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Abstract9

We study here the so called subsequence pattern matching also known as hidden pattern matching in10

which one searches for a given pattern w of length m as a subsequence in a random text of length11

n. The quantity of interest is the number of occurrences of w as a subsequence (i.e., occurring in12

not necessarily consecutive text locations). This problem finds many applications from intrusion13

detection, to trace reconstruction, to deletion channel, and to DNA-based storage systems. In all of14

these applications, the pattern w is of variable length. To the best of our knowledge this problem15

was only tackled for a fixed length m = O(1) [6]. In our main result Theorem 5 we prove that16

for m = o(n1/3) the number of subsequence occurrences is normally distributed. In addition, in17

Theorem 6 we show that under some constraints on the structure of w the asymptotic normality18

can be extended to m = o(
√

n). For a special pattern w consisting of the same symbol, we indicate19

that for m = o(n) the distribution of number of subsequences is either asymptotically normal or20

asymptotically log normal. We conjecture that this dichotomy is true for all patterns. We use21

Hoeffding’s projection method for U -statistics to prove our findings.22
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1 Introduction and Motivation30

One of the most interesting and least studied problem in pattern matching is known as31

the subsequence string matching or the hidden pattern matching [11]. In this case, we32

search for a pattern w = w1w2 · · ·wm of length m in the text Ξn = ξ1 . . . ξn of length n33

as subsequence, that is, we are looking for indices 1 ≤ i1 < i2 < · · · < im ≤ n such that34

ξi1 = w1, ξi2 = w2, . . . , ξim = wm. We say that w is hidden in the text Ξn. We do not put35

any constraints on the gaps ij+1− ij , so in language of [6] this is known as the unconstrained36

hidden pattern matching. The most interesting quantity of such a problem is the number of37

subsequence occurrences in the text generated by a random source. In this paper, we study38

the limiting distribution of this quantity when m, the length of the pattern, grows with n.39

Hereafter, we assume that a memoryless source generates the text Ξ, that is, all symbols40

are generated independently with probability pa for symbol a ∈ A, where the alphabet A41

is assumed to be finite. We denote by pw =
∏
j pwj the probability of the pattern w. Our42

goal is to understand the probabilistic behavior, in particular, the limiting distribution of43

the number of subsequence occurrences that we denote by Z := ZΞ(w). It is known that44

the behavior of Z depends on the order of magnitude of the pattern length m. For example,45

for the exact pattern matching (i.e., the pattern w must occur as a string in consecutive46

positions of the text), the limiting distribution is normal for m = O(1) (more precisely, when47

npw → ∞, hence up to m = O(logn)), but it becomes a Pólya–Aeppli distribution when48

npw → λ > 0 for some constant λ, and finally (conditioned on being non-zero) it turns49

into a geometric distribution when npw → 0 [11] (see also [1]). We might expect a similar50

behaviour for the subsequence pattern matching. In [6] it was proved by analytic combinatoric51

methods that the number of subsequence occurrences, ZΞ(w), is asymptotically normal when52

m = O(1), and not much is known beyond this regime. (See also [2]. Asymptotic normality53

for fixed m follows also by general results for U -statistics [9].) However, in many applications54

– as discussed below – we need to consider patterns w whose lengths grow with n. In this55

paper, we prove two main results. In Theorem 5 we establish that for m = o(n1/3) the56

number of subsequence occurrences is normally distributed. Furthermore, in Theorem 6 we57

show that under some constraints on the structure of w, the asymptotic normality can be58

extended to m = o(
√
n). Moreover, for the special pattern w = am consisting of the same59

symbol repeated, we show in Theorem 4 that for m = o(
√
n), the distribution of number60

of occurrences is asymptotically normal, while for larger m (up to cn for some c > 0) it is61

asymptotically log-normal. We conjecture that this dichotomy is true for a large class of62

patterns.63

Regarding methodology, unlike [6] we use here probabilistic tools. We first observe that64

Z can be represented as a U -statistic (see (2)). This suggests to apply the (author?) [9]65

projection method to prove asymptotic normality of Z for some large patterns. Indeed, we66

first decompose Z into a sum of orthogonal random variables with variances of decreasing67

order in n (for m not too large), and show that the variable of the largest variance converges68

to a normal distribution, proving our main results Theorems 5 and 6.69

The hidden pattern matching problem, especially for large patterns, finds many applica-70

tions from intrusion detection, to trace reconstruction, to deletion channel, to DNA-based71

storage systems [8; 5; 3; 11; 16]. Here we discuss below in some detail two of them, namely72

the deletion channel and the trace reconstruction problem.73

A deletion channel [5; 3; 4; 13; 16; 17] with parameter d takes a binary sequence Ξn =74

ξ1 · · · ξn where ξi ∈ A as input and deletes each symbol in the sequence independently with75

probability d. The output of such a channel is then a subsequence ζ = ζ(x) = ξi1 ...ξiM of76
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Ξ, where M follows the binomial distribution Binom(n, (1− d)), and the indices i1, ..., iM77

correspond to the bits that are not deleted. Despite significant effort [3; 13; 14; 16; 17] the78

mutual information between the input and output of the deletion channel and its capacity are79

still unknown. We hope to provide a more detailed characterization of the mutual information80

for memoryless sources using results of this and forthcoming papers. Indeed, it turns out81

that the mutual information I(Ξn; ζ(Ξn)) can be exactly formulated as the problem of the82

subsequence pattern matching. In [5] it was proved that83

I(Ξn;ζ(Ξn))=
∑
w

dn−|w|(1− d)|w|(E[ZΞn(w)logZΞn(w)] −E[ZΞn(w)] logE[ZΞn(w)]) , (1)84

where the sum is over all binary sequences of length smaller than n and ZΞn(w) is the85

number of subsequence occurrences of w in the text Ξn. As one can see, to find precise86

asymptotics of the mutual information we need to understand the probabilistic behavior of87

Z for m ≤ n and typical w, which is our long term goal. The trace reconstruction problem [?88

10; 15; 18] is related to the deletion channel problem since we are asking how many copies of89

the output deletion channel we need to see until we can reconstruct the input sequence with90

high probability.91

2 Main Results92

In this section we formulate precisely our problem and present our main results. Proofs are93

delayed till the next section.94

2.1 Problem formulation and notation95

We consider a random string Ξn = ξ1 . . . ξn of length n. We assume that ξ1, ξ2, . . . are i.i.d.96

random letters from a finite alphabet A; each letter ξi has the distribution P(ξi = a) = pa97

where a ∈ A, for some given vector p = (pa)a∈A; we assume pa > 0, a ∈ A.98

Let w = w1 · · ·wm be a fixed string of length m over the same alphabet A. We assume99

n ≥ m. Let pw :=
∏m
j=1 pwj , which is the probability that ξ1 · · · ξm equals w.100

Let Z = Zn,w(ξ1 · · · ξn) be the number of occurrences of w as a subsequence of ξ1 · · · ξn.101

For a set S (in our case [n] or [m]) and k ≥ 0, let
(S
k

)
be the collection of sets α ⊆ S with102

|α| = k. Thus,
∣∣(S
k

)∣∣ =
(|S|
k

)
. For k = 0,

(S
0
)
contains just the empty set ∅. For k = 1, we103

identify
(S

1
)
and S in the obvious way. We write α ∈

([n]
k

)
as {α1, . . . , αk}, where we assume104

that α1 < · · · < αk. Then105

Z =
∑

α∈([n]
m)
Iα, where Iα =

m∏
j=1

1{ξαj = wj}, α1 < . . . < αm. (2)106

I Remark 1. In the limit theorems, we are studying the asymptotic distribution of Z. We107

then assume that n→∞ and (usually) m→∞; we thus implicitly consider a sequence of108

words w(n) of lengths mn = |w(n)|. But for simplicity we do not show this in the notation.109

We have E Iα = pw for every α. Hence,110

EZ =
∑

α∈([n]
m)

E Iα =
(
n

m

)
pw. (3)111

Further, let Yα := p−1
w Iα, so EYα = 1, and112

Z∗ := p−1
w Z =

∑
α∈([n]

m)
Yα, (4)113

AofA 2020
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so EZ∗ =
(
n
m

)
and114

Z∗ − EZ∗ = p−1
w Z −

(
n

m

)
=

∑
α∈([n]

m)

(
Yα − 1

)
. (5)115

We also write ‖Y ‖p :=
(
E |Y |p

)1/p for the Lp norm of a random variable Y , while ‖x‖116

is the usual Euclidean norm of a vector x in some Rm. C denotes constants that may be117

different at different occurrences; they may depend on the alphabet A and (pa)a∈A, but118

not on n, m or w. Finally, d−→ and p−→ mean convergence in distribution and probability,119

respectively.120

We are now ready to present our main results regarding the limiting distribution of Z,121

the number of subsequence w = a1, . . . am occurrences when m→∞. We start with a simple122

example, namely, w = am = a · · · a for some a ∈ A, and show that depending on whether123

m = o(
√
n) or not the number of subsequences will follow asymptotically either the normal124

distribution or the log-normal distribution.125

Before we present our results we consider asymptotically normal and log-normal distribu-126

tions in general, and discuss their relation.127

2.2 Asymptotic normality and log-normality128

If Xn is a sequence of random variables and an and bn are sequences of real numbers, with129

bn > 0, then Xn ∼ AsN(an, bn) means that130

Xn − an√
bn

d−→ N(0, 1). (6)131

132

We say that Xn is asymptotically normal if Xn ∼ AsN(an, bn) for some an and bn, and133

asymptotically log-normal if lnXn ∼ AsN(an, bn) for some an and bn (this assumes Xn ≥ 0).134

Note that these notions are equivalent when the asymptotic variance bn is small, as made135

precise by the following lemma.136

I Lemma 2. If bn → 0, and an are arbitrary, then137

lnXn ∼ AsN(an, bn) ⇐⇒ Xn ∼ AsN(ean , bne2an). (7)138
139

Proof. By replacing Xn by Xn/e
an , we may assume that an = 0. If lnXn ∼ AsN(0, bn)140

with bn → 0, then lnXn
p−→ 0, and thus Xn

p−→ 1. It follows that lnXn/(Xn − 1) p−→ 1141

(with 0/0 := 1), and thus142

Xn − 1
b
1/2
n

= Xn − 1
lnXn

lnXn

b
1/2
n

d−→ N(0, 1), (8)143

144

and thus Xn ∼ AsN(1, bn). The converse is proved by the same argument. J145

I Remark 3. Lemma 2 is best possible. Suppose that lnXn ∼ AsN(an, bn). If bn → b > 0,146

then ln
(
Xn/e

an
)

= lnXn − an
d−→ N(0, b), and thus147

Xn/e
an d−→ eζb , ζb ∼ N(0, b). (9)148

149

In this case (and only in this case), Xn thus converges in distribution, after scaling, to a150

log-normal distribution. If bn →∞, then no linear scaling of Xn can converge in distribution151

to a non-degenerate limit, as is easily seen.152
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2.3 A simple example153

We consider first a simple example where the asymptotic distribution can be found easily by154

explicit calculations. Fix a ∈ A and let w = am = a · · · a, a string with m identical letters.155

Then, if N = Na is the number of occurrences of a in ξ1 · · · ξn, then156

Z =
(
Na
m

)
. (10)157

158

We will show that Z is asymptotically normal if m is small, and log-normal for larger m.159

I Theorem 4. Suppose that m < npa, with npa −m� n1/2.160

(i) Then161

lnZ ∼ AsN
(

ln
(
npa
m

)
, n
∣∣∣ln(1− m

npa

)∣∣∣2pa(1− pa)
)
. (11)162

163

(ii) In particular, if m = o(n), then164

lnZ ∼ AsN
(

ln
(
npa
m

)
,
(
p−1
a − 1

)m2

n

)
. (12)165

166

(iii) If m = o
(
n1/2), then this implies167

Z/EZ ∼ AsN
(

1,
(
p−1
a − 1

)m2

n

)
, (13)168

169

and thus170

Z ∼ AsN
(
EZ,

(
p−1
a − 1

)m2

n
(EZ)2

)
. (14)171

172

Proof. (i) We have Na ∼ Bin(n, pa). Define Y := Na − npa. Then, by the Central Limit173

Theorem,174

Y ∼ AsN
(
0, npa(1− pa)

)
. (15)175

176

By (10), we have177

lnZ − ln
(
npa
m

)
= ln

(
npa + Y

m

)
− ln

(
npa
m

)
178

= ln Γ(npa + Y + 1)− ln Γ(npa + Y −m+ 1)− lnm!179

−
(
ln Γ(npa + 1)− ln Γ(npa −m+ 1)− lnm!

)
180

=
∫ Y

y=0

∫ 0

x=−m
(ln Γ)′′(npa + x+ y + 1) dxdy. (16)181

182

We fix a sequence ωn →∞ such that npa−m� ωn � n1/2; this is possible by the assumption.183

Note that (15) implies that Y/ωn
p−→ 0, and thus P(|Y | ≤ ωn) → 1. We may thus in the184

sequel assume |Y | ≤ ωn. We assume also that n is so large that npa −m ≥ 2ωn > 0.185

Stirling’s formula implies, by taking the logarithm and differentiating twice (in the186

complex half-plane Re z > 1
2 , say)187

(ln Γ)′′(x) = 1
x

+O
( 1
x2

)
= 1
x

(
1 +O

( 1
x

))
, x ≥ 1. (17)188

189

AofA 2020
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Consequently, (16) yields, noting the assumptions just made imply |Y | ≤ ωn ≤ 1
2 (npa −m),190

lnZ − ln
(
npa
m

)
=
∫ Y

y=0

∫ 0

x=−m

1
npa + x+ y + 1

(
1 +O

( 1
npa −m

))
dxdy191

=
∫ Y

y=0

∫ 0

x=−m

1
npa + x

(
1 +O

( ωn
npa −m

))
dxdy192

=
(

1 +O
( ωn
npa −m

))
Y

∫ 0

x=−m

1
npa + x

dx193

=
(
1 + o(1)

)
Y ln npa

npa −m
. (18)194

195

Consequently, using also (15), we obtain196

lnZ − ln
(
npa
m

)
n1/2

∣∣ln(1− m
npa

)∣∣ =
(
1 + op(1)

) Y

n1/2
d−→ N

(
0, pa(1− pa)

)
, (19)197

198

which is equivalent to (11).199

(ii) If m = o(n), then
∣∣ln(1− m

npa

)∣∣ ∼ m
npa

, and (12) follows.200

(iii) If m = o(n1/2), then (ii) applies, so (12) holds; hence Lemma 2 implies201

Z/

(
npa
m

)
∼ AsN

(
1,
(
p−1
a − 1

)m2

n

)
. (20)202

203

Furthermore,204

EZ =
(
n

m

)
pma = nmeO(m2/n)

m! pma ∼
nm

m! p
m
a (21)205

206

and, similarly,
(
npa
m

)
∼ nmpma

m! . Hence, EZ ∼
(
npa
m

)
and (13) follows from (20); (14) is an207

immediate consequence. J208

2.4 General results209

We now present our main results. However, first we discuss the road map of our approach.210

First, we observe that the representation (2) shows that Z can be viewed as a U -statistic.211

For convenience, we consider Z∗ in (4), which differs from Z by a constant factor only,212

and show in (41) that Z∗ − EZ∗ can be decomposed into a sum
∑m
`=1 V` of orthogonal213

random variables V` such that, when m is not too large, Var
(∑m

`=2 V`
)

= o(VarV1). Next,214

in Lemma 11 we prove that V1 appropriately normalized converges to the standard normal215

distribution. This will allow us to conclude the asymptotic normality of Z.216

In this paper, we only consider the region m = o
(
n1/2). First, for m = o

(
n1/3) we claim217

that the number of subsequence occurrences always is asymptotically normal.218

I Theorem 5. If m = o
(
n1/3), then219

Z ∼ AsN
((n

m

)
pw, σ

2
1p

2
w

)
, (22)220

221

where222

σ2
1 =

n∑
i=1

∑
a∈A

p−1
a

 ∑
j: wj=a

(
i− 1
j − 1

)(
n− i
m− j

)2

− n
(
n− 1
m− 1

)2
. (23)223

224

Furthermore, EZ =
(
n
m

)
pw and VarZ ∼ p2

wσ
2
1.225
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In the second main result, we restrict the patterns w to such that are not typical for the226

random text; however, we will allow m = o
(
n1/2).227

I Theorem 6. Let q = (qa)a∈A be the proportions of the letters in w, i.e., qa :=228

1
m

∑m
j=1 1{wj = a}. Suppose that lim infn→∞ ‖q−p‖ > 0. If further m = o

(
n1/2), then the229

asymptotic normality (22) holds.230

3 Analysis and Proofs231

In this section we will prove our main results. We start with some preliminaries.232

3.1 Preliminaries and more notation233

Let, for a ∈ A,234

ϕa(x) := p−1
a 1{x = a} − 1. (24)235

Thus, letting ξ be any random variable with the distribution of ξi,236

Eϕa(ξ) = 0, a ∈ A. (25)237
238

Let p∗ := mina pa and239

B := p−1
∗ − 1. (26)240

I Lemma 7. Let ϕa and B be as above.241

(i) For every a ∈ A,242

E
[
ϕa(ξ)2] = p−1

a − 1 ≤ B. (27)243
244

(ii) For some c1 > 0 and every a ∈ A,245

‖ϕa(ξ)‖2 =
(
p−1
a − 1

)1/2 ≥ c1. (28)246
247

(iii) For any vector r = (ra)a∈A with
∑
a ra = 1,248 ∥∥∥∑

a∈A
raϕa(ξ)

∥∥∥
2
≥ ‖r− p‖ :=

(∑
a∈A
|rα − pα|2

)1/2
. (29)249

250

Proof. The definition (24) yields251

E
[
ϕa(ξ)2] = p−2

a Var
[
1{ξ = a}

]
= p−2

a pa(1− pa) = p−1
a − 1. (30)252

Hence, (27) and (28) follow, with B given by (26).253

Finally, for every x ∈ A, by (24) again,254 ∑
a∈A

raϕa(x) = rxp
−1
x −

∑
a∈A

ra = rx/px − 1 (31)255

256

and thus257

E
(∑
a∈A

raϕa(ξ)
)2

=
∑
a∈A

pa
(
ra/pa − 1

)2 =
∑
a∈A

p−1
a

(
ra − pa

)2 (32)258

259

and (29) follows. J260

AofA 2020
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3.2 A decomposition261

The representation (2) shows that Z is a special case of a U -statistic. For fixed m, the262

general theory of (author?) [9] applies and yields asymptotic normality. (Cf. [12, Section263

4] for a related problem.) For m→∞ (our main interest), we can still use the orthogonal264

decomposition of [9], which in our case takes the following form.265

By the definitions in Section 2.1 and (24),266

Yα =
m∏
j=1

(
p−1
wj 1{ξαj = wj}

)
=

m∏
j=1

(
ϕwj (ξαj ) + 1

)
. (33)267

By multiplying out this product, we obtain268

Yα =
∑
γ⊆[m]

∏
j∈γ

ϕwj (ξαj ). (34)269

Hence,270

Z∗ =
∑

α∈([n]
m)
Yα =

∑
α∈([n]

m)

∑
γ⊆[m]

∏
j∈γ

ϕwj (ξαj ) =
∑

α∈([n]
m)

∑
γ⊆[m]

|γ|∏
k=1

ϕwγk (ξαγk ). (35)271

We rearrange this sum. First, let ` := |γ| ∈ [m], and consider all terms with a given `. For272

each α and γ, with |γ| = `, let273

αγ := {αγ1 , . . . , αγ`} ∈
(

[n]
`

)
. (36)274

For given γ ∈
([m]
`

)
and β ∈

([n]
`

)
, the number of α ∈

([n]
m

)
such that αγ = β equals the275

number of ways to choose, for each k ∈ [`+ 1], γk − γk−1− 1 elements of α in a gap of length276

βk − βk−1 − 1, where we define β0 = γ0 = 0 and β`+1 = n+ 1, γ`+1 = m+ 1; this number is277

c(β, γ) :=
`+1∏
k=1

(
βk − βk−1 − 1
γk − γk−1 − 1

)
. (37)278

Consequently, combining the terms in (35) with the same αγ ,279

Z∗ =
m∑
`=0

∑
γ∈([m]

` )

∑
β∈([n]

` )
c(β, γ)

∏̀
k=1

ϕwγk (ξβk). (38)280

We define, for 0 ≤ ` ≤ m and β ∈
([n]
`

)
,281

V`,β :=
∑

γ∈([m]
` )
c(β, γ)

∏̀
k=1

ϕwγk (ξβk) (39)282

and283

V` :=
∑

β∈([n]
` )
V`,β . (40)284

Thus (38) yields the decomposition285

Z∗ =
m∑
`=0

V`. (41)286

287
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For ` = 0,
([n]

0
)
contains only the empty set ∅, and288

V0 = V0,∅ =
(
n

m

)
= EZ∗. (42)289

290

Furthermore, note that two summands in (38) with different β are orthogonal, as a con-291

sequence of (25) and independence of different ξi. Consequently, the variables V`,β (` ∈ [m],292

β ∈
([n]
`

)
) are orthogonal, and hence the variables V` (` = 0, . . . ,m) are orthogonal.293

Let294

σ2
` := Var(V`) = EV 2

` =
∑

β∈([m]
` )

EV 2
`,β , 1 ≤ ` ≤ m. (43)295

Note also that by the combinatorial definition of c(β, γ) given before (37), we see that296 ∑
β∈([n]

` )
c(β, γ) =

(
n

m

)
, (44)297

298

since this is just the number of α ∈
([n]
m

)
, and299 ∑

γ∈([m]
` )
c(β, γ) =

(
n− `
m− `

)
, (45)300

301

since this sum is the total number of ways to choose m− ` elements of the n− ` elements of302

α in the gaps.303

3.3 The projection method304

We use the projection method used by (author?) [9] to prove asymptotic normality for305

U -statistics. Translated to the present setting, the idea of the projection method is to306

approximate Z∗ − EZ∗ = Z∗ − V0 by V1, thus ignoring all terms with ` ≥ 2 in the sum in307

(41). In order to do this, we estimate variances.308

First, by (27) and the independence of the ξi,309

∥∥∥∏̀
k=1

ϕwγk (ξβk)
∥∥∥

2
=
(∏̀
k=1

E
∣∣ϕwγk (ξβk)

∣∣2)1/2
≤ B`/2. (46)310

By Minkowski’s inequality, (39), (46) and (45),311 ∥∥V`,β∥∥2 ≤
∑

γ∈([m]
` )
c(β, γ)B`/2 = B`/2

(
n− `
m− `

)
(47)312

313

or, equivalently,314

EV 2
`,β ≤ B`

(
n− `
m− `

)2
. (48)315

316

This leads to the following estimates.317

I Lemma 8. For 1 ≤ ` ≤ m,318

σ2
` := EV 2

` ≤ σ̂2
` := B`

(
n

`

)(
n− `
m− `

)2
. (49)319

320
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Proof. The definition of V` in (40) and (48) yield, since the summands V`,β are orthogonal,321

σ2
` := EV 2

` =
∑

β∈([n]
` )

EV 2
`,β ≤

(
n

`

)
B`
(
n− `
m− `

)2
, (50)322

323

as needed. J324

Note that, for 1 ≤ ` < m,325

σ̂2
`+1
σ̂2
`

= B

(
n
`+1
)(
n−`−1
m−`−1

)2(
n
`

)(
n−`
m−`

)2 = B
n− `
`+ 1

(m− `
n− `

)2
≤ B m2

(`+ 1)n. (51)326

327

I Lemma 9. If m ≤ B−1/2n1/2, then328

Var
(
Z∗ − V1

)
≤ B2m2

(
n− 1
m− 1

)2
. (52)329

330

Proof. By (51) and the assumption, for 1 ≤ ` < m,331

σ̂2
`+1
σ̂2
`

≤ 1
`+ 1 ≤

1
2 , (53)332

333

and thus, summing a geometric series,334

Var
(
Z∗ − V1

)
=

m∑
`=2

Var
(
V`
)
≤

m∑
`=2

σ̂2
` ≤

m∑
`=2

22−`σ̂2
2 ≤ 2σ̂2

2335

= B2n(n− 1)
(
n− 2
m− 2

)2
≤ B2m2

(
n− 1
m− 1

)2
. (54)336

337

J338

3.4 The first term V1339

For ` = 1, we identify
([n]
`

)
and [n], and we write V1,i := V1,{i}. Note that, by (37),340

c(i, j) := c
(
{i}, {j}

)
=
(
i− 1
j − 1

)(
n− i
m− j

)
. (55)341

342

Thus (40) and (39) become343

V1 =
n∑
i=1

V1,i (56)344

345

with, using (55),346

V1,i =
m∑
j=1

c(i, j)ϕwj (ξi) =
m∑
j=1

(
i− 1
j − 1

)(
n− i
m− j

)
ϕwj (ξi). (57)347

348

Note that V1,i is a function of ξi, and thus the random variables V1,i are independent.349

Furthermore, (25) implies EV1,i = 0. Let τ2
i := VarV1,i = EV 2

1,i. Then, see (43),350

σ2
1 = VarV1 =

n∑
i=1

VarV1,i =
n∑
i=1

τ2
i . (58)351

352
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Observe that it follows from (57) and (24) that353

τ2
i =

∑
a∈A

p−1
a

 ∑
j: wj=a

(
i− 1
j − 1

)(
n− i
m− j

)2

−
(
n− 1
m− 1

)2
. (59)354

Taking ` = 1 in (48) yields the upper bound355

τ2
i = EV 2

1,i ≤ B
(
n− 1
m− 1

)2
, i ∈ [n]. (60)356

357

Summing over i, or using (49), we obtain358

σ2
1 := EV 2

1 ≤ σ̂2
1 := Bn

(
n− 1
m− 1

)2
. (61)359

360

We notice that the upper bound is achievable. Indeed, for w = a · · · a, by (59) and (58),361

τ2
i = (p−1

a − 1)
(
n− 1
m− 1

)2
, σ2

1 = n(p−1
a − 1)

(
n− 1
m− 1

)2
. (62)362

363

We show also a general lower bound.364

I Lemma 10. There exists c, c′ > 0 such that365

σ2
1 ≥

c

m
σ̂2

1 = c′
n

m

(
n− 1
m− 1

)2
. (63)366

367

Proof. We consider the first term in the sum in (57) separately, and write368

V1,i = c(i, 1)ϕw1(ξi) + V ′1,i, (64)369
370

where371

V ′1,i :=
m∑
j=2

c(i, j)ϕwj (ξi). (65)372

373

We have, by (55), c(i, 1) =
(
n−i
m−1

)
. Consequently, for any i ∈ [n],374

c(i, 1)
c(1, 1) =

(
n−i
m−1

)(
n−1
m−1

) =
∏m−2
k=0 (n− i− k)∏m−2
k=0 (n− 1− k)

=
m−2∏
k=0

(
1− i− 1

n− 1− k

)
375

≥ 1−
m−2∑
k=0

i− 1
n− 1− k ≥ 1− m(i− 1)

n−m+ 1 . (66)376

377

Let δ ≤ 1/4 be a fixed small positive number, chosen later. Assume that i ≤ 1 + δn/m.378

In particular, either i = 1 or m ≤ m(i− 1) ≤ δn < n/2, and thus (66) implies379

c(i, 1)
c(1, 1) ≥ 1− m(i− 1)

n−m
≥ 1− δn

n/2 = 1− 2δ. (67)380

381

By (45), (67) implies382

m∑
j=2

c(i, j) =
(
n− 1
m− 1

)
− c(i, 1) = c(1, 1)− c(i, 1) ≤ 2δc(1, 1). (68)383

384
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Hence, by (65), Minkowski’s inequality and (27), cf. (47),385

∥∥V ′1,i∥∥2 ≤
m∑
j=2

c(i, j)
∥∥ϕwj (ξi)∥∥2 ≤

m∑
j=2

c(i, j)B1/2 ≤ 2δB1/2c(1, 1). (69)386

387

Furthermore, (28) and (67) yield388 ∥∥c(i, 1)ϕw1(ξi)
∥∥

2 ≥ c(i, 1)c1 ≥ c1(1− 2δ)c(1, 1) ≥ 1
2c1c(1, 1). (70)389

390

Finally, (64) and the triangle inequality yield, using (70) and (69),391 ∥∥V1,i
∥∥

2 ≥
∥∥c(i, 1)ϕw1(ξi)

∥∥
2 −

∥∥V ′1,i∥∥2 ≥
( 1

2c1 − 2δB1/2)c(1, 1). (71)392
393

We now choose δ := c1/(8B1/2), and find that for some c2 > 0,394

τ2
i :=

∥∥V1,i
∥∥2

2 ≥ c2c(1, 1)2, i ≤ 1 + δn/m. (72)395
396

Consequently, by (58),397

σ2
1 =

n∑
i=1

τ2
i ≥

δn

m
c2c(1, 1)2 = c3

n

m

(
n− 1
m− 1

)2
. (73)398

399

This proves (63), with c′ := c3 and c = c′/B. J400

The next lemma is proved in the Appendix in which we verify Lyapunov’s condition to401

prove asymptotic normality of V1.402

I Lemma 11. Suppose that m = o(n). Then V1 is asymptotically normal:403

V1/σ1
d−→ N(0, 1). (74)404

405

3.5 Proofs of Theorem 5 and 6406

We next prove a general theorem showing asymptotic normality under some conditions.407

I Theorem 12. Suppose that n→∞ and that408

m2
(
n− 1
m− 1

)2
= o
(
σ2

1
)
. (75)409

410

Then411

VarZ = p2
w VarZ∗ ∼ p2

wσ
2
1 (76)412

413

and414

Z∗ − EZ∗

σ1

d−→ N(0, 1), (77)415

Z − EZ
(VarZ)1/2 = Z∗ − EZ∗

(VarZ∗)1/2
d−→ N(0, 1). (78)416

417

Proof. By Lemma 9 and (75),418

Var
(Z∗ − V1

σ1

)
= Var(Z∗ − V1)

σ2
1

≤ B2m
2(n−1
m−1

)2
σ2

1
= o(1). (79)419

420
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Hence, recalling EV1 = 0,421

Z∗ − EZ∗ − V1

σ1

p−→ 0. (80)422
423

Combining (74) and (80), we obtain (77).424

Furthermore, by (79), and since the terms in (41) are orthogonal,425

VarZ∗ = VarV1 + Var
(
Z∗ − V1

)
= σ2

1 + o(σ2
1) ∼ σ2

1 , (81)426
427

which yields (76), and also shows that we may replace σ1 by (VarZ∗)1/2 in (77), which yields428

(78); the equality in (78) is a trivial consequence of (4). J429

Now we are ready to prove our main results.430

Proof of Theorem 5. By Lemma 10,431

m2(n−1
m−1

)2
σ2

1
≤ Cm

3

n
= o(1). (82)432

433

Thus (75) holds, and the result follows by Theorem 12 together with (3) and (4). J434

Recall that in Theorem 6, the range of m is improved, assuming that w is not typical for435

the random source with probabilities p = (pa)a∈A that we consider.436

Proof of Theorem 6. By Theorem 12, with (75) verified by Lemma 13 below. J437

I Lemma 13. Let q = (qa)a∈A be the proportions of the letters in w. Then438

σ2
1 ≥

m2

n

(
n

m

)2
‖q − p‖2 = n

(
n− 1
m− 1

)2
‖q − p‖2. (83)439

440

Proof. Let441

ψi(x) :=
m∑
j=1

c(i, j)ϕwj (x). (84)442

443

Thus (57) is V1,i = ψi(ξi), and (58) is, since Eψi(ξ) = 0,444

σ2
1 = VarV1 =

n∑
i=1

E
[
ψi(ξi)2] = E

n∑
i=1

ψi(ξ)2. (85)445

446

Hence, by the Cauchy–Schwarz inequality,447

nσ2
1 = nE

n∑
i=1

ψi(ξ)2 ≥ E
( n∑
i=1

ψi(ξ)
)2
. (86)448

449

Furthermore, by (84) and (44)450

n∑
i=1

ψi(x) =
n∑
i=1

m∑
j=1

c(i, j)ϕwj (x) =
m∑
j=1

(
n

m

)
ϕwj (x) =

(
n

m

)∑
a∈A

mqaϕa(x). (87)451

452

Hence, (29) yields453 ∥∥∥ n∑
i=1

ψi(ξ)
∥∥∥

2
= m

(
n

m

)∥∥∥∑
a∈A

qaϕa(ξ)
∥∥∥

2
≥ m

(
n

m

)
‖q − p‖. (88)454

455

Combining (86) and (88) yields (83). J456
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Appendix495

3.6 Proof of Lemma 11496

We show that the central limit theorem applies to the sum V1 =
∑
i V1,i in (56). The terms497

V1,i are independent and have means EV1,i = 0. We verify Lyapunov’s condition.498

The random variable ξ is defined on some probability space (Ω,F , P ) and takes values499

in the finite set A. Thus the linear space V of functions Ω→ R of the form f(ξ) has finite500

dimension |A|. Moreover, every function in V is bounded. The L2 and L3 norms ‖ · ‖2 and501

‖ · ‖3 are thus finite on V , and are thus both norms on the finite-dimensional vector space V ;502

hence there exists a constant C such that for any function f ,503

‖f(ξ)‖3 ≤ C‖f(ξ)‖2. (89)504
505

In particular, since the definition (57) shows that V1,i is a function of ξi
d= ξ,506

‖V1,i‖3 ≤ C‖V1,i‖2 = Cτi, 1 ≤ i ≤ n. (90)507
508

Furthermore, by (60) and (63),509

maxi τ2
i

σ2
1

≤
B
(
n−1
m−1

)2
c′ nm

(
n−1
m−1

)2 = C
m

n
= o(1). (91)510

511

Consequently, using (90), (58) and (91),512 ∑n
i=1 E |V1,i|3

σ3
1

=
∑n
i=1 ‖V1,i‖33
σ3

1
≤
C
∑n
i=1 τ

3
i

σ3
1

≤ C
maxi τi

∑n
i=1 τ

2
i

σ3
1

513

= C
maxi τi
σ1

= o(1). (92)514
515

This shows the Lyapunov condition, and thus a standard form of the central limit theorem,516

[7, Theorem 7.2.4 or 7.6.2], yields (74).517
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