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Abstract7

Consider a random permutation drawn from the set of permutations of length n that avoid a8

given set of one or several patterns of length 3. We show that the number of occurrences of9

another pattern has a limit distribution, after suitable scaling. In several cases, the limit is10

normal, as it is in the case of unrestricted random permutations; in other cases the limit is a11

non-normal distribution, depending on the studied pattern. In the case when a single pattern of12

length 3 is forbidden, the limit distributions can be expressed in terms of a Brownian excursion.13

The analysis is made case by case; unfortunately, no general method is known, and no general14

pattern emerges from the results.15
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1 Introduction22

Let Sn be the set of permutations of [n] := {1, . . . , n}, and S∗ :=
⋃
n≥1 Sn. If σ =23

σ1 · · ·σm ∈ Sm and π = π1 · · ·πn ∈ Sn, then an occurrence of σ in π is a subsequence24

πi1 · · ·πim , with 1 ≤ i1 < · · · < im ≤ n, that has the same order as σ, i.e., πij < πik ⇐⇒25

σj < σk for all j, k ∈ [m]. We let nσ(π) be the number of occurrences of σ in π, and note26

that27 ∑
σ∈Sm

nσ(π) =
(
n

m

)
, (1)28

for every π ∈ Sn. For example, an inversion is an occurrence of 21, and thus n21(π) is the29

number of inversions in π.30

We say that π avoids another permutation τ if nτ (π) = 0. Let31

Sn(τ) := {π ∈ Sn : nτ (π) = 0}, (2)32

the set of permutations of length n that avoid τ . More generally, for any set T = {τ1, . . . , τk}33

of permutations, let34

Sn(T ) = Sn(τ1, . . . , τk) :=
k⋂
i=1

Sn(τi), (3)35
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6:2 Patterns in random permutations avoiding some other patterns

the set of permutations of length n that avoid all τi ∈ T . We also let S∗(T ) :=
⋃∞
n=1 Sn(T )36

be the set of T -avoiding permutations of arbitrary length.37

The classes S∗(τ) and, more generally, S∗(T ) have been studied for a long time. For38

examples relevant to analysis of algorithms, see e.g. [13, Exercise 2.2.1-5] (π can be obtained39

by a stack if and only if π ∈ Sn(312); equivalently: π is stack-sortable if and only if40

π ∈ Sn(312)); [13, Exercise 2.2.1-10,11] and [17] (π is deque-sortable if and only if π41

π ∈ Sn(2431, 4231); [16] (π can be sorted by 2 parallel queues if and only if π ∈ Sn(321).42

Further examples are given in [15], Exercises 6.19 x (321), y (312), ee (321), ff (312), ii43

(231), oo (132), xx (321); 6.25 g (321); 6.39 k, l ({2413, 3142}), m ({1342, 1324}); 6.47 a44

({4231, 3412}); 6.48 (1342). See also [3].45

In particular, one classical problem is to enumerate the sets Sn(T ), either exactly or46

asymptotically, see e.g. [3, Chapters 4–5] and [14].47

The general problem that concerns us is to take a fixed set T of one or several permutations48

and let πT ;n be a uniformly random T -avoiding permutation, i.e., a uniformly random element49

of Sn(T ), and then study the asymptotic distribution of the random variable nσ(πT ;n) (as50

n→∞) for some other fixed permutation σ. (Only σ that are themselves T -avoiding are51

interesting, since otherwise nσ(πT ;n) = 0.)52

Here we study the cases when T is a set of permutations of length 3. The cases when T53

contains a permutation of length ≤ 2 are trivial, since then there is at most one permutation54

in Sn(T ) for any n. The case of forbidding one or several permutations of length ≥ 4 seems55

much more complicated, but there are recent impressive results for Sn(2413, 3142) (separable56

permutations) by Bassino, Bouvel, Féray, Gerin, and Pierrot [2], with generalizations to some57

other classes in [1].58

There are 26 = 64 sets T of permutations of length 3. Of these, every T that contains59

{123, 321}, and every T with |T | ≥ 4 is trivial, in the sense that Sn(T ) contains at most60

2 elements for any n ≥ 5 (see [14]). Ignoring these cases, there are 1 + 6 + 14 + 16 = 3761

remaining cases (with |T | = 0, 1, 2, 3, respectively), and by symmetries, see Appendix A,62

these reduce to 1 + 2 + 4 + 4 = 11 non-equivalent cases, which are treated in Sections 2–12.63

For further details, see [12], [8], [9], [10]; these papers also contain further references to64

related work, and to some of the many papers by various authors that study other properties65

of random τ -avoiding permutations.66

The cases studied here, i.e., the non-trivial cases with T ⊂ S3, all have asymptotic67

distributions of one of the following two types.68

I. Normal limits: For every σ ∈ S∗(T ), there exists constants α, β, γ such that, as n→∞,69

nσ(πT ;n)− βnα

nα−1/2
d−→ N

(
0, γ2), (4)70

with convergence of all moments. Furthermore, assuming |σ| ≥ 2, γ2 > 0, so the limit is71

not deterministic, except possibly for one σ ∈ Sm(T ) for each length m ≥ 2.72

In particular, Enσ(πT ;n) ∼ βnα. Note that (4) implies concentration, in the sense73

nσ(πT ;n)
Enσ(πT ;n)

p−→ 1. (5)74

II. Non-normal limits without concentration: For every σ ∈ S∗(T ), there exists a constant75

α such that76

nσ(πT ;n)
nα

d−→Wσ, (6)77
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T |Sn(T )| type I type II as. variance = 0
∅ n! |σ|
{132} Cn (|σ|+D(σ))/2 m · · · 1
{321} Cn (|σ|+B(σ))/2 1 · · ·m
{132, 312} 2n−1 |σ|
{231, 312} 2n−1 B(σ) 1 · · ·m
{231, 321} 2n−1 B(σ) 1 · · ·m
{132, 321}

(
n
2

)
+ 1 |σ|

{231, 312, 321} Fn+1 B(σ) 1 · · ·m
{132, 231, 312} n |σ|
{132, 231, 321} n |σ| − 1 or |σ| 1 · · ·m
{132, 213, 321} n |σ|
{2413, 3142} sn−1 |σ|

Table 1 The table shows whether nσ(πT ;n) has limits of type I or II; furthermore, the exponent
α = α(σ) is given in the column for the type. The last column shows the exceptional cases, if any,
where the asymptotic variance vanishes. Cn := 1

n+1

(2n
n

)
is a Catalan number; Fn+1 is a Fibonacci

number (F0 = 0, F1 = 1); sn−1 is a Schröder number; D(σ) is the number of descents and B(σ) is
the number of blocks in σ.

with convergence of all moments, for some random variable Wσ > 0. Hence, also78

nσ(πT ;n)
Enσ(πT ;n)

d−→W ′σ, (7)79

with convergence of all moments, for some random variable W ′σ > 0 (necessarily with80

EW ′σ = 1). Furthermore, assuming |σ| ≥ 2, VarWσ > 0, so Wσ and W ′σ are not81

deterministic, except possibly for one σ ∈ Sm(T ) for each length m ≥ 2.82

I Remark. In all cases studied here, if there are any exceptional σ ∈ S∗(T ) with σ ≥ 283

such that the limit in (4) or (6) is deterministic, i.e., the asymptotic variance is 0, then the84

exceptional σ are either all identity permutations 1 · · ·m, or all decreasing permutations85

m · · · 1. Furthermore, these exceptional cases arise because almost all of the
(
n
|σ|
)
patterns in86

πT ;n of length |σ| are occurrences of σ; more precisely, E
((

n
|σ|
)
− nσ(πT ;n)

)
= O

(
n|σ|−1) for87

the exceptional cases of type I and O
(
n|σ|−1/2) for the cases of type II. (It follows that (5)88

holds also for the latter.)89

We summarize the results for T consisting of permutations of length 3 in Table 1; for90

reference, we include the number |Sn(T )| of T -avoiding permutations of length n, see e.g.91

[13, Exercises 2.2.1-4,5], [15, Exercise 6.19ee,ff], [3, Corollary 4.7], and [14]. We include also92

the case T = {2413, 3142} from [2]; see [17] for the enumeration.93

We see no obvious pattern in the existence of limits of type I or II in Table 1. Moreover,94

the proofs, sketched below, are done case by case; we have not succeeded to prove any general95

results, treating all (or at least some) forbidden sets T at the same time.96

I Remark. We do not know whether a general set of forbidden permutations T has limits97

in distribution of nσ(πT ;n) (after normalization) at all, and even if limits exist, there is no98

known reason implying that they have to be of type I or II above; other types of limits are99

conceivable.100

I Remark. The non-normal limits in the cases {132}, {321} and {2413, 3142} can all be101

expressed as functionals of a Brownian excursion e, see [8, 9, 2]. However, the expressions in102

AofA 2018



6:4 Patterns in random permutations avoiding some other patterns

these three cases are, in general, quite different (and obtained by quite different arguments),103

so there is no obvious hope for a unification. (The other cases of non-normal limits in Table 1104

are different, and of a more elementary kind.)105

1.1 Some notation106

Let ι = ιn be the identity permutation of length n.107

If σ ∈ Sm and τ ∈ Sn, their composition σ ∗ τ ∈ Sm+n is defined by letting τ act on108

[m + 1,m + n] in the natural way; more formally, σ ∗ τ = π ∈ Sm+n where πi = σi for109

1 ≤ i ≤ m, and πj+m = τj + m for 1 ≤ j ≤ n. We say that a permutation π ∈ S∗ is110

decomposable if π = σ ∗ τ for some σ, τ ∈ S∗, and indecomposable otherwise; we also call an111

indecomposable permutation a block.112

It is easy to see that any permutation π ∈ S∗ has a unique decomposition π = π1 ∗ · · · ∗π`113

into indecomposable permutations (blocks) π1, . . . , π`; we call these the blocks of π. (These114

are useful to characterize the permutations in some of the classes below.)115

2 No restriction, T = ∅116

As a background, consider first the case T = ∅, so Sn(T ) = Sn; the set of all n! permutations117

of length n. It is well-known, see Bóna [4, 5] and [12, Theorem 4.1], that if πn is a uniformly118

random permutation in Sn, then nσ(πn) has an asymptotic normal distribution as n→∞119

for every fixed permutation σ:120

I Theorem 1 (Bóna [4, 5]). If |σ| = m ≥ 2 then, as n→∞, for some γ2 > 0,121

nσ(πn)− 1
m!
(
n
m

)
nm−1/2

d−→ N
(
0, γ2). (8)122

Sketch of proof. A random permutation πn can be obtained by taking i.i.d. random variables123

X1, . . . , Xn ∼ U(0, 1) and considering their ranks. Then124

nσ(πn) =
∑

i1<···<im

f
(
Xi1 , . . . , Xim

)
(9)125

for a suitable (indicator) function f . This sum is an asymmetric U -statistic, and the result126

follows by general results on U -statistics, see [6] and [11]. J127

I Remark. The asymptotic variance γ2 depends on σ. It can be calculated explicitly, and128

the same holds for all parameters γ2 (or µ) in the limit theorems below. Moreover, the129

convergence (8) holds with convergence of all moments, and it holds jointly for any set of σ;130

also this holds for all later limit theorems too.131

3 Avoiding 132132

Consider next the cases when T consists of a single permutation of length 3. The symmetries133

in Appendix A leave two non-equivalent cases. In this section we avoid T = {132}; equivalent134

cases are {213}, {231}, {312}. Recall that the standard Brownian excursion e(x) is a random135

non-negative function on [0, 1]. Let136

λ(σ) := |σ|+D(σ) (10)137
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where D(σ) is the number of descents in σ, i.e., indices i such that σi > σi+1 or (as a138

convenient convention) i = |σ|. Note that 1 ≤ D(σ) ≤ |σ|, and thus139

|σ|+ 1 ≤ λ(σ) ≤ 2|σ|, (11)140

with the extreme values λ(σ) = |σ|+ 1 if and only if σ = 1 · · · k, and λ(σ) = 2|σ| if and only141

if σ = k · · · 1, for some k = |σ|.142

I Theorem 2 ([8]). There exist strictly positive random variables Λσ such that as n→∞,143

nσ(π132;n)/nλ(σ)/2 d−→ Λσ. (12)144

Sketch of proof. The analysis is based on a well-known bijection with binary trees and Dyck145

paths, and the, also well-known, convergence in distribution of random Dyck paths to a146

Brownian excursion. For (not so simple) details, see [8]. J147

The limit variables Λσ in Theorem 2 can be expressed as functionals of a Brownian148

excursion e(x), see [8]; the description is, in general, rather complicated, but some cases are149

simple. Moments of the variables Λσ can be calculated by a recursion formula given in [8].150

I Example 3. In the special case σ = 12, Λ12 =
√

2
∫ 1

0 e(x) dx, see [8, Example 7.6]; this151

is (apart from the factor
√

2) the well-known Brownian excursion area, see e.g. [7] and the152

references there.153

For the number n21 of inversions, we thus have154 (
n
2
)
− n21(π132;n)
n3/2 = n12(π132;n)

n3/2
d−→ Λ12 =

√
2
∫ 1

0
e(x) dx. (13)155

By symmetries, see Appendix A, the left-hand side can also be seen as the number of156

inversions n21(π231;n) or n21(π312;n), normalized by n3/2, where we instead avoid 231 or 312.157

4 Avoiding 321158

In this section we avoid T = {321}. The case T = {123} is equivalent.159

Sn(321) is treated in detail in [9]. As for Sn(132) in Section 3, the analysis is based160

on a well-known bijection with Dyck paths, but the details are very different, and so are in161

general the resulting limit distributions.162

I Theorem 4 ([9]). Let σ ∈ S∗(321). Let m := |σ|, and suppose that σ has ` blocks of163

lengths m1, . . . ,m`. Then, as n→∞,164

nσ(π321;n)/n(m+`)/2 d−→Wσ (14)165

for a positive random variable Wσ that can be represented as166

Wσ = wσ

∫
0<t1<···<t`<1

e(t1)m1−1 · · · e(t`)m`−1 dt1 · · · dt`, (15)167

where wσ is positive constant.168

Sketch of proof. As for Theorem 2, the analysis is based on a bijection with Dyck paths,169

and the convergence in distribution of random Dyck paths to a Brownian excursion. For170

details, see [8]. J171

AofA 2018



6:6 Patterns in random permutations avoiding some other patterns

In this case, we have an explicit general formula (15) for the limit variables. On the172

other hand, we do not know how to compute even the mean EWσ in general; see [9] for173

calculations in various special cases.174

I Example 5. Let σ = 21. Then w21 = 2−1/2, see [9], and thus (14)–(15), with ` = 1 and175

m1 = m = 2, yield for the number of inversions,176

n21(π321;n)
n3/2

d−→ 2−1/2
∫ 1

0
e(x) dx. (16)177

Note that the limit in (16) differs from the one in (13) by a factor 2.178

5 Avoiding {132, 312}179

In this section we avoid T = {132, 312}. Equivalent sets are {132, 231}, {213, 231}, {213, 312}.180

I Theorem 6. For any m ≥ 2 and σ ∈ Sm(132, 312), as n→∞,181

nσ(π132,312;n)− 21−mnm/m!
nm−1/2

d−→ N
(
0, γ2). (17)182

Sketch of proof. It was shown by [14, Proposition 12] (in an equivalent formulation) that183

a permutation π belongs to the class S∗(132, 312) if and only if every entry πi is either184

a maximum or a minimum. We encode a permutation π ∈ Sn(132, 312) by a sequence185

ξ2, . . . , ξn ∈ {±1}n−1, where ξj = 1 if πj is a maximum in π, and ξj = −1 if πj is a minimum.186

This is a bijection, and hence the code for a uniformly random π132,312;n has ξ2, . . . , ξn i.i.d.187

with the symmetric Bernoulli distribution P(ξj = 1) = P(ξj = −1) = 1
2 .188

Let σ ∈ Sm(132, 312) have the code η2, . . . , ηm. Then πi1 · · ·πim is an occurrence of σ in189

π if and only if ξij = ηj for 2 ≤ j ≤ m. Consequently, nσ(π132,312;n) is a U -statistic190

nσ(π132,312;n) =
∑

i1<···<im

f
(
ξi1 , . . . , ξim

)
, (18)191

where192

f
(
ξ1, . . . , ξm

)
:=

m∏
j=2

1{ξj = ηj}. (19)193

Note that f does not depend on the first argument.194

The result now follows from the theory of U -statistics [6], [11]. J195

I Example 7. For the number of inversions, we have σ = 21 and m = 2, η2 = −1. A196

calculation yields µ = 1
2 and γ2 = 1

12 , and thus Theorem 6 yields197

n21(π132,312;n)− n2/4
n3/2

d−→ N
(
0, 1

12
)
, (20)198

6 Avoiding {231, 312}199

In this section we avoid T = {231, 312}. The only equivalent set is {132, 213}.200

I Theorem 8. Let σ ∈ Sm(231, 312) have block lengths `1, . . . , `b. Then, as n→∞,201

nσ(π231,312;n)− nb/b!
nb−1/2

d−→ N
(
0, γ2). (21)202



S. Janson 6:7

Sketch of proof. It was shown by [14, Proposition 12] (in an equivalent form) that a203

permutation π belongs to the class S∗(231, 312) if and only if every block in π is decreasing,204

i.e., of the type `(` − 1) · · · 21 for some `. Hence there exists exactly one block of each205

length ` ≥ 1, and a permutation π ∈ S∗(231, 312) can be encoded by its sequence of block206

lengths. In this section, let π`1,...,`b
denote the permutation in S∗(231, 312) with block207

lengths `1, . . . , `b.208

A uniformly random permutation π231,312;n can be generated as πL1,...,LB
, where the209

block lengths L1, . . . , LB are obtained from an infinite i.i.d. sequence L1, L2, · · · ∼ Ge( 1
2 ),210

stopped at B such that L1 + · · ·+LB ≥ n, and then adjusting LB such that L1 + · · ·+LB = n.211

Let σ ∈ S∗(231, 312) have block lengths `1, . . . , `b, so that σ = π`1,...,`b
. Then,212

nσ
(
πL1,...,LB

)
=

∑
1≤i1<···<ib≤B

b∏
j=1

(
Lij
`i

)
. (22)213

This is again a kind of U -statistic, but it is based on the sequence L1, . . . , LB of random214

length B, obtained by stopping the infinite sequence Li. Nevertheless, general results for215

U -statistics cover this modification and yield the result, see [11]. J216

I Example 9. For the number of inversions, we have σ = 21 and b = 1, `1 = 2. A calculation217

yields γ2 = 6, and Theorem 8 yields218

n21(π231,312;n)− n
n1/2

d−→ N(0, 6). (23)219

7 Avoiding {231, 321}220

In this section we avoid T = {231, 321}. Equivalent sets are {123, 132}, {123, 213}, {312, 321}.221

I Theorem 10. Let σ ∈ Sm(231, 321) have block lengths `1, . . . , `b, and let b1 be the number222

of blocks of length `i = 1. Then, as n→∞,223

nσ(π231,321;n)− 2b1−bnb/b!
nb−1/2

d−→ N
(
0, γ2). (24)224

Sketch of proof. It was shown by [14, Proposition 12] (in an equivalent form) that a225

permutation π belongs to the class S∗(231, 321) if and only if every block in π is of the type226

`12 · · · (`− 1) for some `. Thus, as in Section 6, a permutation in S∗(231, 321) is determined227

by its block lengths, and these can be arbitrary. Hence, a uniformly random π231,321;n has228

block lengths L1, . . . , LB with the same distribution as in Section 6. Letting now σ be the229

permutation in S∗(231, 321) with block lengths `1, . . . , `b, nσ(π231,321;n) is a function of the230

block lengths L1, . . . , LB that is similar (but not identical) to (22). This time some lower231

order terms appear, but they may be neglected, and the remainder is a U -statistic similar to232

the one in the proof of Theorem 8, and the result follows in the same way. J233

I Example 11. For the number of inversions, we have σ = 21 and b = 1, `1 = 2, b1 = 0. A234

calculation yields γ2 = 1/4, and Theorem 10 yields235

n21(π231,321;n)− n/2
n1/2

d−→ N(0, 1
4 ). (25)236

In fact, in this special case it can be seen that we have the exact distribution237

n21(π231,321;n) ∼ Bi
(
n− 1, 1

2
)
. (26)238
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8 Avoiding {132, 321}239

In this section we avoid T = {132, 321}. Equivalent sets are {123, 231}, {123, 312}, {213, 321}.240

It was shown in [14, Proposition 13] that a permutation π belongs to S∗(132, 321) if and241

only if either π = ιn for some n, or π = πk,`,m for some k, ` ≥ 1 and m ≥ 0, where, in this242

section,243

πk,`,m := (`+ 1, . . . , `+ k, 1, . . . , `, k + `+ 1, . . . , k + `+m) ∈ Sk+`+m. (27)244

Recall that the Dirichlet distribution Dir(1, 1, 1) is the uniform distribution on the simplex245

{(x, y, z) ∈ R3
+ : x+ y + z = 1}.246

I Theorem 12. Let σ ∈ S∗(132, 321). Then the following hold as n→∞.247

(i) If σ = πi,j,p for some i, j, p, then248

n−(i+j+p)nσ(π132,321;n) d−→Wi,j,p := 1
i! j! p!X

iY jZp, (28)249

where (X,Y, Z) ∼ Dir(1, 1, 1).250

(ii) If σ = ιi, then251

n−inσ(π132,321;n) d−→Wi := 1
i!
(
(X + Z)i + (Y + Z)i − Zi

)
, (29)252

with (X,Y, Z) ∼ Dir(1, 1, 1) as in (i).253

Sketch of proof. For asymptotic results, we may ignore the case when π132,321;n = ιn.254

Conditioning on π132,321;n 6= ιn, we have π132,321;n = πK,L,n−K−L, where K and L are255

random with (K,L) uniformly distributed over the set {K,L ≥ 1 : K + L ≤ n}. As n→∞,256

we thus have257 (K
n
,
L

n
,
n−K − L

n

)
d−→ (X,Y, Z) ∼ Dir(1, 1, 1). (30)258

If σ = πi,j,p for some i, j, p, then it is easily seen that259

nσ(πk,`,m) =
(
k

i

)(
`

j

)(
m

p

)
. (31)260

Similarly, if σ = ιi, then, by inclusion-exclusion,261

nσ(πk,`,m) =
(
k +m

i

)
+
(
`+m

i

)
−
(
m

i

)
. (32)262

These exact formulas and (30) yield the results. J263

I Corollary 13. The number of inversions has the asymptotic distribution264

n−2n21(π132,321;n) d−→W := XY, (33)265

with (X,Y ) as above; the limit variable W has density function266

2 log
(
1 +
√

1− 4x
)
− 2 log

(
1−
√

1− 4x
)
, 0 < x < 1/4, (34)267

and moments268

EW r = 2 r!2

(2r + 2)! , r > 0. (35)269
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9 Avoiding {231, 312, 321}270

We proceed to sets of three forbidden patterns. In this section we avoid T = {231, 312, 321}.271

An equivalent set is {123, 132, 213}.272

I Theorem 14. Let σ ∈ Sm(231, 312, 321) have block lengths `1, . . . , `b. Then, as n→∞,273

nσ(π231,312,321;n)− µnb/b!
nb−1/2

d−→ N
(
0, γ2), (36)274

for some constants µ and γ2.275

Sketch of proof. It was shown in [14, Proposition 15∗] (in an equivalent form) that a276

permutation π belongs to the class S∗(231, 312, 321) if and only if every block in π is decreasing277

and has length ≤ 2, i.e., every block is 1 or 21. Hence, a permutation π ∈ Sn(231, 312, 321)278

is uniquely determined by its sequence of block lengths L1, . . . , LB, where each Li ∈ {1, 2}279

and L1 + · · ·+ LB = n.280

Let p := (
√

5− 1)/2, the golden ratio, so that p+ p2 = 1. Let X be a random variable281

with the distribution282

P(X = 1) = p, P(X = 2) = p2. (37)283

Consider an i.i.d. sequence X1, X2, . . . of copies of X, and let Sk :=
∑k
i=1 Xi. Let further284

B(n) := min{k : Sk ≥ n}. Then, conditioned on SB(n) = n, the sequence X1, . . . , XB(n) has285

the same distribution as the sequence L1, . . . , LB of block lengths of a uniformly random286

permutation π231,312,321;n.287

Consequently, nσ(π231,312,321;n) can be expressed as a U -statistic based on X1, . . . , XB ,288

conditioned as above. This conditioning does not affect the asymptotic distribution, see [11],289

and the result follows again by general results for U -statistics. J290

I Example 15. For the number of inversions, σ = 21 we have b = 1. A calculation yields291

µ = 1− p = (3−
√

5)/2 and γ2 = 5−3/2. Consequently,292

n21(π231,312,321;n)− 3−
√

5
2 n

n1/2
d−→ N

(
0, 5−3/2). (38)293

10 Avoiding {132, 231, 312}294

In this section we avoid {132, 231, 312}. Equivalent sets are {132, 213, 231}, {132, 213, 312},295

{213, 231, 312}.296

It was shown in [14, Proposition 16∗] (in an equivalent form) that Sn(132, 231, 312) =297

{πk,n−k : 1 ≤ k ≤ n}, where, in this section,298

πk,` := (k, . . . , 1, k + 1, . . . , k + `) ∈ Sk+`, k ≥ 1, ` ≥ 0. (39)299

I Theorem 16. Let σ ∈ S∗(132, 231, 312). Then the following hold as n→∞, with U ∼300

U(0, 1).301

(i) If σ = πk,m−k with 2 ≤ k ≤ m, then302

n−mnσ(π132,231,312;n) d−→Wk,m−k := 1
k! (m− k)!U

k(1− U)m−k. (40)303
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(ii) If σ = π1,m−1 = ιm, then304

n−mnσ(π132,231,312;n) d−→W1,m−1 := 1
(m− 1)!U(1− U)m−1 + 1

m! (1− U)m

= 1
m!
(
1 + (m− 1)U

)
(1− U)m−1. (41)305

Sketch of proof. The random π132,231,312;n = πK,n−K , where K ∈ [n] is uniformly random.306

Obviously, as n→∞,307

K/n
d−→ U ∼ U(0, 1). (42)308

Furthermore, if σ = πk,`, then it is easy to see that309

nσ
(
πK,n−K

)
=


(
K
k

)(
n−K
`

)
, k ≥ 2,

K
(
n−K
`

)
+
(
n−K
`+1

)
, k = 1.

(43)310

The results follow. J311

I Corollary 17. The number of inversions has the asymptotic distribution312

n−2n21(π132,231,312;n) d−→W := U2/2 (44)313

with U ∼ U(0, 1). Thus, 2W ∼ B( 1
2 , 1), and W has moments314

EW r = 1
2r(2r + 1) , r > 0. (45)315

11 Avoiding {132, 231, 321}316

In this section we avoid {132, 231, 321}. Equivalent sets are {123, 132, 231}, {123, 213, 312},317

{213, 312, 321}, {123, 132, 312}, {123, 213, 231}, {132, 312, 321}, {213, 231, 321}.318

It was shown in [14, Proposition 16∗] (in an equivalent form) that Sn(132, 231, 321) =319

{πk,n−k : 1 ≤ k ≤ n}, where, in this section,320

πk,` := (k, 1, . . . , k − 1, k + 1, . . . , k + `) ∈ Sk+`, k ≥ 1, ` ≥ 0. (46)321

I Theorem 18. Let σ ∈ S∗(132, 231, 321). Then the following hold as n→∞, with U ∼322

U(0, 1).323

(i) If σ = πk,m−k with 2 ≤ k ≤ m, then324

n−(m−1)nσ(π132,231,321;n) d−→Wk,m−k := 1
(k − 1)! (m− k)!U

k−1(1− U)m−k. (47)325

(ii) If σ = π1,m−1 = ιm, then326

n−mnσ(π132,231,321;n) = 1
m! +O

(
n−1) p−→ 1

m! . (48)327

Sketch of proof. The random permutation π132,231,321;n = πK,n−K , where K ∈ [n] is328

uniformly random. The results follow similarly to the proof of Theorem 16. J329

I Corollary 19. The number of inversions n21(π132,231,321;n) has a uniform distribution on330

{0, . . . , n− 1}, and thus the asymptotic distribution331

n−1n21(π132,231,321;n) d−→ U ∼ U(0, 1). (49)332
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12 Avoiding {132, 213, 321}333

In this section we avoid {132, 213, 321}. An equivalent sets is {123, 231, 312}.334

It was shown in [14, Proposition 16∗] (in an equivalent form) that Sn(132, 213, 321) =335

{πk,n−k : 1 ≤ k ≤ n}, where, in this section,336

πk,` := (`+ 1, . . . , `+ k, 1, . . . , `) ∈ Sk+`, k ≥ 1, ` ≥ 0. (50)337

I Theorem 20. Let σ ∈ S∗(132, 213, 321). Then the following hold as n→∞, with U ∼338

U(0, 1).339

(i) If σ = πk,m−k with 1 ≤ k ≤ m− 1, then340

n−mnσ(π132,213,321;n) d−→Wk,m−k := 1
k! (m− k)!U

k(1− U)m−k. (51)341

(ii) If σ = πm,0 = ιm, then342

n−mnσ(π132,213,321;n) d−→Wm,0 := 1
m!
(
Um + (1− U)m

)
. (52)343

Sketch of proof. Similarly to the proof of Theorem 16. J344

I Corollary 21. The number of inversions has the asymptotic distribution345

n−2n21(π132,213,321;n) d−→W := U(1− U), (53)346

with U ∼ U(0, 1). Thus, 4W ∼ B(1, 1
2 ), and W has moments347

EW r = Γ(r + 1)2

Γ(2r + 2) , r > 0. (54)348

A Symmetries349

For any permutation π = π1 · · ·πn, define its inverse π−1 in the usual way, and its reversal350

and complement by351

πr := πn · · ·π1, (55)352

πc := (n+ 1− π1) · · · (n+ 1− πn). (56)353
354

These three operations generate a group G of 8 symmetries (isomorphic to the dihedral group355

D4). It is easy to see that for any symmetry s ∈ G,356

nσs(πs) = nσ(π). (57)357

Thus, if we define T s := {τ s : τ ∈ T}, then358

Sn(T s) = {πs : π ∈ Sn(T )}, (58)359

and, for any permutation σ,360

nσs(πT s;n) d= nσ(πT ;n). (59)361

We say that the sets of forbidden permutations T and T s are equivalent, and note that (59)362

implies that it suffices to consider one set T in each equivalence class {T s : s ∈ G}.363
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