi

=
n∏
i=1

1

1− (1− z−1)/pi
. (2.22)
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By (2.22), (2.7) (with t = 1− z−1 < p∗) and (2.21),

lnE zX = −
n∑
i=1

ln
(

1− 1− z−1

pi

)
6 −

n∑
i=1

p∗
pi

ln
(

1− 1− z−1

p∗

)
= −

n∑
i=1

p∗
pi

ln
(

1− λ− 1

λ− p∗

)
= −µp∗ ln

1− p∗
λ− p∗

= µp∗ ln
λ− p∗
1− p∗

.

(2.23)

Furthermore, by (2.20),

1− z(1− p∗)
p∗

=
1− (λ− p∗)/λ

p∗
=

1

λ
. (2.24)

Hence, Lemma 2.6, (2.20) and (2.23) yield

lnP(X > λµ) 6 − lnλ− λµ ln z + lnE zX

6 − lnλ− λµ ln
λ− p∗
λ(1− p∗)

+ µp∗ ln
λ− p∗
1− p∗

= − lnλ+ λµ ln(1− p∗) + µf(λ), (2.25)

where

f(λ) := −λ ln
λ− p∗
λ

+ p∗ ln
λ− p∗
1− p∗

= −(λ− p∗) ln(λ− p∗) + λ lnλ− p∗ ln(1− p∗). (2.26)

We have f(1) = − ln(1− p∗) and, for λ > 1, using (1.5),

f ′(λ) = − ln(λ− p∗) + lnλ = − ln
(

1− p∗
λ

)
6 − 1

λ
ln(1− p∗). (2.27)

Consequently, by integrating (2.27), for all λ > 1,

f(λ) 6 − ln(1− p∗)− lnλ · ln(1− p∗), (2.28)

and the result (2.11) follows by (2.25). �

Remark 2.7. Note that for large λ, the exponents above are roughly linear
in λ, while for λ = 1+o(1) we have λ−1− lnλ ∼ 1

2(λ−1)2 so the exponents
are quadratic in λ − 1. The latter is to be expected from the central limit
theorem. However, if λ = 1 + ε with ε very small and the central limit
theorem is applicable, then P(X > (1 + ε)µ) is roughly exp(−ε2µ2/(2σ2)),
where σ2 = VarX =

∑n
i=1 VarXi =

∑n
i=1

1−pi
p2i

. Hence, in this case the

exponents in (2.3) and (2.11) are asymptotically too small by a factor of
rougly, for small pi,

p∗µ

µ2/σ2
≈
p∗
∑n

i=1 p
−2
i∑n

i=1 p
−1
i

, (2.29)

which may be much smaller than 1. (For example if p2 = · · · = pn and

p1 = p2/n
1/3.)
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3. Upper bounds for the lower tail

We can similarly bound the probability P(X 6 λµ) for λ 6 1. We give
only a simple bound corresponding to Theorem 2.1. (Note that λ−1−lnλ >
0 for both λ ∈ (0, 1) and λ ∈ (1,∞).)

Theorem 3.1. For any p1, . . . , pn ∈ (0, 1] and any λ 6 1,

P(X 6 λµ) 6 e−p∗µ(λ−1−lnλ). (3.1)

Proof. We follow closely the proof of Theorem 2.1. If t > 0, then by (1.4),

E e−tXi =
pi

et − 1 + pi
6

pi
t+ pi

=
(

1 +
t

pi

)−1
. (3.2)

Hence

E e−tX =

n∏
i=1

E e−tXi 6
n∏
i=1

(
1 +

t

pi

)−1
(3.3)

and, in analogy to (2.2),

P(X 6 λµ) 6 etλµ E e−tX 6 exp

(
tλµ−

n∑
i=1

ln
(

1 +
t

pi

))
. (3.4)

In analogy with (2.7), still by the convexity of − lnx,

− ln
(

1 +
t

pi

)
6 −p∗

pi
ln
(

1 +
t

p∗

)
, (3.5)

and (3.4) yields

P(X 6 λµ) 6 exp

(
tλµ− ln

(
1 +

t

p∗

) n∑
i=1

p∗
pi

)
= exp

(
tλµ− p∗µ ln

(
1 +

t

p∗

))
. (3.6)

Choosing t = (λ−1 − 1)p∗, we obtain (3.1). �

4. A lower bound

We show also a general lower bound for the upper tail probabilities, which
shows that for constant λ > 1, the exponents in Theorems 2.1 and 2.3 are
at most a constant factor away from best possible.

Theorem 4.1. For any p1, . . . , pn ∈ (0, 1] and any λ > 1,

P(X > λµ) >
(1− p∗)1+1/p∗

2p∗µ
(1− p∗)(λ−1)µ. (4.1)

Lemma 4.2. If A > 1 and 0 6 x 6 1/A, then

A
(
x+ ln(1− x)

)
6 ln

(
1−Ax2/2

)
. (4.2)
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Proof. Let f(x) := A
(
x+ ln(1− x)

)
− ln

(
1−Ax2/2

)
. Then f(0) = 0 and

f ′(x) = A
(

1− 1

1− x

)
+

Ax

1−Ax2/2
= − Ax

1− x
+

Ax

1−Ax2/2
6 0 (4.3)

for 0 6 x < 1/A 6 1, since then 0 < 1− x 6 1−Ax2/2. Hence f(x) 6 0 for
0 6 x 6 1/A. �

Proof of Theorem 4.1. Let ε := 1/(p∗µ). By Theorem 3.1 (with λ = 1 − ε)
and Lemma 4.2 (with A = p∗µ > 1),

P(X 6 (1− ε)µ) 6 exp
(
−p∗µ(−ε− ln(1− ε))

)
6 1− p∗µε

2

2
= 1− 1

2p∗µ
.

(4.4)

Hence, P(X > (1− ε)µ) > 1/(2p∗µ), and by Lemma 2.5(ii),

P(X > λµ) > (1− p∗)(λ−1+ε)µ+1 P(X > (1− ε)µ) > (1− p∗)(λ−1+ε)µ+1 1

2p∗µ
,

which completes the proof since εµ = 1/p∗. �

5. Exponential distributions

In this section we assume thatX =
∑n

i=1Xi whereXi, i = 1, . . . , n, are in-
dependent random variables with exponential distributions: Xi ∼ Exp(ai),
with density function aixe

−aix, x > 0, and expectation EXi = 1/ai. (Thus
ai can be interpreted as a rate.) The exponential distribution is the con-
tinuous analogue of the geometric distributions, and the results above have
(simpler) analogues for exponential distributions. We now define

µ := EX =

n∑
i=1

EXi =

n∑
i=1

1

ai
, (5.1)

a∗ := min
i
ai. (5.2)

Theorem 5.1. Let X =
∑n

i=1Xi with Xi ∼ Exp(ai) independent.

(i) For any λ > 1,

P(X > λµ) 6 λ−1e−a∗µ(λ−1−lnλ). (5.3)

(ii) For any λ > 1, we have also the simpler but weaker

P(X > λµ) 6 e1−λ. (5.4)

(iii) For any λ 6 1,

P(X 6 λµ) 6 e−a∗µ(λ−1−lnλ). (5.5)

(iv) For any λ > 1,

P(X > λµ) >
1

2ea∗µ
e−a∗µ(λ−1). (5.6)
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Proof. Let X
(N)
i ∼ Ge(ai/N) be independent (for N > maxi ai). Then

X
(N)
i /N

d−→ Xi, where
d−→ denotes convergence in distribution, and thus

X(N)/N
d−→ X, whereX(N) :=

∑n
i=1X

(N)
i . Furthermore, µ(N) := EX(N) =

Mν and p∗ := mini(ai/N) = a∗/N . The results follow by taking the limit
as N →∞ in (2.11), (2.12), (3.1) and (4.1). (Alternatively, we may imitate
the proofs above, using E etXi = ai/(ai − t) for t < ai.) �
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