TAIL BOUNDS FOR SUMS OF GEOMETRIC AND EXPONENTIAL VARIABLES

SVANTE JANSON

Abstract

We give explicit bounds for the tail probabilities for sums of independent geometric or exponential variables, possibly with different parameters.

1. Introduction and notation

Let $X=\sum_{i=1}^{n} X_{i}$, where $n \geqslant 1$ and $X_{i}, i=1, \ldots, n$, are independent geometric random variables with possibly different distributions: $X_{i} \sim \operatorname{Ge}\left(p_{i}\right)$ with $0<p_{i} \leqslant 1$, i.e.,

$$
\begin{equation*}
\mathbb{P}\left(X_{i}=k\right)=p_{i}\left(1-p_{i}\right)^{k-1}, \quad k=1,2, \ldots \tag{1.1}
\end{equation*}
$$

Our goal is to estimate the tail probabilities $\mathbb{P}(X \geqslant x)$. (Since X is integervalued, it suffices to consider integer x. However, it is convenient to allow arbitrary real x, and we do so.)

We define

$$
\begin{align*}
\mu & :=\mathbb{E} X=\sum_{i=1}^{n} \mathbb{E} X_{i}=\sum_{i=1}^{n} \frac{1}{p_{i}} \tag{1.2}\\
p_{*} & :=\min _{i} p_{i} \tag{1.3}
\end{align*}
$$

We shall see that p_{*} plays an important role in our estimates, which roughly speaking show that the tail probabilities of X decrease at about the same rate as the tail probabilities of $\operatorname{Ge}\left(p_{*}\right)$, i.e., as for the variable X_{i} with smallest p_{i} and thus fattest tail.

Recall the simple and well-known fact that (1.1) implies that, for any non-zero z such that $|z|\left(1-p_{i}\right)<1$,

$$
\begin{equation*}
\mathbb{E} z^{X_{i}}=\sum_{k=1}^{\infty} z^{k} \mathbb{P}\left(X_{i}=k\right)=\frac{p_{i} z}{1-\left(1-p_{i}\right) z}=\frac{p_{i}}{z^{-1}-1+p_{i}} \tag{1.4}
\end{equation*}
$$

For future use, note that since $x \mapsto-\ln (1-x)$ is convex on $(0,1)$ and 0 for $x=0$,

$$
\begin{equation*}
-\ln (1-x) \leqslant-\frac{x}{y} \ln (1-y), \quad 0<x \leqslant y<1 \tag{1.5}
\end{equation*}
$$

Date: 28 June, 2014; typo corrected 24 September, 2017.
Partly supported by the Knut and Alice Wallenberg Foundation.

Remark 1.1. The theorems and corollaries below hold also, with the same proofs, for infinite sums $X=\sum_{i=1}^{\infty} X_{i}$, provided $\mathbb{E} X=\sum_{i} p_{i}^{-1}<\infty$.
Acknowledgement. This work was initiated during the 25th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms, AofA14, in Paris-Jussieu, June 2014, in response to a question by Donald Knuth. I thank Donald Knuth and Colin McDiarmid for helpful discussions.

2. Upper bounds for the upper tail

We begin with a simple upper bound obtained by the classical method of estimating the moment generating function (or probability generating function) and using the standard inequality (an instance of Markov's inequality)

$$
\begin{equation*}
\mathbb{P}(X \geqslant x) \leqslant z^{-x} \mathbb{E} z^{X}, \quad z \geqslant 1 \tag{2.1}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\mathbb{P}(X \geqslant x) \leqslant e^{-t x} \mathbb{E} e^{t X}, \quad t \geqslant 0 . \tag{2.2}
\end{equation*}
$$

(Cf. the related "Chernoff bounds" for the binomial distribution that are proved by this method, see e.g. [3, Theorem 2.1], and see e.g. [1] for other applications of this method. See also e.g. [2, Chapter 2] or [4, Chapter 27] for more general large deviation theory.)
Theorem 2.1. For any $p_{1}, \ldots, p_{n} \in(0,1]$ and any $\lambda \geqslant 1$,

$$
\begin{equation*}
\mathbb{P}(X \geqslant \lambda \mu) \leqslant e^{-p_{*} \mu(\lambda-1-\ln \lambda)} . \tag{2.3}
\end{equation*}
$$

Proof. If $0 \leqslant t<p_{i}$, then $e^{-t}-1+p_{i} \geqslant p_{i}-t>0$, and thus by (1.4),

$$
\begin{equation*}
\mathbb{E} e^{t X_{i}}=\frac{p_{i}}{e^{-t}-1+p_{i}} \leqslant \frac{p_{i}}{p_{i}-t}=\left(1-\frac{t}{p_{i}}\right)^{-1} . \tag{2.4}
\end{equation*}
$$

Hence, if $0 \leqslant t<p_{*}=\min _{i} p_{i}$, then

$$
\begin{equation*}
\mathbb{E} e^{t X}=\prod_{i=1}^{n} \mathbb{E} e^{t X_{i}} \leqslant \prod_{i=1}^{n}\left(1-\frac{t}{p_{i}}\right)^{-1} \tag{2.5}
\end{equation*}
$$

and, by (2.2),

$$
\begin{equation*}
\mathbb{P}(X \geqslant \lambda \mu) \leqslant e^{-t \lambda \mu} \mathbb{E} e^{t X} \leqslant \exp \left(-t \lambda \mu+\sum_{i=1}^{n}-\ln \left(1-\frac{t}{p_{i}}\right)\right) \tag{2.6}
\end{equation*}
$$

By (1.5) and $0<p_{*} / p_{i} \leqslant 1$, we have, for $0 \leqslant t<p_{*}$,

$$
\begin{equation*}
-\ln \left(1-\frac{t}{p_{i}}\right) \leqslant-\frac{p_{*}}{p_{i}} \ln \left(1-\frac{t}{p_{*}}\right) \tag{2.7}
\end{equation*}
$$

Consequently, (2.6) yields

$$
\begin{align*}
\mathbb{P}(X \geqslant \lambda \mu) & \leqslant \exp \left(-t \lambda \mu-\ln \left(1-\frac{t}{p_{*}}\right) \sum_{i=1}^{n} \frac{p_{*}}{p_{i}}\right) \\
& =\exp \left(-t \lambda \mu-p_{*} \mu \ln \left(1-\frac{t}{p_{*}}\right)\right) . \tag{2.8}
\end{align*}
$$

Choosing $t=\left(1-\lambda^{-1}\right) p_{*}$ (which is optimal in (2.8)), we obtain (2.3).
As a corollary we obtain a bound that is generally much cruder, but has the advantage of not depending on the p_{i} 's at all.

Corollary 2.2. For any $p_{1}, \ldots, p_{n} \in(0,1]$ and any $\lambda \geqslant 1$,

$$
\begin{equation*}
\mathbb{P}(X \geqslant \lambda \mu) \leqslant \lambda e^{1-\lambda}=e \lambda e^{-\lambda} . \tag{2.9}
\end{equation*}
$$

Proof. Use $\mu \geqslant 1 / p_{i}$ for each i, and thus $\mu p_{*} \geqslant 1$ in (2.3). (Alternatively, use $t=\left(1-\lambda^{-1}\right) / \mu$ in (2.8).)

The bound in Theorem 2.1 is rather sharp in many cases. Also the cruder (2.9) is almost sharp for $n=1$ (a single X_{i}) and small $p_{*}=p_{1}$; in this case $\mu=1 / p_{1}$ and

$$
\begin{equation*}
\mathbb{P}(X \geqslant \lambda \mu)=\left(1-p_{1}\right)^{\lceil\lambda \mu\rceil-1}=\exp \left(\lambda+O\left(\lambda p_{1}\right)\right) . \tag{2.10}
\end{equation*}
$$

Nevertheless, we can improve (2.3) somewhat, in particular when $p_{*}=$ $\min _{i} p_{i}$ is not small, by using more careful estimates.

Theorem 2.3. For any $p_{1}, \ldots, p_{n} \in(0,1]$ and any $\lambda \geqslant 1$,

$$
\begin{equation*}
\mathbb{P}(X \geqslant \lambda \mu) \leqslant \lambda^{-1}\left(1-p_{*}\right)^{(\lambda-1-\ln \lambda) \mu} . \tag{2.11}
\end{equation*}
$$

The proof is given below. We note that Theorem 2.3 implies a minor improvement of Corollary 2.2:

Corollary 2.4. For any $p_{1}, \ldots, p_{n} \in(0,1]$ and any $\lambda \geqslant 1$,

$$
\begin{equation*}
\mathbb{P}(X \geqslant \lambda \mu) \leqslant e^{1-\lambda} \tag{2.12}
\end{equation*}
$$

Proof. Use (2.11) and $\left(1-p_{*}\right)^{\mu} \leqslant e^{-p_{*} \mu} \leqslant e^{-1}$.
We begin the proof of Theorem 2.3 with two lemmas yielding a minor improvement of (2.1) using the fact that the variables are geometric. (The lemmas actually use only that one of the variables is geometric.)

Lemma 2.5. (i) For any integers j and k with $j \geqslant k$,

$$
\begin{equation*}
\mathbb{P}(X \geqslant j) \geqslant\left(1-p_{*}\right)^{j-k} \mathbb{P}(X \geqslant k) . \tag{2.13}
\end{equation*}
$$

(ii) For any real numbers x and y with $x \geqslant y$,

$$
\begin{equation*}
\mathbb{P}(X \geqslant x) \geqslant\left(1-p_{*}\right)^{x-y+1} \mathbb{P}(X \geqslant y) . \tag{2.14}
\end{equation*}
$$

Proof. (i). We may without loss of generality assume that $p_{*}=p_{1}$. Then, for any integers i, j, k with $j \geqslant k$,

$$
\begin{equation*}
\mathbb{P}\left(X \geqslant j \mid X-X_{1}=i\right)=\mathbb{P}\left(X_{1} \geqslant j-i\right)=\left(1-p_{*}\right)^{(j-i-1)_{+}}, \tag{2.15}
\end{equation*}
$$

and similarly for $\mathbb{P}\left(X \geqslant k \mid X-X_{1}=i\right)$. Since $(j-i-1)_{+} \leqslant j-k+(k-$ $i-1)_{+}$, it follows that

$$
\begin{equation*}
\mathbb{P}\left(X \geqslant j \mid X-X_{1}=i\right) \geqslant\left(1-p_{*}\right)^{j-k} \mathbb{P}\left(X \geqslant k \mid X-X_{1}=i\right) \tag{2.16}
\end{equation*}
$$

for every i, and thus (2.13) follows by taking the expectation.
(ii). For real x and y we obtain from (2.13)

$$
\begin{align*}
\mathbb{P}(X \geqslant x) & =\mathbb{P}(X \geqslant\lceil x\rceil) \geqslant\left(1-p_{*}\right)^{\lceil x\rceil-\lceil y\rceil} \mathbb{P}(X \geqslant\lceil y\rceil) \\
& \geqslant\left(1-p_{*}\right)^{x-y+1} \mathbb{P}(X \geqslant y) . \tag{2.17}
\end{align*}
$$

Lemma 2.6. For any $x \geqslant 0$ and $z \geqslant 1$ with $z\left(1-p_{*}\right)<1$,

$$
\begin{equation*}
\mathbb{P}(X \geqslant x) \leqslant \frac{1-z\left(1-p_{*}\right)}{p_{*}} z^{-x} \mathbb{E} z^{X} \tag{2.18}
\end{equation*}
$$

Proof. Since $z \geqslant 1$, (2.13) implies that for every $k \geqslant 1$,

$$
\begin{align*}
\mathbb{E} z^{X} & \geqslant \mathbb{E}\left(z^{X} \cdot \mathbf{1}\{X \geqslant k\}\right)=\mathbb{E}\left(\left(z^{k}+(z-1) \sum_{j=k}^{X-1} z^{j}\right) \mathbf{1}\{X \geqslant k\}\right) \\
& =\mathbb{E}\left(z^{k} \mathbf{1}\{X \geqslant k\}+(z-1) \sum_{j=k}^{\infty} z^{j} \mathbf{1}\{X \geqslant j+1\}\right) \\
& =z^{k} \mathbb{P}(X \geqslant k)+(z-1) \sum_{j=k}^{\infty} z^{j} \mathbb{P}(X \geqslant j+1) \\
& \geqslant z^{k} \mathbb{P}(X \geqslant k)\left(1+(z-1) \sum_{j=k}^{\infty} z^{j-k}\left(1-p_{*}\right)^{j+1-k}\right) \\
& =z^{k} \mathbb{P}(X \geqslant k)\left(1+\frac{(z-1)\left(1-p_{*}\right)}{1-z\left(1-p_{*}\right)}\right) \\
& =z^{k} \mathbb{P}(X \geqslant k) \frac{p_{*}}{1-z\left(1-p_{*}\right)} . \tag{2.19}
\end{align*}
$$

The result (2.18) follows when $x=k$ is a positive integer. The general case follows by taking $k=\max (\lceil x\rceil, 1)$ since then $\mathbb{P}(X \geqslant x)=\mathbb{P}(X \geqslant k)$.

Proof of Theorem 2.3. We may assume that $p_{*}<1$. (Otherwise every $p_{i}=1$ and $X_{i}=1$ a.s., so $X=n=\mu$ a.s. and the result is trivial.) We then choose

$$
\begin{equation*}
z:=\frac{\lambda-p_{*}}{\lambda\left(1-p_{*}\right)}, \tag{2.20}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
z^{-1}=\frac{\lambda\left(1-p_{*}\right)}{\lambda-p_{*}}=1-\frac{(\lambda-1) p_{*}}{\lambda-p_{*}} ; \tag{2.21}
\end{equation*}
$$

note that $z^{-1} \leqslant 1$ so $z \geqslant 1$ and $z^{-1}>1-p_{*} \geqslant 1-p_{i}$ for every i. Thus, by (1.4),

$$
\begin{equation*}
\mathbb{E} z^{X}=\prod_{i=1}^{n} \mathbb{E} z^{X_{i}}=\prod_{i=1}^{n} \frac{p_{i}}{z^{-1}-1+p_{i}}=\prod_{i=1}^{n} \frac{1}{1-\left(1-z^{-1}\right) / p_{i}} \tag{2.22}
\end{equation*}
$$

By (2.22), (2.7) (with $t=1-z^{-1}<p_{*}$) and (2.21),

$$
\begin{align*}
\ln \mathbb{E} z^{X} & =-\sum_{i=1}^{n} \ln \left(1-\frac{1-z^{-1}}{p_{i}}\right) \leqslant-\sum_{i=1}^{n} \frac{p_{*}}{p_{i}} \ln \left(1-\frac{1-z^{-1}}{p_{*}}\right) \\
& =-\sum_{i=1}^{n} \frac{p_{*}}{p_{i}} \ln \left(1-\frac{\lambda-1}{\lambda-p_{*}}\right)=-\mu p_{*} \ln \frac{1-p_{*}}{\lambda-p_{*}}=\mu p_{*} \ln \frac{\lambda-p_{*}}{1-p_{*}} . \tag{2.23}
\end{align*}
$$

Furthermore, by (2.20),

$$
\begin{equation*}
\frac{1-z\left(1-p_{*}\right)}{p_{*}}=\frac{1-\left(\lambda-p_{*}\right) / \lambda}{p_{*}}=\frac{1}{\lambda} \tag{2.24}
\end{equation*}
$$

Hence, Lemma 2.6, (2.20) and (2.23) yield

$$
\begin{align*}
\ln \mathbb{P}(X \geqslant \lambda \mu) & \leqslant-\ln \lambda-\lambda \mu \ln z+\ln \mathbb{E} z^{X} \\
& \leqslant-\ln \lambda-\lambda \mu \ln \frac{\lambda-p_{*}}{\lambda\left(1-p_{*}\right)}+\mu p_{*} \ln \frac{\lambda-p_{*}}{1-p_{*}} \\
& =-\ln \lambda+\lambda \mu \ln \left(1-p_{*}\right)+\mu f(\lambda) \tag{2.25}
\end{align*}
$$

where

$$
\begin{align*}
f(\lambda) & :=-\lambda \ln \frac{\lambda-p_{*}}{\lambda}+p_{*} \ln \frac{\lambda-p_{*}}{1-p_{*}} \\
& =-\left(\lambda-p_{*}\right) \ln \left(\lambda-p_{*}\right)+\lambda \ln \lambda-p_{*} \ln \left(1-p_{*}\right) \tag{2.26}
\end{align*}
$$

We have $f(1)=-\ln \left(1-p_{*}\right)$ and, for $\lambda \geqslant 1$, using (1.5),

$$
\begin{equation*}
f^{\prime}(\lambda)=-\ln \left(\lambda-p_{*}\right)+\ln \lambda=-\ln \left(1-\frac{p_{*}}{\lambda}\right) \leqslant-\frac{1}{\lambda} \ln \left(1-p_{*}\right) \tag{2.27}
\end{equation*}
$$

Consequently, by integrating (2.27), for all $\lambda \geqslant 1$,

$$
\begin{equation*}
f(\lambda) \leqslant-\ln \left(1-p_{*}\right)-\ln \lambda \cdot \ln \left(1-p_{*}\right) \tag{2.28}
\end{equation*}
$$

and the result (2.11) follows by (2.25).
Remark 2.7. Note that for large λ, the exponents above are roughly linear in λ, while for $\lambda=1+o(1)$ we have $\lambda-1-\ln \lambda \sim \frac{1}{2}(\lambda-1)^{2}$ so the exponents are quadratic in $\lambda-1$. The latter is to be expected from the central limit theorem. However, if $\lambda=1+\varepsilon$ with ε very small and the central limit theorem is applicable, then $\mathbb{P}(X \geqslant(1+\varepsilon) \mu)$ is roughly $\exp \left(-\varepsilon^{2} \mu^{2} /\left(2 \sigma^{2}\right)\right)$, where $\sigma^{2}=\operatorname{Var} X=\sum_{i=1}^{n} \operatorname{Var} X_{i}=\sum_{i=1}^{n} \frac{1-p_{i}}{p_{i}^{2}}$. Hence, in this case the exponents in (2.3) and (2.11) are asymptotically too small by a factor of rougly, for small p_{i},

$$
\begin{equation*}
\frac{p_{*} \mu}{\mu^{2} / \sigma^{2}} \approx \frac{p_{*} \sum_{i=1}^{n} p_{i}^{-2}}{\sum_{i=1}^{n} p_{i}^{-1}} \tag{2.29}
\end{equation*}
$$

which may be much smaller than 1 . (For example if $p_{2}=\cdots=p_{n}$ and $p_{1}=p_{2} / n^{1 / 3}$.)

3. UPPER BOUNDS FOR THE LOWER TAIL

We can similarly bound the probability $\mathbb{P}(X \leqslant \lambda \mu)$ for $\lambda \leqslant 1$. We give only a simple bound corresponding to Theorem 2.1. (Note that $\lambda-1-\ln \lambda>$ 0 for both $\lambda \in(0,1)$ and $\lambda \in(1, \infty)$.)

Theorem 3.1. For any $p_{1}, \ldots, p_{n} \in(0,1]$ and any $\lambda \leqslant 1$,

$$
\begin{equation*}
\mathbb{P}(X \leqslant \lambda \mu) \leqslant e^{-p_{*} \mu(\lambda-1-\ln \lambda)} \tag{3.1}
\end{equation*}
$$

Proof. We follow closely the proof of Theorem 2.1. If $t \geqslant 0$, then by (1.4),

$$
\begin{equation*}
\mathbb{E} e^{-t X_{i}}=\frac{p_{i}}{e^{t}-1+p_{i}} \leqslant \frac{p_{i}}{t+p_{i}}=\left(1+\frac{t}{p_{i}}\right)^{-1} \tag{3.2}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\mathbb{E} e^{-t X}=\prod_{i=1}^{n} \mathbb{E} e^{-t X_{i}} \leqslant \prod_{i=1}^{n}\left(1+\frac{t}{p_{i}}\right)^{-1} \tag{3.3}
\end{equation*}
$$

and, in analogy to (2.2),

$$
\begin{equation*}
\mathbb{P}(X \leqslant \lambda \mu) \leqslant e^{t \lambda \mu} \mathbb{E} e^{-t X} \leqslant \exp \left(t \lambda \mu-\sum_{i=1}^{n} \ln \left(1+\frac{t}{p_{i}}\right)\right) \tag{3.4}
\end{equation*}
$$

In analogy with (2.7), still by the convexity of $-\ln x$,

$$
\begin{equation*}
-\ln \left(1+\frac{t}{p_{i}}\right) \leqslant-\frac{p_{*}}{p_{i}} \ln \left(1+\frac{t}{p_{*}}\right) \tag{3.5}
\end{equation*}
$$

and (3.4) yields

$$
\begin{align*}
\mathbb{P}(X \leqslant \lambda \mu) & \leqslant \exp \left(t \lambda \mu-\ln \left(1+\frac{t}{p_{*}}\right) \sum_{i=1}^{n} \frac{p_{*}}{p_{i}}\right) \\
& =\exp \left(t \lambda \mu-p_{*} \mu \ln \left(1+\frac{t}{p_{*}}\right)\right) \tag{3.6}
\end{align*}
$$

Choosing $t=\left(\lambda^{-1}-1\right) p_{*}$, we obtain (3.1).

4. A LOWER BOUND

We show also a general lower bound for the upper tail probabilities, which shows that for constant $\lambda>1$, the exponents in Theorems 2.1 and 2.3 are at most a constant factor away from best possible.

Theorem 4.1. For any $p_{1}, \ldots, p_{n} \in(0,1]$ and any $\lambda \geqslant 1$,

$$
\begin{equation*}
\mathbb{P}(X \geqslant \lambda \mu) \geqslant \frac{\left(1-p_{*}\right)^{1+1 / p_{*}}}{2 p_{*} \mu}\left(1-p_{*}\right)^{(\lambda-1) \mu} \tag{4.1}
\end{equation*}
$$

Lemma 4.2. If $A \geqslant 1$ and $0 \leqslant x \leqslant 1 / A$, then

$$
\begin{equation*}
A(x+\ln (1-x)) \leqslant \ln \left(1-A x^{2} / 2\right) \tag{4.2}
\end{equation*}
$$

Proof. Let $f(x):=A(x+\ln (1-x))-\ln \left(1-A x^{2} / 2\right)$. Then $f(0)=0$ and

$$
\begin{equation*}
f^{\prime}(x)=A\left(1-\frac{1}{1-x}\right)+\frac{A x}{1-A x^{2} / 2}=-\frac{A x}{1-x}+\frac{A x}{1-A x^{2} / 2} \leqslant 0 \tag{4.3}
\end{equation*}
$$

for $0 \leqslant x<1 / A \leqslant 1$, since then $0<1-x \leqslant 1-A x^{2} / 2$. Hence $f(x) \leqslant 0$ for $0 \leqslant x \leqslant 1 / A$.

Proof of Theorem 4.1. Let $\varepsilon:=1 /\left(p_{*} \mu\right)$. By Theorem 3.1 (with $\lambda=1-\varepsilon$) and Lemma 4.2 (with $A=p_{*} \mu \geqslant 1$),

$$
\begin{equation*}
\mathbb{P}(X \leqslant(1-\varepsilon) \mu) \leqslant \exp \left(-p_{*} \mu(-\varepsilon-\ln (1-\varepsilon))\right) \leqslant 1-\frac{p_{*} \mu \varepsilon^{2}}{2}=1-\frac{1}{2 p_{*} \mu} \tag{4.4}
\end{equation*}
$$

Hence, $\mathbb{P}(X \geqslant(1-\varepsilon) \mu) \geqslant 1 /\left(2 p_{*} \mu\right)$, and by Lemma $2.5(\mathrm{ii})$,
$\mathbb{P}(X \geqslant \lambda \mu) \geqslant\left(1-p_{*}\right)^{(\lambda-1+\varepsilon) \mu+1} \mathbb{P}(X \geqslant(1-\varepsilon) \mu) \geqslant\left(1-p_{*}\right)^{(\lambda-1+\varepsilon) \mu+1} \frac{1}{2 p_{*} \mu}$,
which completes the proof since $\varepsilon \mu=1 / p_{*}$.

5. Exponential distributions

In this section we assume that $X=\sum_{i=1}^{n} X_{i}$ where $X_{i}, i=1, \ldots, n$, are independent random variables with exponential distributions: $X_{i} \sim \operatorname{Exp}\left(a_{i}\right)$, with density function $a_{i} x e^{-a_{i} x}, x>0$, and expectation $\mathbb{E} X_{i}=1 / a_{i}$. (Thus a_{i} can be interpreted as a rate.) The exponential distribution is the continuous analogue of the geometric distributions, and the results above have (simpler) analogues for exponential distributions. We now define

$$
\begin{align*}
\mu & :=\mathbb{E} X=\sum_{i=1}^{n} \mathbb{E} X_{i}=\sum_{i=1}^{n} \frac{1}{a_{i}}, \tag{5.1}\\
a_{*} & :=\min _{i} a_{i} . \tag{5.2}
\end{align*}
$$

Theorem 5.1. Let $X=\sum_{i=1}^{n} X_{i}$ with $X_{i} \sim \operatorname{Exp}\left(a_{i}\right)$ independent.
(i) For any $\lambda \geqslant 1$,

$$
\begin{equation*}
\mathbb{P}(X \geqslant \lambda \mu) \leqslant \lambda^{-1} e^{-a_{*} \mu(\lambda-1-\ln \lambda)} . \tag{5.3}
\end{equation*}
$$

(ii) For any $\lambda \geqslant 1$, we have also the simpler but weaker

$$
\begin{equation*}
\mathbb{P}(X \geqslant \lambda \mu) \leqslant e^{1-\lambda} \tag{5.4}
\end{equation*}
$$

(iii) For any $\lambda \leqslant 1$,

$$
\begin{equation*}
\mathbb{P}(X \leqslant \lambda \mu) \leqslant e^{-a_{*} \mu(\lambda-1-\ln \lambda)} . \tag{5.5}
\end{equation*}
$$

(iv) For any $\lambda \geqslant 1$,

$$
\begin{equation*}
\mathbb{P}(X \geqslant \lambda \mu) \geqslant \frac{1}{2 e a_{*} \mu} e^{-a_{*} \mu(\lambda-1)} . \tag{5.6}
\end{equation*}
$$

Proof. Let $X_{i}^{(N)} \sim \operatorname{Ge}\left(a_{i} / N\right)$ be independent (for $N>\max _{i} a_{i}$). Then $X_{i}^{(N)} / N \xrightarrow{\mathrm{~d}} X_{i}$, where $\xrightarrow{\mathrm{d}}$ denotes convergence in distribution, and thus $X^{(N)} / N \xrightarrow{\mathrm{~d}} X$, where $X^{(N)}:=\sum_{i=1}^{n} X_{i}^{(N)}$. Furthermore, $\mu^{(N)}:=\mathbb{E} X^{(N)}=$ $M \nu$ and $p_{*}:=\min _{i}\left(a_{i} / N\right)=a_{*} / N$. The results follow by taking the limit as $N \rightarrow \infty$ in (2.11), (2.12), (3.1) and (4.1). (Alternatively, we may imitate the proofs above, using $\mathbb{E} e^{t X_{i}}=a_{i} /\left(a_{i}-t\right)$ for $t<a_{i}$.)

References

[1] Stéphane Boucheron, Gábor Lugosi and Pascal Massart, Concentration Inequalities, Oxford Univ. Press, Oxford, 2013.
[2] Amir Dembo and Ofer Zeitouni, Large Deviations Techniques and Applications. 2nd ed., Springer, New York, 1998.
[3] Svante Janson, Tomasz Łuczak \& Andrzej Ruciński, Random Graphs. Wiley, New York, 2000.
[4] Olav Kallenberg, Foundations of Modern Probability. 2nd ed., Springer, New York, 2002.

Department of Mathematics, Uppsala University, PO Box 480, SE-751 06 Uppsala, Sweden

E-mail address: svante.janson@math.uu.se
URL: http://www2.math.uu.se/~svante/

