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Abstract. Distance covariance is a measure of dependence between
two random variables that take values in two, in general different, met-
ric spaces, see Székely, Rizzo and Bakirov (2007) and Lyons (2013). It
is known that the distance covariance, and its generalization α-distance
covariance, can be defined in several different ways that are equivalent
under some moment conditions. The present paper considers four such
definitions and find minimal moment conditions for each of them, to-
gether with some partial results when these conditions are not satisfied.

Another purpose of the present paper is to improve existing results
on consistency of distance covariance, estimated using the empirical dis-
tribution of a sample.

The paper also studies the special case when the variables are Hilbert
space valued, and shows under weak moment conditions that two such
variables are independent if and only if their (α-)distance covariance is
0; this extends results by Lyons (2013) and Dehling et al. (2018+). The
proof uses a new definition of distance covariance in the Hilbert space
case, generalizing the definition for Euclidean spaces using characteristic
functions by Székely, Rizzo and Bakirov (2007).

1. Introduction

Distance covariance is a measure of dependence between two random
variables X and Y that take values in two, in general different, spaces X
and Y. This measure appears in Feuerverger [9] as a test statistic when
X = Y = R; it was more generally introduced by Székely, Rizzo and Bakirov
[26] for the case of random variables in Euclidean spaces, possibly of different
dimensions. This was extended to general separable measure spaces by
Lyons [18], see also Jakobsen [12], and to semimetric spaces (of negative
type, see below) by Sejdinovic et al. [23].

Our setting throughout this paper is the following (see also Remark 2.7):
(X,Y) is a pair of random variables taking values in X × Y, where X and
Y are separable metric spaces, with metrics dX and dY ; we write just d for
both metrics when there is no risk of confusion. (All spaces will be separable
throughout, whether said explicitly or not.)

We denote the distance covariance by dcovα(X,Y), where α > 0 is a
parameter. The standard choice is α = 1; in this case we may drop the
subscript and write dcov(X,Y).

In the first part of the present paper, we consider general separable met-
ric spaces and general α > 0, One purpose is to improve existing result on
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consistency of dcovα. Székely, Rizzo and Bakirov [26] showed that in the
Euclidean case and with α ∈ (0, 2), computing dcovα for the empirical distri-
bution of a sample gives a strongly consistent estimator of dcovα, provided
α moments are finite. This was extended to general metric spaces, with
α = 1, by Lyons [18], who claimed consistency in this sense assuming only
finite first moments; however, the proof is incorrect as noted in the Errata to
[18]. (For spaces of negative type, the result holds by another proof in [18].)
As also noted in [18], there is a simple proof assuming second moments,

and Jakobsen [12] proved the result when E(‖X‖‖Y‖)5/6 < ∞, and thus
in particular when X and Y have moments of order 5/3. We remove this
condition and show (Theorem 5.4) consistency assuming only first moments
(as stated in [18]). Furthermore, this is extended to all α > 0, now assuming
α∗ moments with α∗ defined in (2.1).

One interesting feature of distance covariance is that it can be defined in
several ways that look very different but are equivalent (at least assuming
sufficient moment conditions). We will in Section 2 give several definitions,
requiring somewhat different moment conditions. Another purpose of the
present paper is to show that the different definitions agree under the (min-
imal) moment conditions assumed in them (Section 4). We also show that
dcovα depends continuously on the distribution of (X,Y), assuming conver-
gence of appropriate moments (Theorem 5.2 and Remark 5.3).

In the second part of the paper, Sections 6–8, we consider Hilbert spaces.
As said above, the original definition of distance covariance by Székely,
Rizzo and Bakirov [26] is for the case of Euclidean spaces; their defini-
tion (Definition 2.4 below) uses characteristic functions and is thus tied to
Rp. For general separable Hilbert spaces, we give a related definition of
dcovα (Definition 7.1), which replaces the use of characteristic functions
(i.e., Fourier transforms) by certain characteristic random variables, which
are Gaussian random variables that can be defined also for variables in
infinite-dimensional Hilbert spaces. We show that this definition is equiva-
lent to the other ones under suitable moment conditions.

In the Euclidean setting in [9] and [26], with α < 2, the original defini-
tion (our Definition 2.4) implies immediately the fundamental property that
dcovα(X,Y) > 0 for any X and Y, and furthermore

dcovα(X,Y) = 0 ⇐⇒ X and Y are independent. (1.1)

Hence, dcovα(X,Y) can be regarded as a measure of dependency, and dis-
tance covariance can be used to test independence. (As noted in [26], (1.1)
does not hold for α = 2; see Section 8.) Lyons [18] showed that (1.1) does
not hold for general metric spaces, but it holds for α = 1 and metric spaces
of strong negative type (see [18] for the definition). In particular, Lyons [18]
showed that a Hilbert space is of strong negative type, and thus (1.1) holds
for Hilbert spaces and α = 1. Dehling et al. [8, Theorem 4.2] extended
this to all α ∈ (0, 2). We use our new definition of distance covariance
for Hilbert spaces to give a new proof, assuming only α moments, of this
theorem by Dehling et al. [8] (our Theorem 7.6). Our proof (and Defini-
tion 7.1) is based on the ideas in [8]; however, the proof in [8] is formulated
for the Hilbert space L2[0, 1] and uses arguments with Brownian motion.
Our proof can be regarded as a more abstract version of their proof, stated
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for arbitrary (separable) Hilbert spaces and using i.i.d. Gaussian sequences
instead of Brownian motion; we believe that this makes the proof clearer
since it avoids irrelevant details related to the particular choice L2[0, 1] of
the Hilbert space.

Section 8 studies the case α = 2 for Hilbert spaces. This case is rather
trivial, and markedly different from α < 2. In particular, even in one di-
mension, (1.1) does not hold for α = 2, as is well known since [26, §3.1]
and [24, §4.1]. However, this case is of special interest because, as said in
Remark 2.7, and in more detail in Remark 8.4, arbitrary (semi)metric spaces
of negative type can be embedded into it.

In the third part of the paper, we return to general metric spaces and
study whether the moment conditions in the definitions and results are op-
timal. Section 9 shows that the exponents in the conditions cannot be
decreased, in general. However, some other weakenings are possible, and
in Section 10 we further study and compare the various definitions when
the moment conditions above fail. We give some results; in particular, we
consider Lorentz spaces. We also state some open problems that we have
failed to solve.

The appendices contain some general results on uniform integrability and
on integrals in a Hilbert space used in the paper; for completeness full proofs
are given although some or all results are known.

2. Several definitions of distance covariance

We consider (except when stated otherwise) the general setting described
in Section 1, with (X,Y) a pair of random variables taking values in X ×Y,
where X and Y are separable metric spaces. We begin with three related
definitions of distance covariance that work in this general setting, assuming
only some moment conditions on the variables X and Y.

Let, throughout the paper, (X1,Y1), (X2,Y2), . . . be independent copies
of (X,Y). Also, let xo ∈ X and yo ∈ Y be two fixed points, and write for
convenience ‖x‖ := d(x,xo) and ‖y‖ := d(y,yo) for x ∈ X and y ∈ Y. (In
the case of Euclidean spaces, or Hilbert spaces, we choose xo = yo = 0, and
‖x‖ is the usual norm.) We use xo and yo for moment conditions of the
type E‖X‖α < ∞; note that by the triangle inequality, for this condition
the choice of xo does not matter, and that this condition is equivalent to
E d(X1,X2)

α <∞.
Also, define for convenience

α∗ := max(α, 2α− 2) =

{
α, 0 < α 6 2,

2α− 2, α > 2.
(2.1)

As will be seen below, the case of main interest is α ∈ (0, 2]; in this case
thus simply α∗ = α.

When necessary, we distinguish the versions of distance covariance by dif-
ferent superscripts such as dcov∗α, dcovα̂, dcov∼α , but usually this is omitted
because the choice of definition does not matter, or is clear from the context.

Definition 2.1. Assume E‖X‖2α <∞ and E‖Y‖2α <∞. Then

dcovα(X,Y) = dcov∗α(X,Y)
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:= E
[
d(X1,X2)

αd(Y1,Y2)
α
]

+ E
[
d(X1,X2)

α
]
E
[
d(Y1,Y2)

α
]

− 2E
[
d(X1,X2)

αd(Y1,Y3)
α
]
. (2.2)

Definition 2.2. Assume E‖X‖α∗ <∞ and E‖Y‖α∗ <∞. Then

dcovα(X,Y) = dcovα̂(X,Y) := 1
4 E
[
X̂αŶα

]
, (2.3)

where

X̂α := d(X1,X2)
α − d(X2,X3)

α + d(X3,X4)
α − d(X4,X1)

α (2.4)

and similarly for Ŷα.

Definition 2.3. Assume E‖X‖α∗ <∞ and E‖Y‖α∗ <∞. Then

dcovα(X,Y) = dcov∼α (X,Y) := E
[
X̃αỸα

]
, (2.5)

where

X̃α := E(X̂α | X1,X2) (2.6)

= d(X1,X2)
α − EX d(X1,X)α − EX d(X2,X)α + E d(X1,X2)

α (2.7)

and similarly for Ỹα, where EX denotes integrating over X only, i.e., the
conditional expectation given all Xj (but not X).

The role of the parameter α is thus to replace the metric d by dα in the
definition of dcov = dcov1. See further Remark 2.7 below.

Note that dcovα(X,Y) only depends on the joint distribution of X and
Y; thus distance covariance can be seen as a functional on distributions in
X × Y.

The moment condition E‖X‖2α <∞ and E‖Y‖2α <∞ in Definition 2.1
is equivalent to E d(X1,X2)

2α < ∞ and E d(Y1,Y2)
2α < ∞, which implies

that all expectations in (2.2) are finite; it implies also X̂α, Ŷα ∈ L2 and thus

X̃α, Ỹα ∈ L2, so the expectations in (2.3) and (2.5) are also finite. Moreover,
in this case, it is easy to see that Definitions 2.1–2.3 are equivalent: by

expanding the products X̂αŶα and X̃αỸα in (2.3) and (2.5), we obtain (2.2)
after simple calculations. It is less obvious that the weaker moment condition
in Definitions 2.2 and 2.3 is enough to guarantee that the expectations in
(2.3) and (2.5) are finite and equal; we show this, and in particular that

X̂α, Ŷα, X̃α, Ỹα ∈ L2, in Section 4 (Theorem 4.5). In Section 9 we show that
the exponents 2α and α∗ in the moment conditions are optimal in general;
in Section 10 we discuss extensions when the moment conditions fail.

The original definition of distance covariance by Székely, Rizzo and Bakirov
[26], for random variables X and Y in Euclidean spaces Rp and Rq, see also
Feuerverger [9], is quite different and is based on characteristic functions.
The general version with a α ∈ (0, 2) [26, Section 3.1] is as follows.

Let ϕX(t) := E eit·X, ϕY(u) := E eiu·Y and ϕX,Y(t,u) := E ei(t·X+u·Y) be
the characteristic functions of X, Y and (X,Y). Define also the constants

cα,k :=
2αΓ((k + α)/2)

−πk/2Γ(−α/2)
=
α2α−1Γ((k + α)/2)

πk/2Γ(1− α/2)
> 0. (2.8)

(The values of these normalization constants are unimportant; they are cho-
sen to make the definition agree with the preceding ones.)
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Definition 2.4. Let (X,Y) be a pair of random vectors in Rp and Rq,
respectively, where p, q > 1, and let 0 < α < 2. Then

dcovα(X,Y) = dcovE
α(X,Y) :=

cα,pcα,q

∫
t∈Rp

∫
u∈Rq

∣∣ϕX,Y(t,u)− ϕX(t)ϕY(u)
∣∣2 dt du

|t|p+α|u|q+α
. (2.9)

Remark 2.5. No moment condition is needed in Definition 2.4, since the
integrand in (2.9) is non-negative; with this definition (for Euclidean spaces
and α < 2), dcovα(X,Y) is always defined, although it may be ∞. As
shown in [26], dcovα(X,Y) is finite at least when E‖X‖α <∞ and E‖Y‖α <
∞; this also follows from the equivalence with Definitions 2.2 and 2.3, see
Theorems 7.2 and 7.4.

In contrast, we have in Definitions 2.1–2.3 imposed moment conditions
making dcovα(X,Y) finite. These definitions can be used somewhat more
generally when the expectations in them are finite, and even when the result
is +∞; see Sections 9 and 10. However, without moment conditions, there
are cases, even with X = Y = R, when Definitions 2.1–2.3 yield results of
the type ∞−∞ and thus cannot be used at all; see Examples 9.4, 9.7, 9.9
and 9.15. �

Remark 2.6. Definition 2.4 requires α < 2, since typically the integral in
(2.9) diverges for α > 2. For example, if p = q and X = Y ∼ N(0, I),
then |ϕX,Y(t,u)−ϕX(t)ϕY(u)| ∼ |〈t,u〉| as t,u→ 0, and (2.9) diverges for
α > 2. �

Feuerverger [9] gave Definition 2.4 with α = 1 for X = Y = R and the
special case when (X,Y) have the empirical distribution of a finite sample
from an unknown bivariate distribution, thus defining a test statistic for
independence. He also showed that it has the equivalent forms (2.3) and
(2.2). More generally, for arbitrary random (X,Y) in Euclidean spaces and
0 < α < 2, Székely, Rizzo and Bakirov [26] gave Definition 2.4; they also
showed that it is equivalent to Definition 2.1 when the moment condition in
the latter holds [26, Remark 3 for α = 1; implicit in §3.1 for α ∈ (0, 2)]; see
also Székely and Rizzo [24, (3.7), (4.1) and Theorem 8]. Furthermore, (2.5)
was used for finite samples in Székely, Rizzo and Bakirov [26, (2.8) and §3.1]
and Székely and Rizzo [24, (2.8) and §4.1]. The name distance covariance
was introduced by [26] (for the case α = 1, and α-distance covariance in
general). (Actually, [26] and [24] define the distance covariance as the square
root of dcov(X,Y); we ignore this difference in terminology.)

Lyons [18] extended the theory to general (separable) metric spaces, with
α = 1, using Definition 2.3 as his definition. (This was also suggested in [25,
§3].) Lyons [18] showed also that, although the definition works for arbitrary
metrics, dcov is useful as a measure of dependence mainly in the case when
X and Y are metric spaces of negative type (see [18] for a definition; see also
[23], [4] and Remark 2.7 below), because in this case, but not otherwise,
dcov(X,Y) > 0 for any X and Y such that dcov(X,Y) is defined; as said
in the introduction, if furthermore the spaces are of strong negative type,
then also (1.1) holds for α = 1. (The implication that dcovα(X,Y) = 0 for
independent variables is trivial, for any α, but not the converse.) Hence, for
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metric spaces of strong negative type, dcov can be regarded as a measure of
dependence and for tests of independence just as in the Euclidean case.

Dehling et al. [8] studied dcovα in the infinite-dimensional Hilbert space
L2[0, 1] for α ∈ (0, 2), using Definition 2.1. Since all separable infinite-
dimensional Hilbert spaces are isomorphic; this is equivalent to considering
arbitrary separable Hilbert spaces.

2.1. Further comments and extensions. We have here, as [18], assumed
that dX and dY are metrics. However, we can formally use Definitions 2.1–
2.3 for any symmetric measurable functions dX : X × X → [0,∞) and
dY : Y × Y → [0,∞). (For X and Y such that the expectations exist, and
still assuming X and Y to be separable metric spaces, to avoid technical
problems.) It seems natural to assume at least that dX and dY are semimet-
rics; a semimetric on a space X is a symmetric function d : X ×X → [0,∞)
such that d(x1,x2) = 0 ⇐⇒ x1 = x2. (Thus, the triangle inequality is not
assumed. Note that the term semimetric also is used in other context with a
different meaning.) This extension was made by Sejdinovic et al. [23]; they
considered semimetrics of negative type and showed that much of the theory
extends to this case.

Remark 2.7. If 0 < α 6 1, then dα is also a metric for any metric d, and
dcovα is just dcov applied to the spaces X and Y equipped with the metrics
dαX and dαY . (From an abstract point of view, the case α 6 1 thus does not
add anything new.)

If we allow general semimetrics, there is no such restriction; dα is a semi-
metric for every α > 0, and dcovα is just dcov applied to the semimetrics
dαX and dαY for any α > 0.

On the other hand, see [18] and [22], a semimetric d on a space X is
of negative type if and only there exists an embedding ϕ : X → H into a
Hilbert space such that

d(x1,x2) = ‖ϕ(x1)− ϕ(x2)‖2. (2.10)

In particular, (2.10) implies that d1/2 is a metric. (We assume that balls

for the semimetric define the topology, and thus the metric d1/2 defines the
topology of X .) Hence, for semimetrics of negative type, dcovα is the same

as dcov2α for the metrics d
1/2
X and d

1/2
Y ; in particular, dcov equals dcov2 for

these metrics. Consequently, our setting with metrics but arbitrary α in-
cludes also semimetrics of negative type. Furthermore, using the embedding
ϕ, we see that dcov for semimetric spaces of negative type can be reduced
to dcov2 for Hilbert spaces, see Remark 8.4. (This is implicit in [23], where
this embedding is used to give another interpretation of distance covariance,
see Remarks 2.10 and 8.5.)

We will in the sequel assume that dX and dY are metrics (without as-
suming negative type), but note that as just said, by changing α, this really
includes the case of semimetrics of negative type.

In this context we note that if X is a Euclidean space Rq, or more generally
a Hilbert space, then the semimetric ‖x1 − x2‖α is of negative type if and
only if 0 < α 6 2, see [22]. (It is thus a metric of negative type if and
only if 0 < α 6 1.) Consequently, for Hilbert spaces, if 0 < α 6 2, we
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can conversely regard dcovα as dcov for the semimetric of negative type
‖x1 − x2‖α. �

Remark 2.8. Another version of the definitions above is obtained if we
denote the right-hand side of (2.4) by X̂α(X1,X2,X3,X4) and then define

dcovα(X,Y) = dcov=
α (X,Y)

:= E
(
X̂α(X1,X2,X3,X4)Ŷα(Y1,Y2,Y5,Y6)

)
. (2.11)

This version is used in proofs in [18] and [12].

It is obvious that if X̂α, Ŷα ∈ L2, then the expectation in (2.11) is finite,
and, using Fubini’s theorem to integrate first over X3,X4,Y5,Y6, it equals

E
(
X̃αỸα

)
; thus, at least in this case, (2.11) agrees with (2.5). In particular,

by Lemma 4.3 below, this holds when E‖X‖α∗ < ∞ and E‖Y‖α∗ < ∞.
We will not consider this definition further, and we leave the case when the
moment condition just stated fails to the reader. (We conjecture results
similar to those in Sections 9 and 10.) �

Remark 2.9. We have defined X̃α as a conditional expectation of X̂α; this
can be regarded as an orthogonal projection in the Hilbert space L2(P).

If E‖X‖2α <∞, so d(X1,X2)
α ∈ L2, then, as noted by Jakobsen [12], X̃α

can also be regarded as a projection in another way, viz. as the orthogonal
projection of d(X1,X2)

α onto the subspace of L2(P) consisting of functions
g(X1,X2) with E

(
g(X1,X2) | X1

)
= E

(
g(X1,X2) | X2

)
= 0 a.s. �

Remark 2.10. For semimetrics of negative type, another interpretation of
distance covariance is given by Sejdinovic et al. [23, Theorem 24], showing
that it coincides with the Hilbert-Schmidt independence criterion, a distance
measure between the distributions L(X,Y) and L(X1,Y2) = L(X)×L(Y)
that is defined using reproducing Hilbert spaces given by some kernels on
the spaces, provided one chooses the kernels to be defined in a specific way
by the metrics dX and dY . See also Remark 8.5. �

Remark 2.11. Yet another interpretation (or definition) of distance covari-
ance was given by Székely and Rizzo [24] for Euclidean spaces; it was called
Brownian covariance distance. In the one-dimensional case X = Y = R, and
with α = 1, let W and W ′ be two two-sided Brownian motions, independent
of each other and of X and Y; then

dcov(X,Y) = E
[
Cov

(
W (X),W ′(Y)

∣∣W,W ′)2] (2.12)

This was extended, also in [24], to arbitrary dimension by using Brownian
fields on Rk, and to α ∈ (0, 2) by using fractional Brownian fields.

This approach was further generalized to arbitrary spaces with semimet-
rics of negative type by Kanagawa et al. [16, Section 6.4], letting W and
W ′ be Gaussian stochastic processes on X and Y, with suitable covariance
kernels. �

Remark 2.12. Definitions 2.2–2.4 show immediately that dcovα(X,X) > 0
whenever the definition applies (even in the extended sense discussed in
Remark 2.5). Moreover, dcovα(X,X) > 0 unless X is degenerate (i.e., is
concentrated at a single value); this is immediate for Definition 2.4; it was
shown by Lyons [18] for Definition 2.3 (for α = 1), and his proof extends
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to general α, and to Definition 2.2, for the latter even without any moment
assumption (allowing +∞). �

Remark 2.13. Distance correlation is defined by [26] as

dcovα(X,Y)

dcovα(X,X)1/2 dcovα(Y,Y)1/2
, (2.13)

provided X and Y are non-degenerate so the denominator is strictly positive
(see Remark 2.12).

Various properties of distance correlation follow from properties of dis-
tance covariance; we leave this to the reader. �

3. Some notation

As said above, (X,Y) is a pair of random variables taking values in sep-
arable metric spaces X and Y, and (Xi,Yi), i > 1, are independent copies
of (X,Y). α is a fixed parameter, and α∗ is given by (2.1). Unless stated
otherwise, we assume only α > 0. (This condition is sometimes repeated for
emphasis.)
P(X ) denotes the set of all Borel probability measures in X .
Convergence almost surely, in probability, in distribution and in Lp are

denoted by
a.s.−→,

p−→,
d−→,

Lp−→.
We use the standard definition of covariance

Cov(Z,W ) := E[ZW ]− EZ EW (3.1)

not only for real random variables, but also more generally for any complex
random variables Z and W with E |Z|2,E |W |2 <∞; we further extend this
notation to conditional covariance.

For real x, y, x∧ y := min{x, y} and x∨ y := max{x, y}; also x+ := x∨ 0
and x− := (−x)+ = −(x ∧ 0), so x = x+ − x−.

The inner product in a Hilbert space is denoted by 〈x, y〉; for finite-
dimensional Rq we also use x · y. All Hilbert spaces have real scalars, so
the inner product is real-valued.
C and c will denote some unimportant positive constants that depend

only on α (and may be taken as universal constants for α 6 2). Their value
may differ from one occurence to the next.

4. Existence and continuity

We begin by recording the simple fact that with enough moments, Defi-
nitions 2.1–2.3 agree.

Lemma 4.1. Let α > 0. If E‖X‖2α < ∞ and E‖Y‖2α < ∞, then all
expectations in (2.2), (2.3) and (2.5) are finite, and the three definitions of
dcovα(X,Y) agree, i.e., dcov∗α(X,Y) = dcovα̂(X,Y) = dcov∼α (X,Y).

Proof. As said in Section 2, this is elementary; we omit the details. �

We will extend this to the weaker moment conditions used in Defini-
tions 2.2 and 2.3. We argue similarly to Lyons [18], who showed the case
α = 1 (and thus implicitly 0 < α 6 1, see Remark 2.7). We first show some

useful estimates of the variable X̂α defined in (2.4). Note the symmetry up
to sign under cyclic permutations of the indices 1, . . . , 4.
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Although we state the next lemma for the random variables Xi, it is
really a pointwise inequality that could have been stated for four non-random
points x1, . . . ,x4. In sums such as (4.2) and (4.3), the indices are interpreted
modulo 4; moreover, a term containing an index i± 1 should be interpreted
as two terms, with i+ 1 and i− 1; the sum in (4.3) is thus really a sum of
8 terms.

Lemma 4.2. Let X be a metric space.
(i) If 0 < α 6 1, then

|X̂α| 6 2
4∑
i=1

(
‖Xi‖α ∧ ‖Xi+1‖α

)
. (4.1)

(ii) If 0 < α 6 2, then

|X̂α| 6 C
4∑
i=1

‖Xi‖α/2‖Xi+1‖α/2. (4.2)

(iii) If α > 1, then

|X̂α| 6 C
4∑
i=1

‖Xi‖α−1‖Xi±1‖. (4.3)

Proof. Write dij := d(Xi,Xj). Thus X̂α = dα12 − dα23 + dα34 − dα41. Note the
triangle inequality

dij 6 ‖Xi‖+ ‖Xj‖. (4.4)

Case 1: α 6 1. Since dα is a metric when α 6 1, it suffices to consider the
case α = 1. The triangle inequality yields∣∣X̂∣∣ 6 ∣∣d12 − d41∣∣+

∣∣d23 − d34∣∣ 6 d24 + d24 = 2d24. (4.5)

Similarly, by shifting the indices,∣∣X̂∣∣ 6 2d13. (4.6)

Hence, using (4.5)–(4.6) and (4.4),

|X̂| 6 2 min
(
d13, d24

)
6 2 min

(
‖X1‖+ ‖X3‖, ‖X2‖+ ‖X4‖

)
. (4.7)

We claim that for any real x1, . . . , x4 > 0,

(x1 + x3) ∧ (x2 + x4) 6
4∑
i=1

(
xi ∧ xi+1

)
. (4.8)

In fact, by cyclic symmetry, we may without loss of generality assume that
x1 is the largest of x1, . . . , x4, and in this case

x2 + x4 = x1 ∧ x2 + x4 ∧ x1 6
4∑
i=1

(
xi ∧ xi+1

)
, (4.9)

and (4.8) follows. Hence (4.8) holds, and (4.7) implies (4.1) for α = 1. As
said above, this shows (4.1) in general.

Furthermore, for α 6 1, (4.2) follows from (4.1) since x ∧ y 6 x1/2y1/2

when x, y > 0.
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Case 2: α > 1. By the cyclic symmetry we may assume that ‖X1‖ is the
largest of ‖X1‖, . . . , ‖X4‖. Then, (4.4) implies

dij 6 2‖X1‖, i, j = 1, . . . , 4. (4.10)

As above, the triangle inequality yields∣∣d12 − d41∣∣ 6 d24 (4.11)

and thus, by the mean value theorem, for some θ ∈ [0, 1],∣∣dα12 − dα41∣∣ 6 d24α(θd12 + (1− θ)d41
)α−1

. (4.12)

Using (4.10), this yields∣∣dα12 − dα41∣∣ 6 d24α2α−1‖X1‖α−1. (4.13)

Similarly,∣∣dα23 − dα34∣∣ 6 d24α(θ′d23 + (1− θ′)d34
)α−1

6 d24α2α−1‖X1‖α−1. (4.14)

Summing (4.13) and (4.14) yields, using again (4.4),∣∣X̂α

∣∣ 6 ∣∣dα12 − dα41∣∣+
∣∣dα23 − dα34∣∣ 6 α2α‖X1‖α−1d24

6 α2α‖X1‖α−1(‖X2‖+ ‖X4‖). (4.15)

This proves (4.3) for any α > 1.
If 1 6 α 6 2, we further note that our assumption ‖Xj‖ 6 ‖X1‖ implies

‖X1‖α−1‖Xj‖ 6 ‖X1‖α/2‖Xj‖α/2, j = 1, . . . , 4, (4.16)

and thus (4.15) also yields (4.2). �

Lemma 4.3. If E‖X‖α∗ <∞, then E X̂2
α <∞ and E X̃2

α <∞.

For α = 1, this is shown by Lyons [18, Errata].

Proof. Case 1: α 6 2. In this case α∗ = α. Recall that, by definition, Xi

and Xi±1 are independent. Hence,

E
(
‖Xi‖α/2‖Xi+1‖α/2

)2
= E‖Xi‖α E‖Xi+1‖α <∞, (4.17)

so each term in the sum in (4.2) belongs to L2, and thus (4.2) implies

X̂α ∈ L2. Since X̃α is defined by (2.6) as a conditional expectation of X̂α,

this further implies X̃α ∈ L2.

Case 2: α > 2. In this case α∗ = 2(α− 1) > 2, and the result follows in the
same way from (4.3). �

In the following lemma, we consider together with X also a sequences

(X(n))n>1 of random variables in X . We then define X
(n)
i for i > 1 such

that the random variables
(
Xi, (X

(n)
i )n

)
in X∞ are independent copies of(

X, (X(n))n
)
. This extends in the obvious way when we consider sequences(

(X(n),Y(n))
)
n
. We use the superscript (n) in the natural way and let e.g.

X̂
(n)
α be defined as in (2.4) using X

(n)
i .

Lemma 4.4. Let X and X(n), n > 1, be random variables in X , and assume

that E‖X‖α∗ < ∞ and E d(X(n),X)α
∗ → 0 as n→∞. Then E

(
X̂

(n)
α −

X̂α

)2 → 0 and E
(
X̃

(n)
α − X̃α

)2 → 0.
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Proof. We use without further comments some elementary facts about uni-
form integrability, see e.g. [11, Theorems 5.5.4, 5.4.5 and 5.4.6].

Since E d(X(n),X)α
∗ → 0, the sequence d(X(n),X)α

∗
of random variables

is uniformly integrable. The triangle inequality yields ‖X(n)‖ 6 d(X(n),X)+
‖X‖, and thus

‖X(n)‖α∗ 6 C
(
d(X(n),X)α

∗
+ ‖X‖α∗

)
, (4.18)

and it follows that the sequence ‖X(n)‖α∗ is uniformly integrable. Lemma 4.2
and the argument in the proof of Lemma 4.3, using Lemma A.1 in the

appendix, show that the sequence (X̂
(n)
α )2 is uniformly integrable.

Furthermore, we have d(X(n),X)
p−→ 0, and thus d(X

(n)
i ,Xi)

p−→ 0 for

every i. The triangle inequality then implies d(X
(n)
i ,X

(n)
j )

p−→ d(Xi,Xj)

for every i and j, and thus the definition (2.4) implies X̂
(n)
α

p−→ X̂α.

This and the uniform square integrability just established yield E
(
X̂

(n)
α −

X̂α

)2 → 0.

Furthermore, by (2.6), if F is the σ-field generated by all Xj and X
(n)
j with

j ∈ {1, 2}, then X̃α = E(X̂α | F) and X̃
(n)
α = E(X̂

(n)
α | F). Consequently,

E
∣∣X̃(n)

α − X̃α

∣∣2 = E
∣∣E(X̂(n)

α − X̂α | F)
∣∣2 6 E

∣∣X̂(n)
α − X̂α

∣∣2 → 0. (4.19)

�

Theorem 4.5. Definitions 2.1–2.3 are well-defined; more precisely, for any
α > 0, assuming the stated moment conditions, the expectations in (2.2),
(2.3) and (2.5) are finite. Furthermore, any two of these definitions yield
the same result, whenever the moment conditions in both are satisfied.

Proof. Lemma 4.1 shows that all three definitions are valid and agree under
the condition of Definition 2.1, i.e., when E‖X‖2α <∞ and E‖Y‖2α <∞.

It remains to show that (2.3) and (2.5) are finite and agree under the
weaker assumption E‖X‖α∗ <∞ and E‖Y‖α∗ <∞. In this case, Lemma 4.3

shows that X̂α, Ŷα, X̃α, Ỹα ∈ L2, and thus (2.3) and (2.5) are finite.
We do not know a simple direct argument to show the equality of the two

expressions, so we use truncations as follows. Let, for n > 1,

X(n) :=

{
X, ‖X‖ 6 n,
xo, otherwise,

(4.20)

and define Y(n) similarly. Then

E d(X(n),X)α
∗

= E
[
‖X‖α∗1{‖X‖ > n}

] a.s.−→ 0, as n→∞. (4.21)

Thus, Lemma 4.4 yields ‖X̂(n)
α − X̂α‖L2 → 0 and ‖X̃(n)

α − X̃α‖L2 → 0.

Similarly, ‖Ŷ (n)
α − Ŷα‖L2 → 0 and ‖Ỹ (n)

α − Ỹα‖L2 → 0.
The L2-convergence just shown implies that, as n→∞,

dcovα̂(X(n),Y(n)) = 1
4 E
[
X̂(n)
α Ŷ (n)

α

]
→ 1

4 E
[
X̂αŶα

]
= dcovα̂(X,Y) (4.22)

and similarly

dcov∼α (X(n),Y(n)) = E
[
X̂(n)
α Ŷ (n)

α

]
→ E

[
X̂αŶα

]
= dcov∼α (X,Y), (4.23)
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Furthermore, for each n, ‖X(n)‖ and ‖Y(n)‖ are bounded, and thus Lemma 4.1

applies and shows dcovα̂(X(n),Y(n)) = dcov∼α (X(n),Y(n)). Consequently,
(4.22)–(4.23) imply dcovα̂(X,Y) = dcov∼α (X,Y). �

We return in Section 9 to the case when the moment conditions fail.

5. Continuity and consistency

The lemmas in Section 4 yield also continuity results. Unspecified con-
vergence is as n→∞.

Theorem 5.1. Let α > 0. Let (X,Y) and (X(n),Y(n)), n > 1, be pairs of
random variables in X × Y, and assume that E‖X‖α∗ < ∞, E‖Y‖α∗ < ∞
and, as n→∞, E d(X(n),X)α

∗ → 0 and E d(Y(n),Y)α
∗ → 0. Then,

dcovα(X(n),Y(n))→ dcovα(X,Y). (5.1)

Proof. Lemma 4.4 yields X̂
(n)
α

L2

−→ X̂α and Ŷ
(n)
α

L2

−→ Ŷα, and thus

dcovα(X(n),Y(n)) =
1

4
E
[
X̂(n)
α Ŷ (n)

α

]
→ 1

4
E
[
X̂αŶα

]
= dcovα(X,Y). (5.2)

�

We can extend this result and assume only convergence in distribution of
(X(n),Y(n)) together with a moment condition.

Theorem 5.2. Let α > 0. Let (X,Y) and (X(n),Y(n)), n > 1, be pairs of

random variables in X × Y, and assume that, as n→∞, (X(n),Y(n))
d−→

(X,Y). Assume further one of the following two conditions.

(i) The sequences ‖X(n)‖α∗ and ‖Y(n)‖α∗ are uniformly integrable.

(ii) E‖X(n)‖α∗ → E‖X‖α∗ <∞ and E‖Y(n)‖α∗ → E‖Y‖α∗ <∞.

Then,

dcovα(X(n),Y(n))→ dcovα(X,Y). (5.3)

Proof. (i): Since X ×Y is a separable metric space, we may by the Skorohod
coupling theorem [15, Theorem 4.30] without loss of generality assume that

(X(n),Y(n))
a.s.−→ (X,Y). Furthermore, the assumption in (i) implies that

supn E‖X(n)‖α∗ < ∞, and thus E‖X‖α∗ < ∞ by Fatou’s lemma. Since

d(X(n),X) 6 ‖X(n)‖+‖X‖, it follows, similarly to (4.18), that the sequence

d(X(n),X)α
∗

is uniformly integrable. Since we have assumed d(X(n),X)
a.s.−→

0, this implies E d(X(n),X)α
∗ → 0. Similarly, E d(Y(n),Y)α

∗ → 0. Thus
Theorem 5.1 applies and yields (5.3).

(ii): We have X(n) d−→ X and thus ‖X(n)‖ d−→ ‖X‖. This and our

assumption E‖X(n)‖α∗ → E‖X‖α∗ imply that the sequence ‖X(n)‖α∗ is uni-

formly integrable [11, Theorem 5.5.9]. The same holds for Y(n), and thus
part (i) applies. �

Remark 5.3. Suppose that the metric spaces X and Y are complete. (This
ensures that all probability measures are tight; see e.g. [2].) Give X ×Y the
metric (for example)

d
(
(x1,y1), (x2,y2)

)
:= dX (x1,x2) + dY(y1,y2). (5.4)
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Let Pα(X × Y) be the space of all Borel probability measures µ on X × Y
such that

∫
X×Y‖(x,y)‖α dµ(x,y) < ∞. In other words, Pα(X × Y) is the

space of all distributions of pairs of random variables (X,Y) ∈ X × Y such
that E‖X‖α <∞ and E‖Y‖α <∞.

Define a metric in Pα(X × Y) by

dα(µ, µ′) :=

{
inf
{
E
[
d
(
(X,Y), (X′,Y′)

)α]}
, 0 < α 6 1,

inf
{
E
[
d
(
(X,Y), (X′,Y′)

)α]1/α}
, α > 1.

(5.5)

taking the infimum over all pairs of random variables (X,Y) and (X′,Y′)
in X × Y such that (X,Y) ∼ µ and (X′,Y′) ∼ µ′; see e.g. [6, pp. 796–
799 (in the English translation)]. (This is known under various names,
including Kantorovich distance, Wasserstein distance and minimal Lα dis-
tance, see also [21].) Convergence of a sequence L(X(n),Y(n)) of distribu-
tions to L(X,Y) in this metric is equivalent to convergence in distribution

(X(n),Y(n))
d−→ (X,Y) (i.e., weak convergence of the distributions) to-

gether with uniform integrability of ‖X(n),Y(n))‖α∗ (or, equivalently, con-

vergence of moments E‖(X(n),Y(n))‖α∗ → E‖(X,Y)‖α∗).
Theorem 5.1 then says that dcovα is a continuous functional on Pα∗(X ×

Y), for every α > 0. �

5.1. Consistency. Let µ ∈ P(X ×Y) be the distribution of (X,Y). Then,
(X1,Y1), . . . can be regarded as a sequence of independent samples from µ.
Let νn be the empirical distribution of the first n samples, i.e.,

νn :=
1

n

n∑
i=1

δ(Xi,Yi) ∈ P(X × Y). (5.6)

Note that νn is a random probability measure. Hence, its distance covari-
ance dcovα(νn) is a random variable. The following theorem shows that
this random variable converges to dcovα(µ) a.s.; in other words, the dis-
tance covariance of the empirical distribution is a consistent estimator of
the covariance distance of µ. As said in the introduction, this was proved
by Székely, Rizzo and Bakirov [26] for the Euclidean case with α ∈ (0, 2);
for general metric spaces, with α = 1, the result was stated by Lyons [18],
but his proof requires a stronger moment condition. Second moments are
enough for α = 1, see [26, Remark 3]; Jakobsen [12] improved this and
showed that 5/3 moments are enough. The proof in [26, Remark 3] gener-
alizes to arbitrary α > 0, assuming 2α moments.

We can now show consistency assuming only α∗ moments, as required
by our definitions. In particular, this shows that for α = 1, first moments
suffice, as stated in [18]. (The proofs in [18] and [12] use results for V -
statistics which require extra moment assumptions; our proof uses another
method.)

Theorem 5.4. Let µ be the distribution of (X,Y) ∈ X × Y and assume
that E‖X‖α∗ ,E‖Y‖α∗ <∞. If νn is the empirical distribution (5.6), then

dcovα(νn)
a.s.−→ dcovα(µ). (5.7)

Proof. Conditionally on the sequence (νn)n of empirical measures, let (X(n),Y(n))
be a random variable with distribution νn. Since X ×Y is a separable metric
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space, the distribution νn converges a.s. to µ (in the usual weak topology);
see [27] or [2, Problem 4.4]. In other words, a.s., conditionally on (νn)n,

(X(n),Y(n))
d−→ (X,Y).

Furthermore, by the definition (5.6) of νn, conditioning on the sequence
(νk)k,

E
(
‖X(n)‖α∗ | (νk)k

)
=

1

n

n∑
i=1

‖Xi‖α
∗
. (5.8)

Hence, the strong law of large numbers (in R) shows that a.s., conditioned on

(νk)k, E‖X(n)‖α∗ a.s.−→ E‖X‖α∗ , and similarly also E‖Y(n)‖α∗ a.s.−→ E‖Y‖α∗ .
Consequently, Theorem 5.2(ii) applies a.s. to the sequence (νn)n and the cor-

responding random variables (X(n),Y(n)); hence dcovα(νn)
a.s.−→ dcovα(µ).

�

Our proofs of Theorems 5.2 and 5.4 give no information on the rate of
convergence, leading to the following problems.

Problem 5.5. What is the rate of convergence in (5.3), under suitable
hypotheses on (Xn,Yn)?

Problem 5.6. What is the rate of convergence in (5.7), under suitable
hypotheses on (X,Y)?

6. Hilbert spaces, preliminaries

In this and the next two sections we assume that X and Y are separable
Hilbert spaces; we therefore change notation and write X = H and Y = H′.

We give our extension of Definition 2.4 of covariance distance in Section 7,
but we first need some preliminaries.

6.1. Characteristic random variables. Let H be a separable Hilbert
space, of finite or infinite dimension dimH.

Fix an ON-basis (ei)
dimH
1 in H, and let ξi, i = 1, 2, . . . , be i.i.d. N(0, 1)

random variables. Let ξ := (ξi)
dimH
1 , a random vector of length dimH

(finite or infinite). Define for any x ∈ H,

ξ · x = x · ξ :=
dimH∑
i=1

〈x, ei〉ξi. (6.1)

Note that in the finite-dimensional case, ξ ∈ H and this is the usual inner
product. In the infinite-dimensional case ξ /∈ H a.s., but the sum in (6.1)
converges a.s. since

∑
i |〈x, ei〉|2 = ‖x‖2 <∞. Hence, ξ · x is defined a.s. in

any case. Note also that ξ · x is a real-valued random variable, and that

ξ · x ∼ N
(
0, ‖x‖2

)
. (6.2)

Let X be an H-valued random variable, and assume that ξ is independent
of X. Then ξ ·X exists a.s.; thus ξ ·X is a well-defined real-valued random
variable. Consider the conditional expectation

ΦX(ξ) := E
(
eiξ·X

∣∣ ξ). (6.3)

This is a complex-valued random variable (determined a.s.), which can be
written as a (deterministic) function of ξ.



ON DISTANCE COVARIANCE IN METRIC AND HILBERT SPACES 15

In the finite-dimensional case dimH < ∞, we may identify H with Rq,
with (ej)

q
1 as the standard basis. Then (6.1) and (6.3) show that

ΦX(ξ) = ϕX(ξ) a.s., (6.4)

where ϕX(t) := E eit·X is the usual characteristic function. For this rea-
son, we say, for a general Hilbert space H, that ΦX(ξ) is the characteristic
random variable of X.

Note that ΦX(ξ) is a complex random variable, with∣∣ΦX(ξ)
∣∣ 6 1 a.s. (6.5)

ΦX(ξ) depends on the choices of (ej)j and (ξj)j , but these choices are re-
garded as fixed. Moreover, the following theorem says that ΦX(ξ) has the
same fundamental property as the usual characteristic function: it depends
on X only through its distribution, and conversely, it characterizes the dis-
tribution.

Theorem 6.1. Let H be a separable Hilbert space, and let X and Y be
H-valued random variables. Fix as above an ON-basis (ei)

dimH
1 in H, and

a random vector ξ := (ξi)1 of i.i.d. standard normal random variables ξi,
i = 1, 2, . . . , and assume further that these are independent of X and Y.
Then

X
d
= Y ⇐⇒ ΦX(ξ) = ΦY(ξ) a.s. (6.6)

We prove first a lemma that will help to reduce to the finite-dimensional
case.

Lemma 6.2. Let X be an H-valued random variable and let ξ = (ξi)i be as
above, and in particular independent of X. Then, for any ε > 0, the event{
E
(
1 ∧ |ξ ·X|

∣∣ ξ) < ε
}

has positive probability.

More generally, for any finite set of random variables X(1), . . . ,X(m) in H,
all independent of ξ, the events

{
E
(
1∧|ξ·X(j)|

∣∣ ξ) < ε
}

hold simultaneously
with positive probability.

Proof. For finite N 6 dimH, let ΠN be the orthogonal projection of H onto
the subspace HN spanned by e1, . . . , eN . Let X6N := ΠNX and X>N :=
X−X6N , and define ξN := (ξ1, . . . , ξN ) and ξ>N := (ξN+1, ξN+2, . . . ). Then
we can write, interpreting the dot products in the obvious way in analogy
with (6.1),

ξ ·X = ξN ·X6N + ξ>N ·X>N . (6.7)

Assume in the remainder of the proof that dimH =∞; the case dimH <
∞ is similar but simpler, taking N := dimH below so X>N = 0.

Since the sum in (6.1) converges a.s., and ξ>N ·X>N is the tail of this sum,

it follows that ξ>N ·X>N
a.s.−→ 0 as N →∞. Consequently, by dominated

convergence,

E
(
1 ∧ |ξ>N ·X>N |

)
→ 0 as N →∞. (6.8)

Let

WN := E
(
1 ∧ |ξ>N ·X>N |

∣∣ ξ). (6.9)
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Then (6.8) shows EWN → 0; hence we may choose N < ∞ such that
EWN < ε/4. Then Markov’s inequality yields

P
(
WN < ε/2

)
> 1− EWN

ε/2
>

1

2
. (6.10)

Moreover, for each i 6 N , again by dominated convergence,

E
(
1 ∧ |s〈X, ei〉|

)
→ 0 as s→ 0, (6.11)

and thus there exists δi > 0 such that if |s| < δi, then

E
(
1 ∧ |s〈X, ei〉|

)
<

ε

2N
. (6.12)

Recalling (6.7) and (6.1), we see that

|ξ ·X| 6
N∑
i=1

|ξi〈X, ei〉|+ |ξ>N ·X>N | (6.13)

and thus

1 ∧ |ξ ·X| 6
N∑
i=1

(
1 ∧ |ξi〈X, ei〉|

)
+
(
1 ∧ |ξ>N ·X>N |

)
. (6.14)

Hence, recalling (6.9),

E
(
1 ∧ |ξ ·X|

∣∣ ξ) 6 N∑
i=1

E
(
1 ∧ |ξi〈X, ei〉|

∣∣ ξi)+WN . (6.15)

Consequently, if ξ is such that WN < ε/2 and |ξi| < δi for i = 1, . . . , N , then
(6.12) implies

E
(
1 ∧ |ξ ·X|

∣∣ ξ) < N∑
i=1

ε

2N
+
ε

2
= ε. (6.16)

Since the events {WN < ε/2} and {|ξi| < δi} are independent and each has
positive probability, they occur together with positive probability, and thus
(6.16) holds with positive probability.

This proves the first part of the lemma. The second is proved in the same

way, choosing N so large that (6.10) holds with WN replaced by
∑m

j=1W
(j)
N ,

where W
(j)
N is defined by (6.9) but using X(j) instead of X, and then choosing

δi so small that (6.12) holds for each X(j) �

Proof of Theorem 6.1. =⇒ : If X
d
= Y, then (X, ξ)

d
= (Y, ξ) and (6.1)

implies (ξ ·X, ξ)
d
= (ξ ·Y, ξ) which by (6.3) implies ΦX(ξ) = ΦY(ξ) a.s.

⇐= : We let N 6 dimH be finite and use the notation in the proof of
Lemma 6.2. Then (6.7) holds, and thus∣∣eiξ·X − eiξN ·X6N

∣∣ =
∣∣eiξ>N ·X>N − 1

∣∣ 6 2 ∧ |ξ>N ·X>N |. (6.17)

Hence,∣∣E(eiξ·X ∣∣ ξ)− E
(
eiξN ·X6N

∣∣ ξ)∣∣ 6 E
(
2 ∧ |ξ>N ·X>N |

∣∣ ξ) a.s. (6.18)

Using (6.3), (6.18) can be written, since ξN and ξ>N are independent,∣∣ΦX(ξ)− ΦX6N (ξN )
∣∣ 6 E

(
2 ∧ |ξ>N ·X>N |

∣∣ ξ>N) a.s. (6.19)
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Similarly, with analoguous notation,∣∣ΦY(ξ)− ΦY6N (ξN )
∣∣ 6 E

(
2 ∧ |ξ>N ·Y>N |

∣∣ ξ>N) a.s. (6.20)

The assumption ΦX(ξ) = ΦY(ξ) a.s. thus implies∣∣ΦX6N (ξN )− ΦY6N (ξN )
∣∣

6 E
(
2 ∧ |ξ>N ·X>N |

∣∣ ξ>N)+ E
(
2 ∧ |ξ>N ·Y>N |

∣∣ ξ>N) a.s. (6.21)

Lemma 6.2 (applied to X>N and Y>N ) implies that for any ε > 0, the right-
hand side of (6.21) is less than 4ε with positive probability. Furthermore,
the left-hand side of (6.21) is a function of ξN , and the right-hand side is a
function of ξ>N ; thus the two sides are independent. Consequently, (6.21)
implies ∣∣ΦX6N (ξN )− ΦY6N (ξN )

∣∣ < 4ε a.s. (6.22)

Since ε is arbitrary, this shows

ΦX6N (ξN ) = ΦY6N (ξN ) a.s. (6.23)

Since X6N and Y6N live in the finite-dimensional space HN , (6.4) applies
and shows

ϕX6N (ξN ) = ΦX6N (ξN ) = ΦY6N (ξN ) = ϕY6N (ξN ) a.s., (6.24)

where ϕX6N (t) and ϕY6N (t) are the ordinary characteristic functions in RN
(identified with HN ). Hence,

ϕX6N (t) = ϕY6N (t) (6.25)

for a.e. t ∈ RN , and since characteristic functions are continuous, (6.25)
holds for all t ∈ RN , and thus

X6N
d
= Y6N . (6.26)

If dimH <∞, we may choose N = dimH and the result X
d
= Y follows.

(Much of the argument above is not needed in this case.)
If dimH = ∞, then (6.26) holds for every finite N . Furthermore, as

N →∞, we have X6N
a.s.−→ X and thus X6N

d−→ X and similarly Y6N
d−→

Y. Consequently, X
d
= Y, which completes the proof. �

Remark 6.3. The mapping x 7→ ξ ·x is an isometry of H onto the Gaussian
Hilbert space spanned by the random variables ξi, and it can be regarded
as an abstract stochastic integral, cf. [13, Chapter VII.2]. It replaces the Itô
integrals used in [8]. �

Remark 6.4. The arguments above are related to the proof of [18, Theorem
3.16]. We sketch the connection: That proof uses an embedding φ of the
Hilbert space into L2(R∞×R); if we compose φ with the Fourier transform
f 7→

∫
e2πitxf(x) dx acting on the last variable (which is an isometry), we

obtain an equivalent embedding φ̂, which in our notation equals

φ̂ : x→ i

2πt

(
eic
′tξ·x − 1

)
∈ L2(P×dt) (6.27)
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for a constant c′ > 0. Hence, if µ = L(X), the distribution of X, then,
combining the notation of [18] and ours,

βφ̂(µ) := E
(
φ′(X) | ξ

)
=

i

2πt

(
Φc′tX(ξ)− 1

)
. (6.28)

Hence, the result in [18, Theorem 3.16] that βφ(µ) characterises µ is closely
related to, and follows from, Theorem 6.1. Furthermore, the two proofs are
similar; both are based on approximating with the finite-dimensional case
which is easy. �

6.2. Independence and characteristic random variables. Now con-
sider a pair of random variables (X,Y) taking values in two, possibly dif-
ferent, separable Hilbert spaces H and H′. Fix, as above, an ON-basis
(ei)

dimH
1 in H, and i.i.d. N(0, 1) random variables ξi, i = 1, 2, . . . . Simi-

larly, fix an ON-basis (e′j)
dimH′
1 in H′, and i.i.d. N(0, 1) random variables

ηj , j = 1, 2, . . . . Assume that all ξi and ηj are independent of each other
and of (X,Y).

Then (X,Y) is a random variable in the Hilbert space H⊕H′ = H×H′,
and e1, e

′
1, e2, e

′
2, . . . is an ON-basis in this space. Let ξ = (ξi)

dimH
1 , η :=

(ηi)
dimH′
1 , and ζ := (ξ1, η1, ξ2, η2, . . . ).

Theorem 6.5. Let (X,Y) be a pair of random variables taking values in
separable Hilbert spaces H and H′. Then, with notation as above, X and Y
are independent if and only if

E
(
eiξ·X+iη·Y ∣∣ ξ,η) = E

(
eiξ·X

∣∣ ξ)E(eiη·Y ∣∣ η) a.s. (6.29)

Proof. Let Y′ be a copy of Y, independent of X, ξ,η. Then, X and Y are

independent if and only if (X,Y)
d
= (X,Y′), and the result follows from

Theorem 6.1, applied to the Hilbert space H × H′, noting that with the
bases and Gaussian variables above, ζ · (X,Y) = ξ ·X +η ·Y a.s., and thus

Φ(X,Y)(ζ) = E
(
eiζ·(X,Y)

∣∣ ξ,η) = E
(
eiξ·X+iη·Y ∣∣ ξ,η), (6.30)

while, by independence and Y
d
= Y′,

Φ(X,Y′)(ζ) = E
(
eiξ·X+iη·Y′ ∣∣ ξ,η) = E

(
eiξ·X

∣∣ ξ)E(eiη·Y′ ∣∣ η)
= E

(
eiξ·X

∣∣ ξ)E(eiη·Y ∣∣ η) a.s. (6.31)

�

Note that, by (3.1), (6.29) may be written

Cov
(
eiξ·X, eiη·Y

∣∣ ξ,η) = 0 a.s. (6.32)

7. Covariance distance in Hilbert space

We give a new definition of covariance distance for Hilbert spaces; it
can be seen as a version of Definition 2.4 for Euclidean spaces, where we
replace the characteristic functions there by the characteristic random vari-
ables defined in Section 6, which makes the extension to infinite-dimensional
Hilbert spaces possible. (The definition is inspired by [8, Lemma 4.1]; see
Remark 6.3.)
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Define, for 0 < α < 2,

cα :=
21+α/2

−Γ(−α/2)
=

α2α/2

Γ(1− α/2)
. (7.1)

Definition 7.1. Let (X,Y) be a pair of random vectors in separable Hilbert
spaces, and let 0 < α < 2. Then, with notation as in Section 6,

dcovα(X,Y) = dcovH
α(X,Y)

:= c2α

∫ ∞
0

∫ ∞
0

E
∣∣Φ(rX,sY)(ξ,η)− ΦrX(ξ)ΦsY(η)

∣∣2 dr ds

rα+1sα+1
(7.2)

= c2α

∫ ∞
0

∫ ∞
0

E
∣∣∣E(eirξ·X+isη·Y | ξ,η

)
− E

(
eirξ·X | ξ

)
E
(
eisη·Y | η

)∣∣∣2
dr ds

rα+1sα+1
(7.3)

= c2α

∫ ∞
0

∫ ∞
0

E
∣∣Cov

(
eirξ·X, eisη·Y | ξ,η

)∣∣2 dr ds

rα+1sα+1
. (7.4)

The expressions (7.2)–(7.4) are equal by the definitions (6.3) and (3.1)
above, cf. (6.30) and (6.32). Note that no moment assumtions are made;
as for Definition 2.4, the definition works for any (X,Y) in these spaces,
but dcovα(X,Y) may be infinite. Furthermore, as shown in the next the-
orem, for the special case of Euclidean spaces, Definition 7.1 agrees with
Definition 2.4, again without moment conditions.

Theorem 7.2. Let 0 < α < 2. If (X,Y) is a pair of random vectors
in Euclidean spaces Rp and Rq, then Definitions 2.4 and 7.1 agree, i.e.,
dcovE

α(X,Y) = dcovH
α(X,Y).

Proof. Assume that H = Rp and H′ = Rq. Then (6.4) implies

Φ(rX,sY)(ξ,η) = ϕ(rX,sY)(ξ,η) = ϕ(X,Y)(rξ, sη) (7.5)

and thus, since rξ ∼ N(0, r2Ip) and sη ∼ N(0, s2Iq), where Ik is the identity

matrix in Rk,

E
∣∣Φ(rX,sY)(ξ,η)− ΦrX(ξ)ΦsY(η)

∣∣2 = E
∣∣ϕ(X,Y)(rξ, sη)− ϕX(rξ)ϕY(sη)

∣∣2
=

∫
t∈Rp

∫
u∈Rq

∣∣ϕ(X,Y)(t,u)− ϕX(t)ϕY(u)
∣∣2 e−|t|2/2r2

(2πr2)p/2
e−|u|

2/2s2

(2πs2)q/2
dt du.

(7.6)

Substituting this in (7.2), we obtain (2.9) by interchanging the order of
integration, because, by elementary calculations,∫ ∞

0

e−|t|
2/2r2

(2πr2)p/2
dr

rα+1
=

2α/2−1Γ((p+ α)/2)

πp/2
|t|−p−α =

cα,p
cα
|t|−p−α, (7.7)

see (2.8) and (7.1), and similarly for the integral over s. �

Remark 7.3. The proof of Theorem 7.2 together with Remark 2.6 shows
that the restriction α < 2 in Definition 7.1 is necessary; for α > 2, the
integrals diverge typically, for example for H = H′ = R and X = Y ∼
N(0, 1). (We conjecture that for α > 2, the integrals always diverge except
when X and Y are independent, but we have not verified that.) �
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We return to the general Hilbert space case, and show that Definition 7.1
agrees with the earlier ones; this is an abstract version of [8, Lemma 4.1],
where the Hilbert spaces are L2[0, 1], see Remark 6.3.

Theorem 7.4. Let 0 < α < 2. If (X,Y) is a pair of random vectors
in Hilbert spaces H and H′, and E‖X‖α < ∞ and E‖Y‖α < ∞, then

Definitions 2.2, 2.3 and 7.1 agree, i.e., dcovH
α(X,Y) = dcovα̂(X,Y) =

dcov∼α (X,Y), and this value is finite.

Proof. Let again (X1,Y1), . . . be i.i.d. copies of (X,Y), and assume that ξ
and η are independent of all of them. Then, using (6.30)–(6.31) and (6.2),

E
∣∣Φ(rX,sY)(ξ,η)− ΦrX(ξ)ΦsY(η)

∣∣2
= EE

[(
eirξ·X1+isη·Y1 − eirξ·X1+isη·Y2

)(
e−irξ·X3−isη·Y3 − e−irξ·X3−isη·Y4

) ∣∣ ξ,η]
= E

[(
eirξ·X1+isη·Y1 − eirξ·X1+isη·Y2

)(
e−irξ·X3−isη·Y3 − e−irξ·X3−isη·Y4

)]
= E eirξ·(X1−X3)+isη·(Y1−Y3) − E eirξ·(X1−X3)+isη·(Y1−Y4)

− E eirξ·(X1−X3)+isη·(Y2−Y3) + E eirξ·(X1−X3)+isη·(Y2−Y4)

= E e−
r2

2
‖X1−X3‖2− s

2

2
‖Y1−Y3‖2 − E e−

r2

2
‖X1−X3‖2− s

2

2
‖Y1−Y4‖2

− E e−
r2

2
‖X1−X3‖2− s

2

2
‖Y2−Y3‖2 + E e−

r2

2
‖X1−X3‖2− s

2

2
‖Y2−Y4‖2 .

(7.8)

Define the real-valued random variable

ΛX(u) := E e−u‖X1−X2‖2 − E e−u‖X2−X3‖2 + E e−u‖X3−X4‖2 − E e−u‖X4−X1‖2

(7.9)

and define ΛY (u) similarly. Then, by expanding the product and using
symmetry,

E
[
ΛX(u)ΛY (v)

]
= 4
(
E e−u‖X1−X3‖2−v‖Y1−Y3‖2 − E e−u‖X1−X3‖2−v‖Y1−Y4‖2

− E e−u‖X1−X3‖2−v‖Y2−Y3‖2 + E e−u‖X1−X3‖2−v‖Y2−Y4‖2
)
. (7.10)

Consequently, (7.8) yields

E
∣∣Φ(rX,sY)(ξ,η)− ΦrX(ξ)ΦsY(η)

∣∣2 =
1

4
E
[
ΛX

(r2
2

)
ΛY
(s2

2

)]
(7.11)

and the definition (7.3) yields, with a change of variables,

dcovH
α(X,Y) =

c2α
4

∫ ∞
0

∫ ∞
0

E
[
ΛX

(r2
2

)
ΛY
(s2

2

)] dr ds

rα+1sα+1

=
c2α

24+α

∫ ∞
0

∫ ∞
0

E
[
ΛX(u)ΛY (v)

] dudv

uα/2+1vα/2+1
. (7.12)

We rewrite (7.9) as, with indices interpreted modulo 4,

ΛX(u) =

4∑
i=1

(−1)i−1e−u‖Xi−Xi+1‖2 =
4∑
i=1

(−1)i
(
1− e−u‖Xi−Xi+1‖2

)
. (7.13)
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Recall that for 0 < γ < 1, see [19, (5.9.5)],∫ ∞
0

(
1− e−x

)
x−γ−1 dx = −Γ(−γ). (7.14)

Hence, (7.13) and a change of variables yield∫ ∞
0

ΛX(u)
du

uα/2+1
=

4∑
i=1

(−1)i
∫ ∞
0

(
1− e−u‖Xi−Xi+1‖2

) du

uα/2+1

= −Γ(−α/2)

4∑
i=1

(−1)i‖Xi −Xi+1‖α

= Γ(−α/2)X̂α. (7.15)

If we naively interchange order of integrations and expectation in (7.12), and

use (7.15), we obtain (2.3) and thus dcovH
α(X,Y) = dcovα̂(X,Y), since cα

is defined in (7.1) so that constant factors cancel. However, this interchange
requires justification; indeed it is not always allowed, since the expectation
in (2.3) does not always exist, not even as an extended real number, see
Example 9.7, while (7.2)–(7.4) always exist in [0,∞].

Hence, we introduce an integrating factor. Let M > 0; we will later let
M →∞. Similarly to (7.15), we have∫ ∞

0
e−MuΛX(u)

du

uα/2+1

=

4∑
i=1

(−1)i
∫ ∞
0

(
e−Mu − e−u(‖Xi−Xi+1‖2+M)

) du

uα/2+1

= −Γ(−α/2)
4∑
i=1

(−1)i
((
‖Xi −Xi+1‖2 +M

)α/2 −Mα/2
)
. (7.16)

Let α ∈ (0, 2) be given and define, for x > 0,

hM (x) := xα/2 +Mα/2 − (x+M)α/2. (7.17)

Then, (7.15) and (7.16) yield∫ ∞
0

(
1− e−Mu

)
ΛX(u)

du

uα/2+1
= Γ(−α/2)

4∑
i=1

(−1)i−1hM
(
‖Xi −Xi+1‖2

)
=: Γ(−α/2)X̂α;M , (7.18)

where thus we define

X̂α;M :=

4∑
i=1

(−1)i−1hM
(
‖Xi −Xi+1‖2

)
. (7.19)

Note also that the integrand in (7.12) is non-negative by (7.11). Hence,
(7.12) and monotone convergence yield

dcovH
α(X,Y)

= lim
M→∞

c2α
24+α

∫ ∞
0

∫ ∞
0

(
1− e−Mu

)(
1− e−Mv

)
E
[
ΛX(u)ΛY (v)

] dudv

uα/2+1vα/2+1
.

(7.20)
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Furthermore, |ΛX(u)| and |ΛY (v)| are bounded (by 4) by (7.13), and thus
Fubini applies so we may interchange expectation and integrations in (7.20),
which by (7.18) yields, recalling (7.1),

dcovH
α(X,Y) = lim

M→∞
1
4 E[X̂α;M Ŷα;M ]. (7.21)

Since α/2 ∈ (0, 1), the function hM in (7.17) is increasing, with hM (0) = 0

and hM (x) ↗ Mα/2 as x→∞. Similarly, hM (x) = hx(M) ↗ xα/2 as
M →∞; hence, the definitions (7.19) and (2.4) yield

X̂α;M → X̂α as M →∞. (7.22)

Furthermore, if 0 6 x 6 y, then

0 6 hM (y)− hM (x) 6 yα/2 − xα/2, (7.23)

and it follows that for any Z1,Z2 ∈ H,∣∣hM(‖Z1‖2
)
− hM

(
‖Z2‖2

)∣∣ 6 ∣∣‖Z1‖α − ‖Z2‖α
∣∣. (7.24)

We claim that Lemma 4.2 holds for X̂α;M too, so that, in particular,

|X̂α;M | 6 C
4∑
i=1

‖Xi‖α/2‖Xi+1‖α/2, (7.25)

where the constant C does not depend on M . This is seen by repeating the

proof of Lemma 4.2, recalling the definition (7.19) of X̂α;M and using (7.24);
we omit the details.

Let X̂∗ be the right-hand side of (7.25). We now use the assumption

E‖X‖α <∞, which implies that X̂∗ ∈ L2. Similarly, |Ŷα;M | 6 Ŷ ∗ with Ŷ ∗ ∈
L2. Consequently, |X̂α;M Ŷα;M | 6 X̂∗Ŷ ∗ ∈ L1, so dominated convergence
applies to (7.21) and we obtain, by (7.22),

dcovH
α(X,Y) = 1

4 E[ lim
M→∞

X̂α;M Ŷα;M ] = 1
4 E[X̂αŶα] = dcovα̂(X,Y), (7.26)

using (2.3). Hence, Definitions 7.1 and 2.2 agree (under the given moment
condition). By Theorem 4.5, they agree with Definition 2.3 too; furthermore,
the value is finite. �

Remark 7.5. Note that the proof shows that (7.21) holds for any random
variables in Hilbert spaces, without any moment condition. (With the result
possibly +∞.) �

7.1. Independence and distance covariance. For (separable) Hilbert
spaces, as said in the introduction, Lyons [18, Theorem 3.16] showed that
(1.1) holds for α = 1, and Dehling et al. [8, Theorem 4.2] extended this to
all α ∈ (0, 2). That is, they proved (a version of) the following, which we
now easily can prove using the results above.

Theorem 7.6 (Dehling et al. [8, Theorem 4.2]). Let X = H and Y = H′
be separable Hilbert spaces and let α ∈ (0, 2). Use Definition 2.1, 2.2, 2.3
or 7.1, and assume (for the first three) the moment condition there. Then
dcovα(X,Y) = 0 if and only if X and Y are independent.
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Proof. For Definitions 2.1–2.3, the moment condition there and Theorems 4.5
and 7.2 show that dcovα(X,Y) equals dcovH

α(X,Y) given by Definition 7.1.

Hence, we may in all cases use dcovH
α . It follows from (7.3) that dcovH

α(X,Y) =
0 if and only if (6.29) holds, and the result follows by Theorem 6.5. �

Remark 7.7. This theorem is stated in [8] for the case X = Y = L2[0, 1] (so
X and Y are stochastic processes on [0, 1]), but since all infinite-dimensional
separable Hilbert spaces are isomorphic; the result can be stated as above.
(Only stochastic processes X,Y that satisfy some smoothness conditions
are considered in [8], but this is for other reasons and is not needed for
Theorem 7.6.)

The theorem in [8] is stated assuming only finite α moments, as we do
above for Definitions 2.2 and 2.3; however, [8] uses Definition 2.1 which in
general requires somewhat more for existence, see Theorem 9.1 below. �

Remark 7.8. Theorem 7.6 includes the case when X or Y has finite dimen-
sion, i.e., is a Euclidean space.

Furthermore, although the theorem is stated for separable Hilbert spaces,
it extends also to non-separable spaces, provided we assume that X and Y
are Bochner measurable, for the trivial reason that this implies that X and
Y a.s. take values in some separable subspaces H1 and H′1. �

Remark 7.9. The proof of Theorem 7.6 would be much simpler if distance
covariance was monotone under orthogonal projections, so that we would
have dcovα(ΠNX,ΠNY) 6 dcovα(X,Y). However, this is not always the
case, even in finite dimension, as is seen by the following example. �

Example 7.10. Let X = Y = R2 and let X = (X ′, X ′′) and Y = (Y ′, Y ′′),
where X ′ = Y ′, but X ′, X ′′, Y ′′ are independent and non-degenerate. (For
definiteness, we may take X ′, X ′′, Y ′′ ∼ Be(1/2), or N(0, 1).) Let Π : R2 →
R be the standard projection onto the first coordinate, so (ΠX,ΠY) =
(X ′, Y ′).

For a ∈ R, let X(a) := (X ′, aX ′′) and Y(a) := (Y ′, aY ′′); thus (X(1),Y(1)) =
(X,Y) and (X(0),Y(0)) = (X ′, Y ′) (regarding R as a subspace of R2). For
t = (t′, t′′) and u = (u′, u′′), we have

ϕX(a),Y(a)(t,u) = E ei(t
′X′+u′X′+t′′aX′′+u′′aY ′′)

= ϕX′(t
′ + u′)ϕX′′(at

′′)ϕY ′′(au
′′) (7.27)

and similarly (or by taking t = 0 or u = 0 in (7.27))

ϕX(a)(t) = ϕX′(t
′)ϕX′′(at

′′), ϕY(a)(u) = ϕX′(u
′)ϕY ′′(au

′′). (7.28)

Hence, (2.9) yields

dcovα(X(a),Y(a))

= cα,2cα,2

∫
t∈R2

∫
u∈R2

∣∣ϕX′(t′ + u′)− ϕX′(t′)ϕX′(u′)
∣∣2∣∣ϕX′′(at′′)ϕY ′′(au′′)∣∣2

dt du

|t|2+α|u|2+α
(7.29)

and it is obvious that
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dcovα(X,Y) = dcovα(X(1),Y(1))

< dcovα(X(0),Y(0)) = dcovα(X ′, Y ′) = dcovα(ΠX,ΠY). (7.30)

Thus, an orthogonal projection might increase distance covariance.
It can obviously also decrease it; for example the projection onto the

second coordinate above yields (X ′′, Y ′′) with dcovα(X ′′, Y ′′) = 0. �

8. Hilbert spaces and α = 2

We continue to assume that X and Y are Hilbert spaces; we now consider
the case α = 2. Note that Definition 7.1 does not apply (it requires α < 2,
see Remark 7.3), so we return to the general Definitions 2.1–2.3.

In this case, (2.4) yields, by expanding all ‖Xi −Xj‖2,

X̂2 = −2〈X1,X2〉+ 2〈X2,X3〉 − 2〈X3,X4〉+ 2〈X4,X1〉
= 2〈X1 −X3,X4 −X2〉. (8.1)

Assume, as in Definitions 2.2 and 2.3, that E‖X‖2 < ∞. Then EX exists,
in Bochner sense (see Appendix B), and (2.6) together with (8.1) yield

X̃2 = E
(
X̂2 | X1,X2

)
= −2〈X1 − EX,X2 − EX〉. (8.2)

We thus see directly that (4.2) and (4.3) hold, and thus X̂2, X̃2 ∈ L2 if
E‖X‖2 <∞, as asserted by Lemma 4.3.

In particular, in the 1-dimensional case X = R,

X̂2 = 2(X1 −X3)(X4 −X2), X̃2 = −2(X1 − EX)(X2 − EX), (8.3)

with the latter assuming E |X|2 < ∞. Consequently, if X = Y = R and
E |X|2,E |Y|2 <∞, then Definition 2.3 yields, using (8.3) and independence,

dcov2(X,Y) = E
[
X̃2Ỹ2

]
= 4Cov(X,Y)2, (8.4)

as noted by Székely, Rizzo and Bakirov [26]. (Definitions 2.1–2.2 agree by
Theorems 4.5.) This extends to higher dimensional Euclidean spaces and,
more generally, Hilbert spaces as follows. Let H ⊗ H′ denote the Hilbert
space tensor product of H and H′, see e.g. [13, Appendix E]; recall that this
is a Hilbert space such that there is a bilinear map ⊗ : H ×H′ → H ⊗H′
with

〈x1 ⊗ y1,x2 ⊗ y2〉H⊗H′ = 〈x1,x2〉H〈y1,y2〉H′ ; (8.5)

furthermore, if {ei}i and {e′j}j are ON-bases in H and H′, then {ei ⊗ e′j}i,j
is an ON-basis in H ⊗ H′. (Note that the mapping ⊗ is neither injective
nor surjective, but the set of finite linear combinations

∑
i xi ⊗ yj is dense

in H⊗H′.) Hence, X⊗Y is a random variable in H⊗H′ with ‖X⊗Y‖ =
‖X‖ ‖Y‖.

Theorem 8.1. Let X = H and Y = H′ be separable Hilbert spaces, and
assume E‖X‖2 < ∞ and E‖Y‖2 < ∞. Let (ei)i and (e′j)j be ON-bases in

H and H′. Then,

dcov2(X,Y) = 4
∑
i,j

Cov
(
〈X, ei〉, 〈Y, e′j〉

)2
(8.6)

= 4
∥∥E(X⊗Y)− EX⊗ EY

∥∥2
H⊗H′ (8.7)
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Proof. Since dcovα(X,Y) and the expressions in (8.6)–(8.7) are invariant
under (deterministic) shifts of X and Y, we may for convenience assume
EX = EY = 0. Then, by (8.2),

X̃2Ỹ2 = 4〈X1,X2〉〈Y1,Y2〉 = 4
∑
i,j

〈X1, ei〉〈X2, ei〉〈Y1, e
′
j〉〈Y2, e

′
j〉. (8.8)

We have, by the Cauchy–Schwarz inequality,∑
i

∣∣〈X1, ei〉〈X2, ei〉
∣∣ 6 (∑

i

〈X1, ei〉2
)1/2(∑

i

〈X2, ei〉2
)1/2

= ‖X1‖ ‖X2‖

(8.9)

and thus, by independence and the Cauchy–Schwarz inequality again,

E
∑
i,j

∣∣〈X1, ei〉〈X2, ei〉〈Y1, e
′
j〉〈Y2, e

′
j〉
∣∣ 6 E

[
‖X1‖ ‖X2‖ ‖Y1‖ ‖Y2‖

]
=
(
E
[
‖X1‖ ‖Y1‖

])2
6 E‖X1‖2 E‖Y1‖2 <∞. (8.10)

Hence, (8.8) yields by Fubini’s theorem, justified by (8.10),

E
[
X̃2Ỹ2

]
= 4

∑
i,j

E
[
〈X1, ei〉〈X2, ei〉〈Y1, e

′
j〉〈Y2, e

′
j〉
]

= 4
∑
i,j

(
E
[
〈X, ei〉〈Y, e′j〉

])2
(8.11)

which yields (8.6).
Moreover, {ei ⊗ e′j}i,j is an ON-basis in H⊗H′, and thus∥∥E(X⊗Y)

∥∥2 =
∑
i,j

〈E(X⊗Y), ei ⊗ e′j〉2 =
∑
i,j

(
E〈X⊗Y, ei ⊗ e′j〉

)2
=
∑
i,j

(
E
[
〈X, ei〉〈Y, e′j〉

])2
(8.12)

which together with (8.11) yields (8.7). �

Corollary 8.2. Let X = H and Y = H′ be separable Hilbert spaces, and
assume E‖X‖2 <∞ and E‖Y‖2 <∞. Then, the following are equivalent:

(i) dcov2(X,Y) = 0.
(ii) Cov

(
〈X,x〉, 〈Y,y〉

)
= 0 for every x ∈ H, y ∈ H′.

(iii) E(X⊗Y)− EX⊗ EY = 0.

Proof. For (i) =⇒ (ii), and x,y 6= 0, choose ON-bases such that e1 = x/‖x‖
and e′1 = y/‖y‖. The rest is immediate from Theorem 8.1. �

Székely, Rizzo and Bakirov [26] observed that for α = 2 and real-valued
variables, dcov2(X,Y) = 0 does not characterize independence but instead
that X and Y are uncorrelated; Corollary 8.2 extends this to Hilbert spaces,
in the sense (ii) or (iii) above.

Remark 8.3. E(X ⊗ Y) − EX ⊗ EY ∈ H ⊗ H′ can be regarded as the
covariance of the vector-valued variables X and Y; cf. the general theory
of higher moments of Banach space valued variables in [14], where the mo-
ment lives in a suitable tensor product. (The general theory in [14] focusses
on a single variable and on the projective and injective tensor products,
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but see [14, Remarks 3.24 and 3.25]. Since we assume separable spaces
and E‖X‖2,E‖Y‖2 < ∞, there are no problems with integrability; cf. [14,
Theorem 5.14].) �

Remark 8.4. Let X and Y both be metric spaces such that dα is a semimet-
ric of negative type. Then, see Remark 2.7, there are embeddings ϕ : X → H
and ϕ′ : Y → H′ into Hilbert spaces such that

dX (x1,x2)
α = ‖ϕ(x1)− ϕ(x2)‖2, dY(y1,y2)

α = ‖ϕ′(y1)− ϕ′(y2)‖2.
(8.13)

It follows immediately that, for any of Definitions 2.1–2.3,

dcovα(X,Y) = dcov2

(
ϕ(X), ϕ′(Y)

)
. (8.14)

Hence, dcovα(X,Y) can be interpreted as in Theorem 8.1 for the embedded
variables, as shown (for α = 1) in [18, Proposition 3.7]. �

Remark 8.5. The Hilbert space tensor product H ⊗ H′ can be identified
with the space of Hilbert–Schmidt operators H → H′ (see (B.18) and the
proof of Lemma B.7); then E(X⊗Y)−EX⊗EY = E[(X−EX)⊗(Y−EY)]
corresponds to the operator x 7→ E[〈x,X − EX〉(Y − EY)], known as the
covariance operator (or cross-covariance operator [1]). Thus Theorem 8.1
says that dcov2(X,Y) is 4 times the squared Hilbert–Schmidt norm of the
covariance operator.

More generally, if X and Y both are metric spaces such that dα is a
semimetric of negative type, then (8.14) shows that dcovα(X,Y) equals
dcov2(ϕ(X), ϕ′(Y)) for some embeddings ϕ : X → H and ϕ′ : Y → H′ into
Hilbert spaces. Hence, dcovα(X,Y) equals 4 times the squared Hilbert–
Schmidt norm of the covariance operator corresponding to the embedded
variables, as shown in [23, Theorem 24]; this Hilbert–Schmidt norm (or its
square) is called the Hilbert–Schmidt independence criterion (HSIC) [10],
[23, §3.3]; cf. Remark 2.10. �

Remark 8.6. If α is an even integer larger than 2, we can similarly express
dcovα in moments of X and Y, but the resulting formulas are complicated
and do not seem to be of any interest. For example, for α = 4, for X = Y =
R, and taking for simplicity X = Y with EX = 0,

dcov4(X,X) = 32E[X2]E[X6]− 96E[X3]E[X5] + 68(E[X4])2

−72(E[X2])2 E[X4] + 64E[X2](E[X3])2 + 36(E[X2])4. (8.15)

We do not know any application or interesting properties of dcovα with
α > 2. �

9. Optimality of moment conditions

We have so far assumed the moment conditions stated in Definitions 2.1–
2.3; these seem natural and convenient for applications. Nevertheless, it is
of interest to study whether they really are required for the definitions, and
what happens when we try to extend one of the definitions to cases when the
moment condition fails. Definitions 2.4 and 7.1 are stated without moment
conditions, but we similarly can ask when the results are finite and whether
they agree with the other definitions.
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In this section, we will give examples showing that the moment conditions
in Definitions 2.1–2.3 are optimal in general, in the sense that if we reduce
the exponent in the moment condition, then there exist counterexamples
where the definition either yields an infinite value or is meaningless. On
the other hand, there are also cases where the moment conditions do not
hold but the definitions yield a finite value. We explore these possibilities
in the next section, but our results are incomplete, and we leave a number
of (explicit or implicit) open problems.

In general, if we try to define dcovα(X,Y) by (2.2) or (2.3) for some X
and Y, there are three possibilities:

(dc1) The expression yields a finite value; this may then be taken to be
dcovα(X,Y). This happens when all expectations in (2.2) or (2.3),
respectively, are finite. (For (2.2), it also includes the trivial case
when X or Y is degenerate, so d(Xi,Xj) = 0 a.s. or d(Yi,Yj) = 0
a.s.; then all terms in (2.2) are 0, if necessary interpreting 0 ·∞ = 0.)

(dc2) The expression makes sense as either +∞ or −∞. We may then take
it as defining dcovα(X,Y), now with an infinite value in {−∞,∞}.
(We do not know whether −∞ can happen, see Problem 10.20.)
Thus, at least one expectation is infinite. Furthermore, for (2.2),
where all expectations are of non-negative variables and thus de-
fined in [0,∞], this means that either the two first expectations are
finite, or the third expectation is; for (2.3) this means that one of

E
[
(X̂αŶα)+

]
and E

[
(X̂αŶα)−

]
is finite and the other infinite, so the

expectation E
[
X̂αŶα

]
is defined as +∞ or −∞.

(dc3) The expression (2.2) or (2.3) is of the type ∞ − ∞. Then it is
meaningless, and dcovα(X,Y) is undefined (by this definition).

For Definition 2.3, we have the same possibilities as for Definition 2.2, but

also the complication that X̃α and Ỹα have to be defined, see (2.6)–(2.7).
We thus have another bad case:

(dc4) X̃α or Ỹα is not defined. Then dcov∼α (X,Y) is undefined.

For Euclidean spaces, we also have Definition 2.4, and for Hilbert spaces
we have Definition 7.1. Since (2.9) and (7.2)–(7.4) are integrals of non-
negative functions, Definitions 2.4 and 7.1 are always meaningful, but may
yield +∞. In other words, we have only the cases (dc1) and (dc2). Again
we may ask when the definition yields a finite value, and when it agrees
with other definitions; in particular whether the moment conditions in The-
orem 7.4 are best possible.

The moment conditions assumed in Definitions 2.1–2.3 guarantee, as seen
in Theorem 4.5, that the good case (dc1) occurs. In the following subsections
we investigate more generally when the cases (dc1)–(dc4) occur, and whether
the different definitions still agree when more than one of them applies.

9.1. Optimality in Definition 2.1. We begin with Definition 2.1, where
we have a simple necessary and sufficient condition.

Theorem 9.1. (i) If E‖X‖α + E‖Y‖α + E[‖X‖α‖Y‖α] < ∞, then all
expectations in (2.2) are finite, so (2.2) defines dcov∗α(X,Y) as a finite
number.
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Moreover, in this case also the definitions (2.3) and (2.5) yield the same
result, i.e., dcov∗α(X,Y) = dcovα̂(X,Y) = dcov∼α (X,Y).

(ii) Conversely, if E‖X‖α+E‖Y‖α+E[‖X‖α‖Y‖α] =∞, and X and Y
are non-degenerate, then (2.2) is of the type ∞−∞ and thus meaningless.

In particular, Case (dc2), i.e., a well-defined infinite value of dcov∗α, never
occurs for Definition 2.1.

Proof. (i): This follows by minor modifications of the argument used under
slightly stronger assumptions in Section 2 and Lemma 4.1. Note that the
assumption implies that E[‖Xi‖α‖Yj‖α] < ∞ for all i and j, and thus it
follows from the triangle inequality (4.4) that all expectations in (2.2) are

finite. Moreover, the assumption implies, using (4.4) again, that X̂α, Ŷα ∈
L1, and thus X̃α and Ỹα are defined by (2.6)–(2.7), and also that X̂αŶα ∈ L1

and X̃αỸα ∈ L1. We omit the details.
(ii): If E‖X‖α = ∞, then E d(x,X2)

α = ∞ for any x, and thus, by
first conditioning on (X1,Y1) and (X3,Y3) and integrating over X2 only,
both E

[
d(X1,X2)

α
]

=∞ and E
[
d(X1,X2)

αd(Y1,Y3)
α
]

=∞; hence, since

E
[
d(Y1,Y2)

α
]
> 0, we see that (2.2) is of the type ∞−∞.

By symmetry, the same holds if E‖Y‖α =∞.
Finally, suppose that E[‖X‖α‖Y‖α] = ∞. By the cases just treated,

we may assume that also E‖X‖α < ∞ and E‖Y‖α < ∞. Then, using the
triangle inequality and integrating only over the event {‖X2‖, ‖Y2‖, ‖Y3‖ 6
M}, for an M so large that this event has positive probability, we see that
both the first and last expectations in (2.2) are ∞, and thus (2.2) is ∞−
∞. �

Remark 9.2. If Theorem 9.1(i) applies and dcovE
α(X,Y) or dcovH

α(X,Y) is
defined, i.e., if α < 2 and the spaces are Euclidean spaces or Hilbert spaces,
respectively, then it too equals dcov∗α(X,Y). This follows by Theorem 9.1
together with Theorems 7.2 and 7.4. �

Example 9.3. If X and Y are independent with E‖X‖α <∞ and E‖Y‖α <
∞, then Theorem 9.1(i) applies and (2.2) makes perfect sense; Definitions 2.1–
2.3 all can be used, and all yield 0. �

Example 9.4. Let X be arbitrary with E‖X‖2α = ∞, and let Y = X.
Then, Theorem 9.1(ii) shows that dcov∗α(X,X) is of the type ∞−∞ and
does not make sense. Consequently, in general, the moment condition in
Definition 2.1 is necessary. (In particular, for every (X,Y) with Y = X.)
�

9.2. Optimality in Definition 2.2. We have already seen in Example 9.4
that the moment condition in Definition 2.1 is necessary, in a strong sense.
We next show that the moment conditions in Definitions 2.2 and 2.3 also
are optimal, in the sense that if we reduce the exponent, there are coun-
terexamples. However, there are also examples where these definitions yield
finite values although the moment condition fails.

Consider first Definition 2.2. X̂α and Ŷα are always defined by (2.4), so

the question is whether E[X̂αŶα] exists or not, and whether its value is finite

of not. Note, in particular, that dcovα̂(X,X) := 1
4 E X̂

2
α always is defined,
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although it may be +∞; we have

dcovα̂(X,X) <∞ ⇐⇒ X̂α ∈ L2. (9.1)

Note also that, by rotational symmetry in the indices in (2.4), X̂α has a

symmetric distribution. Thus E X̂α = 0 whenever the expectation exists.

Example 9.5. Let X = Y = R, and suppose that X > 0 with P(X = 0) > 0.
On the event X3 = X4 = 0, we have

−X̂α = Xα
1 + Xα

2 − |X1 −X2|α > Xα
1 ∧Xα

2 . (9.2)

Hence, if E |X̂α|2 <∞, then

∞ > E
[(

Xα
1 ∧Xα

2

)2]
= E

[
X2α

1 ∧X2α
2

]
=

∫ ∞
0

P
[
X2α

1 ∧X2α
2 > t

]
dt =

∫ ∞
0

P
[
X2α > t

]2
dt

= 2α

∫ ∞
0

P
[
X > x

]2
x2α−1 dx. (9.3)

If we choose X such that, for x > 2 say,

P(X > x) = x−α, (9.4)

then E |X|γ <∞ for every γ < α, but the integral in (9.3) diverges and thus

E |X̂α|2 = ∞; hence (2.3) yields dcovα̂(X,X) = ∞ by (9.1). (Case (dc2).)
Consequently, when α 6 2, the exponent α∗ = α is optimal in Definition 2.2
(in order to yield a finite value). �

Example 9.6. Let α > 1 and X = Y = R, and suppose, for simplicity, that
X > 0 with P(X = 0) = P(X = 1) = 1/4. On the event X2 = X3 = 0,
X4 = 1, we have for some c > 0, assuming that X1 > 2, say,

X̂α = Xα
1 − |X1 − 1|α + 1 > cXα−1

1 . (9.5)

Hence, for these values of X2,X3,X4, we have X̂α > cXα−1
1 − C. Conse-

quently, E |X̂α|2 <∞ =⇒ EX2(α−1) <∞.
We can choose X as above such that EXγ < ∞ for every γ < 2α −

2, but EX2α−2 = ∞ and consequently E |X̂α|2 = ∞; thus, (2.3) yields
dcovα(X,X) = ∞. (Case (dc2).) Hence, when α > 2, the exponent α∗ =
2α− 2 is optimal in Definition 2.2. �

Example 9.7. We have here given examples with E |X̂α|2 = ∞, so that
(2.3) gives dcovα̂(X,X) = +∞.

Similarly, (9.2) and a calculation as in (9.3) show that if, say, P(X > x) =

x−α/2 for x > 2, then E |X̂α| = ∞. Since X̂α has a symmetric distribution
by (2.3), it follows that if Y is any non-degenerate random variable such
that X and Y are independent, then the expectation in (2.3) is of the type
∞−∞ and thus undefined (Case (dc3) above); hence Definition 2.2 cannot
be applied at all (even allowing ±∞ as a result). �

Example 9.8. Let X = Y = R and consider the special (and rather excep-

tional) case α = 2, cf. Section 8. Then X̂2 is given by (8.3), and it follows
easily that

X̂2 ∈ L2 ⇐⇒ E |X|2 <∞, (9.6)
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and that for X = Y, (8.4) holds in the form

dcov2̂(X,X) = 1
4 E[X̂2

2 ] = 4
(
Var X

)2
(9.7)

for any X, where the expressions all are infinite when E |X|2 = ∞. This
shows again that the condition of finite α∗ moment in Definition 2.2 cannot
be improved when α = 2, if we want dcov2(X,X) to be finite. Furthermore,
if we take Y = ζX where X and ζ are independent with EX = 0, E[X2] =

∞, ζ ∈ {±1} and E ζ = 0, then E[X̂2Ŷ2] is of the type ∞−∞; hence, even
allowing infinite values, dcov2̂(X,Y) cannot be defined by Definition 2.2
without assuming second moments. �

9.3. Optimality in Definition 2.3. We now turn to Definition 2.3. As

noted above, X̃α is only defined for some X. If we use the conditional

expectation definition in (2.6), then we have to require X̂α ∈ L1, i.e.,

E |X̂α| < ∞. On the other hand, the explicit formula (2.7) makes sense
only if E d(X1,X2)

α <∞, or equivalently E‖X‖α <∞, since otherwise also
the conditional expectations in (2.7) are +∞ a.s., and thus (2.7) is ∞−∞.

Moreover, if E‖X‖α <∞, then X̂α ∈ L1 by (2.4), and (2.6) agrees with (2.7).

Hence we may take (2.6) as the primary definition of X̃α, and say that X̃α

is defined when X̂α ∈ L1. This holds in particular when E‖X‖α < ∞, and

then (2.7) holds too, but note that Lemma 4.2 shows that E‖X‖α∗/2 < ∞
suffices for X̂α ∈ L1.

Hence, X̃α is defined if and only if X̂α ∈ L1, and then X̃α ∈ L1; further-
more

E X̃α = EE
(
X̂α | X1,X2

)
= E X̂α = 0. (9.8)

Moreover, in this case, also

E
(
X̃α | X1

)
= E

(
E
(
X̂α | X1,X2

)
| X1

)
= E

(
X̂α | X1

)
= 0, (9.9)

since X̂α has a symmetric distribution also when conditioned on X1, by
symmetry in (2.4).

Example 9.9. Recall that Example 9.7 gives an example where X̂α /∈ L1;

hence, X̃α is not defined and thus dcov∼α (X,X) is undefined. �

We note a general result relating X̃α and X̂α. By (2.6), X̃α is (a.s.) a

function of X1 and X2; let us (temporarily) write X̃α as X̃α(X1,X2), so
that we can substitute other Xi as arguments. The following lemma shows

that X̂α can be recovered from X̃α.

Lemma 9.10. Suppose that X̂α ∈ L1. Then, a.s.,

X̂α = X̃α(X1,X2)− X̃α(X2,X3) + X̃α(X3,X4)− X̃α(X4,X1). (9.10)

Consequently, for any p > 1,

X̃α exists and X̃α ∈ Lp ⇐⇒ X̂α ∈ Lp. (9.11)

Proof. If E‖X‖α < ∞, this is obvious from (2.7) and cancellations. In
general, we use truncations. Let, for M > 0, IM := 1{|X| 6 M}, IMi :=
1{|Xi| 6M}, and let pM := E IM = P

(
|Xi| 6M

)
. Then,
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E
(
IM3 IM4 X̂α | X1,X2

)
= p2Md(X1,X2)

α − pM EX

(
IMd(X2,X)α

)
+ p2M E

(
IM3 IM4 d(X3,X4)

α
)
− pM EX

(
IMd(X1,X)α

)
(9.12)

and consequently, by rotational symmetry and cancellations, interpreting all
indices modulo 4,

4∑
i=1

(−1)i−1 E
(
IMi+2I

M
i+3X̂α | Xi,Xi+1

)
= p2M

4∑
i=1

(−1)i−1d(Xi,Xi+1)
α

= p2MX̂α. (9.13)

Since we assume X̂α ∈ L1, we have IMi+2I
M
i+3X̂α

L1

−→ X̂α as M →∞, and
thus

E
(
IMi+2I

M
i+3X̂α | Xi,Xi+1

) L1

−→ E
(
X̂α | Xi,Xi+1

)
= X̃α(Xi,Xi+1). (9.14)

Hence, as M →∞, the left-hand side of (9.13) converges in L1 to the right-
hand side of (9.10), while the right-hand side of (9.13) obviously converges

to X̂α. Hence, (9.10) follows.
Finally, (9.11) is an immediate consequence of (9.10) and (2.6). �

In particular, this leads to the following for the case Y = X. Note that

dcov∼α (X,X) := E X̃2
α is defined whenever X̃α is, although it may be +∞;

cf. dcovα̂(X,X) discussed above.

Theorem 9.11. Let X be a random variable in a metric space. Then the
following are equivalent:

(i) dcovα̂(X,X) <∞.

(ii) dcov∼α (X,X) <∞ (which includes that X̃α is defined).

(iii) X̂α ∈ L2.

(iv) X̃α is defined and X̃α ∈ L2.

Furthermore, if these hold, then dcovα̂(X,X) = dcov∼α (X,X).

Proof. (i) ⇐⇒ (iii): This follows directly from the definition (2.3), as noted
in (9.1).

(ii) ⇐⇒ (iv): Follows similarly from the definition (2.5).
(iii) ⇐⇒ (iv): By Lemma 9.10.

Finally, suppose that (i)–(iv) hold. Use (9.10) and expand (X̂α)2 as a sum

of products. Since X̃α ∈ L2, each product is in L1, so we may take their
expectations separately. Furthermore, (9.9) implies that all off-diagonal

terms such as E[X̃α(X1,X2)X̃α(X2,X3)] = 0, and we obtain

E
[
X̂2
α

]
=

4∑
i=1

E
[
X̃α(Xi,Xi+1)

2
]

= 4E
[
X̃2
α

]
. (9.15)

Hence, dcovα̂(X,X) = 1
4 E
[
X̂2
α

]
= E

[
X̃2
α

]
= dcov∼α (X,X). �

Corollary 9.12. (i) If X̂α ∈ L1, so X̃α is defined, then dcovα̂(X,X) =
dcov∼α (X,X) (finite or infinite).

(ii) If X̂α /∈ L1, then dcovα̂(X,X) =∞ and dcov∼α (X,X) is undefined.
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Proof. Follows from Theorem 9.11, considering the three cases X̂α ∈ L2,

X̂α ∈ L1 \ L2 and X̂α /∈ L1 separately. �

If we only care about finite values and regard ∞ as ’undefined’, we thus
see that dcov∼α (X,X) = dcovα̂(X,X) for all X.

Example 9.13. Let α 6 2 and let X ∈ R be as in Example 9.5; thus
X > 0 and (9.4) holds. We have E |X|γ < ∞ for every γ < α, and in

particular E|X|α/2 <∞; hence Lemma 4.2(ii) implies that X̂α ∈ L1. Thus,

X̃α exists, but X̂α /∈ L2 by Example 9.5; hence Theorem 9.11 shows that
dcov∼α (X,X) = ∞. Consequently, the exponent α∗ = α is optimal in Defi-
nition 2.3 when α 6 2. �

Example 9.14. Similarly, let α > 2 and let X ∈ R be as in Example 9.6.
Then, E|X|γ < ∞ for every γ < 2α − 2, and in particular E|X|α−1 < ∞;

hence Lemma 4.2(iii) implies that X̂α ∈ L1. Thus, X̃α exists, but X̂α /∈
L2 by Example 9.6; hence Theorem 9.11 shows that dcov∼α (X,X) = ∞.
Consequently, the exponent α∗ = 2α − 2 is optimal in Definition 2.3 when
α > 2. �

Hence, the exponent α∗ is optimal in Definition 2.3 too.

Example 9.15. Let α = 2 and X = Y = R as in Example 9.8, and assume

that EX = 0. Then, by (8.3), X̃2 exists and X̃2 = −2X1X2. Hence, we find
directly the same conclusions for dcov∼α as found for dcovα̂ in Example 9.8.
In particular, with X and Y = ζX as in the final part of Example 9.8,

E
[
X̃2Ỹ2

]
is of the type ∞−∞ and thus undefined. (Case (dc3).) �

9.4. Optimality for dcovE
α and dcovH

α. Definitions 2.4 and 7.1 do not
require any moment conditions; if X and Y are Euclidean spaces or Hilbert
spaces, respectively, then dcovE

α(X,Y) and dcovH
α(X,Y) are always defined,

but may be +∞. (Recall also that Theorem 7.2 shows that for spaces where

both are defined, we always have dcovE
α(X,Y) = dcovH

α(X,Y), finite or
not.) Theorem 7.4 shows that the moment condition E‖X‖α,E‖Y‖α < ∞
is sufficient to guarantee that dcovE

α(X,Y) = dcovH
α(X,Y) is finite. (Recall

that this is the same moment condition as in Definitions 2.2 and 2.3.) The
following example shows that the exponent α in this moment condition is
optimal, even for random variables in R.

Example 9.16. Let 0 < α < 2, and let X be a symmetric stable random
variable in R with the characteristic function ϕX(t) = e−|t|

α
. Then E|X|α =

∞, but E |X|γ <∞ for every γ < α.
Take Y = X. Then, for 0 6 t 6 1 and t 6 u 6 2t,

ϕX,X(t,−u)− ϕX(t)ϕX(−u) = e−|t−u|
α − e−|t|α−|u|α

> e−t
α − e−2tα > ctα, (9.16)

for some c > 0. Consequently, (2.9) yields, changing the sign of u,

dcovE
α(X,X) > c

∫ 1

t=0

∫ 2t

u=t
t2α

dtdu

t1+αu1+α
= c

∫ 1

t=0

t2α

t1+2α
dt =∞. (9.17)
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Hence, using Theorem 7.2, dcovH
α(X,X) = dcovE

α(X,X) = ∞. The condi-
tion in Theorem 7.4 on finite α moments thus cannot be replaced by any
lower moments in order to guarantee finite values. �

10. Beyond the moment conditions

We continue to investigate cases when the moment condition in Defini-
tions 2.2–2.3 fails; now with the aim of obtaining positive results.

10.1. A weaker condition. We begin with dcovα̂ in Definition 2.2, and
show first that the counterexample in Example 9.5 is optimal, at least when
α 6 1.

Theorem 10.1. Let X be any separable metric space, and let 0 < α 6 1.
If ∫ ∞

0
P
[
‖X‖ > x

]2
x2α−1 dx <∞, (10.1)

then E |X̂α|2 <∞ and thus dcovα̂(X,X) <∞.

Proof. The calculation in (9.3) shows that (10.1) is equivalent to

E
[(
‖X1‖α ∧ ‖X2‖α

)2]
<∞. (10.2)

In other words, ‖X1‖α ∧ ‖X2‖α ∈ L2. Hence, Lemma 4.2(i) shows that

X̂α ∈ L2. �

Remark 10.2. Let 0 < α 6 1. Then, e.g. using Lemma 10.4 below, the
argument in Example 9.5 is easily extended to show that if X = R, then

(10.1) is also necessary for E |X̂α|2 < ∞. Thus, at least for α 6 1 and
X = R, (10.1) is both necessary and sufficient for dcovα̂(X,X) <∞. �

Remark 10.3. It is easy to see directly that the condition (10.1) follows
from the condition E‖X‖α < ∞ in Lemma 4.3. (We omit the details.)
Furthermore, (10.1) is a strictly weaker condition, and thus, for α 6 1,
Theorem 10.1 is stronger than Lemma 4.3. For example, if we instead of
(9.4) choose, for x > e,

P(X > x) = x−α/ log x, (10.3)

then EXα =∞, but the integral in (9.3) converges and Theorem 10.1 shows

that E |X̂α|2 <∞ and dcovα̂(X,X) <∞. �

Hence, although we have seen that the exponent in the moment condition
in Definition 2.2 is best possible, Theorem 10.1 shows that for α 6 1, the
moment condition can be weakened to the condition (10.1) (together with
the same for Y); we postpone the details to Theorem 10.6, where we also

extend it to dcovE
α and dcovH

α .
Before proceeding, we note that when α 6 1, we may simplify the condi-

tion X̂α ∈ L2 by the following lemma.

Lemma 10.4. Let p > 0. If 0 < α 6 1, then

X̂α ∈ Lp ⇐⇒ ‖X1‖α + ‖X2‖α − d(X1,X2)
α ∈ Lp. (10.4)
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Note that (for α 6 1) the right-hand side is non-negative by the triangle
inequality.

Proof. =⇒ : Since E |X̂α|p < ∞, the conditional expectation E
(
|X̂α|p |

X3, X4

)
∈ L1. Hence, there exist some x3 and x4 such that E

(
|X̂α|p | X3 =

x3, X4 = x4

)
∈ L1, which by the definition (2.4) means

d(X1,X2)
α − d(X1,x4)

α − d(X2,x3)
α ∈ Lp. (10.5)

The triangle inequality yields, for j = 3, 4,∣∣d(X,xj)− ‖X‖
∣∣ 6 d(xj ,xo) = O(1), (10.6)

and thus, since α 6 1, ∣∣d(X,xj)
α − ‖X‖α

∣∣ = O(1), (10.7)

and the result follows.
⇐= : Immediate (for any α), since the definition (2.4) can be written

X̂α =
4∑
i=1

(−1)i
(
‖Xi‖α + ‖Xi+1‖α − d(Xi,Xi+1)

α
)
. (10.8)

�

Remark 10.5. We do not know (even for X = R) whether Lemma 10.4
holds also for α > 1, and leave that as an open problem. (It holds, by
a minor modification of the proof above, for α > 1 under the additional
assumption E‖X‖p(α−1) <∞, but that seems less useful.) �

We next introduce a class of function spaces.

10.2. Lorentz spaces. The condition (10.1) can be expressed as follows
using Lorentz spaces, a generalization of the Lebesgue spaces Lp; see e.g.
[3; 5]. Let X∗ be the decreasing rearrangement of ‖X‖; this is the (weakly)
decreasing function (0, 1)→ [0,∞) defined by

X∗(t) := inf
{
x : P(‖X‖ > x) 6 t

}
. (10.9)

In probabilistic terms, X∗ is characterized as the decreasing function on
(0, 1) that, regarded as a random variable when (0, 1) is equipped with the
Lebesgue measure, has the same distribution as ‖X‖.

For a given probability space (Ω,F , P ), and p, q ∈ (0,∞), the Lorentz
space Lp,q(Ω,F , P ) is defined as the linear space of all real-valued random
variables X such that ∫ 1

0

(
t1/pX∗(t)

)q dt

t
<∞. (10.10)

It is well-known that Lp,p = Lp, and that if q1 < q2 then Lp,q1 ⊂ Lp,q2 , with
strict inequality provided the probability space is large enough.

A standard Fubini argument shows that∫ 1

0

(
t1/pX∗(t)

)q dt

t
= q

∫ 1

0

∫ ∞
0

1{X∗(t) > x}xq−1tq/p−1 dx dt

= q

∫ 1

0

∫ ∞
0

1
{
P(‖X‖ > x) > t

}
xq−1tq/p−1 dx dt
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= p

∫ ∞
0

P
[
‖X‖ > x

]q/p
xq−1 dx. (10.11)

In particular, taking p = α and q = 2α, we see that (10.1) is equivalent to
‖X‖ ∈ Lα,2α.

Consequently, for α 6 1, Theorem 10.1 says that if ‖X‖ ∈ Lα,2α, then

X̂α ∈ L2, which weakens the condition ‖X‖ ∈ Lα in Lemma 4.3 to Lα,2α.
Hence, we can extend the use of Definition 2.2; moreover, as shown below,
also Definitions 2.3, 2.4 and 7.1 yield the same result in this case.

Theorem 10.6. Let 0 < α 6 1, and assume that ‖X‖, ‖Y‖ ∈ Lα,2α. Then:

(i) Definition 2.2 yields a finite value dcovα̂(X,Y).
(ii) Definition 2.3 yields a finite value dcov∼α (X,Y), and dcov∼α (X,Y) =

dcovα̂(X,Y).
(iii) If X and Y are Euclidean spaces, then Definition 2.4 yields a finite

value dcovE
α(X,Y), and dcovE

α(X,Y) = dcovα̂(X,Y).
(iv) If X and Y are Hilbert spaces, then Definition 7.1 yields a finite value

dcovH
α(X,Y), and dcovH

α(X,Y) = dcovα̂(X,Y).

Thus, the values that are defined are all equal (and finite).

The proof is postponed to the following subsections.
Note also that by Remark 10.2, the Lorentz space Lα,2α is optimal in the

strong sense that, for α 6 1 and X = R,

dcovα̂(X,X) <∞ ⇐⇒ X̂α ∈ L2 ⇐⇒ ‖X‖ ∈ Lα,2α. (10.12)

The proofs of the results above assume α 6 1. We leave the case α > 1
as open problems. For example:

Problem 10.7. For α > 1, what is the optimal Lorentz space condition

that guarantees E |X̂α|2 <∞ and thus dcovα̂(X,X) <∞?

By Theorem 9.11, the answer for dcov∼α (X,X) is the same.

Remark 10.8. Example 9.8 shows that in the special case α = 2, the
condition ‖X‖ ∈ L2 in Definition 2.2 cannot be improved; it is actually

necessary for X̂α ∈ L2 and dcov2̂(X,X) <∞ in the case X = R. Hence, for
α = 2, the answer to Problem 10.7 is L2 = L2,2.

A naive interpolation with (10.12) yields the conjecture that for 1 < α <
2, the answer is Lα,2. �

Remark 10.9. The equivalence (10.12) does not hold for all metric spaces
X , not even for α = 1. For a counterexample, let X = `1 with the standard
basis (en)∞1 , let 0 < γ 6 1/2, and let N be an integer-valued random variable
with P(N = n) = pn := cn−1−γ , n > 1, where c is a normalization constant.

Finally, let X := N1/2eN . It is easily seen that, with Xi defined in the same
way by Ni,

X̂ 6 2

4∑
i=1

N
1/2
i 1{Ni = Ni+1}, (10.13)

and thus, using Cauchy–Schwarz’s (or Minkowski’s) inequality,

E X̂2 6 C E
[
N11{N1 = N2}

]
= C

∞∑
n=1

np2n = C
∞∑
n=1

n−1−2γ <∞, (10.14)
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while for x > 1,

P
(
‖X‖ > x

)
= P(N > x2) =

∑
n>x2

cn−1−γ > cx−2γ > cx−1, (10.15)

so (10.1) fails, and thus ‖X‖ /∈ L1,2. �

Problem 10.10. Does the equivalence (10.12) hold in Euclidean spaces?
In infinite-dimensional Hilbert spaces?

We have not investigated whether the results on continuity and consis-
tency in Section 5 can be extended (for α 6 1) by replacing the moment
conditions with the corresponding Lorentz space condition. In particular:

Problem 10.11. Let α 6 1. Does Theorem 5.4 hold if the moment condi-
tion is replaced by X,Y ∈ Lα,2α?

10.3. More on dcovα̂ and dcov∼α . Theorem 9.11 considers only the case
X = Y. We do not know whether it extends to dcovα(X,Y) in general,
without further conditions. We give a partial result.

Theorem 10.12. Suppose that X̂α, Ŷα ∈ L1, so X̃α and Ỹα exist. Suppose

further that X̃αỸα ∈ L1 and X̃α(X1,X2)Ỹα(Y1,Y3) ∈ L1. Then X̂αŶα ∈
L1, and dcovα̂(X,Y) = dcov∼α (X,Y); futhermore, this value is finite.

In particular, this holds if X̂α, Ŷα ∈ L2.

Proof. This is similar to the proof of Theorem 9.11. We have X̃α, Ỹα ∈ L1 by

(2.6), and thus X̃α(X1,X2)Ỹα(Y3,Y4) ∈ L1 by independence. Express X̂α

and Ŷα by (9.10) and expand X̂αŶα as a sum of 16 terms. By the assumptions
(and symmetry), every term is in L1, so we may take their expectations

separately. Furthermore, (9.9) implies that e.g. E[X̃α(X1,X2)Ỹα(Y1,Y3)] =
0, and we obtain

E
[
X̂αŶα

]
=

4∑
i=1

E
[
X̃α(Xi,Xi+1)Ỹα(Yi,Yi+1)

]
= 4E

[
X̃αỸα

]
. (10.16)

If X̂α, Ŷα ∈ L2, then X̃α, Ỹα ∈ L2 and the assumptions above follow by
the Cauchy–Schwarz inequality. �

Proof of Theorem 10.6(i)(ii). By the comments before Theorem 10.6, the

assumptions imply X̂α, Ŷα ∈ L2, and thus Theorem 10.12 shows (i) and
(ii). �

Problem 10.13. Let either X and Y be arbitrary, or consider only X =
Y = R.

(i) Is it true for arbitrary random X ∈ X and Y ∈ Y that dcovα̂(X,Y)
is defined and finite ⇐⇒ dcov∼α (X,Y) is defined and finite?

(ii) If this holds, is furthermore always dcovα̂(X,Y) = dcov∼α (X,Y)?

10.4. More on dcovE
α and dcovH

α. Consider now the case of Euclidean or,
more generally, Hilbert spaces and Definitions 2.4 and 7.1. We complete the
proof of Theorem 10.6; recall that this assumes α 6 1.
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Proof of Theorem 10.6(iii)(iv). (iv): This follows by essentially the same
proof as for Theorem 7.4. As noted in Remark 7.5, (7.21) holds without
any moment condition. Moreover, as said in the proof of Theorem 7.4,

Lemma 4.2 holds for X̂α;M defined in (7.19) too, uniformly in M ; we now use

Lemma 4.2(i), and denote the right-hand side by X̂∗∗. Hence, |X̂α;M | 6 X̂∗∗,
and similarly |Ŷα;M | 6 Ŷ ∗∗.

As noted above, X ∈ Lα,2α is equivalent to (10.1) and to (10.2). Conse-

quently, X̂∗∗ ∈ L2 and, similarly, Ŷ ∗∗ ∈ L2. Hence, X̂∗∗Ŷ ∗∗ ∈ L1 and dom-
inated convergence applies to (7.21), just as in the proof of Theorem 7.4,

yielding dcovH
α(X,Y) = dcovα̂(X,Y) <∞.

(iii): Theorem 7.2 shows the general equality dcovE
α(X,Y) = dcovH

α(X,Y),
and thus (iii) follows from (iv).

This completes the proof of Theorem 10.6. �

Problem 10.14. For 1 < α < 2, what is the optimal Lorentz space condi-
tion that guarantees dcovH

α(X,X) < ∞ (for variables in a Hilbert space)?

Does this also imply dcovH
α(X,X) = dcovα̂(X,X)? Does this condition

imply dcovH
α(X,Y) = dcovα̂(X,Y) for two variables X and Y?

Problem 10.15. Let either X and Y be arbitrary Hilbert spaces, or consider
only X = Y = R. Let 0 < α < 2.

(i) Is it true for arbitrary random X ∈ X and Y ∈ Y that dcovα̂(X,Y)

is defined and finite ⇐⇒ dcovH
α(X,Y) is finite?

(ii) If this holds, is furthermore always dcovα̂(X,Y) = dcovH
α(X,Y)?

10.5. Hilbert spaces, α = 2. Consider now the case when X = H and Y =
H′ are Hilbert spaces, as in the preceding subsection, but take α = 2. Then
dcovH

α(X,Y) is not defined, so we consider dcov2̂(X,Y) and dcov∼2 (X,Y).
In Section 8, we did this assuming second moments; we now remove that
assumption and generalise the results. (This is partly for its own sake, but
mainly for the application in the next subsection.)

In this subsection, expectations EX of Hilbert space valued random vari-
ables are always interpreted in Pettis sense, see Appendix B. (This is some-
times said explicitly for emphasis.) We use some technical results stated
and proved in Appendix B.

Recall that X̂2 = 2〈X1−X3,X4−X2〉 by (8.1), for any X. We next show
that (8.2) holds under weaker conditions than assumed in Section 8.

Lemma 10.16. Let X = H be a Hilbert space. If X̃2 exists, then EX exists
in Pettis sense, and

X̃2 = −2〈X1 − EX,X2 − EX〉. (10.17)

Proof. By (8.1), we have X̂2 = 2〈Z,Z′〉 where Z := X1−X3 and Z′ := X4−
X2. Assume that X̃2 exists, which by our definition means that E |X̂2| <∞.
Thus E |〈Z,Z′〉| <∞. Lemma B.1(ii) applies and shows that Z = X1 −X3

is Pettis integrable. Hence, for every x ∈ H,

〈X1,x〉 − 〈X3,x〉 = 〈X1 −X3,x〉 = 〈Z,x〉 ∈ L1. (10.18)

Since 〈X1,x〉 and 〈X3,x〉 are independent random variables, this implies
E |〈X1,x〉| <∞, for any x ∈ H, and thus EX1 exists in Pettis sense.



38 SVANTE JANSON

Using (8.1), we may now integrate over first X4 and then X3 and obtain

E
(
X̂2 | X1,X2,X3

)
= 2〈X1 −X3,EX−X2〉, (10.19)

X̃2 = E
(
X̂2 | X1,X2

)
= 2〈X1 − EX,EX−X2〉. (10.20)

showing (10.17). �

Theorem 10.17. Let X = H and Y = H′ be Hilbert spaces.

(i) If dcov2̂(X,Y) is defined, i.e., E
[
X̂2Ŷ2

]
is defined as an extended real

number, then dcov2̂(X,Y) ∈ [0,∞].
(ii) If dcov2̂(X,Y) <∞, then

dcov2̂(X,Y) =
∥∥E[(X1 −X2)⊗ (Y1 −Y2)

]∥∥2
H⊗H′ , (10.21)

where the expectation exists in Pettis sense.

(iii) If dcov∼2 (X,Y) is defined, i.e., X̃2 and Ỹ2 are defined and E
[
X̃2Ỹ2

]
is

defined as an extended real number, then dcov∼2 (X,Y) ∈ [0,∞].
(iv) If furthermore dcov∼2 (X,Y) <∞, then

dcov∼2 (X,Y) = 4
∥∥E[X⊗Y]− EX⊗ EY

∥∥2
H⊗H′ , (10.22)

where the expectations exist in Pettis sense.
(v) If dcov2̂(X,Y) and dcov∼2 (X,Y) both are defined, as in (i) and (iii),

and furthermore dcov2̂(X,Y) and dcov∼2 (X,Y) both are finite, then

dcov2̂(X,Y) = dcov∼2 (X,Y). (10.23)

Proof. (i),(ii): By (8.1) and (8.5),

X̂2Ŷ2 = 4〈X1 −X3,X4 −X2〉〈Y1 −Y3,Y4 −Y2〉
= 4
〈
(X1 −X3)⊗ (Y1 −Y3), (X4 −X2)⊗ (Y4 −Y2)

〉
H⊗H′ .

(10.24)

This is an example of 〈Z,Z′〉 as in Lemma B.1, with Z := (X1−X3)⊗(Y1−
Y3)

d
= (X1 −X2)⊗ (Y1 −Y2). Thus, (i) follows from Lemma B.1(iii), and

(ii) from Lemma B.1(ii).

(iii),(iv): Similarly, if X̃2 and Ỹ2 exist, then Lemma 10.16 shows that EX
and EY exist in Pettis sense, and furthermore, using (8.5),

X̃2Ỹ2 = 4〈X1 − EX,X2 − EX〉〈Y1 − EY,Y2 − EY〉
= 4〈(X1 − EX)⊗ (Y1 − EY), (X2 − EX)⊗ (Y2 − EY)〉. (10.25)

This is another example of 〈Z,Z′〉 as in Lemma B.1, now with Z := (X1 −
EX)⊗ (Y1 − EY). Thus, (iii) follows from Lemma B.1(iii).

Finally, assume dcov∼2 (X,Y) < ∞, i.e., X̃2Ỹ2 ∈ L1. Then (10.25) and
Lemma B.1(ii) show that EZ exists in Pettis sense, and that

dcov∼2 (X,Y) = E[X̃2Ỹ2] = 4‖EZ‖2 = 4‖E
[
(X− EX)⊗ (Y − EY)

]
‖2.

(10.26)

We have

X1 ⊗Y1 = Z + (EX)⊗ (Y1 − EY) + X1 ⊗ EY. (10.27)

Furthermore, since EX and EY are constant vectors, it is easy to see that
E[X1⊗EY] = EX⊗EY and E[(EX)⊗(Y1−EY)] = EX⊗E[Y1−EY] = 0.
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(This also follows from the more general Lemma B.7.) Hence, (10.27) shows
that E[X⊗Y] exists, and

E[X⊗Y] = E[X1 ⊗Y1] = EZ + EX⊗ EY. (10.28)

Thus (10.22) follows from (10.26).
(v): In this case, (i)–(iv) all hold. By (iv), the expectations EX, EY

and E[X ⊗ Y] exist. Hence, E[Xi ⊗ Yi] = E[X ⊗ Y] exists for every i.
Furthermore, if i 6= j so Xi and Yj are independent, E[Xi ⊗Yj ] exists by
Lemma B.7 and equals E[Xi]⊗ E[Yj ]. Hence, E[Xi ⊗Yj ] exists for every i
and j, and thus

E
[
(X1 −X2)⊗ (Y1 −Y2)

]
= E[X1 ⊗Y1] + E[X2 ⊗Y2]− E[X1 ⊗Y2]− E[X2 ⊗Y1]

= 2
(
E[X⊗Y]− E[X]⊗ E[Y]

)
. (10.29)

Consequently, (10.23) follows from (10.21) and (10.22). �

10.6. Metric spaces of negative type. In this subsection we assume that
X and Y are metric spaces such that dαX and dαY both are of negative type,
see Remark 2.7. We then can embed the spaces into Hilbert spaces as in
Remark 8.4 and transfer the results in Section 10.5.

Theorem 10.18. Let α > 0 and let X and Y be metric spaces such that dαX
and dαY both are of negative type.

(i) If dcovα̂(X,Y) is defined, i.e., E
[
X̂αŶα

]
is defined as an extended real

number, then dcovα̂(X,Y) ∈ [0,∞].

(ii) If dcov∼α (X,Y) is defined, i.e., X̃α and Ỹα are defined and E
[
X̃αỸα

]
is defined as an extended real number, then dcov∼α (X,Y) ∈ [0,∞].

(iii) If dcovα̂(X,Y) and dcov∼α (X,Y) both are defined, as in (i) and (ii),
and furthermore both are finite, then

dcovα̂(X,Y) = dcov∼α (X,Y). (10.30)

Proof. Immediate by Remark 8.4 and Theorem 10.17(i)(iii)(v). �

This gives a partial (but not complete) answer to Problem 10.13 for spaces
with dα of negative type; recall from Remark 2.7 that when 0 < α 6 2, this
includes Hilbert spaces, in particular R.

Remark 10.19. If d is a metric of negative type, then so is dα for every α 6
1. Hence, if X and Y are metric spaces of negative type, then Theorem 10.18
applies at least with 0 < α 6 1. �

10.7. Negative values? If X and Y are metric spaces such that dα is of neg-
ative type, then Theorem 10.18 shows that dcovα̂(X,Y) and dcov∼α (X,Y)
may not be negative and finite, nor −∞. Theorem 9.1 then shows the
same for dcov∗α(X,Y). The same is also, trivially, true for dcovE

α(X,Y) and

dcovH
α(X,Y) when they are applicable. More precisely, we have the possi-

bilities shown in Table 1, by Theorems 4.5, 7.4, 9.1 and 10.18; Examples 9.5,
9.7, 9.9, 9.13, 9.16; (2.9) and (7.2).

Conversely, if X or Y is a metric space that is not of negative type
then dcov(X,Y) < 0 is possible (as soon as both spaces have at least two
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[0,∞) +∞ (−∞, 0) −∞ undefined
dcov∗α(X,Y) + − − − +
dcovα̂(X,Y) + + − − +
dcov∼α (X,Y) + + − − +

dcovE
α(X,Y) + + − − −

dcovH
α(X,Y) + + − − −

Table 1. Possibilities when dα is of negative type

points), see [18, Proposition 3.15]; by Theorem 4.5, this holds for any of
dcov∗α(X,Y), dcovα̂(X,Y), dcov∼α (X,Y). Theorem 9.1 still rules out ±∞
for dcov∗α(X,Y), and we find the possibilities shown in Table 2.

[0,∞) +∞ (−∞, 0) −∞ undefined
dcov∗α(X,Y) + − + − +
dcovα̂(X,Y) + + + ? +
dcov∼α (X,Y) + + + ? +
Table 2. Possibilities when dα is not of negative type

For dcovα̂(X,Y) and dcov∼α (X,Y), we do not know whether −∞ is pos-
sible (in Case (dc2) in Section 9):

Problem 10.20. Is dcovα̂(X,Y) = −∞ or dcov∼α (X,Y) = −∞ possible?
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Appendix A. A uniform integrability lemma

We use above some well-known standard results on uniform integrability,
see e.g. [11, §5.4 and §5.5]. We use also the following simple result which
perhaps is less well-known; since we have not found a good reference, we
provide a proof for completeness.

In this section, all random variables are real-valued. We state the lemmas
below for sequences of random variables (the case that we use), but they
are valid (with the same proofs) for families (Xι)ι∈I and (Yι)ι∈I with an
arbitrary index set I.

Lemma A.1. Let (Xn)n and (Yn)n be uniformly integrable sequences of
random variables, and suppose that for each n, Xn and Yn are independent.
Then the sequence (XnYn)n is also uniformly integrable.

To prove this, we use another simple result that perhaps is less well-known
than it deserves.

Lemma A.2. Let (Xn)n be a sequence of random variables. Then (Xn)n is
uniformly integrable if and only if for every ε > 0 there exists Kε <∞ and
a sequence (Xε

n)n of random variables such that for every n,

|Xε
n| 6 Kε a.s., (A.1)
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E
∣∣Xn −Xε

n

∣∣ < ε. (A.2)

Proof. This is a simple exercise, using your favourite definition of uniform
integrability. (See e.g. [11, Definition 5.4.1 and Theorem 5.4.1].) �

Proof of Lemma A.1. The uniform integrability implies the existence of con-
stants B and B′ such that E |Xn| 6 B and E |Yn| 6 B′ for all n.

Let 0 < ε < 1. Lemma A.2 shows that there exists Kε <∞ and random
variables Xε

n and Y ε
n such that both (A.1)–(A.2) and the corresponding

inequalities with Y hold. Then |Xε
nY

ε
n | 6 K2

ε a.s. Since Xn and Yn are
independent, we may also assume that the pairs (Xn, X

ε
n) and (Yn, Y

ε
n ) are

independent, and then

E
∣∣XnYn −Xε

nY
ε
n

∣∣ 6 E
∣∣Xn(Yn − Y ε

n )
∣∣+ E

∣∣(Xn −Xε
n)Yn

∣∣
+ E

∣∣(Xn −Xε
n)(Yn − Y ε

n )
∣∣

6 Bε+B′ε+ ε2 = (B +B′ + 1)ε. (A.3)

Lemma A.2 in the opposite direction shows that the sequence (XnYn)n is
uniformly integrable. �

Appendix B. Bochner and Pettis integrals

The expectation EX of an H-valued random variable X, where H is a
separable Hilbert space, can be defined using either the Bochner integral
or the Pettis integral; see e.g. the summary in [14, §2.4] and the references
given there. Both integrals are defined for general Banach spaces, but in
this paper we need them only for separable Hilbert spaces. In this case, EX
exists in Bochner sense if and only if E‖X‖ < ∞, and EX exists in Pettis
sense if and only if E |〈X,x〉| < ∞ for every x ∈ H, and then EX is the
element of H determined by

〈EX,x〉 = E〈X,x〉, x ∈ H. (B.1)

If EX exists in Bochner sense, then it exists in Pettis sense, and the value is
the same. (Hence, the reader may choose to always interpret EX in Pettis
sense. However, the Bochner integral is more convenient when applicable.)
The converse is not true; there are X such that EX exists in Pettis sense
but not Bochner sense. (See e.g. Example B.3.)

It is well-known, and easy to see, that if EX exists in Pettis sense, then
there exists C <∞ (depending on X) such that

E|〈X,x〉| 6 C‖x‖, x ∈ H. (B.2)

We use in Section 10.5 some results on Pettis integrals in (separable)
Hilbert spaces, stated in the lemmas below. We believe that at least some
of these are known, but since we have not found references, we give complete
proofs.

Lemma B.1. Let Z be random variable in a separable Hilbert space H, and
let Z′ be an independent copy of Z.

(i) If Z is Bochner integrable, i.e., if E‖Z‖ <∞, then

E |〈Z,Z′〉| <∞. (B.3)
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(ii) If (B.3) holds, then Z is Pettis integrable, i.e., EZ exists in Pettis
sense. Moreover,

E〈Z,Z′〉 = ‖EZ‖2 > 0. (B.4)

(iii) If E〈Z,Z′〉+ <∞, then (B.3) holds. In other words, E〈Z,Z′〉 may be
finite (and then > 0 by (B.4)), +∞ or undefined, but never −∞.

Remark B.2. We show in Examples B.3 and B.4 that the implications in
(i) and (ii) are strict, i.e., their converses do not hold.

Furthermore, it is easy find examples, even with H = R, where E〈Z,Z′〉 is
+∞ or undefined (i.e., ∞−∞); take any real-valued random Z with Z > 0
or with a symmetric distribution, respectively, and further E |Z| =∞. �

Proof of Lemma B.1. (i): By the Cauchy–Schwarz inequality, |〈Z,Z′〉| 6
‖Z‖‖Z′‖, and (B.3) follows by the independence of Z and Z′.

(ii): Let A := E |〈Z,Z′〉| and let u ∈ H with ‖u‖ = 1. Furthermore, let
W := sgn〈Z,u〉 and W ′ := sgn〈Z′,u〉, and let for M > 0, IM := 1{‖Z‖ 6
M} and I ′M := 1{‖Z′‖ 6 M}. Since IMWZ

d
= I ′MW

′Z′ is measurable and
bounded, E[IMWZ] = E[I ′MW

′Z′] exists, even in Bochner sense, and we
have, for any finite M ,

A > E
[
IMWI ′MW

′〈Z,Z′〉
]

= E 〈IMWZ, I ′MW
′Z′〉

= E
[
E
(
〈IMWZ, I ′MW

′Z′〉 | Z
)]

= E 〈IMWZ,E[I ′MW
′Z′]〉

= 〈E[IMWZ],E[I ′MW
′Z′]〉 = ‖E[IMWZ]‖2. (B.5)

Hence, by the Cauchy–Schwarz inequality, ‖u‖ = 1, and (B.5),

E
[
IM |〈u,Z〉|

]
= E

[
IMW 〈u,Z〉

]
= E 〈u, IMWZ〉 = 〈u,E[IMWZ]〉

6 ‖E[IMWZ]‖ 6 A1/2. (B.6)

Letting M →∞ yields, by monotone convergence,

E
∣∣〈u,Z〉∣∣ 6 A1/2 (B.7)

for every u with ‖u‖ = 1, which (since H is reflexive) shows that Z is Pettis
integrable.

Finally, the Pettis integrability yields first

E
(
〈Z,Z′〉 | Z

)
= 〈Z,EZ′〉 (B.8)

and then, taking the expectation of (B.8),

E 〈Z,Z′〉 = E〈Z,EZ′〉 = 〈EZ,EZ′〉 = 〈EZ,EZ〉, (B.9)

which is (B.4).
(iii): We have, similarly to (B.5),

E
[
IMI

′
M 〈Z,Z′〉

]
= E 〈IMZ, I ′MZ′〉 = E

[
E
(
〈IMZ, I ′MZ′〉 | Z

)]
= E 〈IMZ,E[I ′MZ′]〉 = 〈E[IMZ],E[I ′MZ′]〉
= ‖E[IMZ]‖2 > 0. (B.10)

Hence,

E
[
IMI

′
M 〈Z,Z′〉−

]
6 E

[
IMI

′
M 〈Z,Z′〉+

]
6 E

[
〈Z,Z′〉+

]
<∞, (B.11)
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and letting M →∞ yields E〈Z,Z′〉− <∞ by monotone convergence. Hence,
(B.3) holds, and the result follows. �

We give counterexamples to converses of the statements in Lemma B.1.

Example B.3. Let N be a positive integer-valued random variable and let
pn := P(N = n), let (an)∞1 be a sequence of positive numbers, and let (ei)i
be an ON-basis in H. Define Z := aNeN . Then

E‖Z‖ = E aN =

∞∑
n=1

anpn. (B.12)

If N ′ is an independent copy of N , and Z′ := aN ′eN ′ , then 〈Z,Z′〉 =
a2N1{N = N ′}, and thus

E
∣∣〈Z,Z′〉∣∣ = E〈Z,Z′〉 =

∞∑
n=1

a2np
2
n. (B.13)

Consequently, choosing pn = c/n2 and an = n, E|〈Z,Z′〉| <∞ but E‖Z‖ =
∞, so EZ does not exist in Bochner sense. Hence the converse to Lemma
B.1(i) does not hold.

In this example, as is easily seen, EZ exists in Pettis sense if and only if∑∞
n=1 a

2
np

2
n <∞, and then EZ =

∑
n anpnen. �

Example B.4. Let (ei)i be an ON-basis in H, let ξi ∼ N(0, 1), i > 1,
be independent, and let N be a positive integer-valued random variable,
independent of (ξi)i. Define Z :=

∑N
i=1 ξiei. Then, for any x ∈ H,

〈Z,x〉 =

N∑
i=1

〈ei,x〉ξi. (B.14)

Conditioned onN , this has a normal distribution with variance
∑N

1 〈ei,x〉2 6
‖x‖2. Hence,

E
(
|〈Z,x〉|

∣∣ N) =

√
2

π

( N∑
i=1

〈ei,x〉2
)1/2

6 ‖x‖ (B.15)

and thus E
∣∣〈Z,x〉∣∣ 6 ‖x‖ < ∞. Consequently, EZ exists in Pettis sense.

(With EZ = 0, by symmetry.)

On the other hand, if N ′
d
= N and ξ′i ∼ N(0, 1) are independent of each

other and of N and (ξi)i, so Z′ :=
∑N ′

i=1 ξ
′
iei is an independent copy of

Z, then 〈Z,Z′〉 =
∑N∧N ′

1 ξiξ
′
i. The sequence (ξiξ

′
i)i is i.i.d. with mean 0

and variance E[(ξiξ
′
i)
2] = E[ξ2i ]E[(ξ′i)

2] = 1, and thus by the central limit
theorem, for some c > 0 and every n > 0,

E
(
|〈Z,Z′〉|

∣∣ N ∧N ′ = n
)

= E
∣∣∣ n∑

1

ξiξ
′
i

∣∣∣ > c√n. (B.16)

Hence,

E|〈Z,Z′〉| > cE
√
N ∧N ′ = c

∫ ∞
0

P
(√
N ∧N ′ > t

)
dt
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= c

∫ ∞
0

P
(
N > t2, N ′ > t2

)
dt = c

∫ ∞
0

P
(
N > t2

)2
dt. (B.17)

Choose N with P(N > n) = n−γ for n > 1, where 0 < γ 6 1
4 . Then

P(N > t) > t−γ for t > 1, and (B.17) yields E|〈Z,Z′〉| > c
∫∞
1 t−4γ dt = ∞.

Consequently, EZ exists in Pettis sense, but (B.3) does not hold. Hence,
the converse to Lemma B.1(ii) does not hold.

Note also that (B.16) and (B.17) hold in the opposite direction with
another c; hence, in this example, (B.3) holds if we take γ > 1

4 . More-

over, ‖Z‖ =
(∑N

1 ξ2i
)1/2

, and it follows from the law of large numbers

that E
(
‖Z‖ | N = n

)
∼
√
n as n→∞, and thus, if γ 6 1

2 , we have

E‖Z‖ > cEN1/2 =∞. Consequently, taking γ ∈ (14 ,
1
2 ] gives another exam-

ple showing that the converse to (i) does not hold. �

Recall that a Hilbert–Schmidt operator T : H → H′, where H and H′ are
Hilbert spaces, is a linear operator such that if (ei)i is an ON-basis in H,
then

‖T‖2HS :=
∑
i

‖Tei‖2 <∞. (B.18)

(This is independent of the choice of basis (ei)i.) See e.g. [17, §30.8] or
[7, Exercise IX.2.19]. The following lemma is a version of the fact that a
Hilbert–Schmidt operator is absolutely 1-summing [20, Theorem 2.5.5].

Lemma B.5. Let H and H′ be separable Hilbert spaces, let X be random
variable in H such that EX exists in Pettis sense, and let T : H → H′ be a
Hilbert–Schmidt operator. Then E‖TX‖ <∞.

Proof. Since T is a Hilbert–Schmidt operator, T ∗T is a positive self-adjoint
trace class operator in H, and thus there exists an ON-basis (ei)i in H
consisting of eigenvectors, so T ∗Tei = λiei, where λi > 0 and∑

i

λi = ‖T‖2HS <∞. (B.19)

(See again e.g. [17, §30] and [7, Exercise IX.2.19].) Let si := λ1/2. (These
are known as the singular values of T .) Then, for any x ∈ H,

‖Tx‖2 = 〈T ∗Tx,x〉 =
∑
i

〈T ∗Tx, ei〉〈x, ei〉 =
∑
i

〈x, T ∗Tei〉〈x, ei〉

=
∑
i

λi〈x, ei〉〈x, ei〉 =
∑
i

s2i 〈x, ei〉2. (B.20)

Let (εi)i be i.i.d. random variables with P(εi = 1) = P(εi = −1) = 1
2 , and

let them also be independent of X. Let

Z :=
∑
i

siεiei, (B.21)

where the sum converges in H (surely) since
∑

i s
2
i < ∞ by (B.19). Let

x ∈ H and note that

〈x,Z〉 =
∑
i

si〈x, ei〉εi. (B.22)
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Hence, using (B.20),

E|〈x,Z〉|2 = E
∣∣∣∑
i

si〈x, ei〉εi
∣∣∣2 =

∑
i

s2i 〈x, ei〉2 = ‖Tx‖2. (B.23)

Moreover, Khintchine’s inequality [11, Lemma 3.8.1] applies to (B.22) and
yields (

E|〈x,Z〉|2
)1/2
6 C E|〈x,Z〉|. (B.24)

Combining (B.23) and (B.24) we find

‖Tx‖ 6 C E|〈x,Z〉|. (B.25)

Let EX and Eε denote integration over X and (εi), respectively. Then (B.25)
yields ‖TX‖ 6 C Eε|〈X,Z〉| and thus

E‖TX‖ 6 C EX Eε|〈X,Z〉| = C E|〈X,Z〉|. (B.26)

On the other hand, (B.2) yields, using also the definition (B.21) and (B.19),

EX|〈X,Z〉| 6 C‖Z‖ = C
(∑

i

s2i

)1/2
= C‖T‖HS. (B.27)

Thus,

E|〈X,Z〉| = EEX|〈X,Z〉| 6 C‖T‖HS <∞. (B.28)

The result follows by (B.26) and (B.28). �

Remark B.6. Example B.3 shows that the result in Lemma B.5 does not
hold for T = I, the identity operator (if dimH = ∞). In fact, the result
holds if and only if T is Hilbert–Schmidt: if T is a bounded operator that is
not Hilbert–Schmidt, then there exists X such that EX exists but E‖TX‖ =
∞; this can be seen by a modification of Example B.3. (We omit the details.)
�

Lemma B.7. Let X and Y be independent random variables with values in
separable Hilbert spaces H and H′. If EX and EY exist in Pettis sense, then
E[X⊗Y] exists in Pettis sense, in H⊗H′, and E[X⊗Y] = (EX)⊗ (EY).

Proof. Let z ∈ H ⊗H′, and define a linear operator Tz : H → H′ by

〈Tzx,y〉 = 〈x⊗ y, z〉. (B.29)

Let (ei)i and (e′j)j be ON-bases inH andH′. Then (ei⊗e′j)i,j is an ON-basis

in H⊗H′, and thus, using (B.18) and (B.29),

‖Tz‖2HS =
∑
i

‖Tzei‖2 =
∑
i

∑
j

〈Tzei, e′j〉2 =
∑
i

∑
j

〈ei ⊗ e′j , z〉2

= ‖z‖2 <∞, (B.30)

and thus Tz is a Hilbert–Schmidt operator. (In fact, as is well-known, it is
easy to see that z 7→ Tz yields an isometry between H⊗H′ and the space of
Hilbert–Schmidt operators H → H′.) Hence, Lemma B.5 applies and shows
E‖TzX‖ <∞.

Furthermore, since Y is Pettis integrable, (B.29) and (B.2) show that for
every x ∈ H,

E |〈x⊗Y, z〉| = E|〈Tzx,Y〉| 6 C‖Tzx‖. (B.31)
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Consequently, with EY denoting the integral over Y,

E |〈X⊗Y, z〉| = EEY |〈X⊗Y, z〉| 6 C E‖TzX‖ <∞. (B.32)

Since z ∈ H ⊗ H′ is arbitrary, this shows that X ⊗Y is Pettis integrable,
i.e., that E[X⊗Y] exists in Pettis sense.

Finally, by (B.1), (8.5) and independence, for any ei and e′j in the bases,

〈E[X⊗Y], ei ⊗ e′j〉 = E〈X⊗Y, ei ⊗ e′j〉 = E
[
〈X, ei〉〈Y, e′j〉

]
= E[〈X, ei〉]E[〈Y, e′j〉] = 〈EX, ei〉〈EY, e′j〉
= 〈(EX)⊗ (EY), ei ⊗ e′j〉. (B.33)

Since the set of such ei⊗e′j is a basis, E[X⊗Y] = (EX)⊗(EY) follows. �

Remark B.8. In this paper we consider only the Hilbert space tensor prod-
uct defined in Section 8. Nevertheless, we note that Lemma B.7 a fortiori
holds also for the injective tensor product H⊗̌H′, since there is a natural
continuous mapping H⊗H′ → H⊗̌H′ mapping x⊗y 7→ x⊗y. On the other
hand, the result does not hold for the projective tensor productH⊗̂H′, which
can be seen as follows: Let H = H′ and note that then x ⊗ y 7→ 〈x,y〉 ex-
tends to a continuous linear functional on H⊗̂H′. Hence, if E[X⊗Y] exists
in H⊗̂H′, then E〈X,Y〉 exists in R, so E |〈X,Y〉| < ∞, but Example B.4
shows that this does not always hold for independent Pettis integrable X
and Y. �
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