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Abstract. Consider a supercritical Crump–Mode–Jagers process such
that all births are at integer times (the lattice case). We showed in a
recent paper that under a certain condition on the generating function
of the intensity of the offspring process, the second-order fluctuations of
the age distribution are asymptotically normal.

In the present paper we study mainly the case when this condition
is not satisfied. There are two other cases; in one (boundary) case the
fluctuations are still asymptotically normal, but with a larger order of
the variance; in the last case, the fluctuations are even larger, but will
oscillate and (except in degenerate cases) not converge in distribution.
This trichotomy is similar to what has been seen in related situations,
e.g. for Pólya urns.

We also add some further results in the first case, including a symbolic
calculus.

1. Introduction

We consider a supercritical Crump–Mode–Jagers branching process, start-
ing with a single individual born at time 0, and where an individual has
N 6 ∞ children born at the times when the parent has age ξ1 6 ξ2 6 . . . .
Here N and (ξi)i are random, and different individuals have independent
copies of these random variables. Technically, it is convenient to regard
{ξi}N1 as a point process Ξ on [0,∞), and give each individual x an inde-
pendent copy Ξx of Ξ. For further details, see e.g. Jagers [7].

In the present paper, as in the companion paper [10], we consider for
simplicity only the lattice case, where all ξi are multiples of some fixed real
number d; we may without loss of generality assume that d = 1 and that d is
maximal; thus the ξi are integer-valued and all births occur at integer times
a.s., but there is no d > 1 such that all birth times a.s. are divisible by d. It
would be very interesting to extend the results below to the non-lattice case;
we expect similar results (under suitable assumptions), but this case seems
to present new technical challenges, and we leave this as an open problem.

It is well-known that in the supercritical case that we study, the popula-
tion grows to infinity, at least with positive probability; furthermore, under
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weak assumptions, the age distribution converges a.s. to some limit, see e.g.
[7, Theorems (6.3.3), (6.8.1), (6.10.1) and Corollary (6.10.4)].

The purpose of the present paper is to continue the study started in [10]
of the second-order fluctuations of the age distribution, or more generally, of
the distribution of some other property, described by a random characteris-
tic. Our main results (Theorems 2.1–2.3) show that there are three different
cases depending on properties of the intensity measure EΞ of the offspring
process: in one case (the case studied in [10]) fluctuations are, after proper
normalization, asymptotically normal, with only a short-range dependence
between different times; in another case, there is a long-range dependence
and, again after proper normalization (different this time), the fluctuations
are a.s. approximated by oscillating (almost periodic) random functions of
log n, which furthermore essentially are determined by the initial phase of
the branching process, and presumably non-normal; the third case is an
intermediate boundary case. See Section 2 for precise results.

A similar trichotomy has been found in several related situations. Similar
results are proved for multi-type Markov branching processes by Asmussen
and Hering [1, Section VIII.3]. Their type space may be very general, so
this setting includes also the single-type non-Markov case studied here (also
in the non-lattice case [1, Section VIII.12]), since a Crump–Mode–Jagers
branching process may be seen as a Markov process where the type of an
individual is its entire life history until present. However, this will in general
be a large type space, and the assumptions of [1] will in general not be
satisfied; in particular, their “condition (M)” [1, p. 156] is typically not
satisfied, by the same argument as in [1, p. 173] for a related situation.
Hence, we can not obtain our results directly from the closely related results
in [1], although there is an overlap in some special cases (for example the
Galton–Watson case in Example 2.5).

Another related situation is given by multi-colour Pólya urn processes, see
e.g. [9] (which uses methods and results from branching process theory). The
same trichotomy appears there too, with a criterion formulated in terms of
eigenvalues of a matrix that can be seen as the (expected) “offspring matrix”
in that setting.

It would be interesting to find more general theorems that would include
these different but obviously related results together.

Remark 1.1. Our setup includes the Galton–Watson case, where all births
occur when the mother has age 1 (Example 2.5), but this case is much
simpler than the general case and can be treated by simpler methods; see
Jagers [7, Section 2.10], where results closely related to the ones below are
given.

In general, our setting can, for example, be considered as a model for
the (female) population of some animal that is fertile several years and gets



FLUCTUATIONS IN CRUMP–MODE–JAGERS PROCESSES 3

one or several children once every year, with the numbers of children differ-
ent years random, and possibly dependent and with different distributions
depending on the age of the mother.

2. Assumptions and main results

We repeat some notation and assumptions from [10].
Let µ := EΞ be the intensity measure of the offspring process; thus µ :=∑∞
k=0 µkδk, where µk is the expected number of children that an individual

bears at age k (and δk is the Dirac delta, i.e., a point mass at k). Let
Nk := Ξ{k} be the number of children born to an individual at age k. Thus
N =

∑∞
k=1Nk and µk = ENk.

We make the following standing assumptions, valid throughout the paper.
The first assumption (supercriticality) is essential. The assumptions (A2)–
(A4) are simplifying and convenient but presumably not essential. (For
(A4), this is shown in Example 9.2.)

(A1) The process is supercritical, i.e., µ([0,∞]) =
∑∞

k=0 µi = EN > 1.
(A2) No children are born instantaneously, i.e., µ0 = 0.
(A3) N > 1 a.s. Thus the process a.s. survives.
(A4) There are no deaths.

Define, for all complex z such that either z > 0 or the sums or expectations
below converge absolutely,

µ̂(z) :=

∞∑
k=0

µkz
k =

∞∑
k=0

E[Nk]z
k = E

N∑
i=1

zξi (2.1)

and the complex-valued random variable

Ξ̂(z) :=

∫ ∞
0

zx dΞ(x) =
N∑
i=1

zξi =
∞∑
k=0

Nkz
k. (2.2)

Thus µ̂(z) = E Ξ̂(z).
We make two other standing assumptions:

(A5) µ̂
(
m−1

)
= 1 for some m > 1.

Thus α := logm satisfies
∑∞

k=1 µke
−kα = µ̂(e−α) = 1, so logm is the

Malthusian parameter, and the population grows roughly with a factor eα =
m for each generation (see e.g. (2.7) and (2.8) below).

(A6) E[Ξ̂(r)2] <∞ for some r > m−1/2.

We fix in the sequel some r > m−1/2 satisfying (A6). We assume for
convenience r 6 1. Note that (A6) implies

µ̂(r) = E Ξ̂(r) <∞. (2.3)

Hence µ̂(z) and Ξ̂(z) are defined, and analytic, at least for |z| 6 r. Since µ̂(z)
is a strictly increasing function on [0,∞), m−1 in (A5) is the unique positive
root of µ̂(z) = 1. However, µ̂(z) = 1 may have other complex roots; we shall
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see that the asymptotic behaviour of the fluctuations depends crucially on
the position of these roots. We define, with Dr := {|z| < r},

Γ := {z ∈ Dr : µ̂(z) = 1}, Γ∗ := Γ \ {m−1}, (2.4)

γ∗ := inf{|z| : z ∈ Γ∗}, (2.5)

Γ∗∗ := {z ∈ Γ∗ : |z| = γ∗}, (2.6)

with γ∗ = ∞ if Γ∗ = ∅. (These sets may depend on the choice of r, but

for our purposes this does not matter. Recall that we assume r > m−1/2.)
Since µ̂(z) is analytic, Γ is discrete and thus, if γ∗ <∞, then Γ∗∗ is a finite
non-empty set which we write as {γ1, . . . , γq}.

Let Zn be the total number of individuals at time n. (Which by (A2)
equals the number of individuals born up to time n.) We define Zn for all
integers n by letting Zn := 0 for n < 0. By assumption, Z0 = 1.

It is well-known that the number of individuals Zn grows asymptotically
like mn as n→∞. For example, see e.g. [7, Theorem (6.3.3)] (and remember
that we here consider the lattice case),

EZn ∼ c1mn, n→∞, (2.7)

for some c1 > 0. Moreover, if E[Ξ̂(m−1) log Ξ̂(m−1)] < ∞, and in partic-

ular if E[Ξ̂(m−1)2] < ∞, which follows from our assumption (A6), then as
n→∞,

Zn/m
n a.s.−→ Z (2.8)

for some random variable Z > 0, see e.g. Nerman [11]. In particular, it
follows that for any fixed k > 1

Zn−k/Zn
a.s.−→ m−k. (2.9)

The number of individuals of age > k at time n is Zn−k. For large n, we
expect this to be roughly m−kZn, see (2.9), and to study the fluctuations,
we define, for k = 0, 1, . . . ,

Xn,k := Zn−k −m−kZn. (2.10)

Note that Xn,0 = 0.
The main result of [10] showed asymptotic normality of Xn,k, suitably

normalized, if γ∗ > m−1/2. We complement this in the present paper by
treating also the cases γ∗ = m−1/2 and γ∗ < m−1/2. We state the main
results as three separate theorems, showing different behaviours in the three
different cases. Proofs are given in later sections.

By (A6) and (2.2), EN2
k <∞ for every k > 1. Let, for j, k > 1,

σjk := Cov(Nj , Nk) (2.11)

and, at least for |z| < r,

Σ(z) :=
∑
i,j

σijz
iz̄j = Cov

(∑
i

Niz
i,
∑
j

Nj z̄
j
)

= E
∣∣Ξ̂(z)− µ̂(z)

∣∣2. (2.12)
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Also, for R > 0, let `2R be the Hilbert space of infinite vectors

`2R :=
{

(ak)
∞
k=0 : ‖(ak)∞0 ‖2`2R :=

∞∑
k=0

R2k|ak|2 <∞
}
. (2.13)

For completeness, we begin with the case γ∗ > m−1/2 treated in [10].

Theorem 2.1 ([10]). Assume (A1)–(A6) and γ∗ > m−1/2. Then, as n→∞,

Xn,k/
√
Zn

d−→ ζk, (2.14)

jointly for all k > 0, for some jointly normal random variables ζk with mean
ζk = 0 and covariance matrix given by, for any finite sequence a0, . . . , aK of
real numbers,

Var
(∑

k

akζk

)
=

m− 1

m

∮
|z|=m−1/2

∣∣∑
k akz

k −
∑

k akm
−k∣∣2

|1− z|2 |1− µ̂(z)|2
Σ(z)

|dz|
2πm−1/2

. (2.15)

Moreover, the convergence (2.14) holds also in the stronger sense that

(Z
−1/2
n Xn,k)k

d−→ (ζk)k in the Hilbert space `2R, for any R < m1/2.
The limit variables ζk are non-degenerate unless Ξ is deterministic, i.e.,

Nk = µk a.s. for each k > 0.

Recall that joint convergence of an infinite number of variables means
joint convergence of any finite set. (This is convergence in the product
space R∞, see [2].) Note that ζ0 = 0 (trivial but included for completeness).

The variance formula (2.15) can be interpreted as a stochastic calculus,
where the limit variables are seen as stochastic integrals (in a general sense)

of certain functions on the circle |z| = m−1/2; these functions thus represent
the random variables ζk, and therefore asymptotically Xn,k; moreover, they
can be used for convenient calculations. See Section 8 for details.

Theorem 2.1 is, as said above, proved in [10]. Nevertheless, we give a new
proof in Section 5. The main reason is that the new proof easily adapts to
give a proof of Theorem 2.2 below, see Section 6.

We consider next the cases γ∗ 6 m1/2. Then Γ∗∗ = {γ1, . . . , γq} is a
non-empty finite set. For simplicity, we assume the condition

µ̂′(γ) 6= 0, γ ∈ Γ∗∗, (2.16)

i.e., that the points in Γ∗∗ are simple roots of µ̂(z) = 1; the modifications in
the case with a multiple root are left to the reader. (See Remark 3.8, and
note the related results for Pólya urns in [9, Theorems 3.23–3.24] and [12,
Theorems 3.5–3.6].)

Theorem 2.2. Assume (A1)–(A6) and γ∗ = m−1/2. Suppose further that
(2.16) holds. Then, as n→∞,

Xn,k/
√
nZn

d−→ ζk, (2.17)
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jointly for all k > 0, for some jointly normal random variables ζk with mean
ζk = 0 and covariance matrix given by, for any finite sequence a0, . . . , aK of
real numbers,

Var
(∑

k

akζk

)
= (m− 1)

q∑
p=1

∣∣∑
k akγ

k
p −

∑
k akm

−k∣∣2
|1− γp|2 |µ̂′(γp)|2

Σ(γp). (2.18)

Moreover, the convergence (2.14) holds also in the Hilbert space `2R, for any

R < m1/2.
The limit variables ζk are non-degenerate unless Ξ̂(γp) is deterministic

for each γp ∈ Γ∗∗.

Theorem 2.3. Assume (A1)–(A6) and γ∗ < m−1/2. Suppose further that
(2.16) holds. Then there exist complex random variables U1, . . . , Uq and

linearly independent vectors ~ui :=
(
γki −m−k

)
k
, i = 1, . . . , q, such that

γn∗ ~Xn −
q∑
i=1

(
γ̄i/|γi|

)n
Ui~ui → 0 (2.19)

a.s. and in L2(`2R), for any R < m1/2. Furthermore, EUi = 0, and Ui is

non-degenerate unless Ξ̂
(
γi
)

is degenerate.

Theorems 2.1–2.3 exhibit several differences between the cases γ∗ < m−1/2,
γ∗ = m−1/2 and γ∗ > m−1/2; cf. the similar results for Pólya urns in e.g. [9,
Theorems 3.22–3.24].

• The fluctuations Xn,k, for a fixed k, are asymptotically normal when

γ∗ > m−1/2, but (presumably) not when γ∗ < m−1/2.

• The fluctuations are typically of order Z
1/2
n � mn/2 when γ∗ >

m−1/2, slightly larger (by a power of n) when γ∗ = m−1/2, and of

the much larger order γ−n∗ when γ∗ < m−1/2.
• When γ∗ < m−1/2, the fluctuations exhibit oscillations that are pe-

riodic or almost periodic (see [3]) in log n. (Note that γi/|γi| 6= 1 in
(2.19), since m−1 is the only positive root in Γ.)

• When γ∗ < m−1/2, there is the a.s. approximation result (2.19),
implying both long-range dependence as n→∞, and that the as-
ymptotic behaviour essentially is determined by what happens in
the first few generations. In contrast, the limits in (2.14) and (2.17)
are mixing (see the proofs), i.e., the results holds also conditioned
on the life histories of the first M individuals for any fixed M , and
thus also conditioned on Z1, . . . , ZK for any fixed K; hence, when
γ∗ > m−1/2, the initial behaviour is eventually forgotten. Moreover
for γ∗ > m−1/2, there is only a short-range dependence, see Exam-
ple 8.1, while the case γ∗ = m−1/2 shows an intermediate “medium-
range” dependence, see Subsection 8.2.
• When γ∗ > m−1/2, the limit random variables ζk in (2.14) are lin-

early independent, as a consequence of (2.15). When γ∗ 6 m−1/2,
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the limits in (2.17), or the components of the sum in (2.19), span a
(typically) q-dimensional space of random variables, and any q + 1
of them are linearly dependent; see also Section 8.

Remark 2.4. We consider above Xn,k for k > 0, i.e., the age distribution
of the population at time n. We can define Xn,k by (2.10) also for k < 0;
this means looking into the future and can be interpreted as predicting the
future population. As shown in Section 8, (2.14)–(2.15) and (2.17)–(2.18)
extend to all k ∈ Z (still jointly), and, similarly, taking the kth component
in (2.19) yields a result that extends to all k ∈ Z.

This enables us, for example, to obtain (by standard linear algebra) the
best linear predictor of Zn+1 based on the observed Zn, . . . , Zn−K for any
fixed K.

Example 2.5 (Galton–Watson). The simplest example is a Galton–Watson
process, where all children are born in a single litter at age 1 of the parent,
so Nk = 0 for k > 2. (Recall that all individuals live for ever in our
setting. In the traditional setting, one considers the last generation, i.e.,
Zn−Zn−1.) Then, as noted in [10], N = N1, m = µ1 and µ̂(z) = mz; hence

Γ = {m−1}, Γ∗ = ∅, and γ∗ = ∞ > m−1/2. We assume EN2 < ∞, N > 1
a.s. and P(N > 1) > 0; then (A1)–(A6) hold (with any r in (A6)). Thus
Theorem 2.1 applies. We obtain, for example, with σ2 := Var(N) = σ11,

Var
(
ζ1
)

=
m− 1

m

∮
|z|=m−1/2

∣∣z −m−1∣∣2
|1− z|2 |1−mz|2

σ2|z|2 |dz|
2πm−1/2

= σ2
m− 1

m4

∮
|z|=m−1/2

1

|1− z|2
|dz|

2πm−1/2

= σ2m−3. (2.20)

This can be shown directly in a much simpler way; see [7, Theorem (2.10.1)],
which is essentially equivalent to our Theorem 2.1 in the Galton–Watson case
(but without our assumption (A3)).

Example 2.6. Suppose that all children are born when the mother has age
one or two, i.e., Nk = 0 for k > 2. Then µ̂(z) = µ1z + µ2z

2, where by
assumption µ1 + µ2 > 1 and µ1 > 0. (A5) yields m2 = µ1m+ µ2, and thus

m =
µ1 +

√
µ21 + 4µ2
2

. (2.21)

The equation µ̂(z) = 1 has one other root, viz. γ1 with

γ−11 = −
√
µ21 + 4µ2 − µ1

2
. (2.22)

The condition γ∗ > m−1/2 is thus equivalent to γ−21 < m, which after some
elementary algebra is equivalent to, for example,

u31 + 3u1u2 + u2 − u22 > 0. (2.23)
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Thus, Theorem 2.1 applies when (2.23) holds, Theorem 2.2 when there is
equality in (2.23), and Theorem 2.3 when the left-hand side of (2.23) is
negative. (In this example, (2.16) is trivial.)

For a simple numerical example with γ∗ = m−1/2, take µ1 = 2 and µ2 = 8.
Then (2.21)–(2.22) yield m = 4 and γ1 = −1

2 . We obtain by (2.18), for
example,

Xn,1/
√
nZn

d−→ ζ1 ∼ N
(

0,
1

768
Var(N2 − 2N1)

)
. (2.24)

Suppose now instead that (2.23) holds, so Theorem 2.1 applies. Let λ :=
γ−11 be given by (2.22). Then 1− µ̂(z) = (1−mz)(1− λz), and thus (2.15)
yields, for example,

Var
(
ζ1
)

=
m− 1

m

∮
|z|=m−1/2

∣∣z −m−1∣∣2
|1− z|2 |1− µ̂(z)|2

Σ(z)
|dz|

2πm−1/2

=
m− 1

m3

∮
|z|=m−1/2

σ11|z|2 + σ12(z + z̄)|z|2 + σ22|z|4

|1− z|2 |1− λz|2
|dz|

2πm−1/2
.

(2.25)

This integral can be evaluated by expanding (1− z)−1(1−λz)−1 in a Taylor
series; this yields after some calculations

Var
(
ζ1
)

=
(m+ λ)(σ11 + σ22/m) + 2(1 + λ)σ12

m2(m− λ)(m− λ2)
. (2.26)

Remark 2.7. The limit in (2.14) is by Theorem 2.1 degenerate only when
the entire process is, and thus each Xn,k is degenerate. In contrast, the limit
in (2.17) or the approximation in (2.19) may be degenerate even in other
(special) situations. For example, let N1 be non-degenerate with EN1 = 2,
let N2 := 2N1 + 4, and let Nk := 0 for k > 2. Then µ1 = 2 and µ2 = 8, and
Example 2.6 shows that γ∗ = 1

2 = m−1/2; furthermore, (2.24) applies and

yields Xn,k/
√
nZn

d−→ 0.
We conjecture that in this case (and similar ones with ζk = 0 in Theo-

rem 2.2), Xn,k/
√
Zn has a non-trivial normal limit in distribution; we leave

this as an open problem. Simliarly, we conjecture that when each Ξ̂(γi) is
degenerate in Theorem 2.3, the distribution of Xn,k is asymptotically deter-
mined by the next smallest roots in Γ∗.

2.1. More notation. For a random variable X in a Banach space B, we
define ‖X‖L2(B) := (E ‖X‖2B)1/2, when B = R or C abbreviated to ‖X‖2.

For infinite vectors ~x = (xj)
∞
j=0 and ~y = (yj)

∞
j=0, let 〈~x, ~y〉 :=

∑∞
j=0 xjyj ,

assuming that the sum converges absolutely.
C denotes different constants that may depend on the distribution of the

branching process (i.e., on the distribution of N and (ξi)), but not on n and
similar parameters; the constant may change from one occurrence to the
next.
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Oa.s.(1) means a quantity that is bounded by a random constant that
does not depend on n.

All unspecified limits are as n→∞.

3. Preliminaries

We give some further definitions and results. These are partly taken from
[10]; we repeat some definitions and statements here for convenience, but
refer to [10] for further details.

Let
Bn := Zn − Zn−1 (3.1)

be the number of individuals born at time n (with B0 = Z0). Also, let
Bn,k be the number of individuals born at time n + k by parents that are
themselves born at time n, and thus are of age k. Thus, recalling (A2),

Bn =

n∑
k=1

Bn−k,k, n > 1. (3.2)

Let Fn be the σ-field generated by the life histories of all individuals born
up to time n. Then Bn,k is Fn-measurable, and Bn is Fn−1-measurable by
(3.2). (With F−1 trivial.) Furthermore,

E
(
Bn,k | Fn−1

)
= µkBn, n > 0. (3.3)

For k > 1, let

Wn,k := Bn,k − E
(
Bn,k | Fn−1

)
= Bn,k − µkBn. (3.4)

(Thus Wn,k = 0 if n < 0.) Then Wn,k is Fn-measurable with

E
(
Wn,k | Fn−1

)
= 0. (3.5)

Let further

Wn := Bn −
n∑
k=1

µkBn−k = Bn −
∞∑
k=1

µkBn−k. (3.6)

Thus W0 = B0 = Z0, and for n > 1, by (3.6), (3.2) and (3.4),

Wn =

n∑
k=1

Wn−k,k. (3.7)

Lemma 3.1 ([10]). Assume (A1)–(A6). Then, for all n > 1 and k > 1,
E[W 2

n,k] 6 Cr
−2kmn and E[W 2

n ] 6 Cmn.

Proof. See [10]. �

We use vector notation. Let ~Xn := (Xn,k)
∞
k=0. Furthermore, let

~v := (0,m−1,m−2, . . . ) =
(
m−k1{k > 0}

)∞
k=0

(3.8)

and let

Ψ
(
(yk)

∞
0

)
:=

∞∑
k=1

µk(yk − yk−1), (3.9)
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for vectors (yk)
∞
0 such that the sum converges; finally, let S be the shift op-

erator S
(
(yk)

∞
0

)
:= (yk−1)

∞
0 with y−1 := 0, and let T be the linear operator

T (~y) := S(~y) + Ψ(~y)~v. (3.10)

Then elementary calculations yield, see [10],

~Xn+1 = S( ~Xn) +
(
Ψ( ~Xn)−Wn+1

)
~v = T ( ~Xn)−Wn+1~v, (3.11)

which leads to the following formula.

Lemma 3.2 ([10]). For every n > 0,

~Xn = −
n∑
k=0

Wn−kT
k(~v). (3.12)

Proof. See [10]. �

Remark 3.3. It follows from the proofs below, that the sum in (3.12) is

dominated by the first few terms in the case γ∗ > m−1/2, and by the last
few terms in the case γ∗ < m−1/2, while all terms are of about the same size
when γ∗ = m−1/2. This explains much of the different behaviours seen in
Section 2.

We shall consider T defined in (3.10) as an operator on the complex
Hilbert space `2R defined in (2.13) for a suitable R > 0. Recall that the
spectrum σ(T ) of a linear operator in a complex Hilbert (or Banach) space
is the set of complex numbers λ such that λ − T is not invertible; see e.g.
[4, Section VII.3].

Lemma 3.4 ([10]). Suppose that 1 6 R < m and that µ̂(R−1) < ∞. Then
~v ∈ `2R, Ψ is a bounded linear functional on `2R and T is a bounded linear
operator on `2R. Furthermore, if λ ∈ C with |λ| > R, then λ ∈ σ(T ) if and
only if λ−1 ∈ Γ∗, i.e., if and only if λ 6= m and µ̂(λ−1) = 1.

Proof. See [10]. �

Remark 3.5. It is easily seen that λ ∈ σ(T ) for every λ with |λ| 6 R, e.g.
by taking h = v in (3.21)–(3.22) and noting that v(z)/(λ− z) /∈ H2

R. Thus
we have a complete description of the spectrum σ(T ) on `2R.

Lemma 3.6 ([10]). Suppose that 1 6 R < m and that µ̂(R−1) < ∞. Sup-
pose furthermore that µ̂(z) 6= 1 for every complex z 6= m−1 with |z| < R−1.
Then, for every R1 > R, there exists C = C(R1) such that

‖Tn‖`2R 6 CR
n
1 , n > 0. (3.13)

Proof. See [10]. �

We shall use Lemma 3.6 when γ∗ > m−1/2. In the case γ∗ 6 m−1/2, we
use instead the following lemma, based on a more careful spectral analysis
of T . Recall the definitions (2.4)–(2.6).
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Lemma 3.7. Assume that R = r−1 > 1, where µ̂(r) < ∞. Suppose fur-
thermore that Γ∗∗ = {γ1, . . . , γq} 6= ∅, and that (2.16) holds. Let λi := γ−1i .
Then there exist eigenvectors ~vi with T~vi = λi~vi and linear projections Pi
with range R(Pi) = {c~vi : c ∈ C} (i.e., the span of ~vi), i = 1, . . . q, and

furthermore a bounded operator T0 in `2R and a constant R̃ < γ−1∗ such that,
for any n > 0,

Tn = Tn0 +

q∑
i=1

λni Pi (3.14)

and ∥∥Tn0 ∥∥`2R 6 CR̃n. (3.15)

Explicitly,

~vi = Pi(~v) =
1

γi(γi − 1)µ̂′(γi)

(
γki −m−k

)
k
. (3.16)

Proof. Since the points in Γ∗ are isolated, there is a number r̃ > γ∗ such
that |z| > r̃ for any z ∈ Γ∗ \Γ∗∗. We may assume r̃ < r. Let R̃ := r̃−1 > R.

By Lemma 3.4, λi = γ−1i ∈ σ(T ) with |λi| = γ−1∗ , and |λ| < R̃ < γ−1∗ for
any λ ∈ σ(T ) \ {λ1, . . . , λq}.

Since λ1, . . . , λq thus are isolated points in σ(T ), by standard functional
calculus, see e.g. [4, Section VII.3], there exist commuting projections (not
necessarily orthogonal) P0, . . . , Pq in `2R such that

∑q
i=0 Pi = 1, T maps each

subspace Ei := Pi(`
2
R) into itself, and if T̂i is the restriction of T to Ei, then

T̂i has spectrum σ(T̂i) = {λi} for 1 6 i 6 q and σ(T̂0) = σ(T ) \ {λi}q1. In

particular, the spectral radius r(T̂0) < R̃, and thus, by the spectral radius
formula [4, Lemma VII.3.4],

‖T̂n0 ‖ 6 CR̃n, n > 0. (3.17)

Let T0 := TP0. Then Tn0 = TnP0 = T̂n0 P0, and (3.15) follows.
We use, as the proof of Lemma 3.4 in [10], the fact that the mapping

(ak)
∞
0 7→

∑∞
k=0 akz

k is an isometry of `2R onto the Hardy space H2
R consisting

of all analytic functions f(z) in the disc {z : |z| < R} such that

‖f‖2H2
R

:= sup
r<R

1

2π

∫ 2π

0
|f
(
reiθ

)
|2 dθ <∞. (3.18)

(See e.g. [5].) In particular, ~v corresponds to the function

v(z) :=
∞∑
k=1

m−kzk =
z/m

1− z/m
=

z

m− z
. (3.19)

We use the same notations Ψ, S and T for the corresponding linear functional
and operators on H2

R, and note that then, on H2
R, Sf(z) = zf(z) and

Tf(z) = zf(z) + Ψ(f)v(z). (3.20)

Consequently, for any h ∈ H2
R, the equation (λ− T )f = h is equivalent to

(λ− z)f(z)−Ψ(f)v(z) = h(z). (3.21)
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As in [10], we note that any solution to (3.21) has to be of the form

f(z) = c
v(z)

λ− z
+

h(z)

λ− z
, (3.22)

where

c = Ψ(f) = cΨ
( v(z)

λ− z

)
+ Ψ

( h(z)

λ− z

)
. (3.23)

It follows that if |λ| > R, then (3.21) has a unique solution f ∈ H2
R if and

only if Ψ
(
v(z)/(λ−z)

)
6= 1. Furthermore, a calculation, see [10], shows that

if |λ| > R and λ 6= m, then

Ψ
( v(z)

λ− z

)
=

1

m− λ
(
(1− λ)µ̂(λ−1) +m− 1

)
, (3.24)

which equals 1 if and only if µ̂(λ−1) = 1, i.e., if and only if λ−1 ∈ Γ∗.
For each λi, thus Ψ

(
v(z)/(λi−z)

)
= 1 by (3.24), and the kernel N (λi−T )

is one-dimensional and spanned by v(z)/(λi−z), see (3.21)–(3.23). Further-
more, see again (3.21)–(3.23), the range R(λi − T ) is given by

R(λi − T ) =
{
h ∈ `2R : Ψ

( h(z)

λi − z

)
= 0
}
. (3.25)

By differentiating (3.24), we find for |λ| > R with λ−1 ∈ Γ∗, i.e., λ 6= m and
µ̂
(
λ−1

)
= 1,

Ψ
( v(z)

(λ− z)2
)

= − d

dλ
Ψ
( v(z)

λ− z

)
=

d

dλ

(
1−Ψ

( v(z)

λ− z

))
=

d

dλ

(1− λ)(1− µ̂(λ−1))

m− λ
=

(1− λ)µ̂′(λ−1)

(m− λ)λ2
. (3.26)

Thus, the assumption (2.16) implies that Ψ
(
v(z)/(λi − z)2

)
6= 0, and thus

v(z)/(λi − z) /∈ R(λi − T ) by (3.25). Hence, N (λi − T ) ∩R(λi − T ) = {0}.
Consequently, for every h ∈ R(λi − T ), (3.21) has a unique solution f ∈
R(λi − T ), i.e., the restriction of λi − T to R(λi − T ) is invertible.

It follows that the projection Pi is the projection onto N (λi − T ) =
{cv(z)/(λi − z)} that vanishes on R(λi − T ), which by (3.25) is given by

Pi(f(z)) =
Ψ
(
f(z)/(λi − z)

)
Ψ
(
v(z)/(λi − z)2

) · v(z)

λi − z
. (3.27)

In particular, since Ψ
(
v(z)/(λi − z)

)
= 1 6= 0, Pi(v) is a non-zero multiple

of v(z)/(λi − z). Let ~vi := Pi(~v). Thus T~vi = λi~vi, and, for n > 0,

Tn = TnP0 +

q∑
i=1

TnPi = Tn0 +

q∑
i=1

λni Pi, (3.28)

showing (3.14).
Finally, (3.27) and (3.26) yield

vi(z) := Pi
(
v(z)

)
=

(m− λi)λ2i
(1− λi)µ̂′(λ−1i )

· v(z)

λi − z
, (3.29)



FLUCTUATIONS IN CRUMP–MODE–JAGERS PROCESSES 13

and (3.16) follows because λi = γ−1i and by (3.19), for |λ| > R,

(m− λ)
v(z)

λ− z
=

λ

λ− z
− m

m− z
=
∞∑
k=0

(λ−k −m−k)zk. (3.30)

�

Remark 3.8. It follows also that (2.16) implies that the points λi ∈ σ(T )
are simple poles of the resolvent (λ− T )−1, and conversely. Lemma 3.7 can
be extended without assuming (2.16); the general result is similar but more
complicated, and is left to the reader. Cf. [4, Theorem VII.3.18].

We shall also use another similar calculation.

Lemma 3.9. Suppose that 1 6 R < m and that µ̂(R−1) < ∞. If |λ| > R
and µ̂

(
λ−1

)
6= 1, then

(λ− T )−1(~v) =
1

(1− λ)(1− µ̂(λ−1))

(
λ−k −m−k

)
k
. (3.31)

Proof. Taking h = v in (3.21)–(3.23), we find

(λ− T )−1v(z) = f(z) = b
v(z)

λ− z
(3.32)

for a constant b such that b = Ψ(f) + 1. This yields by (3.24)

b− 1 = Ψ(f) =
b

m− λ
(
(1− λ)µ̂(λ−1) +m− 1

)
(3.33)

with the solution

b =
m− λ

(1− λ)(1− µ̂(λ−1))
. (3.34)

Hence, using (3.30), for |z| < R,

f(z) = b
v(z)

λ− z
=

1

(1− λ)(1− µ̂(λ−1))

∞∑
`=0

(λ−k −m−k)zk. (3.35)

�

4. A martingale

In the remaining sections, we let R := r−1 < m1/2, where r is as in (A6).

(We may assume that R is arbitrarily close to m1/2 by decreasing r.) We
consider as above the operator T on `2R.

Fix a real vector ~a ∈ `2R−1 (for example any finite real vector), and write

αk = αk(~a) := 〈T k(~v),~a〉. (4.1)

Then (3.12) and (3.7) yield

〈 ~Xn,~a〉 = −
∞∑
k=0

∞∑
j=1

Wn−k−j,jαk = −
n∑
`=0

n−∑̀
j=1

W`,jαn−j−` (4.2)
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Define

∆Mn,` :=
n−∑̀
j=1

αn−j−`W`,j , (4.3)

Mn,k :=
k∑
`=0

∆Mn,`. (4.4)

Then (3.5) shows that E
(
∆Mn,` | F`−1

)
= 0, and thus (Mn,k)

n
k=0 is a mar-

tingale with respect to (Fk)k. Furthermore, by (4.2),

〈 ~Xn,~a〉 = −Mn,n. (4.5)

Conditioned on F`−1, the vector (W`,j)j is the sum of B` independent copies

of ~N − E ~N , where ~N = (Nj)
∞
0 , and thus, recalling (2.11),

Qn,l := E
(
(∆Mn,`)

2 | F`−1
)

= B` Var

(n−∑̀
j=1

αn−`−jNj

)

= B`

n−∑̀
i,j=1

σijαn−`−iαn−`−j . (4.6)

The conditional quadratic variation of the martingale (Mn,k)k is thus

Vn :=
n∑
`=0

Qn,` =
n∑
`=0

B`

n−∑̀
i,j=1

σijαn−`−iαn−`−j

=
n∑
`=0

Bn−`
∑̀
i,j=1

σijα`−iα`−j . (4.7)

By (2.2), Nk 6 r−kΞ̂(r), and thus by (2.11) and the Cauchy–Schwarz
inequality,

|σij | 6 r−i−j E Ξ̂(r)2 = CRi+j . (4.8)

5. Proof of Theorem 2.1

Recall that Theorem 2.1 is proved in [10]. We give here another proof,
which unlike the proof in [10] is based on a martingale central limit theorem.
(The proof in [10] is based on the central limit theorem for sums of i.i.d.
variables, together with some approximations.) As said earlier, the main
reason is that the new proof with small modifications also applies to The-
orem 2.2, see Section 6, and we prefer to present it first for Theorem 2.1.
(The proof in [10] does not seem to extend easily to Theorem 2.2.)

In this section we assume γ∗ > m−1/2, in addition to (A1)–(A6). In other

words, see (2.5), each z ∈ Γ∗ satisfies |z| > m−1/2. Hence, we may decrease
r so that the disc Dr contains no roots of µ̂(z) = 1 except m−1, and still
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r > m−1/2. Thus, with R := 1/r and assuming (A1)–(A6), we see that

γ∗ > m−1/2 is equivalent to:

There exists R with 1 6 R < m1/2 such that µ̂(R−1) <∞ and,

furthermore, µ̂(z) 6= 1 for every complex z 6= m−1 with |z| < R−1. (5.1)

We fix an R such that (5.1) holds, and (A6) holds with r = 1/R. Further-

more, we fix R1 with R < R1 < m1/2. Then (5.1) and Lemma 3.6 show that
(3.13) holds, i.e., ‖Tn‖`2R = O

(
Rn1
)
.

Lemma 5.1. Assume (A1)–(A6) and γ∗ > m1/2. If R < m1/2, then

E ‖ ~Xn‖2`2R 6 Cm
n (5.2)

and thus

EX2
n,k 6 CR

−2kmn (5.3)

for all n, k > 0.

Proof. By (3.12), Lemma 3.1, (3.13) and Minkowski’s inequality,

‖ ~Xn‖L2(`2R) 6
n∑
k=0

‖Wn−k‖L2‖T k(~v)‖`2R 6 C
n∑
k=0

m(n−k)/2Rk1

= Cmn/2
n∑
k=0

(R1/m
1/2)k 6 Cmn/2. (5.4)

This yields (5.2), and (5.3) follows by (2.13). �

Similarly, (4.1) and (3.13) show that, for a fixed ~a, with C = C(~a),

|αk| 6 CRk1 . (5.5)

Consequently, by (4.6), (4.8) and (5.5), since R/R1 < 1,

Qn,`
B`

=

n−∑̀
i,j=1

σijαn−`−iαn−`−j 6 C
∞∑

i,j=1

Ri+jR
2(n−`)−i−j
1 6 CR2(n−`)

1 . (5.6)

Hence, by (4.7), (4.6), (3.1) and (2.9), using dominated convergence justified
by (5.6) and R2

1/m < 1,

Vn
Zn

=

n∑
`=0

Bn−`
Zn

Qn,n−`
Bn−`

=

n∑
`=0

Zn−` − Zn−`−1
Zn

∑̀
i,j=1

σijα`−iα`−j

a.s.−→ σ2(~a) :=

∞∑
`=0

(
m−` −m−`−1

) ∑̀
i,j=1

σijα`−iα`−j (5.7)

We cannot use a martingale central limit theorem directly for the mar-
tingale (Mn,k)k defined in (4.4), because the calculations above show that
most of the conditional quadratic variation Vn comes from a few terms (the
last ones), cf. Remark 3.3. We thus introduce another martingale.
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Number the individuals 1, 2, . . . in order of birth, with arbitrary order at
ties, and let G` be the σ-field generated by the life histories of individuals
1, . . . , `. Each Zn is a stopping time with respect to (G`)`, and GZn = Fn.

We refine the martingale (Mn,k)k by adding the contribution from each
individual separately. Let τi denote the birth time of i, and Ni,k the copy
of Nk for i (i.e., the number of children i gets at age k). Let

∆M̂n,i :=

n−τi∑
j=1

αn−τi−j
(
Ni,j − µj

)
, (5.8)

M̂n,k :=
k∑
i=1

∆M̂n,i. (5.9)

Then (M̂n,k)k is a (Gk)k-martingale with M̂n,∞ = M̂n,Zn = Mn,n = −〈 ~Xn,~a〉,
see (4.3)–(4.5), and the conditional quadratic variation

V̂n :=
∑
i

E
(
(∆M̂n,i)

2 | Gi−1
)

= Vn (5.10)

given by (4.7). Moreover, by (5.8) and (5.5),∣∣∆M̂n,i

∣∣ 6 C ∞∑
j=0

Rn−τi−j1

(
Ni,j + µj

)
= CRn−τi1

(
Ξ̂i(R

−1
1 ) + µ̂(R−11 )

)
.

(5.11)

Define the random variable U := Ξ̂(R−11 ) + µ̂(R−11 ). Then EU2 < ∞ by

(A6), since R−11 < r. It follows from (5.11) that for some c > 0 and every
ε > 0, defining h(x) := E

(
U21{U > cx}

)
,

E
(∣∣∆M̂n,i

∣∣21{∣∣∆M̂n,i

∣∣ > ε} | Gi−1
)
6 CR2(n−τi)

1 E
(
U21{U > cεRτi−n1 }

)
= CR

2(n−τi)
1 h

(
εRτi−n1

)
6 CR2(n−τi)

1 h
(
εR−n1

)
, (5.12)

Thus,∑
i

E
(∣∣∆M̂n,i

∣∣21{∣∣∆M̂n,i

∣∣ > ε} | Gi−1
)
6 C

n∑
k=0

BkR
2(n−k)
1 h

(
εR−n1

)
. (5.13)

Finally, we normalize M̂n,k and define M̃n,k := m−n/2M̂n,k; this yields a

martingale (M̃n,k)k with conditional quadratic variation

Ṽn :=
∑
i

E
(
(∆M̃n,i)

2 | Gi−1
)

= m−nV̂n
a.s.−→ σ2(~a)Z, (5.14)

by (5.10), (5.7) and (2.8). Furthermore, by (5.13),∑
i

E
(∣∣∆M̃n,i

∣∣21{∣∣∆M̃n,i

∣∣ > ε} | Gi−1
)
6 Ch

(
εmn/2R−n1

)
m−n

n∑
k=0

BkR
2(n−k)
1 ,

(5.15)



FLUCTUATIONS IN CRUMP–MODE–JAGERS PROCESSES 17

which tends to 0 a.s. as n→∞, because (m1/2R−11 )n →∞ and consequently

h
(
εmn/2R−n1

)
→ 0, and

m−n
n∑
k=0

BkR
2(n−k)
1 = m−n

n∑
k=0

Bn−kR
2k
1 =

n∑
k=0

Bn−k
mn−k

(R2
1

m

)k
= Oa.s.(1),

(5.16)
by (2.8) and R2

1 < m.

The martingales (M̃n,i)i thus satisfy a conditional Lindeberg condition,
which together with (5.14) implies, by [6, Corollary 3.2], that, using (5.10),

Mn,n/V
1/2
n = M̂n,Zn/V̂

1/2
n = M̃n,Zn/Ṽ

1/2
n

d−→ N(0, 1) (5.17)

as n→∞; furthermore, the limit is mixing. (The fact that we here sum the
martingale differences to a stopping time Zn instead of a deterministic kn
as in [6] makes no difference.) By (4.5) and (5.7), this yields

〈 ~Xn,~a〉/Z1/2
n

d−→ N
(
0, σ2(~a)

)
. (5.18)

We can evaluate the asymptotic variance σ2(~a) given in (5.7) by

σ2(~a)

1−m−1
=
∞∑
`=0

m−`
∑̀
i,j=1

σijα`−iα`−j

=
∞∑

k,p=0

∑̀
i,j=1

σijαkαp1{i+ k = j + p}m−i−k

=
∑
k,p,i,j

σijαkαp

∮
|z|=m−1/2

zi+kz̄j+p
|dz|

2πm−1/2

=

∮
|z|=m−1/2

∣∣∣∑
k

αkz
k
∣∣∣2∑

i,j

σijz
iz̄j

|dz|
2πm−1/2

. (5.19)

Furthermore, for |z| = m−1/2 (and any z with |z| < R−1 = r and µ̂(z) 6= 1),
by (4.1) and Lemma 3.9 with λ = z−1,

∞∑
k=0

αkz
k =

〈 ∞∑
k=0

zkT k(~v),~a
〉

=
〈
(1− zT )−1(~v),~a

〉
=

1

(z − 1)(1− µ̂(z))

∑
`

a`
(
z` −m−`

)
. (5.20)

By (5.19)–(5.20), σ2(~a) equals the right-hand side in (2.15). Thus, (5.18)

shows convergence as in (2.14) for any finite linear combination of Z
−1/2
n Xn,k,

and thus joint convergence in (2.14) by the Cramér–Wold device.
Convergence in L2(`2R) follows from this and Lemma 5.1 (with a slightly

increased R) by a standard truncation argument; we omit the details.
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By (2.15), the variable ζk is degenerate only if Σ(z) = 0 for every z with

|z| = m−1/2, and thus, by (2.12), Ξ̂(z) = µ̂(z) a.s. for every such z, which
by (2.1)–(2.2) implies Nk = µk a.s. for every k. �

6. Proof of Theorem 2.2

We assume in this section that γ∗ = m−1/2 and that (2.16) holds. By

Lemma 3.4, the spectral radius r(T ) = γ−1∗ = m1/2. Lemma 3.7 applies

with γ∗ = m−1/2, and thus R̃ < m1/2; we may assume R̃ > R.
Fix as in Section 4 a real vector ~a ∈ `2R−1 , and define, using (3.16),

βi = βi(~a) := 〈Pi(~v),~a〉 = 〈~vi,~a〉 =
1

γi(γi − 1)µ̂′(γi)

∞∑
k=0

ak
(
γki −m−k

)
. (6.1)

Then, by (4.1) and Lemma 3.7,

αk = O
(
R̃k
)

+

q∑
i=1

λki 〈Pi(~v),~a〉 =

q∑
i=1

βiλ
k
i +O

(
R̃k
)

= O
(
mk/2

)
. (6.2)

Furthermore, the O’s in (6.2) hold uniformly in all ~a with ‖~a‖`2
R−1
6 1, as

does every O in this section.
Define also, for p, t = 1, . . . , q,

σ∗pt :=

∞∑
i,j=1

σijλ
−i
p λ
−j
t , (6.3)

and note that, using (4.8), |λp| = m1/2 and R < m1/2,

∑̀
i,j=1

σijλ
−i
p λ
−j
t = σ∗pt +O

( ∑
i>`,j>1

Ri+j(m1/2)−i−j
)

= σ∗pt +O
(
(R/m1/2)`

)
.

(6.4)
Let

s` :=
∑̀
i,j=1

σijα`−iα`−j . (6.5)

Then, by (6.2) and symmetry, using again (4.8) and |λp| = m1/2, and (6.4),

s` :=
∑̀
i,j=1

σij

q∑
p=1

q∑
t=1

βpλ
`−i
p βtλ

`−j
t +O

(∑̀
i,j=1

Ri+jm(`−i)/2R̃`−j
)

=

q∑
p=1

q∑
t=1

βpβtλ
`
pλ

`
t

∑̀
i,j=1

σijλ
−i
p λ
−j
t +O

(
(m1/2R̃)`

)
=

q∑
p=1

q∑
t=1

βpβtλ
`
pλ

`
tσ
∗
pt +O

(
(m1/2R̃)`

)
. (6.6)
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In particular,

s` = O
(
m`
)
. (6.7)

It follows by (4.7), (6.5), (2.8), (6.7) and (6.6) that, a.s.,

Vn
Bn

=

n∑
`=0

Bn−`
Bn

s` =

n∑
`=0

m−`
(
1 + o(1) +Oa.s.(1)1{n− ` < log n}

)
s`

=

n∑
`=0

m−`s` + o(n) =

n∑
`=0

m−`
q∑
p=1

q∑
t=1

βpβtλ
`
pλ

`
tσ
∗
pt + o(n)

=

q∑
p=1

q∑
t=1

βpβtσ
∗
pt

n∑
`=0

(λpλt
m

)`
+ o(n). (6.8)

Recall that |λp| = |λt| = m1/2, so |λpλt/m| = 1. Hence, if λt = λ̄p, then∑n
`=0

(
λpλt/m

)`
= n + 1, while if λt 6= λ̄p, then

∑n
`=0

(
λpλt/m

)`
= O(1).

Consequently, (6.8) yields, since Bn/Zn
a.s.−→ 1−m−1 by (3.1) and (2.8),

Vn
nZn

a.s.−→ σ2(~a) :=
m− 1

m

q∑
p=1

q∑
t=1

βpβtσ
∗
pt1{λt = λ̄p}

=
m− 1

m

q∑
p=1

|βp|2
∞∑

i,j=1

σijλ
−i
p λ̄
−j
p

=
m− 1

m

q∑
p=1

|βp|2Σ(γp). (6.9)

We refine the martingale (Mn,k)k to (M̂n,k)k as in Section 5, but this time

we normalize it to M̃n,k := (nmn)−1/2M̂n,k. It follows from (6.9) and (2.8)

that the conditional quadratic variation Ṽn = Vn/(nm
n)

a.s.−→ σ2(~a)Z, i.e.,

(5.14) holds also in the present case. Furthermore, if we now let R1 := m1/2,
then (5.5) and (5.11)–(5.13) hold, and it follows that (5.15) is modified to∑

i

E
(∣∣∆M̃n,i

∣∣21{∣∣∆M̃n,i

∣∣ > ε} | Gi−1
)
6 Ch

(
εn1/2

) 1

nmn

n∑
k=0

Bkm
n−k

= Oa.s.

(
h
(
εn1/2

)) a.s.−→ 0. (6.10)

Hence the conditional Lindeberg condition holds in the present case too,
and (5.17) follows again by [6, Corollary 3.2], which now by (6.9) and (4.5)
yields (mixing)

〈 ~Xn,~a〉/(nZn)1/2
d−→ N

(
0, σ2(~a)

)
. (6.11)

By (6.9) and (6.1), this proves (2.17)–(2.18).
By (2.18), the variable ζk is degenerate only if Σ(γp) = 0 for every p, and

thus, by (2.12), Ξ̂(γp) = µ̂(γp) a.s.
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As in Section 5, convergence in L2(`2R) follows by a standard truncation
argument, now using the following lemma (with an increased R); we omit
the details. �

Lemma 6.1. Assume (A1)–(A6), γ∗ = m−1/2 and (2.16). If R < m1/2,
then

E ‖ ~Xn‖2`2R 6 Cnm
n (6.12)

and

EX2
n,k 6 Cnm

nR−2k (6.13)

for all n, k > 0.

Proof. By (4.5), (4.7), (6.5), (2.7) and (6.7),

E〈 ~Xn,~a〉2 = EVn = E
n∑
`=0

Bn−`s` 6 Cnm
n, (6.14)

uniformly for ‖~a‖`2
R−1
6 1. Taking ~a = Rk(δkj)j , we obtain (6.13).

Finally, applying (6.13) with R replaced by some R′ with R < R′ < m1/2,

E ‖ ~Xn‖2`2R =
∞∑
k=0

R2k EX2
n,k 6 Cnm

n
∞∑
k=0

(R/R′)2k = Cnmn. (6.15)

�

7. Proof of Theorem 2.3

Assume now that γ∗ < m−1/2. By Lemma 3.4, the spectral radius r(T ) =

γ−1∗ > m1/2. We apply Lemma 3.7, assuming as we may that R̃ > m1/2.

(Otherwise we increase R̃, keeping R̃ < γ−1∗ .) Hence, by (3.14),

T k(~v) = T k0 (~v) +

q∑
i=1

λki Pi(~v) = T k0 (~v) +

q∑
i=1

λki ~vi. (7.1)

Thus, by (3.12),

~Xn = −
n∑
k=0

Wk(TP0)
n−k(~v)−

q∑
i=1

n∑
k=0

λn−ki Wk~vi. (7.2)

Let, recalling (3.7),

Ǔi := −
∞∑
k=0

γkiWk = −
∞∑
k=0

λ−ki Wk = −
∞∑
`=0

∞∑
j=1

λ−`−ji W`,j , (7.3)

noting that by Lemma 3.1 and |γi| = γ∗ < m−1/2, the sum converges in L2

and ∥∥∥Ǔi +
n∑
k=0

λ−ki Wk

∥∥∥
2
6

∞∑
k=n+1

C|λi|−kmk/2 6 C
(
γ∗m

1/2
)n
. (7.4)
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Furthermore, by Lemma 3.1 and (3.15), since R̃ > m1/2,∥∥∥ n∑
k=0

Wk(TP0)
n−k(~v)

∥∥∥
L2(`2R)

6
n∑
k=0

‖Wk‖2 · ‖(TP0)
n−k(~v)‖`2R

6 C
n∑
k=0

mk/2R̃n−k 6 CR̃n. (7.5)

By (7.2), (7.5), (7.4), defining Ui :=
(
γi(γi− 1)µ̂′(γi)

)−1
Ǔi so Ǔi~vi = Ui~ui

by (3.16),∥∥∥γn∗ ~Xn −
q∑
i=1

(
λi/|λi|

)n
Ui~ui

∥∥∥
L2(`2R)

6 Cγn∗ R̃
n +

q∑
i=1

∥∥∥ n∑
k=0

λ−ki Wk~vi + Ǔi~vi

∥∥∥
L2(`2R)

6 C(γ∗R̃)n + C(γ∗m
1/2)n 6 C(γ∗R̃)n. (7.6)

Since γ∗R̃ < 1, this shows convergence in (2.19) in L2(`2R); furthermore,
convergence a.s. follows by (7.6) and the Borel–Cantelli lemma.

We have EUi = E Ǔi = 0 by (7.3) since EWk = 0 by (3.5)–(3.7). Fur-
thermore, W0,k = B0,k − µk = Nk − µk, while E

(
Wn,k | F0

)
= 0 for n > 1

by (3.5); hence by (3.7), E
(
Wn | F0

)
= W0,n = Nn − µn, and thus

E
(
Ǔi | F0

)
= −

∞∑
k=0

γki (Nk − µk) = −Ξ̂(γi) + µ̂(γi). (7.7)

Hence, Ui is degenerate only if Ξ̂(γi) is so. �

8. A stochastic integral calculus

The limit variables ζk in Theorems 2.1 and 2.2 can be interpreted as
stochastic integrals of certain functions (“symbols”); which gives a useful
symbolic calculus. There are also some partial related results for Theo-
rem 2.3.

We consider the three cases in Theorems 2.1–2.3 separately.

8.1. The case γ∗ > m−1/2. Assume throughout this subsection that The-
orem 2.1 applies; in particular that γ∗ > m−1/2.

Let ν be the finite measure on the circle |z| = m−1/2 given by

dν(z) :=
m− 1

m
|1− z|−2 |1− µ̂(z)|−2Σ(z)

|dz|
2πm−1/2

, (8.1)

and consider an isomorphism I : L2(ν) → H of the Hilbert space L2(ν)
into a Gaussian Hilbert space H, i.e., a Hilbert space of Gaussian random
variables; I can be interpreted as a stochastic integral, see [8, Section VII.2].
We let here L2(ν) be the space of complex square-integrable functions, but
regard it as a real Hilbert space with the inner product 〈f, g〉ν := Re

∫
fḡ dν.

Then (2.14)–(2.15) can be stated as

Z−1/2n Xn,k
d−→ ζk := I

(
zk −m−k

)
, (8.2)
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jointly for all k > 0. This yields a convenient calculus for joint limits.

Example 8.1. Let k, ` > 0. Then, by (2.10),

Xn−`,k = Xn,k+` −m−kXn,` (8.3)

and thus, recalling (2.9), jointly for all k, ` > 0,

Z
−1/2
n−` Xn−`,k

d−→ m`/2
(
ζk+` −m−kζ`

)
= m`/2I

(
zk+` −m−kz`

)
= I

(
(zm1/2)`(zk −m−k)

)
. (8.4)

Denoting this limit by ζ
(`)
k , we have of course ζ

(`)
k

d
= ζk, which corresponds

to the fact that |zm1/2|` = 1 on the support of ν. More interesting is the

joint convergence (Z
−1/2
n Xn,k, Z

−1/2
n−` Xn−`,k)

d−→ (ζk, ζ
(`)
k ), with covariance

Cov
(
ζk, ζ

(`)
k

)
= 〈zk −m−k, (zm1/2)`(zk −m−k)〉ν

= Re

∫
|z|=m−1/2

(zm1/2)`|zk −m−k|2 dν. (8.5)

The measure ν is by (8.1) absolutely continuous on the circle |z| = m−1/2.

With the change of variables z = m−1/2eiθ, we have (zm1/2)` = ei`θ and

the Riemann–Lebesgue lemma shows that Cov
(
ζk, ζ

(`)
k

)
→ 0 as ` → ∞,

for fixed every k. Roughly speaking, Xn−`,k and Xn,k are thus essentially
uncorrelated when ` is large, which justifies the claim in Section 2 that there
is only a short-range dependence in this case.

Example 8.2. We can define Xn,k by (2.10) also for k < 0. Then, the
calculations in Example 8.1 apply to any ` > 0 and any k > −`. Hence,
replacing n by n+ ` in (8.4), for any fixed `,

Z−1/2n Xn,k
d−→ I

(
(zm1/2)`(zk −m−k)

)
(8.6)

jointly for all k > −`. Since the factor (zm1/2)` does not depend on k and
has absolute value 1, this means (by changing the isomorphism I) that (8.2)
holds jointly for all k > −`. Since ` is arbitrary, this means that (8.2) holds
jointly for all k ∈ Z. Hence, (2.14)–(2.15) extend to all k ∈ Z, as claimed in
Remark 2.4.

Example 8.3. We have, by (2.10),

m−jZn+j −m−j−1Zn+j+1 = m−jXn+j+1,1. (8.7)

Hence, by Lemma 5.1, for j > 0,

‖m−jZn+j −m−j−1Zn+j+1‖2 6 Cm−j+(n+j+1)/2 = Cmn/2−j/2. (8.8)

Summing (8.8) for j > ` we obtain, recalling (2.8),

‖m−`Zn+` −mnZ‖2 6 Cmn/2−`/2 (8.9)
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for n > 1 and ` > 0. Hence, as `→∞, m−n/2
(
m−`Zn+`−mnZ

)
→ 0 in L2,

and thus in probability, uniformly in n. Since Zn/m
n a.s.−→ Z > 0, and thus

supnm
n/Zn <∞ a.s., it follows that, still uniformly in n,

Z−1/2n

(
m−`Zn+` −mnZ

) p−→ 0, `→∞. (8.10)

Define the random variables

Yn,` := Z−1/2n

(
Zn −m−`Zn+`

)
= −Z−1/2n m−`Xn,−`, ` > 0. (8.11)

Then, by (8.2) and Example 8.2, for every fixed `,

Yn,`
d−→ −m−`ζ−` = I

(
1−m−`z−`

)
, n→∞. (8.12)

Furthermore, by (8.10), Yn,`
p−→ Z

−1/2
n

(
Zn−mnZ

)
as `→∞, uniformly in

n. Finally, |mz| = m1/2 > 1 on the support of ν, and thus 1− (mz)−` → 1
in L2(ν) as `→∞; hence I

(
1−m−`z−`

)
→ I(1) as `→∞, in L2 and thus

in distribution. It follows that we can let `→∞ in (8.12), see [2, Theorem
4.2], and obtain

Z−1/2n

(
Zn −mnZ

) d−→ I
(
1
)
, n→∞. (8.13)

This is jointly with all (8.2), and thus, jointly for all k ∈ Z,

Z−1/2n

(
Zn−k−mn−kZ

)
= Z−1/2n

(
Xn,k+m−k(Zn−mnZ)

) d−→ I
(
zk
)
. (8.14)

Conversely, (8.2) follows immediately from (8.14).
In the Galton–Watson case (Example 2.5), (8.14) is equivalent to the case

q = 0 of [7, Theorem (2.10.2)].

8.2. The case γ∗ = m−1/2. Assume now that Theorem 2.2 applies; thus
γ∗ = m−1/2 and (2.16) holds.

In this case, let ν be the discrete measure , with support Γ∗∗,

ν := (m− 1)

q∑
p=1

|1− γp|−2 |µ̂′(γp)|−2Σ(γp)δγp , (8.15)

and consider an isomorphism I of L2(ν) into a Gaussian Hilbert space as
above. Then (2.17)–(2.18) can be stated as (8.2), with the normalizing factor

changed from Z
−1/2
n to (nZn)−1/2.

With this change of normalization of Xn,k, all results in the preceding
subsection hold, with one exception: The measure ν has finite support, and
thus there exists a sequence `j →∞ such that (zm1/2)`j → 1 as j →∞ for

every z ∈ supp(ν) = Γ∗∗; hence (8.5) implies lim sup`→∞Corr
(
ζk, ζ

(`)
k

)
= 1.

Hence, although the convergence in (2.18) is mixing, so there is no de-

pendence on the initial generations as in the case γ∗ < m−1/2, there is a
dependence over longer ranges than in the case γ∗ > m−1/2.

Furthermore, each ζk now belongs to the (typically q-dimensional) space
spanned by ζ1, . . . , ζq, which yields the linear dependence of the limits ζk
claimed in Section 2.
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Example 8.4. In the simplest case, Γ∗∗ = {−m1/2}. (See Example 2.6 for

an example.) Then ζk =
(
(−1)km−k/2−m−k

)
ζ for some ζ ∼ N

(
0, ν{−m1/2}

)
and all k ∈ Z.

Furthermore, zm1/2 = −1 on supp ν, and thus (8.4) yields ζ
(`)
k = (−1)`ζk;

in particular, ζ
(`)
k = ζk for every even `.

8.3. The case γ∗ < m−1/2. In this case, there is no limit, but we can argue
with the components of the approximating sum in (2.19) in the same way as
with ζk in Examples 8.1–8.2, and draw the conclusion that (2.19), interpreted
component-wise, extends also to k < 0, as claimed in Remark 2.4. We omit
the details.

9. Random characteristics

A random characteristic is a random function χ(t) : [0,∞) → R defined
on the same probability space as the prototype offspring process Ξ; we as-
sume that each individual x has an independent copy (Ξx, χx) of (Ξ, χ), and
interpret χx(t) as the characteristic of x at age t. We consider as above the
lattice case, and define, denoting the birth time of x by τx,

Zχn :=
∑

x:τx6n

χx(n− τx), (9.1)

the total characteristic of all individuals at time n. See further Jagers [7].

We assume in this section (A1)–(A6), and also that there exists R2 < m1/2

such that for some C <∞

E[χ(k)2] 6 CR2k
2 , k > 0. (9.2)

We assume below that R is chosen with R2 < R < m−1. We define

λχk := Eχ(k), k > 0, (9.3)

and λχk := 0 for k < 0, and also

λχ :=
∞∑
k=0

(
m−k −m−k−1

)
λχk . (9.4)

Note that the sum in (9.4) converges absolutely since (9.2) implies

|λχk | = |Eχ(k)| 6 CRk2 . (9.5)

We split the characteristic into its mean λχk = Eχ(k) and the centered
part

χ̃(k) := χ(k)− Eχ(k) = χ(k)− λχk . (9.6)

Simple calculations, see [10], yield the decomposition

Zχn − λχZn = Zχ̃n +
n∑
k=1

(
λχk − λ

χ
k−1
)
Xn,k = Zχ̃n + 〈Xn,∆~λ

χ〉, (9.7)
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with ∆~λχ = (λχk − λ
χ
k−1)k. Here ∆~λχ ∈ `2R−1 by (9.5), and thus the asymp-

totic behaviour of 〈Xn,∆~λ
χ〉 is given by Theorems 2.1–2.3.

In particular, if γ∗ > m−1/2, then Theorem 2.1 applies and 〈Xn,∆~λ
χ〉/
√
Zn

is asymptotically normal. Moreover, it is shown in [10] that in this case also

Zχ̃n/
√
Zn is asymptotically normal, and that the joint distribution is asymp-

totically normal, so (Zχn − λχZn)/
√
Zn

d−→ N(0, σ2χ), with σ2χ given by an
explicit but rather complicated formula in [10, Theorem 6.1].

The proof in [10] of asymptotic normality of Zχ̃n does not require γ∗ >

m−1/2; it gives the following result that is valid in all three cases. (Note
that the assumption Eχ(k) = 0 is equivalent to χ = χ̃.)

Theorem 9.1. Assume (A1)–(A6) and (9.2). If Eχ(k) = 0 for every
k > 0, then as n→∞,

Z−1/2n Zχ
d−→ ζχ, (9.8)

for some normal random variable ζχ with mean E ζχ = 0 and variance

Var
(
ζχ
)

=
m− 1

m

∞∑
k=0

m−k Var
(
χ(k)

)
. (9.9)

Proof. See [10, Section 6]. �

It remains to consider the case when λχk = Eχ(k) 6= 0 for some k. If

γ∗ > m−1/2, then, as said above, asymptotic normality of (Zχn −λχZn)/
√
Zn

is shown in [10]. If γ∗ = m−1/2 and (2.16) holds, then Theorem 2.2 shows

that 〈Xn,∆~λ
χ〉/
√
nZn

d−→ N(0, σ2), where σ2 is given by (2.18) and σ2 > 0

except in degenerate cases. Since Theorem 9.1 implies that Zχ̃n/
√
nZn

p−→ 0,

it follows from (9.7) that (Zχn − λχZn)/
√
nZn

d−→ N(0, σ2). Similarly, if

γ∗ < m−1/2, then Theorem 9.1 implies γn∗Z
χ̃
n

p−→ 0, and (9.7) shows that

Zχn − λχZn has the same (oscillating) asymptotic behaviour as 〈Xn,∆~λ
χ〉,

given by Theorem 2.3.
Summarizing, if γ∗ 6 m−1/2, then the randomness in the characteristic χ

only gives an effect of smaller order than the mean Eχ, and unless the mean
vanishes (or the limits degenerate), Zχn has the same asymptotic behaviour
as if χ is replaced by the deterministic Eχ, which is treated by Theorems
2.2 and 2.3.

Example 9.2. We have in the present paper for simplicity assumed (A4),
that there are no deaths. Suppose now, more generally, that each individual
has a random lifelength ` 6 ∞, as usual with i.i.d. copies (Ξx, `x) for all
individuals x. The results in Section 2 apply if we ignore deaths and let Zn
denote the number of individuals born up to time n, living or dead. More-
over, the number of living individuals at time n is Zχn , for the characteristic
χ(k) := 1{` > k}.

Similarly, for example, the number of living individuals at time n − j
is Z

χj
n with χj(k) := 1{` > k − j > 0}. The analogue of Xn,j in (2.10)
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but counting only living individuals is thus given by Z
χj−m−jχ
n , and results

extending Theorems 2.1–2.3 without assuming (A4) follow. We leave the
details to the reader.

Acknowledgement

Acknowledgement. I thank Peter Jagers and Olle Nerman for helpful
comments.

References

[1] Søren Asmussen and Heinrich Hering, Branching Processes. Birkhäuser,
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