
ON GENERAL SUBTREES OF A CONDITIONED

GALTON–WATSON TREE

SVANTE JANSON

Abstract. We show that the number of copies of a given rooted tree in
a conditioned Galton–Watson tree satisfies a law of large numbers under a
minimal moment condition on the offspring distribution.

1. Introduction

Let Tn be a random conditioned Galton–Watson tree with n nodes, defined
by an offspring distribution ξ with mean E ξ = 1, and let t be a fixed ordered
rooted tree. We are interested in the number of copies of t as a (general) subtree
of Tn, which we denote by Nt(Tn). For details of these and other definitions, see
Section 2. Note that we consider subtrees in a general sense. (Thus, e.g., not just
fringe trees; for them, see similar results in [9].)

The purpose of the present paper is to show the following law of large numbers
under minimal moment assumptions. Let nt(T ) be the number of rooted copies
of t in a tree T , i.e., copies with the root at the root of T . Further, let ∆(t) be
the maximum outdegree in t.

Theorem 1.1. Let t be a fixed ordered tree, and let Tn be a conditioned Galton–
Watson tree defined by an offspring distribution ξ with E ξ = 1 and E ξ∆(t) <∞.
Also, let T be a Galton–Watson tree with the same offspring distribution. Then,
as n→∞,

Nt(Tn)/n
L1

−→ Ent(T ), (1.1)

where the limit is finite and given explicitly by (3.2) below.
Equivalently,

Nt(Tn)/n
p−→ Ent(T ), (1.2)

and

ENt(Tn)/n→ Ent(T ). (1.3)

The fact that (1.1) is equivalent to (1.2)–(1.3) is an instance of the general fact
that for any random variables, convergence in L1 is equivalent to convergence in
probability together with convergence of the means of the absolute values (i.e.,
in this case, with non-negative variables, the means); see e.g. [6, Theorem 5.5.4].
We nevertheless state both versions for convenience.

Chyzak, Drmota, Klausner and Kok [1] (see also [2, Section 3.3]) considered
patterns in random trees; their patterns differ from the subgraph counts above
in that some external vertices are added to t, and that one only considers copies
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of t in a tree T such that each internal vertex in the copy has the same degree
in T as in t (counting also edges to external vertices); equivalently, each vertex
in t is equipped with a number, and one considers only copies of t where the
vertex degrees match these numbers. (Another difference is that [1] consider
unrooted trees, but the proof proceeds by first considering rooted [planted] trees.
Furthermore, only uniformly random labelled trees are considered in [1], but
the proofs extend to suitable more general conditioned Galton–Watson trees,
as remarked in [1] and shown explicitly in [11; 12].) It was shown in Chyzak,
Drmota, Klausner and Kok [1] that the number of occurences of such a pattern is
asymptotically normal, with asymptotic mean and variance both of the order n
(except that the variance might be smaller in at least one exceptional degenerate
case), which of cource entails a law of large numbers. Moreover, [1] discuss briefly
generalizations, including subtrees without further degree conditions as in the
present paper; they expect asymptotic normality to hold in this case too, but it
seems that their method, which is based on setting up and analyzing a system of
functional equations for generating functions, in general would require extensions
to infinite systems, which as far as we know has not been pursued. (See [4] for a
related problem.) See further Section 5.

Our method is probabilistic, and quite different from the analysis of generating
functions in [1].

2. Notation

All trees are rooted and ordered. The root of a tree T is denoted o = oT . The
size |T | of a tree T is defined as the number of vertices in T .

The degree d(v) of a vertex v ∈ T always means the outdegree, i.e., the number
of children of v. The degree sequence of T is the sequence of all degrees d(v), v ∈ T ,
for definiteness in depth first order. Let ∆(T ) := maxv∈T d(v) be the maximum
(out)degree in T .

A (general) subtree T ′ of a tree T is a non-empty connected subgraph of T ;
we regard a subtree as a rooted tree in the obvious way, with the root being the
vertex in T ′ that is closest to the root in T . Note that for any vertex v ∈ T ′, its
set of children in T ′ is a subset of its set of children in T ; the order of the children
of v in T ′ is (by definition) the same as their relative order in T .

If v ∈ T , the fringe subtree T v is the subtree of T consisting of v and all its
descendants; this is thus a subtree with root v.

If t and T are ordered rooted tree, letNt(T ) be the number of (general) subtrees
of T that are isomorphic to t (as ordered trees), and let nt(T ) be the number
of such subtrees that furthermore have root oT . Then nt(T

v) is the number of
subtrees with root v isomorphic to t, and thus

Nt(T ) =
∑
v∈T

nt(T
v). (2.1)

In other words, Nt(T ) is an additive functional with toll function nt(T ), see e.g.
[9].

Let T be a random Galton–Watson tree defined by an offspring distribution
(pi)

∞
0 , and let Tn be the conditioned Galton–Watson tree defined as T conditioned

on |T | = n (tacitly considering only n such that P
(
|T | = n

)
> 0); see e.g. [8]

for a survey. We let ξ be a random variable with the distribution (pi)
∞
0 ; we call

both (pi)
∞
0 and (with a minor abuse) ξ the offspring distribution. We will only
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consider offspring distributions with E ξ = 1 (i.e., ξ is critical). (We often repeat
this for emphasis.) Let σ2 := Var ξ 6 ∞; we tacitly assume σ2 > 0, but do not
require σ2 <∞ unless we say so.
C and c denote unspecified constants that may vary from one occurrence to

the next. They may depend on parameters such as the offspring distribution or
the fixed tree t, but they never depend on n.

Convergence in probability and distribution is denoted
p−→ and

d−→, respec-
tively. Unspecified limits are as n→∞.

3. Proof

We begin by finding the expectation of nt for both unconditioned and condi-
tioned Galton–Watson trees. Let

Sn :=
n∑
i=1

ξi, (3.1)

where ξ1, ξ2, . . . are i.i.d. copies of ξ.

Lemma 3.1. Let t be a fixed ordered tree with degree sequence d1, . . . , dk, where
thus k = |T |.

(i) Then

Ent(T ) =
k∏
i=1

E
(
ξ

di

)
=

k∏
i=1

∞∑
mi=di

pmi

(
mi

di

)
. (3.2)

(ii) If n > k, then, with m :=
∑k

i=1mi,

Ent(Tn) =
n

n− k
∑

m1,...mk>0

k∏
i=1

pmi

(
mi

di

)
· (m− k + 1)P(Sn−k = n−m− 1)

P(Sn = n− 1)
.

(3.3)

Proof. (i): We try to construct a copy t′ of t in T , with the given root o. Let m1

be the root degree of T . Then there are
(
m1

d1

)
ways to choose the d1 children of

the root that belong to t′. Fix one of these choices, say v11, . . . , v1d1 .
Next, let m2 be the number of children of v11 in T . Given m2, there are

(
m2

d2

)
ways to choose the d2 children of v11 that belong to t′. Fix one of these choices.

Continuing in the same way, taking the vertices of t′ in depth first order, we

find for every sequence m1, . . . ,mk of non-negative integers, a total of
∏k

1

(
mi
di

)
choices, and each of these gives a tree t′ ∼= t provided the selected vertices in T
have degrees m1, . . . ,mk, which occurs with probability

∏k
i=1 pmi . Hence,

Ent(T ) =
∑

m1,...mk>0

k∏
i=1

pmi

k∏
i=1

(
mi

di

)
=

∑
m1,...mk>0

k∏
i=1

(
pmi

(
mi

di

))

=

k∏
i=1

∞∑
mi=0

pmi

(
mi

di

)
, (3.4)

and (3.2) follows.
(ii): Consider again T . We have just shown that each sequence m1, . . . ,mk

gives
∏k
i=1

(
mi
di

)
choices of possible subtrees t′ ∼= t in T , where the vertices of t′
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are supposed to have degrees m1, . . .mk in T . This gives a total of m =
∑k

i=1mi

children, of which k − 1 are the non-root vertices in t′, and thus m− (k − 1) are
unaccounted children. Then, |T | = n if and only if these m− k + 1 children and
their descendants yield exactly n− k vertices.

Condition on m1, . . . ,mk and one of the corresponding choices of t′. The prob-
ability that the m− k+ 1 children above and their descendants are n− k vertices
is the probability that a Galton–Watson process (with offspring distribution ξ)
started witk m− k + 1 individuals has total progeny n− k, which by the Otter–
Dwass formula [5] (see also [17] and the further references there) is given by

m− k + 1

n− k
P
(
Sn−k = n− k − (m− k + 1)

)
. (3.5)

Multiplying with
∏k
i=1 pmi , the probability that the vertices in t′ have the right

degrees in T , and summing over all possibilities, we obtain

E
[
nt(Tn)

]
P
(
|T | = n

)
= E

[
nt(T ) | |T | = n

]
P
(
|T | = n

)
= E

[
nt(T )1{|T | = n}

]
=

∑
m1,...mk>0

k∏
i=1

pmi

(
mi

di

)
· m− k + 1

n− k
P(Sn−k = n−m− 1). (3.6)

By the Otter–Dwass formula again (this time the original case in [15]),

P
(
|T | = n

)
=

1

n
P
(
Sn = n− 1

)
(3.7)

and (3.3) follows. (Cf. [8, Lemma 15.9] for a related result.) �

We need estimates of the probabilities P
(
Sn = n − m

)
. The estimate (3.8)

below is standard; we expect that also (3.9) is known, but we have not found a
reference, so we give a proof. (It is related to more difficult estimates in e.g. [16]
assuming more moments, see Remark 3.3 below.)

Lemma 3.2. Suppose that E ξ = 1 and E ξ2 <∞. Then, uniformly for all n > 1
and m ∈ Z,

P
(
Sn = n−m

)
6 Cn−1/2, (3.8)

P
(
Sn = n−m

)
6 C|m|−1. (3.9)

Proof. (3.8): This is well-known. In fact, the classical local limit theorem, see
e.g. [16, Theorem VII.1], gives the much more precise result that, uniformly in
m ∈ Z as n→∞,

P
(
Sn = n−m

)
=

h

σ
√
n

( 1√
2π
e−m

2/2σ2n + o(1)
)
. (3.10)

where h is the span of the offspring distribution. (Provided h|(n−m); otherwise
the probability is 0.)

(3.9): Let ϕ(t) := E eit(ξ−1) be the characteristic function of ξ−1 = ξ−E ξ; note
that ϕ(t) is twice differentiable because E ξ2 <∞. Then, by Fourier inversion,

P
(
Sn = n−m

)
=

1

2π

∫ π

−π
eimtϕ(t)n dt. (3.11)

Hence, using an integration by parts,

2πimP
(
Sn = n−m

)
=

∫ π

−π

( d

dt
eimt

)
ϕ(t)n dt = −

∫ π

−π
eimt d

dt

(
ϕ(t)n

)
dt (3.12)
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and thus

|m|P
(
Sn = n−m

)
6
∫ π

−π

∣∣∣ d

dt

(
ϕ(t)n

)∣∣∣ dt = n

∫ π

−π
|ϕ′(t)||ϕ(t)|n−1 dt. (3.13)

The assumptions yield ϕ′(0) = E(ξ − 1) = 0 and sup |ϕ′′(t)| = |ϕ′′(0)| = Var ξ =
C <∞, and thus

|ϕ′(t)| 6 Ct. (3.14)

Assume for simplicity that the span of ξ is 1 (the general case is similar, with
standard modifications). Then, as is well-known, it is easy to see that there exist
c > 0 such that

|ϕ(t)| 6 e−ct2 , |t| 6 π. (3.15)

Using (3.14) and (3.15) in (3.13) we obtain

|m|P
(
Sn = n−m

)
6 nC

∫ π

−π
|t|e−c(n−1)t2 dt 6 Cn

∫ ∞
0

te−cnt
2

dt = C, (3.16)

which proves (3.9). �

Remark 3.3. In the same way, taking two derivatives inside (3.11), one obtains

P
(
Sn = n−m

)
6 Cn1/2m−2, (3.17)

which is stronger for large m; note that (3.8) and (3.17) imply (3.9). Further-
more, even stronger estimates hold if we assume more moments; see [16, Theorem
VII.16] for a precise asymptotic estimate assuming E ξk <∞ for some k > 3. In
fact, [16, Theorem VII.16] holds for k = 2 too, which can be seen by refining the
argument above; this is an asymptotic estimate that is more precise than (3.17)
(and implies it). �

Lemma 3.4. Let t be a fixed ordered tree and suppose that E ξ = 1, E ξ2 < ∞
and E ξ∆(t) <∞. Then Ent(Tn) = o

(
n1/2

)
.

Proof. Let again the degree sequence of t be d1, . . . , dk. For a vector m =
(m1, . . . ,mk) ∈ Zk>0, let

am :=
k∏
i=1

pmi

(
mi

di

)
. (3.18)

Then, (3.2)–(3.3) and the assumption E ξ∆(t) <∞ yield∑
m

am = Ent(T ) <∞ (3.19)

and for n > k, with as above m :=
∑

imi =: |m| (and C = 1, actually),

Ent(Tn) 6 C
∑
m

am ·
mP(Sn−k = n−m− 1)

P(Sn = n− 1)
. (3.20)

Denote the summand in (3.20) by bm,n. By the local limit theorem (3.10), as is
well-known,

P(Sn = n− 1) ∼ cn−1/2, (3.21)

and thus

bm,n/n
1/2 6 Cmam P(Sn−k = n−m− 1). (3.22)
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Hence, (3.8) implies that for every fixed m, as n→∞,

bm,n/n
1/2 6 Cmamn

−1/2 → 0. (3.23)

Furthermore, (3.22) and (3.9) yield

bm,n/n
1/2 6 Cam, (3.24)

which is summable by (3.19). Consequently, dominated convergence shows that

n−1/2
∑
m

bm,n =
∑
m

bm,n/n
1/2 → 0, (3.25)

which together with (3.20) yields the result n−1/2 Ent(Tn)→ 0. �

We will see in Example 4.4 below, that the estimate o(n1/2) in Lemma 3.4 is
best possible in general. However, if we assume another moment on ξ, we can
improve the estimate to O(1), and furthermore show that Ent(Tn) converges. We
next show this, although it is not required for our main result.

Lemma 3.5. Let t be a fixed tree with degree sequence d1, . . . , dk, and suppose
that E ξ = 1. Then, as n→∞,

Ent(Tn)→
k∑
i=1

(di + 1)E
(

ξ

di + 1

)∏
j 6=i

E
(
ξ

dj

)
. (3.26)

In particular, Ent(Tn) = O(1) if E ξ∆(t)+1 <∞, while Ent(Tn)→∞ if E ξ∆(t)+1 =
∞.

Proof. Define again am by (3.18), and denote the summand in (3.3) by b′m,n,

where as above m = (m1, . . . ,mk) ∈ Zk>0. It follows from the local limit theorem
(3.10) that for every fixed m, as n→∞,

P(Sn−k = n−m− 1)

P(Sn = n− 1)
=
h(2πσ2(n− k))−1/2

(
1 + o(1)

)
h(2πσ2n)−1/2

(
1 + o(1)

) → 1. (3.27)

(This holds also if the span h > 1, assuming as we may that all pmi > 0, so h|m.)
Hence,

b′m,n → am(m− k + 1). (3.28)

Furthermore, by (3.8) and (3.21),

P(Sn−k = n−m− 1)

P(Sn = n− 1)
6
Cn−1/2

cn−1/2
= C, (3.29)

and thus

b′m,n 6 Cam(m− k + 1). (3.30)

Consequently, if
∑

m am(m− k + 1) <∞, then∑
m

b′m,n →
∑
m

am(m− k + 1) (3.31)

by (3.28), (3.30) and dominated convergence. On the other hand, if
∑

m am(m−
k + 1) = ∞, then

∑
m b′m → ∞ by (3.28) and Fatou’s lemma, and thus (3.31)

holds in this case too. Recalling (3.3), this shows that in any case,

Ent(Tn)→
∑
m

am(m− k + 1), (3.32)
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and it remains only to evaluate the limit.

Since t is a tree, we have
∑k

i=1 di = k−1, and thus m−k+1 =
∑k

i=1(mi−di).
Recalling the definition (3.18) of am, we thus have∑

m

am(m− k + 1) =
∑
m

k∑
i=1

(mi − di)pmi

(
mi

di

)∏
j 6=i

pmj

(
mj

dj

)

=

k∑
i=1

∞∑
mi=0

pmi(mi − di)
(
mi

di

)∏
j 6=i

∞∑
mj=0

pmj

(
mj

dj

)
, (3.33)

which equals the right-hand side of (3.26) because (mi−di)
(
mi
di

)
= (di+ 1)

(
mi
di+1

)
.

This completes the proof by (3.32). �

Remark 3.6. Assume only E ξ = 1. If T̂ is the infinite size-biased Galton–

Watson tree defined by Kesten [10], see also [8, Section 5], then Tn
d−→ T̂ in a

local topology (i.e., close to the root), see [8, Theorem 7.1], and it follows that

nt(Tn)
d−→ nt(T̂ ). (3.34)

It is not difficult to see that Ent(T̂ ) equals the right-hand side of (3.26), which

thus says that Ent(Tn) → Ent(T̂ ). (This could presumably be used to give an
alternative proof of Lemma 3.5, but we prefer the direct proof above.)

In particular, if E ξ∆(t)+1 =∞, then Ent(T̂ ) =∞, and thus (3.34) and Fatou’s
lemma yield Ent(Tn) → ∞. Hence, the last sentence in Lemma 3.5 holds also
without the assumption E ξ2 <∞. �

We proceed to the proof of Theorem 1.1. The case ∆(t) 6 1 is special, since
we then do not assume E ξ2 <∞, but on the other hand this case is simple and
rather trivial, so we discuss it separately in the following example.

Example 3.7. Consider the case ∆(t) 6 1. This means that t is a path Pk with
k > 1 vertices, and thus length k − 1. A copy of t in a tree T is thus a path
consisting of k vertices v1, . . . , vk such that vi+1 is a child of vi; such a path is
determined by its endpoint vk, and every vertex of depth (= distance from the
root) at least k − 1 is the endpoint of a copy of t. Hence, if νi(T ) is the number
of vertices in T of depth i, then

NPk
(T ) =

∑
i>k−1

νi(T ) = |T | −
k−2∑
i=0

νi(T ). (3.35)

In particular, NP1(Tn) = n and NP2(Tn) = n − 1 are deterministic; these are
trivially just the numbers of vertices and edges.

Moreover, as said in Remark 3.6, assuming E ξ = 1, the random tree Tn
converges locally in distribution as n→∞, see [8, Theorem 7.1]; in particular

each νi(Tn) converges in distribution (to νi(T̂ )) and thus νi(Tn) = Op(1) (i.e., is
bounded in probability). Hence, for every k > 1, (3.35) implies

NPk
(Tn) = n+Op(1). (3.36)

In particular, NPk
(Tn) is more strongly concentrated than the dispersion of order

n1/2 typically seen in similar statistics, see e.g. Example 4.2 and Section 5. �
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Proof of Theorem 1.1. Suppose first ∆(t) 6 1. Then t = Pk for some k > 1 and

Example 3.7 shows that (3.36) holds, and thus NPk
(Tn)/n

p−→ 1. Furthermore,
(3.2) yields

EnPk
(T ) = (E ξ)k−1 = 1, (3.37)

and thus (1.2) holds. Moreover, NPk
(Tn)/n 6 1 by (3.35), and thus dominated

convergence applies to (1.2) and yields (1.3) and (1.1), see e.g. [6, Theorems 5.5.4
and 5.5.5].

In the remainder of the proof we may thus assume ∆(t) > 2, and thus, in
particular, E ξ2 < ∞. (The arguments below use E ξ2 < ∞, but apply to any
∆(t).)

Lemma 3.1(i) and the assumption E ξ∆(t) < ∞ show that Ent(T ) < ∞, and

Lemma 3.4 shows Ent(Tn) = o
(
n1/2

)
. Hence (1.2) and (1.3) follow by [9, Remark

5.3]. However, since only a sketch of the proof is given in that remark, let us add
some details.

First, (1.3) follows by the argument in the proof of [9, Theorem 1.5(i)], adding

the factor n1/2 at some places.
Next, define for M > 0 the truncation νMt (T ) := nt(T )∧M and let NM

t (T ) :=∑
v∈T ν

M
t (T v) be the corresponding additive functional, cf. (2.1). Let ε > 0. Since

νMt (T )↗ nt(T ) as M →∞, we can by monotone convergence, and Ent(T ) <∞,
choose M such that

Ent(T )− E νMt (T ) < ε2. (3.38)

We have proved (1.3), and similarly ENM
t (Tn)/n → E νMt (T ) by [9, Theorem

1.3], since νMt is bounded. Hence, (3.38) implies that for all sufficiently large n,

E
∣∣Nt(Tn)/n−NM

t (Tn)/n
∣∣ = ENt(Tn)/n− ENM

t (Tn)/n < ε2. (3.39)

Furthermore, [9, Theorem 1.3] also yields NM
t (Tn)/n

p−→ E νMt (T ). Conse-
quently, using also (3.38) again, (3.39) and Markov’s inequality, if n is large,

P
(∣∣Nt(Tn)/n− Ent(T )

∣∣ > 3ε
)

6 P
(∣∣Nt(Tn)/n−NM

t (Tn)/n
∣∣ > ε

)
+ P

(∣∣NM
t (Tn)/n− E νMt (T )

∣∣ > ε
)

6 2ε. (3.40)

Hence, (1.2) holds.
Finally, as said earlier, (1.2) and (1.3) are together equivalent to the L1 con-

vergence (1.1). �

4. Examples

We give some simple but illuminating examples. Recall also Example 3.7.

Example 4.1. Let t = tq,r consist of two paths with q + 1 and r + 1 vertices,
joined at the root; here q, r > 1. We have k = 1 + q + r and d1 = 2 while di = 1
for i > 1; thus ∆(t) = 2. Since E ξ = 1, (3.2) yields

Entq,r(T ) = E
(
ξ

2

)
=

E ξ2 − 1

2
=
σ2

2
. (4.1)

Hence, Theorem 1.1 yields, for any q, r > 1,

Ntq,r(Tn)/n
L1

−→ σ2/2. (4.2)
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�

Example 4.2. Consider the special case q = r = 1 of Example 4.1. Then t1,1 is
a cherry, i.e., a root with two children. If a vertex v in a tree T has degree d(v),

then the number of cherries rooted at v is
(
d(v)

2

)
, and thus

Nt1,1(T ) =
∑
v∈T

(
d(v)

2

)
=
∞∑
r=1

(
r

2

)
Xr(T ), (4.3)

where Xr(T ) is the number of vertices of degree r in T .

It is known that Xr(Tn)/n
p−→ pr, see e.g. [8, Theorem 7.11]. Hence, (4.2)

(with q = r = 1) is what we would get by dividing (4.3) by n and taking the limit
inside the sum; if the degree distribution is bounded, the sum is finite so this is
rigorous and (4.2) (still with q = r = 1) follows from (4.3).

In this case we can say much more than (4.2). It was proved in [13], see also
[3], that Xr(Tn) is asymptotically normal, with

Xr(Tn)− npr√
n

d−→ N
(
0, γ2

r

)
(4.4)

for some explicit γ2
r . This was extended to joint convergence for all r in [7],

provided E ξ3 < ∞. Hence, at least if ξ is bounded, it follows from (4.3) that
Nt1,1(Tn) is asymptotically normal, with

Nt1,1(Tn)− nσ2/2
√
n

d−→ N
(
0, γ2

)
(4.5)

for some explicit γ2 > 0. There are degenerate cases where γ2 = 0. For example,
for full binary trees (P(ξ = 2) = P(ξ = 0) = 1

2), all degrees are 0 or 2, and then
each Xr(T ) is a deterministic function of |T |; hence (4.3) shows that Nt1,1(Tn)
is deterministic. More generally, the same happens for full m-ary trees, with
ξ ∈ {0,m} a.s., for any m > 2. But it can be seen from the covariances given in
[7] that γ2 > 0 in all other cases with bounded ξ. See further Section 5. �

Example 4.3. Let ` > 1, and let $`(T ) be the number of (undirected) paths
of length ` in T . For definiteness, we count undirected paths, so this equals the
number of unordered pairs (v, w) of vertices of distance `. There are two cases:

(i) v is an ancestor of w, or conversely; the number of such pairs is NP`
(T ).

(ii) Neither v nor w is an ancestor of the other. Then v and w are the two leaves
in a copy of tq,r with q, r > 1 and q + r = `. For given q and r, the number
of such pairs equals Ntq,r(T )

Consequently,

$`(T ) = nP`
(T ) +

`−1∑
q=1

Ntq,`−q
(T ). (4.6)

Hence, Examples 3.7 and 4.1 yield

$`(Tn)/n
L1

−→ 1 + (`− 1)
σ2

2
. (4.7)

For example, taking ξ ∼ Po(1) we obtain (forgetting the ordering) a uniformly
random unordered labelled tree; we have σ2 = 1 and thus (4.7) yields

$`(Tn)
L1

−→ (`+ 1)/2. (4.8)
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Similarly, taking ξ ∼ Ge(1/2) we obtain a uniformly random ordered tree; we
have σ2 = 2 and thus (4.7) then yields

$`(Tn)
L1

−→ `. (4.9)

Taking ξ ∼ Bi(2, 1/2) we obtain a uniformly random binary tree; we have
σ2 = 1/2 and thus (4.7) now yields

$`(Tn)
L1

−→ (`+ 3)/4. (4.10)

�

The following example shows that the estimate o
(
n1/2

)
in Lemma 3.4 is best

possible.

Example 4.4. For simplicity, let the tree t be a star, where the root has degree
∆ > 2 and its children are leaves with degree 0. (The argument is easily modified
to any tree t with ∆(t) > 2.) Thus k := |t| = ∆ + 1. Assume that the span of ξ
is 1.

The local limit theorem (3.10) implies that if n is large and m 6 n1/2, then

P(Sn−k = n−m− 1) > cn−1/2, (4.11)

and thus, using (3.21),

P(Sn−k = n−m− 1)/P(Sn = n− 1) > c. (4.12)

Hence, by (3.3) and considering there only terms with m2 = · · · = mk = 0,

Ent(Tn) > c
∑

∆<m16n1/2

pm1

(
m1

∆

)
m1 > c

∑
∆<m6n1/2

pmm
∆+1. (4.13)

If ε > 0, and we let pm = m−∆−1−ε for large m, then E ξ∆ < ∞, and (4.13)
yields, for large n,

Ent(Tn) > c
∑

∆<m6n1/2

m−ε > cn(1−ε)/2. (4.14)

Hence, for any ε > 0, Ent(Tn) can grow faster than n1/2−ε.
Similarly, we can find an offspring distribution (pm)∞0 satifying the conditions

such that Ent(Tn) = n1/2−o(1); we omit the details. Moreover, for any given

sequence δ(n)↘ 0, we can find (pm)∞0 such that Ent(Tn) > δ(n)n1/2, at least for a
subsequence. To see this, take an increasing sequence (mj)

∞
1 with

∑∞
j=1 jδ(m

2
j ) <

1. Let pmj := jδ(m2
j )m

−∆
j , and pm = 0 for all other m > 2, choosing p0 and p1

such that
∑

i pi =
∑

i ipi = 1. Also, let nj := m2
j . Then (4.13) implies that, for

large j,

Ent(Tnj ) > cpmjm
∆+1
j = cjmjδ(m

2
j ) > mjδ(m

2
j ) = n

1/2
j δ(nj). (4.15)

�
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5. Asymptotic normality?

We showed in Example 4.2 that if ξ is bounded, then Nt1,1(Tn) is asymptotically

normal in the sense that (4.5) holds (although γ2 = 0 is possible). In fact, this
holds for any fixed tree t.

Proposition 5.1. Assume that ξ is bounded. Then, for any fixed tree t,

Nt(Tn)− nµt√
n

d−→ N
(
0, γ2

t

)
, (5.1)

for µt := Ent(T ) and some γ2
t > 0.

Proof. This follows from the result by Chyzak, Drmota, Klausner and Kok [1]
on patterns discussed in Section 1 (extended to conditioned Galton–Watson trees
[1; 11; 12]); the assumption on ξ means that vertex degrees are bounded by some
constant, and thus there is a finite number of patterns that correspond to subtrees
isomorphic to t; hence Nt(Tn) is a linear combination of pattern counts, and the
result follows from the joint asymptotic normality of the latter. (See also [14] for
a special case.)

Alternatively, this is an application of [9, Theorem 1.13]: the functional nt is
local (as defined in [9]) and for trees with degrees bounded by some constant K,
nt is bounded. Hence (5.1) follows from [9, Theorem 1.13]. �

We conjecture that this behaviour is typical, and that Proposition 5.1 holds
for every ξ with E ξ = 1 that satisfies a suitable moment condition. However, it
seems that substantial additional work would be required to show this. As said
in the introduction, this was briefly discussed in [1], but it seems that the method
there requires extensions to infinite systems of functional equations. Similarly,
the application of [9, Theorem 1.13] requires nt(Tn) to be bounded, which is
not the case when ξ is unbounded. It is possible that this may be overcome
by truncations and some variance estimates, but again more work is needed.
(The extension in [18] applies to the case when t is a star with root degree ∆
(including Example 4.2 with ∆ = 2) and E ξ2∆+1 <∞; this might suggest further
extensions.) This problem is thus left for future research.

Note also that there are degenerate cases when the asymptotic variance in
(5.1) γ2

t = 0; see Examples 3.7 and 4.2. (Then (5.1) does not give asymptotic
normality; only a concentration result.) However, we conjecture that this is an
exception, occuring only in a few special cases.

Acknowledgement. I thank Stephan Wagner for helpful comments.
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