FLUCTUATIONS OF BALANCED URNS WITH INFINITELY MANY
COLOURS
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ABSTRACT. In this paper, we prove convergence and fluctuation results for measure-
valued Pélya processes (MVPPs, also known as Pélya urns with infinitely-many colours).
Our convergence results hold almost surely and in L?, under assumptions that are dif-
ferent from that of other convergence results in the literature. Our fluctuation results
are the first second-order results in the literature on MVPPs; they generalise classical
fluctuation results from the literature on finitely-many-colour Pdélya urns. As in the
finitely-many-colour case, the order and shape of the fluctuations depend on whether the
“spectral gap is small or large”.

To prove these results, we show that MVPPs are stochastic approximations taking
values in the set of measures on a measurable space E (the colour space). We then use
martingale methods and standard operator theory to prove convergence and fluctuation
results for these stochastic approximations.

1. INTRODUCTION

1.1. A brief overview of the theory of Pélya urns. A d-colour Pélya urn is a stochas-
tic process that describes the evolution of an urn containing balls of d different colours. It
is a Markov process that depends on two parameters: the initial composition of the urn
ug € N% and a replacement matrix v = (tz,y)1<zy<d, which has integer entries. At time
zero, the urn contains u, , balls of colour z, for all 1 <z < d. At every discrete time-step,
we pick a ball uniformly at random in the urn, and if it is of colour x, we replace it in the
urn together with an additional v, , balls of colour y, for all 1 <y < d. The quantity of
interest is the process (u,)n>0, where, for all n > 0, the vector u,, = (up1,...,Uy,,4) is the
composition of the urn at time n.

As expected, the behaviour of the composition vector at large times depends on the
replacement matrix. The case when the replacement matrix is the identity was studied by
Markov [28] and then Pélya and Eggenberger [9]. It is well-known that, in this case, u, /n
converges almost surely to a d-dimensional Dirichlet random variable of parameter ug.
The fluctuations around this limit are Gaussian, conditioned on the limit. (See [30, Sec-
tion 2.3.1].)

Pélya urns whose replacement matrix is irreducible (the irreducibility assumption can
be weakened, see Janson [I8§]) exhibit a drastically different behaviour, see e.g. Athreya
and Karlin [I]: in that case, if for simplicity all replacements t, , are non-negative (this
too can be relaxed), the Perron—Frobenius theorem implies that the spectral radius s of ¢
is also a simple eigenvalue of t, and that there exists a unit left-eigenvector v associated
to s whose coordinates are all non-negative. Then, as n goes to infinity, u,/n converges
almost surely to sv. Interestingly, the fluctuations around this limit are either Gaussian
and of order y/n, or non-Gaussian and of higher order, depending on the spectral gap of t
(see, e.g. Janson [18] or Pouyanne [31]).

The main differences between the identity and the irreducible cases are that (1) the limit
of u,/n is random in the identity case, and deterministic in the irreducible case, (2) it
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depends on the initial composition in the identity case, while it does not in the irreducible
case, and (3) the irreducible case sometimes exhibits non-Gaussian fluctuations.

Since these seminal results, the model of Pélya urns has been extended and more precise
asymptotic results have been proved. The most natural extension is to allow balls to be
removed from the urn: It is standard to allow the diagonal coefficients of the replacement
matrix to equal —1, meaning that the ball that was drawn is removed from the urn. One
can also allow other coefficients of the replacement matrix to be negative and work condi-
tionally on “tenability”, which is the event that all coefficients of the composition vector
stay non-negative at all times. The model can also be extended by allowing the replace-
ment matrix to be random (at each time step, we use a new realisation of this matrix),
different colours to have different weights or activities (a ball is drawn with probability
proportional to its weight). These three generalisations are for example considered in [I8]
(see Remark 4.2 therein for ball substractions).

1.2. Measure-valued Pdlya processes. Measure-valued Pélya processes were intro-
duced by Bandyopadhyay and Thacker [3], and shortly after by Mailler and Marckert [26],
as a generalisation of Pdlya urns to infinitely many colours. They both considered cases
that can be seen as corresponding to the irreducible case in Section In fact, the gen-
eralisation to infinitely many colours in the diagonal case is much older and dates back
to Blackwell and MacQueen [4].

In the analogue of the irreducible case, the theory is very recent and, as far as we know,
there are only five papers on the subject: Bandyopadhyay and Thacker [3], Mailler and
Marckert [26], Janson [21], Mailler and Villemonais [27], and Bandyopadhyay, Janson and
Thacker [2]. The main difficulty is that the linear algebra tools used in the study of Pélya
urns are replaced by operator theory in an infinite dimensional space.

In the model introduced by [3] and [26], a measure-valued Pélya process (MVPP) is
defined as a Markov process (my),>0 taking values in the set of positive measures on
a measurable space F of colours. The process depends on two parameters again: the
initial composition measure my and the replacement kernel (R;).cr (a family of positive
measures on E; see Appendix [A| for measurability issues).

At every discrete time-step n > 1, a random colour Y, is drawn at random in F
with probability distribution m,_;/m,_;(E), and then m,, is defined as m,,_1 + Ry, (see
Section [2| for details).

The authors of [3] and [26] see the MVPP as a branching version of the E-valued Markov
chain (10,,),>0 with transition kernel (R;)zcr. They assume that the MVPP is “balanced”,
i.e., that the R,’s are all probability measures, which makes the Markov chain well de-
fined. They use this representation to prove that, if (tv,,),>0 is “ergodic” (in a general
sense that allows renormalisations), then a renormalised version of m,,/m, (E) converges
in probability to the limiting distribution of (tv,,),>0. The “ergodicity” assumption in this
MVPP case can be seen as the equivalent of the “irreducibility” assumption in the finitely-
many-colour case. This result is improved by Janson [21], who allows the replacement
kernel to be random.

Bandyopadhyay, Janson and Thacker [2] later built on these methods to prove that the
convergence results of [3] and [26] hold almost surely, under a condition that they call
“uniform ergodicity” on the underlying Markov chain (tv,,), and if the set of colours is
countable.

Using a different approach, Mailler and Villemonais [27] were able to consider non-
balanced, weighted MVPPs, also with random replacements; these are three generalisations
that are classical in the finitely-many-colour case and that extend the range of applications.
In the non-balanced case, R, may be a defective measure, so the underlying Markov chain
(10,,)n>0 has an absorbing “cemetery” state. The authors show that, if the continuous-time
version of the underlying Markov chain admits a quasi-stationary distribution (and under
other important assumptions), then m,, /n converges almost surely to this quasi-stationary
distribution. They use stochastic approximation methods, which is difficult since the
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stochastic approximation takes values in a non-compact space as soon as the space of
colours is non-compact (which is desirable for many applications), but which gives almost
sure convergence instead of the convergence in probability of [3] and [26]. The difficulty
coming from the fact that the stochastic approximation takes values in a non-compact
space is overcome by a Lyapunov-type assumption. The main drawback of this method is
that the Markov chain needs to be “quasi-ergodic” without any renormalisations, whereas
renormalisations were allowed in [3] and [26].

1.3. Our contribution. In this paper, we prove limit theorems for the fluctuations of
an MVPP around its almost sure limit: we are able to generalise the fluctuations results
of [I8] to the infinitely-many-colour case. Our framework is close to that of [27], although
we restrict ourselves to the balanced case; we expect the non-balanced case to be more
challenging and leave it open for now.

Interestingly, our results do not use the results of [27]: they are totally self-contained,
and our methods also give almost sure convergence of m,,/m, (E) to its limit, under a set of
assumptions that are different from those of [27]. Similarly to [27], we use a Lyapunov-type
assumption to deal with the fact that, in general, m,,/m,,(E) takes values in a non-compact
space.

To prove these results, we use stochastic approximation and thus martingale methods,
together with standard operator theory (in particular, we refer several times to the book
of Conway [5] on the subject).

1.4. Some notation and conventions. “Positive” is used in the weak sense, i.e., non-
negative.

The notation 1 stands for the usual number, and also for the function that is constant
equal to 1 on F. Indicator functions are denoted by 1.

I stands for the identity operator. As usual, for any complex number z € C and for any
operator 1', the operator 1" + z stands for T + zI.

If T is a bounded operator in a Banach space X, and A is a clopen (closed and open)
subset of its spectrum o (7T), let ITn = ITIa(T) denote the corresponding spectral projection
in X. (See e.g. [7, VIL.3.17-20] or [0, Exercise VII.4.9 and VII.(6.9)].) In particular, if A is
an isolated point in o(T), IT := II;yy is a projection onto the corresponding generalized
eigenspace. Note that 7' commutes with ITn, and thus 7' maps the range IIa (X)) into itself
(i.e., IIa(X) is an invariant subspace); moreover the spectrum of the restriction of T" to
[IAX equals A [5 after Equation VII.6.9].

For any non-negative integer n > 1, E,, is the conditional expectation with respect to
Fn, the o-field generated by all events up to time n, i.e., by Y¥; and R%) for 1 <¢ < n.

Let M(FE) be the space of complex measures on E (recall that these are finite by
definition), and let Mg(E), M4 (E), Mso(E), P(E) denote the subsets of finite signed
(i.e., real-valued) measures, finite positive measures, finite positive non-zero measures,
and probability measures, respectively. These sets can all be regarded as measurable
spaces, with the o-fields generated by the mappings p — u(A), A € €.

If u is a (possibly signed or complex) measure on E and f is a measurable function,
then pf := [ fdu (whenever this is defined).

For a complex measure p on F, let |u| denotes its total variation measure, and ||u|| =
|u|(E) its total variation. If w is a positive function on F, then M(w) is the Banach
space of complex measures p on E, such that the norm ||y, := |p|w is finite. P(w) :=
P(E) N M(w) is the subset of probability measures in M (w).

For any positive function w on E, we define the complex Banach space

B(w) = {g : E — C | g is measurable and 9/l B(w) := sup lst@)] < +oo}. (1.1)
el w(x)
In the special case w = 1 we write B(E), the space of bounded measurable functions on E.
Note that M(w) can be regarded (isometrically) as a subspace of the dual space B(w)*
in the obvious way.
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If B = (Bs)s is a kernel from E to a measurable space F' (see Appendix [A]for definition),
then pf denotes the measure on F' given by

uB(A) = /E Ba(A) dp(z). (12)

(This is the projection onto F' of the measure p ®  defined in (A.1]).) We extend to
complex measures y and signed kernels 3 such that [, [|8s]| d|p|(s) < oc.

If T is a bounded operator on B(w) such that its adjoint maps M (w) into itself, then
we write the adjoint as T" acting on the right on measures; we then have the associativity

(WD) f = pu(T'f) (1.3)

for (suitable) measures p and functions f on E.

For a Banach space D, we use ||-||p both for the norm of elements of D, and for the
operator norm of operators D — D.

We also make use of the following usual notations and conventions: zVy := max{z,y};
x Ay := min{z,y}; vy A z = (zy) A z; empty sums are 0 and empty products are 1;
inf () :== +00 and sup () := —o0.

We let C' and € denote unspecified constants whose meaning may change from one
occurrence to the next. We use € for constants that may depend on mg while C' denotes
constants that do not depend on my. Subscripts may be used to identify specific constants.

1.5. Plan of the paper. In Section 2] we define our model, state and discuss our assump-
tions and our main results. Our main results are two main theorems: Theorem 2.10] states
convergence of the MVPP, Theorem [2.13] gives the fluctuations of the MVPP around its
limit. In Section [3] we prove Theorem [2.10] and in Section [4 we prove Theorem [2.13
In Section [5, we prove Theorems [2.25 which give conditions for the limits in Theo-
rem to be non-degenerate. In Section [6] we apply our main result to four examples:
the out-degree profile of the random recursive tree, the heat kernel on the square, a branch-
ing random walk, and reinforced processes on a countable state-space.

Finally, we have three appendices. In Appendix [A] we discuss the construction of the
MVPP and measurability issues. In Appendix we state some general results on the
spectra of operators on Banach spaces, which are useful for our proofs. Appendix [C] we
prove a technical lemma that is used in the proof of Theorem [2.13]

2. MODEL AND MAIN RESULTS

Let (E,&) be a measurable space, R(Y) = ( g))weE be a set of finite (possibly signed)
random measures on E indexed by x € E, and let mg be a (non-random) finite measure
on E. (F may be called the colour space.) We define the measure-valued Pélya process
(MVPP) (my)n>0 of initial composition my and random replacement kernel R(!) as the
Markov process given by the following recursion. See Appendix [A] for some technical
details, including measurability assumptions.

Given m,, with n > 0, first sample Y,,;1 € E such that Y, is a random variable whose
conditional distribution on F, given m, and the previous history, is

m, :=m,/m,(E). (2.1)
Then, let
Mpyy1 = my, + Rgi), (2.2)

where RgZ ﬂ), conditioned on m,, Y, 1 = y and the previous history, has the distribution
R, == L(RM).

We assume that RS is positive on E\{z} but allow Rg(cl)({w}) € (—00,00). We assume
that the urn is tenable, i.e. that almost surely, m,, is a non-zero positive measure for all
n >0, so m, and Y, 11 are well defined. This is the case if, for example, mg is a non-zero

. 1 . .
positive measure and each Rg; ) as. is a positive measure.
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Remark 2.1. We assume for convenience that mg is non-random (except when we ex-
plicitly say otherwise). Extensions to random mg follow by conditioning on mg, see Re-
mark [2.14] for details. To enable such extensions, some of the results are stated with
constants that do not depend on my (they may depend on the distribution of the replace-
ment kernel R(l)), so that the dependence on my is explicit. Recall that, by convention, C'
does not depend on my while € may depend on mgy. The reader who is interested only in
a non-random my may simplify some expressions and arguments by allowing all constants
to depend on my. ]

Throughout the paper, we also make the following assumptions |(B)l [(H), and [(N)|

We assume that the urn is balanced:
(B) For all x € E, Rél)(E) = 1 almost surely.

Note that implies that the total mass is deterministic a.s.:
m,(E) = mg(E) + n. (2.3)
As said above, R;(,}) does not have to be a positive measure. Nevertheless, we will see
that and our assumption below imply that, for every x € FE,
E||RM|| < +o0 (2.4)

Hence, we can define the expectation E Rg) of the random signed measure Rg(vl), which we

denote by R, i.e.,
R.(A) :=E[RV(A)], Ac& (2.5)

It follows from (2.4) that R, is a finite signed measure on E and fromthat R.(E) =1.
Moreover, R, is positive on E \ {z}, and it will follow from Assumption below that

sup | Rz ({z})] < +o0. (2.6)
zelk
In particular, R,f is well defined for all non-negative measurable functions f : E —
[0, +00). Note also that R is a signed kernel from E to E (see Remark |A.1)),

Let W : E — [1,400) be a fixed function and let V := W9 : E — [1,4+00) for some
fixed ¢ > 2. We assume that V' and W satisfy the following.

(H) (i) There exists ¥ € (0,1) and C; > 0 such that, for all z € E,

R,V <9V (x) + Ch. (2.7)
(ii) There exists Cy > 0 such that, for every = € E,
E [(|R§}>1W) q] < oW (2)T = Co V(z). (2.8)

(iii) In addition, mgV < +4o0.

Remark 2.2. An important case is simply to choose W = 1, and thus V = 1. Note that
for W = 1, |(H)|is equivalent to assuming that there exists a constant Ca > 0 such that

E[HRS)H‘?] < (. In particular, if W =1 and RV is positive (a.s.) for every z € E, and

thus ||R§;1)|| =1 by then holds automatically. O

Remark 2.3. If R;E«l) a.s. is a positive measure, and thus a probability measure by
then Jensen’s inequality yields

(RO = (ROW)! < ROWs = ROV 29)
Hence, if also ([2.7)) holds, then
E[(|RVW)Y] <E[RIVV] =R,V <9V (z) + C1 < (9 + C1)V (), (2.10)
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i.e., (2.8) holds with Cy = ¥ 4+ Cy. Consequently, if RS) a.s. is a positive measure (for
every x € F), then |(H)(ii1)| follows from |[(H)(i)| and

More generally, if we assume that for some constant C' and every x € F,

IRD{z}|<C as. (2.11)
(in other words, subtractions are uniformly bounded), then implies
IRV = |RMV|(E) < RID(E) + 2[Rz} < C as. (2.12)
and Holder’s inequality yields
RO < (1RO W) " (|RD1) " < C(ROW) " (2.13)

Hence, using again,
(IRVW)? < C|RV|V < CRVV 4 20| RV {2}V (z) < ORVV + CV(z),  (2.14)
and taking expectations, we obtain
E[(|RVW)?] < CR,V + CV(z). (2.15)
Consequently, if holds, then follows from and O

Remark 2.4. The example in Section shows that the assumption |(H)| is important
for our results and cannot be weakened much. In particular, it is not enough to take ¢ < 2
above, see Remark We do not know whether our results hold with ¢ = 2, and leave

that as an open problem. O
Remark 2.5. By Jensen’s inequality, it follows from that
B[RO W] < E (1RO W) < 6" V(@) = cW (@), (2.16)
In particular, this implies above. Moreover, it also implies that
[Re({x})[W () < [Re|W < E[|RMV|W] < CW (2), (2.17)
so that |R.({z})| < C, which entails (2.6). O

Finally, we assume that, with notation as in Section
(N) There exists a probability measure v such that ¥R = v and vV < +o0.
Let
R:f+— (z€E— R,f) (2.18)

be the operator corresponding to R. Since R is a signed kernel from E to E, R maps
suitable (e.g. bounded) measurable functions on E to measurable functions on E. As
remarked above, the balance assumptionimplies that R,(E) = 1 for every x € E, i.e.,

Rl =1, (2.19)
and Assumption yields
VR =v. (2.20)

We also see that (2.7]) can be written RV < 9V + (4.

It follows from that R defines a bounded operator on B(W); by default, we
regard R as an operator on B(W) unless we say otherwise. In particular, we let o(R)
denote the spectrum of R on B(W), i.e. the set of all A € C such that R — AI is not
invertible.

In the following theorems, which are our main results, we increase the generality by
considering R as a bounded operator on a closed subspace D of the Banach space B(W)
such that R(D) C D (i.e., D is stable, or invariant); the most important case is simply
D = B(W). We denote by Rp the restriction of R to D, and denote its spectrum by
o(Rp).

To state our main results, we use the following definitions.
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Definition 2.6. We say that a bounded operator 7" on a Banach space & is simply

logarithmically quasi-compact (slqc) if

(QC1) 1 is an isolated point in o(7"), and the corresponding spectral projection II; =
IT1;(T") has rank 1.

(QC2) We have o(T) \ {1} C {A:ReX < 1}.

The reason for our name is that the conditions say that the operator e’ is quasi-

compact (see Remark with a single dominating eigenvalue that has a one-dimensional
generalized eigenspace; for convenience, we assume that T is normalised such that its
dominating eigenvalue is 1.

By |[(QC1), T" maps the one-dimensional subspace I1; (X) into itself. Since the restriction
of T to this subspace has spectrum {1}, it follows that 1 is an eigenvalue of T'; moreover,
the corresponding eigenvectors are precisely the non-zero elements of I1; X'; thus the eigen-
vector is unique up to a scalar factor. (We can regard |(QC1)| as a generalisation of the
finite-dimensional condition that the eigenvalue 1 has algebraic multiplicity 1.)

Definition 2.7. We say that an operator T is small if it is slqc and in addition
(S) o(M\{1} c{A:ReX< 3}.

Remark 2.8. This definition of small operator is analogous to the terminology used in
the context of finitely-many-colour urns: a Pdlya urn whose spectral gap is at least half
of its spectral radius is called a small Pélya urn (see, e.g., [31] where this vocabulary is
first used). We comment later on the similarities and differences between our results and
the fluctuation results of [I§] for Pdlya urns. O

We define, for a closed invariant subspace D C B(W),
0p :=supRe(o(Rp) \ {1}), (2.21)
and, in particular,
0 := Opw) = sup Re(c(R)\ {1}). (2.22)
Note that if 7" is a bounded operator on a complex Banach space, then its spectrum o(7)

is compact [5, Theorem VII.3.6]. This gives immediately:

Lemma 2.9. (i) If the operator Rp is slqc, then 6p < 1.
(ii) If Rp is slgc, then Rp is small if and only if Op < % O

The first theorem gives several versions of a law of large numbers for m,,.

Theorem 2.10. Let (my,),>0 be a MVPP with initial composition mg and random replace-

ment kernel R . Suppose that R satisfies Assumptions |(B)} |(H), and|(N). Let D be a

closed invariant subspace of B(W') such that 1 € D and the restriction Rp of R to D is

slgc.

(i) Then 0p < 1 and, for every 6 € (0,1 — 6p), there exists a constant Cs such that, for
any f € D,

N ~ mo(E) +1\*"
E|m,f—vf]?<CsmgV [ ——2—— Vn > 1. 2.23
ff wfP < Com? () By ozl 22
If, in addition, § < 1/2, then
O~ _ a.s.

(ii) If in addition R is an slqc operator on B(W), then 0 < 1 and, for all 6 € (0,1 —6),
for all f € B(W?),

mo(E) +1 > (26/\1)%2%11

E|f, f —vf| < Csm
|m,, f Vf’_CémoV<m0(E)+n

[flBw2y, — ¥n>1. (2.25)
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Remark 2.11. In the case of a metric space E and D = B(W), implies m,, =% v
in the usual weak topology, but it is stronger since it also implies m,(A4) =2 v(A) for
every measurable set A. In particular, we recover and improve on the results obtained
in [27] in the balanced non-weighted case. O

Remark 2.12. In the following theorem, we consider the asymptotic distribution of m,, f
for a general complex-valued function f € D. In parts (1) and (2) below, the limit is a
complex normal distribution, which we describe by identifying C with R?; we thus give
the covariance matrix of its real and imaginary parts in and . Note that this

complex normal distribution in (2.27)) and (2.33)) can equivalently be characterised as the
distribution of a complex normal variable  with

E¢=0, E¢® = x(f). E|¢]* =o*(f). (2.26)
In applications, we usually consider real f, and then the results simplify since the imaginary
parts disappear; in fact, in this case, x(f) = o2(f) is always real, and the limit distributions

in and are just NV(0,0%(f)).

If D is closed under complex conjugation, for example if D = B(W), then the results for
complex f follow easily from the results for real f by considering real and imaginary parts
(and the Cramér—Wold device). Our formulation allows for other interesting domains D,
for example D = 11\ B(W)+C1 where A is a non-real isolated point in the spectrum o(R.).

(See also Example ) O

The second theorem treats the fluctuations around the limit. As in the finite colour case
(see e.g. [18; 31]), there are (under some additional hypotheses) three cases depending on
the size of the spectral gap (or, equivalently, on 6p); in the theorem below we indicate the
range of fp for each case. Recall that we regard R as an operator on B(W).

Theorem 2.13. Let (m,,),>0 be a MVPP with initial composition mg and random replace-

ment kernel R(Y). We assume that R(Y) satisfies Assumptions and . Let D
be a closed invariant subspace of B(W) such that 1 € D and the restriction Rp of R to

D 1is slge. Then, the following hold.
(1) (The case 6p < 1/2.) If Rp is small and R is slge, then for any f € D,

W2 f ) O 1 (o*(f) + Re(x(f)) Im(x(f))
(@nf —vf) =N <0’2< Im(x(f)) 02(f)—Re(X(f))>>’ (2.27)

where

x(f) = /000 vB(e*R(f —vf))e *ds = /E/OOO B, (eR(f —vf))e *dsdv(z)  (2.28)
and
o?(f) == /000 vC(e*R(f —vf))e *ds= /E/OOO Co(eB(f —vf))e *dsdv(z) (2.29)
with

B(f): 2~ By(f) =E[(RDf)’] and C(f):z— C.(f) =E[|RVf*]  (2:30)

and with absolutely convergent integrals.
(2) (The case 0p =1/2.) If Rp and R are slge and the spectrum of Rp is given by

o(Rp) :{1,)\1,...,)\p}UA (2.31)
for some p > 1, where Re(A;) =--- = Re()\p) = 1/2 and supRe(A) < 1/2, let
k; ==min{k > 1: (Rp — \;I)* =0 on 1T, D}, 1<j<np, (2.32)

and K 1= max;j<, kj. Assume that k < oo. Then, for any f € D,

_onr a 1 (a%(f)+Re(x(f))  Im(x(/))
(ogny- 7 (" V) = N (0.5 (Tl ) 1)) e
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=Y ( I AJ:AJ_"nya ((R—AjI)”_lﬂ,\jf, (R—)\j/I)"“_ll'[)\j,f) (2.34)

S Ly;=r .
o?(f) = ; B D= IWVC (R— NI I, f) (2.35)

with C as in (2.30) and

B(f,9) : @ Bu(f,9) :=E[R{ f - RMy], (2.36)
(3) (The case Op > 1/2.) If Rp is slgc and the spectrum of Rp is given by
ocRp) ={1,A1,..., A, }UA (2.37)
for some p > 1, where Re(A\1) = --- = Re(\p) € (1/2,1), and supRe(A) < Re(A1),
let kj (1 < j < p) be defined by (2.32) and let k := maxj<pk;. Assume that k < c0.
Then, for any f € D, there exist complex random variables Ay, ..., A, € L? such that
nliRe)\l ~ iIm A,

a.s. and in L?. Furthermore,

['(mo(E) +1)
(k= DT (mo(E) + Aj)

EA; = mo(R — ;)" 'L, f. (2.39)

Remark 2.14. To adapt our results to a random mg, we make the same assumptions
as in Theorems and and we assume that |(H)(iii)| holds almost surely. Under
these assumptions, Theorems and apply conditionally on mg. This implies that,
under these assumptions, the almost-sure convergences in Theorems and still
hold for random mg. Furthermore, since the limiting distributions in Theorem
and do not depend on mg, it also implies that the convergences in distribution in
Theorem and hold if mg is random. If in addition EmgV < +oo, then, by
dominated convergence, the left-hand-side terms of and also converge to 0
when n — +oo.

Under the assumptions of Theorem , conditioning on mgy shows that still
holds a.s. for a random mg, with replaced by

['(mo(E) +1)
(k= DT (mo(E) + Aj)

Moreover, it follows from the proof that under the additional assumption that

EAj=E [ mo(R — Aj)ﬁlmjf} . (2.40)

E [(mo(E) + 1)2<1—R9A1>a0v} < 0, (2.41)

(2.38)) holds also in L2, see Remark (Note that E[(mg(E) 4+ 1)moV] < oo suffices
for (@241).) .

Remark 2.15. The operator B defined in (2.30)) is the quadratic operator corresponding

to the bilinear operator B in (2.36)), i.e., B(f) = B(f, f). Similarly, C(f) = ﬁ(f,?) It
follows from ([2.8]) that the bilinear map B is bounded, and thus continuous, as a mapping

B(W) x B(W) = B(W?). Indeed, for all f,g € B(W) such that || fllgw) = lgllsw) = 1,
we have, for all z € F,

BIR - BOg) < E [(ROW)?) <2 [(RO W) " < cwia? (2.42)
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where we used Jensen’s inequality and (2.8). Hence, B and C are continuous maps
B(W) — B(W?), and

IBNsw=y < CllflBawy,  ICHIBwe) < CIFIBw: (2.43)

O

Remark 2.16. Just as in the finitely-many-colour case, the limit result (2.38)) implies

. X A . 1—Re Aq
convergence in distribution of W

not for the full sequence. O

(ﬁln f—vf ) for suitable subsequences, but in general

Remark 2.17. The asymptotic normality in parts (1) and (2) extends immediately to
joint convergence for any number of f € D, by the Cramér—Wold device [12, Theorem
5.10.5]; the asymptotic covariances are given by obvious bilinear analogues of the variance
formulas in the theorem (cf. Remark [2.15)).

In part (3), joint (subsequence) convergence in distribution for several f € D is imme-
diate from the a.s. convergence in . O

Remark 2.18. The assumption x < oo in parts (2) and (3) holds, in particular, if we
have dim(HAjD) < oo for each j < p. To see this, let D; := II;D, and note that if
dim(D;) < oo, then the restriction Rp, is an operator in the finite-dimensional vector
space D; with spectrum o(Rp;) = {);}; hence the operator Rp, — A;I is nilpotent (as is
shown by the Jordan decomposition), and thus x; in is finite; in fact,

/ij S dim(Dj). (2.44)
Hence, £ < max; dim(D;) < oo if all D; = 1II,, D have finite dimensions. O

Remark 2.19. Note that allowing a domain D C B(W) leads to a more complete result.
For instance, if A is a clopen subset of o(R), then one can consider the operator Rp
acting on D = IIAB(W) + C1, whose spectrum is {1} U {A} which may be strictly
included in o(R). In that case, the assumptions in Theorem [2.10[1)—(3) on Rp become
assumptions on A, and then the theorem yields results for f € D, even if the assumptions
are not satisfied for o(R).

For another example where subspaces are useful, see Remark ([l

Example 2.20. We give a simple example; further examples are given in Section [6]
Suppose that R is slqc in B(W), and that f € B(W) is an eigenfunction: Rf = \f with
A # 1. Then Theorem [2.10] applies to the two-dimensional space D spanned by f and 1.

If ReA < 1/2, then (1) yields the asymptotic normality (2.27). We have vf = 0 and
eSRf = e f, and thus (2.28) and (2.29) yield x(f) = (1 — 2A)"'wB(f) and o%(f) =
(1 —2Re )"t C(f).

If Re\ = 1/2, then (2) applies instead, with p = 1 and k = 1; and yield
\(f) = vB(f) and 0 (f) = vC(f).

Finally, if Re A > 1/2, then (3) applies, with 0(Rp) = {1, A} and k = 1; shows that
there exists a complex random variable A such that n'~Re() (m,f —vf)— pImMNA 0,
and hence n'~*(m, f — vf) — A, almost surely and in L? when n — +oo. O

Remark 2.21. In Theorem the assumption that 1 € D is in fact not necessary.
We make this assumption for convenience and because, in practice, as one can see in
Example 1 can always be added to D to enter the setting of our results. O

Example 2.22. The classical generalised Pdlya urn model with finitely-many colours is
given by F = {1,...,d} and RV = (t&%él + -4 tﬁi(Sd)/S, where t(1) = (tgl,;)lgwgd

is a (possibly random) matrix of integers, with é}; > 0 when = # y, tg,;l;; > —1 for
all 1 <z < d, 6, is a point mass (Dirac measure) at =, and S is a scaling factor (for
convenience). We apply our results to that case and compare the outcome to results from
the literature. This model satisfies
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(B)] if and only if the replacement matrix t(!) is “balanced”, i.e. if all row sums are
equal to S (a.s.);

always when holds, since then —1 < tgz, < S+1as. (Wetake V =1.)

always when @’ holds, since then the non-negative matrix Et() + 1 = (E[rﬁ}% +
dz,y))z,y has a positive right eigenvector with eigenvalue S+1 (viz. 1), and therefore
it follows from the the Perron—Frobenius theorem that it also has a non-negative
left eigenvector u = (u;)¢ with this eigenvalue; we may assume that > u, = 1
and then take v =) u;0,.

Furthermore, B(1) = B(FE) is the space of all functions from {1,...,d} to C, i.e. C.
Under the operator R defined by t/S = E[t(V)]/S on C? is slqc if and only if the
eigenvalue 1 has (algebraic) multiplicity 1. Under these assumptions, f imply
that, if u, is the composition vector of the urn at time n, i.e. the vector whose i-th
coordinate is the number of balls of colour ¢ in the urn at time n, then

I, — o] = 0o(n™°) a.s. and in L? as n — oo, (2.45)

for all § € (0, (1 —0) A1/2), where 6 is the maximum of the real parts of the eigenvalues of
t excluding 1. Furthermore, Theorem [2.13|(1) and (2) allow us to recover versions of the
limit theorems [I8, Theorems 3.22, 3.23 and 3.24]: the only caveat is that we make the
additional assumption that the replacement matrix is balanced. O

Remark 2.23. As mentioned in the introduction, it is standard in the theory of Pélya
urns to associate different weights (or activities) to the balls of different colours. In this
generalisation, when picking a ball at random at the n-th step, one pick each of the
balls with probability proportional to its weight, and then applies the replacement rule as
normal depending on the colour of the drawn ball.

In [27], the authors generalise this concept of weight in the infinitely-many-colour case:
for all positive kernel P = (P;)cp, they define the MVPP m,, as in (2.2)), except that,
conditionally on m,, ;41 is drawn according to the distribution m,P/m,P(E).

One can apply our main results (Theorems and to m), := m, P, which is an
MVPP of replacement kernel RP. Our assumptions require in particular that RP satisfies
the balance assumption From our main results applied to m/ , if the operator induced
by P is invertible, one can deduce a fluctuation result for the original weighted MVPP m,,.

Even if P were non-invertible, it would be straightforward to generalise our proofs to
the weighted case under the assumption that RP is balanced; since our proofs are already
technical, and since the balance assumption restricts greatly the set of weighted kernels
one could use, we do not extend our framework to include this case. ]

Remark 2.24. In the theorems above, we regard R as an operator on B(W), where the
possibility to choose a suitable W gives additional flexibility. (Warning: the spectrum
o(R), and thus e.g. §, may change if we change W, see the example in Section [6.1])
The space B(W) seems natural and convenient for applications, but it is not the only
reasonable choice of a function space.

First, in typical cases, we may ignore functions that are 0 v-a.e. and it is then equivalent
to consider R as an operator on the quotient space of B(W) modulo functions that are
0 v-a.e., which we denote by L (W;v); see Lemma which implies that R always is
well defined on L*>(W;v). However, Example [5.2| shows that there are (exceptional) cases
when null sets and functions cannot be completely ignored.

More importantly, the examples in Sections and use Fourier analysis and it is
then convenient to consider R as an operator on L?(E,v). In these examples we transfer
spectral properties of R from L?(E,v) to B(E) and then apply the theorems above.
However, for these and other similar examples, it would be desirable to have extensions
of the theorems above where B(W) is replaced by a more general function space on E,
including L?(E,v) as a possible choice. (Other choices might also be useful in other
applications.) In the present paper, however, we consider only the theorems as stated
above, with R acting on B(W) (and invariant subspaces thereof). O
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2.1. Degenerate limits? The limit results in Theorem are less interesting when the
limit distribution is identically 0. We characterize here these degenerate cases, and begin
by showing that in part (1) of Theorem the limit is non-degenerate except in trivial
cases. Proofs are given in Section [f

Theorem 2.25. Suppose that the conditions of Theorem[2.15(1) hold, and let f € D. Let
Y(f) be the covariance matrixz in (2.27). Then the following are equivalent:

(i) 2(f) =
(ii) o*(f) =
(iii) vC(f —Vf)—O
(iv) R

(l)f—vf a.s., for v-a.e. x.

On the contrary, in Theorem M(Q), the asymptotic distribution depends only on
Iy, f,..., I\, f, and thus it degenerates to 0 for many f. (For such f, it might be pos-
sible to apply the theorem with a smaller space D.) In fact, in typical applications, the
projections Iy, project onto finite-dimensional subspaces, and thus their kernels are very
large. We have the following characterization.

Theorem 2.26. Suppose that the conditions of Theorem (2) hold, and let f € D. Let
Y(f) be the covariance matrixz in (2.33). Then the following are equivalent:

(i) =(f) = 0.

(ii) o*(f) = 0.
(ili) (R— NI Ly, f =0 v-a.e., for every j=1,...,p

(iv) (R=A; )"“_1H)\jf =0 v-a.e., for every j =1,...,p such that Kk; = K.

In Theorem [2.13((3), the situation is similar to Theorem [2.13|(2). The characterization
is more technical, partly because the limit distribution now also depends on the initial
values mg; we give several equivalent conditions. Note that the sum ) j pilmA; Ajin
vanishes for all n if and only if A; = 0 for each j = 1,...,p. In typical cases, the conditions
below are satisfied only for g; = 0, but Example gives an example where g; is non-zero
and the conditions are satisfied for some, but not all, mg.

Theorem 2.27. Suppose that the conditions of Theorem (3) hold, and let f € D. Let
Aj be as in (2.38), and let gj := (R — )\j)“_lﬂ,\jf. Then the following are equivalent, for
each j=1,...,p

(i) A; is (a.s.) non-random.

(ii)) A; =EA; a.s.
(iii) A =0 a.s.
(iv) mpg; =0 a.s., for every n > 0.
(v) mogj =0 and Rgf::i)gj =0 a.s., for every n > 0.
(vi) mylg;| =0 a.s., for every n > 0.
(vii) mp{x : |gj(x)| # 0} =0 a.s., for every n > 0.

(viii) moR"™|g;| = 0, for every n > 0.
Moreover, if R is slgc on B(W), then imply
(ix) gj =0 v-a.e.
Conversely, if mg is absolutely continuous w.r.t. v, then implies .m
Remark 2.28. It follows from Theorems [2.26] and [2.27] that when considering joint limits

for several f € D in parts (2) and (3) of Theorem (see Remark [2.17)), the limit
distribution is supported on a subspace of dimension at most

P
> dim[(R - X)), (D)] (2.46)
j=1

with equality in typical cases (we leave the details to the reader). Note that this is always

at most Z;’:l dim [II), (D)]. O
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3. PROOF OF THEOREM [2.10)

We assume throughout this section that Assumptions [(B)] [(H)} and [[N)] hold. Recall
that mg is non-random (unless we explicitly say otherwise), and that constants C' do not
depend on my. The claims about 6 and €p in Theorem [2.10] follow by Lemma [2.9]

3.1. Preliminary results. Define, for n > 0, the random signed measure

Oy =My, — . (3.1)
Lemma 3.1. For alln > 0,

v, = v0Bon + i'YiflAMiBi,ny (3.2)

where, for alln >0 and 0 < i <n, -
Bipn = ﬁ(1+7j(R— D), (3-3)

j=i

AMpiy =Ry — B, RUTY = RV B, Ry, = RUTV @R, (3.4)
= n+1+1mo(E) (3.5)

Proof. By definition, for any n > 0, we have ([2.2]), where the conditional distribution of
Y, 11 given m,, is m,. Furthermore, implies, see ([2.3)),

mn+1(E) = mo(E) +n+1= 1/%1- (36)
Together with (3.4]), this implies
~ Mp+1 mpy (n+1)
Myl = = + R
T (B) T mea(B) e
. om(E) (n+1) ~ (n+1)
= Y = ()
=m, +7my (R = 1) + 9, AMp 41, (3.7)

By definition, v,, = m,, — v, and by (2.20)), we have v(R — I) = vR — v = 0; therefore,
(3.7) implies

Ont1 =0y + Y0 (R — 1) + 1AMyt = 0, (IT+ (R = 1)) + % AM, 1, (3.8)
and (3.2) follows by induction. O

As noted above, it follows from (2.16]) that R is a bounded operator on B(W); hence
every B, is too. Dually, R and B, ; are bounded operators on M(W) (acting on the
right). Moreover:

Lemma 3.2. A.s., for every n > 0, we have m,,m,, 0,, RV AMy+1 € M(W). More-

Yoyl 0
over,
E[m,W] < oo and E[]o,|W] < oo, (3.9)
and
Sl;%EfTvan < CmgV  and Sl;pEV(Yn) < CmgV. (3.10)
n n>1

Finally, there exists a constant C such that for every g € B(W)
0091 < CliglB ) (MeW)? < Cllgllzm) MoV, (3.11)
E[AMg|* < Cllglfhay, MoV, i >1, (3.12)
Ei—1|AM;g|" < Cllgl by mi1(V), i>1. (3.13)
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: ~ 1
Proof. We start by proving mn,mn,nn,Rgﬁil)’AMnH € M(W) and (3.9). By con-
struction, the conditional distribution of Rg +1)

| given F,, and Y, 11 =y, for some y € E,
equals the distribution of Rjgl). Hence, using [(H)(ii)| through its consequence (2.16)),

E(|RY VW | Fo Yo = y] = E[RPW| <E[|RMVW] < CW (y). (3.14)
In other words, a.s.,
E[|RY VW | FoYosa] < OW (Vo). (3.15)

Furthermore, Y;,+1 has the conditional distribution m,, given F,, and thus, by taking the
conditional expectation E,, in (3.15]),

Yn+1

E, |RYTIW] = E[[RYTDW] | Fo] < CE[W (Yag) | Fa] = C/EW(y) dm,, (y)
= Cm, W, (3.16)
Hence, by , and ,
Em, W =Em,W +ER"IW < Em,W + CEm,W

Yn+1

- (1+ mo(E?)Hz) Em, W, (3.17)

Hence, the first part of follows by induction, since mgW < moV < oo by |(H)(iii)]
(recall that W =V, ¢>2 and V > 1).

Consequently, for every n, a.s., m;,W < oo and thus m,, € M (W), recalling that m,, is
a positive measure. Hence, also m,, € M(W) and, by (2.2)), Rgﬁ::i) e M(W).

Since R acts on M (W) as noted above, we further obtain m,,R € M(W) and thus
yields AM, 11 € M(W) as.

Finally, implies that |v,| < m, + v and shows that v € M(V) C M(W);
hence, v, W € M(W) a.s. and E[|v,|W] < oo follow from the results for m,, and m,,.

We now prove (3.10). Recall that, by Assumption ((H)] RV < 9V + Cy. Taking
expectations in (3.7)), since EAM,4+1 = 0, we obtain

Em,t1 =Em, +7%Em,(R-I)=(1—-v,)Em, + v, Em,R (3.18)
and thus
Em,1V=>01-v)Em,V+~vEm,RV <(1—v,)Em,V + v, Em,(dV + C1)
= (1 -9+ Em,V + ~,C. (3.19)

Recall that mgV < oo by [(H)(iii)} Let Co:=mgV v {Z;. Then Em,V < Cp by induction;
indeed, the induction hypothesis and (3.19) yield

Em,11V < (1—(1—=9)7)Co + 1Ci = Co + 1 (C1 — (1 —9)Cy) < Co. (3.20)
Because mgV > 1, we have that Cp < (1+ 1%9)17101/, which proves the first part of (3.10]).

Finally, since Y;, has the conditional distribution m,,_; given F,_1, this implies

EV(Y,) = E[E,_1V(Yy)] = E[fi,_1V] < CiipV. (3.21)

It only remains to prove (3.11), (3.12) and (3.13). For (3.11)) note that vy = mg—v
and thus

[vog|? < 2 (Folg))? + 2(vlg])? < 2 (oW + (W)?) llgl%m)
< CmW2llgl3 ) < CoV gl 3. (3.22)

where we used the fact that (meW)2? > 1 and (vW)? < v(W?) < vV < 400 by and
similarly (mpW)? < mo(W?2) <mgV.
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For ¢ > 1, by the definition (3.4)),
Ei1|AMig|" = Ei1|RYg —Eioy RYg|? < C Eit|RYg|" < Cllgll% ) E; 1 (|RY) W)
(3.23)
Furthermore, arguing as in ([3.14)—(3.16)), now using (2.8)), gives
Ez_l(‘R%)‘W)q S 02/ V(.CC) dﬁi_l(x) = Cgﬁli_lv. (3.24)
E

Therefore, (3.13]) follows by (3.23) and (3.24). By taking the expectation in (3.13]) and
using (3.10)), we obtain

E|AM;g|" < CllgllG ) MoV (3.25)
Since ¢ > 2, (3.12)) follows from ([3.25) by Jensen’s inequality and since mopV > 1. O

Lemma [3.1| implies that if f € B(W), then (with all terms a.s. finite and integrable by
Lemma [3.2)

n
vnf = voBonf + Y 1AM, Biyf. (3.26)
i=1
Note that the sequence of partial sums of (3.26|) is a martingale, since E;,_1 AM; = 0. For
later use, note that (2.19) and (2.20)) imply

B;,1 =1, (3.27)
VB, = v. (3.28)
We write (3.26)) as
n
Onf = Coo+ Y Cnis (3.29)
i=1
where
Cn0 = Cno(f) :==1v0Bonf, (3.30)
Cn,i = Cn,z(f) = ’Y’iflAM’L’Bi,TLfv 1 S ) S n. (331)

The main part of the proof is to use the assumptions to show that the random variables
Cn,i are suitably small. Note that

0,1 =m,1 —vl =0, (3.32)
since both m,, and v are probability measures. Note also that implies that
AM1=RJ1-E 1R)1=1-1=0 as. (3.33)

Hence (3.30)—(3-31)) and (3.27) show that taking f = 1, we obtain (,;(1) = 0 a.s. for every
1 > 0. Consequently, by linearity, for any ¢« > 0 and any constant c,

Cni(f) = Cuilf —¢c)  as. (3.34)

Recall (see [5, (VII.4.5)] or [7, Section VIIL.3]) that if 7" is a bounded operator on a
complex Banach space, with spectrum o(7'), and h is a function that is analytic in a
neighbourhood of ¢(T"), then h(T') is the bounded operator defined by

—i 2z —T)  dz
éh( )z — T)"ds, (3.35)

2mi
integrating over a union I of rectifiable closed curves that encircle each component of o (T')
once in the positive direction, such that furthermore h is analytic on I and in the interior
of each of the curves. For properties of the map h — h(T) see [B, Theorem VIL.4.7]. In
particular, note that if h = hihg, with hy and hg analytic in a neighbourhood of o(7),
then

h(T) :

WT) = hy(T)ho(T). (3.36)
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Furthermore, the resolvent z — (2 — T')~! is analytic outside o(7T) [5, Theorem VII.3.6],
and thus |[(z — T)7!|| is bounded on I'; hence (3.35) implies the existence of a constant
Cr (depending also on T") such that

|R(T)] < Cr suIF) |h(2)]. (3.37)
ze
Recall also that (3.35)) extends the elementary definition of A(T") for polynomials h. Hence,
Bpn = bmn(R), (3.38)
where by, ,,(2) is the polynomial

n—1
b (2) = [ 1+ (2 —1)). (3.39)

k=m

Moreover, for any complex ¢, the function e is entire so e’ can be defined by (3.35) as a
bounded operator; this agrees with the definition using the usual power series expansion.
In particular, if ¢ > 0, this defines tT = ellogt)T

Lemma 3.3. For each compact set K C C, we have uniformly for z € K and 0 < m < n,
with n > 1,

mo(E) +n Rez—1
bmn(2)] < C 3.40
<€ (o T v 340
Furthermore, there exists a family of analytic functions hy, , : C — C defined by
mo(E) +n
o) = ) (ol ) (3.41)

= (14 hmn(2)) exp [(z — 1) (log(mo(E) + n) — log(mg(E) + (m Vv 1)))] (3.42)
such that uniformly for z € K and 0 <m <mn,

C
hmn S .
()] < ——

Proof. The function h,y, , defined by (3.41)) is analytic, and hence it only remains to prove
, since then follows from
Let Ck :=sup,cg |#—1|. We may in the sequel assume n > m > 2C, and in particular
that m V 1 = m. The result for smaller m then follows from the result for m = [2Ck]|
because each factor in is bounded by 1+ Cg on K. (The case n < [2C[ | is trivial.)
For k > m > 2Ck and z € K, we have vy, < 1/k < 1/(2Ck), and thus |y, (2 —1)| < 1/2.
Hence,

(3.43)

02
log(1+vk(z = 1)) —m(z—1)| <%l — 1> < k—[; (3.44)
Consequently,
n—1 n—1 21
o) = 05 081 30— 1)) =esn(3 L opy)
n(2) = exp k;n og(1+(z—1))) = exp gmo(E)+1+k +0(1/m)

= exp [(z — 1) (log(mg(E) + n) — log(mo(E) +m)) + O(1/m)], (3.45)
where the implicit constant in O(1/m) does not depend on my, and the result (3.43|) follows.
([l

Remark 3.4. Alternatively, one can show (3.40) and (3.43)) using the exact formula

n—1
E)y+k r E r E)+1

ot mo(E) +k+1 T(n+mo(E)+1)T(m+mo(E) + 2)

and Stirling’s formula. O
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Lemma 3.5. Assume that the conditions of Theorem hold. Then 111 f = (vf)1, for

all f € D. As a consequence,
I-I)D={feD:1II1f=0}={feD:vf=0} (3.47)
In particular, if A is a clopen subset of o(Rp) \ {1}, and f € IaD, then vf = 0.

Proof. Define I1f := (vf)1. Then Il is a bounded operator in D C B(W') because vW < oo
by |(N) and 1 € D. Furthermore, II is a projection in D (since v1 = 1), and and
imply that RII = II = ITR. Thus II commutes with R, and therefore with II;
(see [Bl, Proposition VII.4.9]). Furthermore, I and II; are both projections with rank 1,
and the eigenfunction 1 belongs to both their ranges. Hence II and II; are both projections
onto the subspace of constant functions. We thus get that, for any f € D,

I, f = I, f = ILTLf = 11f, (3.48)
as stated. The equalities (3.47) follow. Finally, if 1 ¢ A and f € IIaD, then II; f =
IMIIA f = ipynaf = g f =0, see e.g. [7, Corollary VIL.3.21], and thus vf = 0. O

3.2. Proof of (2.23) and ({2.25) of Theorem We prove first some lemmata.

Lemma 3.6. Assume that the conditions of Theorem [2.1( hold.
(i) For every 6 € (0,1 —0p), there exists a constant Cs such that for every f € D with
vf=0,n>1and0<m<n,

B §
B ey < 5 ("D |l (3.49)

(ii) If fe B(W) and (R —AI)*f =0 for some A € C and k > 1, then for n > 1 and

0<m<mn,
1t (log (oot e 1)))“_1] 1110w,

(3.50)

my(E) + (m v 1) >1—RE<A>

HBm’anB(W) < C>\7,“i < m()(E) +n

for some constant C) ., not depending on f.

Proof. Note that f € (I —II;)D by Lemma We let R’ denote the restriction of
R (or Rp) to (I —1II;)D; R’ is a bounded operator with spectrum o(R') = o(Rp) \ {1}
(see for instance [7, Theorem VII.3.20]).

Fix § € (0,1-0p). Then sup,c,r/) Re(z) = p < 1-4, and thus we can find a rectifiable
curve I' in C that encircles o(R') such that sup,cr Re(z) < 1—4. Consequently, by

and ,
Buunf = binn(R)f = bn(R))f = —— é bon(2)(z— RO fde. (351

27

Furthermore, Lemma implies that for z € T,
E Rez—1 E -5 E 1 s
]bm,n(z)|§0< mo(E) + > §C< my(E) +n > :O<mo( )+ (mV ))
) mo(E

mo(E) + (m V1 )+ (mV1) my(E) +n
(3.52)
The result follows from (3.51f) and (3 52 see -
We use the factorization (3.41]) and ( . Thus,
mo(E)+n T
Bonf =bma(R)f = I+ hpna(R : 3.53
o = b (RS = (L >)(mO(E)+(mv1)) L)

Furthermore, by (3.43), the functions hy,,, for n > 1 and 0 < m < n, are uniformly
bounded on any fixed compact subset of C, and thus (3.37) implies that the operators
hmn(R) are uniformly bounded on B(W') by a constant that does not depend on my.
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Moreover, for all functions f € D such that (R — A\I)*f =0, for m > 1,
my(E) +n \* 1 (mo(E)+n>’\1 ( <m0(E)+n) )
ST S s log [ =T 0 ) (R — AT
(mo(E)+m) =\ mB) + o (Lo | B Tm ) | )]
k—1
mo(E) +m\ E )+n\ (R—M)Ff
= ——- lo . 3.54
<m0(E)+n> Z o8’ mo(E) +m k! (3:54)

The result follows by (3.53) and (3.54)) since the operators (R — AI)* are bounded. O

Recall from Section that we use € for constants that may depend on my.

Lemma 3.7. Assume that the conditions of Theorem [2.10 hold.
(i) For everyd € (0,1—0p), there exists a constant €5 < oo such that for every f € D,

Gnol < €5/ I fllpary,  n>1, (3.55)
(B S flsory Gea(V)™, nziz1l (356)

(ii) If A € C and k > 1, there exists a constant €y, such that if f € B(W) and
(R—=AL)*f =0, then

i <

G0l < Exw(Y)' TN logn) || fllsary, =2, (3.57)
Q:)\ K (i —Re K— s .
(Bi-1 |Gl )1 < =25 (5/n) =R 14 (log(/) ] I fll sy Bia (V) 221,
(3.58)
Proof. By homogeneity, we may without loss of generality assume || f|| gy = 1. Further-

more, by (3.34] - we may replace f by f — v f; hence we may also assume v f = 0.
Fix § € (0,1 — 6p). According to Lemma we have for alln > 1 and 0 < i < n,

Bunfl <& (© 1) W (3.59)

First, taking ¢ = 0, we obtain (3.55) from (3.30) and (3.59), since vy € M(W) by
Lemma [3.21

For n > i > 1, we have by (3.31]), Lemma [3.2] (Equation (3.13))) and (3.59),

Qf” oq _
Bt [Gul? =9y Bt [AMBin 19 5 5 1By (V) £ 52 (1) s (v),
(3.60)
This concludes the proof of (3.56)).
The same arguments but using (3.50)) instead of (3.49) lead to (3.57) and (3.58). O

For technical reasons, we have stated Theorem for an invariant subspace D con-
taining the constant functions; these are eigenfunctions with eigenvalue 1 by , and
thus 1 € o(Rp). It will now be convenient to consider also invariant subspaces not con-
taining constants; we then use the generic notation D’ to help the reader distinguish the
assumptions.

Lemma 3.8. Suppose that D' is an R-invariant subspace of B(W) and that ' € R is
such that supReco(Rpr) < 0'. Then,

E) 4 1\120-0)
E[on /2 < C oV (EELH) ||f||23<W), feD nz1 (361

Proof. The terms in are orthogonal, and thus, using (3.11)) and (3.12) in Lemma

E|vonf|> = E [|voBonf|?] + Zﬁ_l E [|AM;Bi,f|*]
=1
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< CmoV||Bon I Bawy +C Y (mo(B) + 1) > @V || Binf By (3.62)
i=1
We apply (3.37) to By, = bmn(R) as an operator on D'. By the assumption, we may
choose a curve I' encircling o(Rp/) such that Rez < 6’ for z € T', and then (3.37) and
(3.40) yield, uniformly for 0 < m < n,

mo(E) +n 0'—1
B r < .
[ Bm,nllp _C<mo(E)+(m\/1)> (3.63)
By homogeneity, we may assume || f|| gy = 1, and then (3.62)) and (3.63) yield
Elonf[® _ ., (mo(B) 0V S 2 (mo(E) +n YO
— < —_— E _—
wov =\ mom) 11 +C;(m°( )T @)+
mo(E) +n 20'—2 O \—20/
< R
C (B o) O Y o)+
/ E -1 if ¢ <1
mo(E) +n 22 (mo( )+n)_1 1 /< /2
0 (mo(E) + n)?0' 2 if > 1.
(3.64)

This yields (3.61]) when 6" # 1/2. If #/ = 1/2, then one can replace §’ by some new 6’ < 1/2;
then (3.64) yields (3.61)) in this case too. U

The estimates (2.23) and (2.25) of Theorem directly follow from the following
result. Recall that v,, :=m,, — v.

Lemma 3.9. Assume that the conditions of Theorem [2.10 hold.
(i) For every § € (0,1 —6p), there exists a constant Cs < 0o such that, for any f € D
and any n > 1,

OAL
N mo(E) +1Y )
E v, f|? < C VI—F—— . 3.65
ou PP < Coiov (0N I (3.65)

(ii) If, furthermore, R is slgc on B(W), then, for every § € (0,1 —0), there ezists a
constant Cs < oo such that, for all f € B(W?),

q/2—1

mo(E) +1 )(26/\1) a1
mo(E) +n

E [onf| < Cs oV ( 1 lsove. (3.66)

Proof. This is essentially equivalent to Lemma Recalling Lemma we define
D':=(1-14)D={feD:vf=0} (3.67)

Then, as in the proof of Lemma D’ is an invariant subspace of B(W) and Rp has
spectrum o(Rp/) = o(Rp) \ {1}, and thus supReo(Rp/) = 0p. We define 6’ := 1 — 9,

and note that the assumption implies 6’ > 0p. Hence, (3.61]) applies and yields (3.65]) for
f € D'. Finally, for a general f € D, we apply instead (3.61)) to f—(vf)1 = (1-1I;)f € D’

(recalling Lemma , noting that v,1 = 0 by (3.32]).
(ii)f We now assume that the operator R is slqc, so we may take D = B(W) in For
an arbitrary f € B(W?), we will use truncations: For all K > 1,

E|onf| < [E[on(fLwe<r)]| + Elfn| flyes g l] + v flyzskl- (3.68)

First, since |f(2)[lw @<k < [IfllBavyW (x) VK, we deduce that I flwe<kllBowy <
£l w2 VK. Therefore, by (3.65) applied to fly2<i € B(W), we get, for any fixed
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0 € (0,1 — 0) (the constants C below do not depend on f or K),

20A1

E[on(FLivsci)| < Ellon(FLieci)2)? < OF v(@)“) | Flgawa VE.

(E)+n
(3.69)
On the other hand, if W2 > K then VW2 = W2 > K%?~1 and thus
E[Mn| flwes kl] < B (W2 Lyes )] |1 fll pawey < K2 Em V]| fllpove)
< CK""| fll w2 MoV, (3.70)

where we used (3.10]). The same computation also holds for v|f1y2- k|, since, by assump-
tion [(N), vV < oo.

Finally, choosing K = ((mg(E) + 1)/(mo(E) 4 n))~®"/@=D and using (3.69) and (3.70 -,
we deduce ([3.66]).

3.3. Proof of (2.24). We improve the estimate in Lemma [3.9(i)| to an estimate for a
maximum over a restricted range.

Lemma 3.10. Suppose that D' is an R-invariant subspace of B(W) and that §' > 1/2
is such that supRec(Rpr) < 6. Moreover, let 0 < 7 < 1. Then there exists a constant
C = C(7) such that

2(1—0")+7
EN_;PgnSN]Unf\Q < CmgV (%) e N7 HfHQB(W), feD, N>1.
(3.71)
Proof. If 0 < i <n < N, then the definition implies
B; nBn.n = B; N. (3.72)
Let f € D'. For 0 <n < N, we apply to By n f and obtain, using (3.72),
0, By, Nf =00Bonf + Z%—1AMiBz',Nf- (3.73)
i=1

Since E;_1 AM; = 0, (3.73) shows that (U”Bn’Nf)0<n<N
(Note that the terms on the right-hand side do not depend on n.) Consequently, Doob’s
maximal inequality yields, together with By y = I and Lemma

is a martingale for each fixed N.

E‘ SERURBH’NJCP < 4E|UNBN7N‘]C‘2 = 4E‘0Nf|2

By 41 \20-9)
mo(£) + ) 1B (3.74)

o(E) +

Let K be a compact neighbourhood of o(Rp/) such that supRe K < #'. Let n =
N — m, where 0 < m < N7, and suppose that N is so large that N™ < N/2. Also, let
L:=|1/(1 —=7)]. Then, m < N/2 and thus

() B (55257
- ’log<1 - mo(En;+ N)’ = mo(éT+ N < 2mo(E) + N)T (3.75)

Since n = N —m > N/2, (3.43)) yields, for all z € K,

< CmyV <

|hp N (2)] < — < (3.76)

s1Q
zlQ -
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Assume in the sequel that N and n < N are as above, and also that N is so large that

(3.76) implies |hy n(2)] < 1/2 when z € K. Then, (3.42)-(3.43) imply that, uniformly for
z € K and all such n and N,

bnyj\lf(Z) = (1 + O(%)) exp < (z—1)lo ( ((E

) +
E) +
i) ) o)

:exp< (z1)10g(m
5 (BNt o () o().
) XL: % 10gf("m) -2+ O(%)’ (3.77)

where the last equality uses (3.75) and (L + 1)(1 — 7) > 1. In particular, b, 4 (2) is finite
for z € K, so b, (2) is analytic in a neighbourhood of o(Rpr); hence B, y is invertible
on D', with B, § = brj\,(R) Define the operator on D’

L
_ ]. mo E) + N f
— B! “logf (B0 T 1 R .
Von == B\ ;E, g (% E)+n)( R) (3.78)
It follows from (3.77) and (3.37)) that
1
[Vanllpr =0 <N> : (3.79)
Moreover, (3.78) yields, with f, := (I — R)‘f/¢! and G, N = Vunt,
L
E)
BT = log! (Mol n :
it zZ:;og( (E)+n)fe+g ~ (3.80)
and thus
Unf = by nNB f ZIO ( E >UanN ¢+ Uan NGn,N- (3-81)
n, N + n ’ ) ’

According to (3.75), we have 0 < log(Tn‘;((?)fZ) < 2N7~! < 2 and hence, with constants

C depending on 7 in the remainder of the proof,

L
2 2
sSup ‘Un_ﬂQ < CZ sup ‘nan,NfE‘ +C sup ‘Uan,Ngn,N|
N—-NT<n<N —o N—NT<n<N N—-NT<n<N

L
: szg%‘nnB’“Nﬁf +C Y |onBangnn| (382)

N—NT<n<N
Furthermore, for n and N as above, (3.79)) holds; hence

()(E) +1

. — ||V,  <CN! <ol T . 3.83
g N”B(W | NfHB Hf”B(W (E) _i_NHf”B(W) ( )

Taking the expectation in and using and ((3.83) yields

E sup |ouff
N—-NT<n<N

o(B) +1 Y ~ o (mE) Y
<CZmoV ((JE)HV Ifellan +C D moV mo(E) + N lgn, Nl B

N—NT<n<N
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.
< CmoV (mo(E) TN

mo(E) + 1 279 mo
R

E) 41 \20-0)+2 ]
(E) ) NIFI%

(3.84)

This shows (3.71) when N is large enough since 7 < 1 < 2. The remaining cases are
3.71]

trivial, since (3.7

1)) for any fixed N follows from Lemma O

We are now ready to prove (2.24)) and thus conclude the proof of Theorem m

Lemma 3.11. (i) Suppose that D' is an R-invariant subspace of B(

W) and that ' > 1/2

18 such that sup ReU(RD:) < @'. Then, for every f € D', a.s. and in L? as n — oo,

_pn
nlé’

v, f — 0.

(3.85)

(ii) Assume that the conditions of Theorem [2.1(] holds, and let & € (0, (1 — 6p) A1/2).
Then n’o,f — 0 a.s. and in L? as n — oo, for every f € D.

Proof. Let 6 := supReo(Rpr) and choose 0" €

with 0" yields, for any f € D/,

o (2] o < (5
-on (i

This implies the convergence (3.85]) in L.

To show the convergence a.s., choose 7 € (0,1) with 7 > 146" —

(0 Vv 1/2,0"). Then Lemma 3.8 applied

(1-6")+2(0" 1)
) T

9// 9/)
) 1By = o). (3.86)

¢’. Define an increasing

sequence (ny) by ng := 1 and ngy1 := ni+|n},|. Then Lemma applied with 0" yields,
for every k > 1, (here € are constants that may depend on my and f)

E sup |nl*9/t1nf|2 < Cni_%v E sup |nnf\2
ng_1<n<ng Nk — nk<n<nk
< Q: 2 29/+2(0N 1) 6n29//729,
ng
<e Y e (3.87)
n:nk,l—l-l
The exponent in the final sum is
20" —20' — 7 <20" —200 — (146" -0)=0"-0'" -1 < —1. (3.88)
Consequently,
oo

E g sup
k=1 k-1 <=k k=1n=ng_1+1

Hence, a.s.,

[e.e]

sup  |n'T

k=1 Tk—1 <n<ng

which implies that sup,,  <p<p, \nl_elnnf|2 — 0 as k — oo, and thus n!

n — oQ.

Let, as in the proof of Lemma D =

o) ny
|n179’bnf’2 < Q:Z Z n29”720’77'

/
o, f? < oo,

=€) T <00, (3.89)

(3.90)

o, f — 0 as

(1 — II3)D and apply [(i)| to D’ and

f—(wf)leD with# :=1-6>0p =supReo(Rp). O
Remark 3.12. We observe that, if mg is random, then ) holds conditioned on my.

Hence, if E[(mg

E|(mo(E) +n)' "o f | < CE|(mo(B) + 1)~V (

(E)+1) 2(1- el)mOV] < 00, then, using dommated convergence,

0" g’
mo(E) +n 5 : 112
mo(E) +1 B
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— 0. (3.91)
Hence, the convergence (3.85) still holds in L2. O

4. PROOF OF THEOREM 2.13]

4.1. Proofs of Theorem [2.13|(1) and (2). Recall that m, — v = v,, and that v,1 =0
by , which implies that v, f is not affected if we subtract a constant from f. It is also
obvious that subtracting a constant from f does not affect x(f) and o2(f) in 72.29
and 7. Hence, replacing f by f —vf, we may in the proof assume that v f = 0.
For convenience, we also assume || f|| gy < 1, as we may by homogeneity.

We will prove (1) and (2) in parallel, since most the arguments are the same for both
cases. Our proof relies on a central theorem for martingales given by Hall & Heyde [13],
Corollary 3.1] (see [13] for other versions and references). This theorem in [I3] is stated
there for real-valued variables, but it extends immediately to vector-valued variables (in a
finite-dimensional space) by the Cramér—Wold device [12, Theorem 5.10.5]; in particular,
the theorem holds for complex-valued variables by considering the real and imaginary
parts, and can then be stated as follows. (In general, ¥ and ¢ may be random, but we
are only interested in the special case when they are constant.)

Theorem 4.1 ([I3, Corollary 3.1]). Let (fm,n > 0,1 < i < n) be a complez-valued
martingale difference array. If there exist x € C and 0% > 0 such that, in probability when
n — oo,

(a) >0, Ei—1[|én,i’21|ém|zg] — 0 for alle >0, and

(b) Yo Eia[¢2i] = x, and

(c) Yimi Eica[lCnil?] = o2,
then, in distribution when n — 0o, > ' | fnl = Ay +iAy where the random vector (A1, A2)
has a centered Gaussian distribution with covariance matrix

1 (6 +Re(x)  Im(x)
2 < Im(y) o*— Re(x)> (4-1)

In (1), we assume that Rp is a small operator. In this case, recall from Lemma that
Op < 1/2. We may thus choose § € (1/2,1) such that § < 1 — 6p; we fix such a § for the
rest of the proof.

In (2), we assume that Rp and R are slqc operators and that the spectrum of Rp is
given by

cRp) ={LA,....,. \p}UA, (4.2)
where Re(A;) = --- = Re(\;) = 1/2, and supRe(A) < 1/2. Thus 0p = 1/2. Let A" :=
A U{1}. Then

P P
f= (HA/—i—ZH)\j>f:HA/f—|—ZH)\jf. (43)
j=1 j=1

Furthermore, R is a small operator in D’ := IIa/D. Hence, according to (2.23)) of Theo-
rem applied to D" with § = 1/2,

E’( \/ﬁ Un(HA’f)

log n)r—1/2
and hence it is sufficient to prove (2.33)) for f — IIa/f instead of f. In other words, in (2)
we may assume that

2
‘ < €(logn)' ™" ——— 0, (4.4)

n—-4o00

p
f=f-Taf=> T,ft (4.5)
j=1

Note that ||ILy; f|l pawy < C, since each Iy, is a bounded operator.
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Returning to treating (1) and (2) together, we use (3.29)), which we now write as

apo, f = Z angn,i = Z én,i (4'6)
1=0

i=0
where
n'/? under the conditions of (1),
In =9 _n2 . (4.7)
Togn)=—172 under the conditions of (2),

and énz = anCp,. For 1 <i < n, we also set, for (2) considering in the sequel only n > 2,

J {i25_2 nl=2 under the conditions of (1),
i =
’ (

L (48)

L(logn) under the conditions of (2).

By Lemma we have, using part|(i)|for (1) and part together with the decomposition
[5) for (2), recalling (2:32),

[Gnol < €d/y, ——0, (4.9)

meaning that the gtmo may be ignored in (4.6)).
We check that the (,; satisfy conditions (a), (b) and (c) of Theorem

Condition (a). We want to show the conditional Lindeberg condition

n
ZEi_l [|€”7i’21|§n,¢|2€] —L2 0, for every € > 0. (4.10)

1 n—-+0o
From Lemma and (4.7)),
z I‘an‘q < qu/2~ (V)7 (411)

znzl

where d;, is defined in (4.8). By (3.10) in Lemma [3.2} this implies

s [!fnﬁi\zlxan,i@e} L (1.12)
for some constant €. which may depend on mg and . We deduce that
n n
s2 o 22 a/2
E-Z;E“[K”’i| L) = ZE ['C’”' 1lén,ilzs} =€ Zd
1=
<e. (maxdm )7 Ide—m (4.13)

=1

as n — 0o, since (4.8) implies maxj<p d;p, = di, — 0 and > ; d;, < C. Hence, ([4.10)
holds, which is Condition (a) of Theorem

Condition (b). First note that for ¢« > 1, using the fact that ém = an(n,; and the
definition of (,; in (3.31), and setting f; ,, := B;f, we obtain

Ei1[Cr ] = a2v? 1 Bict [(AM;fin)?] = a2y} Eiy [(R@fi,n —Ei 1 R%.)fi,n)Q]
=a;77 1 (Bim [(R(i.)fin)2] — (Ei- 1R fzn) %)
= a2yl | (Eis1 By, (fin) — (E i—le/ifi,n) )
=azy; 1 (i1 B(fin) — ({ﬁi—lRfi,n)z)
api (VB(fin) + 0i1B(fin) — (ﬁiflRfi,n)2)- (4.14)
We treat the three terms in the final parenthesis separately. We start with the third term;

by (2:20) and (3.28),

VRfi,n = sz',n = VBi,nf = Vf = 0. (4.15)
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Hence, according to (3.65]), and using vgW < oo when ¢ = 1, there exists € > 0 such that
apyi 1 B [[MiiR finl’] = gy 1 B [JoiciRfinl?] < €apniyi™®| finlBr)  (4.16)

Furthermore, by (3.5) and Lemma again using the decomposition (4.5 for (2), we
have for all n > i > 1,

ap il finl By = apii | Binf |1 < €digp. (4.17)

We thus get that
n n n
E‘Z ai’YZZ_l(Hli—lRfi,n)z‘ S EZ a?{yf_l ‘Ile_lRon| S ¢ Zi_‘gdi’n — 0. (4.18)

n—-4o0o
=1 =1 =1

We now treat the second term in (4.14)). Using (3.66) in Lemma together with the
fact that B is a bounded quadratic operator B(W) — B(W?) (see (2.43)), and (4.17)), we
obtain that there exists € > 0 such that

apyig EloiiB(fin)l < € fapni 1 IB(fin) w2y < € apyi || finllowy
<& Cdiy, (4.19)

and hence
n

ST @292 Elo; 1B(fin)| < €S i Fdin —— 0. (4.20)

n—-+o0o
=1 i=1

We now consider the first term of , which needs a different treatment under the
conditions of (1) and (2), so we treat the two cases separately.

Under the conditions of (1), we rewrite the sum of the terms corresponding to the first
term in (note that this sum is non-random) as an integral:

n n 1
Z agz'YiQ—lVB(fi,n) - Z n%‘Q—IVB(fi,n) = /0 nQ’Y?mﬂ—lyB(f!—:vn-\ ,n) da. (4.21)
=1 i=1

Using vW? < oo (implied by , (2.43]), and (4.17), we obtain that
nQ’V%n:c]—l}VB(ffnz],n)‘ < nQW?nx]—l||B(f|'nac],n)HB(W2) < CnQ'y%nz]—lHffna:],n”QB(W)
< Cndfpgn = €[na] P72p2-20 < @202, (4.22)

Furthermore, for every fixed x € (0,1), we have by Lemma uniformly for z in a
compact set and all n > 1,

1 n z—1 .
= 1 —_— _ = - 1 . 42
@) = (140()) (1) =400/ (1.23)
Hence, (3.37)) shows that
1Brnatm — = 7 = [brna1 n(R) — &% = O(1/n), (4.24)
and, in particular,
— 1-R ¢ _ Ry _ ..—(ogz)R

in B(W). Furthermore, g — vg is a continuous linear functional on B(W?2), since vW? <
00, and thus, recalling Remark f— vB(f) is a continuous quadratic form on B(WW).

Hence, (4.25]) implies
—(logz)R ) _ .2 —(logz)R
vB(f1zn1,n) P vB(ze f) =2"vB(e f). (4.26)
Moreover, we have nz’Y%mﬂ,l — 272 when n — +o0o. Consequently, for every fixed
z € (0,1),
nQ’Y%na:]—lyB(ff;Bn],n) > vB (e—(log:c)R,f) . (427)

n—-+00
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Consequently, by (4.21) and dominated convergence justified by (4.22)), followed by a
change of variables,

1 00
Zan% WB(fin) —— | vB(e (e2Rf) dy :/ vB(e*ff)e % ds
0

n—-+o0o 0

=x(f), (4.28)

where it also follows that the integral is absolutely convergent as claimed in Theorem [2.10
The final equality in (2.28]) follows by Fubini’s theorem.
Under the conditions of (2), we observe that for n,m > 1,

(ﬁ)RfI H,\jf _ (ﬁ)kj—l (2)37)\3' H,\jf _ (&)M—l Z . (logn/m) (R — Aj)kﬂ,\jf,

m m m

(4.29)
where the terms with & > x; are null by (2.32)). We deduce from (3.53)), (4.5)) and (4.29)
that, forn >m > 1,

p Ki—1

frin = Baonf = (L4 hnn®R) S S ( ) (1og(n/m)) (R— NI, f (4.30)

7=1 k=0
where ||hmn(R)|| = O(1/m) on D by (3.43) and (3.37). We deduce that

Hj—lﬁ/ 1

S B = 3 S S Y alld ), (431)

=1 7,7'=1 k=0 ¢=0 i=1
where
a(k év]?] ) —>\j—)\j/n>\j+>\j/—1(log n/l)k+£/(10g n)2l€717 (432)

n,

and, using that B is a bounded bilinear operator (Remark ) and thus vB is a bounded
bilinear form on B(W), and also (3.5)),

2 ;2
k0, Vi1t
a7 = B (14 hin(R) (R = DML, £, (14 hin(R) (R~ A DT f)

%’2712'2 ~ i .
N ke vB (R = A1), £, (R = Ay DT, £ ) + O(1:)
W vB (R = DML, £, (R = AT, £) +O(1/2). (4.33)

Fix k,¢,7,7" as in (4.31)). By definition of a( £:3:3") (see (4.32)), and because Re(\;) =
Re(\jr) = 1/2, we get

(k,t pd ) L (gt A0) 1o
7]7] — 1 m S ! Jr n
Za = Togm> 1 2 Z log"+* (n/s)

_{HO() if Im(A; +Aj)=0and k =/ =r—1,

2k—1

: (4.34)
o(1) if Im(Aj+Ajy)#Oork<rk—lorl<k-—1,

when n — 400, where we refer to Lemma [C.1| for detailed calculations. Furthermore,

yhrt I
(k,£,3.5") 1 —2 1ok (n (logn) —2
Z’ Z (logn)2n 1 Z og ( /) logn 2n 1 Z — 0.

(4.35)

It folllows from (4.31)), (4.33]), (4.34)) and (4.35) that, as n — oo,

> a2y? wB(fim) = X(f) =

=1
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p

1 —
Ki=Ki 1=K, A\j=\ ~ e e
Z (2,;_ 13)((,1 _J 1)31)2VB ((R - \I) 1H>\jf, (R — ;) 1H>\j,f> . (4.36)
J,j'=1 ’

Condition (c). Condition (c) of Theorem [4.1]is verified in the same way as Condition
(b) above, with mainly notational differences. We therefore omit the details and only give
a sketch. For ¢ > 1, we have, corresponding to (4.14)),

EZ—lH@ZL,zH - a7217i271 (Vc(fl n) +0;— IC fzn ‘mz 1szn‘ ) (437)

with C defined in (2.30)). As for (b), the two last terms can be neglected and, concerning
the first term, we have the following convergence results, which depend on whether we
work under the conditions of (1) or (2):

Under the conditions of (1). One shows that

1 o)
Za %2 1C( fi, wlo—— I/C(e_(logx)Rf) dux :/ I/C(GSRf)e_S ds

n—-+o0o 0 0

— o2(f), (4.38)

where the integral is absolutely convergent, as claimed in Theorem [2.10
Under the conditions of (2). Using the same approach as above, but conjugating the
second argument of B, we obtain, as n — 400,
P

1/@-:/@ =K, Aj=N ~ P
Za P vC(fin) = S (%J_ 1])((% & 1);)2”3 ((R — AL f, (R = Aj/I)HHAjﬂ ‘
33'=1

(4.39)

Note that the condition \; = )\ s in - has been changed into A\; = A;/, so that the
sum in 9) really is a single sum; hence can be written, recalling (|2 ,

Zam_luc fim) Z oy 1’” ;_ Ty C (R~ NI f) = 02(f).

J:1

(4.40)

We have thus checked that under the conditions of either Theorem [2.13|1) or Theo-
rem m&), the (s (1 < i < n) satisfy Conditions (a), (b) and (c) of Theorem The
values of x and 02 in (b) and (c) are given by (4.28)) and (4.38)) under the conditions of (1),
and by and under the conditions of (2). Therefore, since a,v,f =Y.', én,i’
and since we have shown that ¢,o — 0 a.s., Theorem yields the results and
2:33).

4.2. Proof of Theorem [2.13|(3). Next, consider the case of a generalized eigenfunction
corresponding to an eigenvalue A\ with Re A > 1/2. We state a lemma under slightly more
general assumptions.

Lemma 4.2. Suppose that D' is an R-invariant subspace of B(W') such that o(Rp/) =
{\} consists of a single point A with 1/2 < Re X\ < 1. Then each operator By, ,, 0 < m < n,
is invertible on D'. If f € D', then there exists a complex random variable Ay such that

on By f — Mg (4.41)

a.s. and in L? as n — oo; moreover, for any 0 < ¢ < Re\ — /2, there exists a constant
C. > 0 such that

_ 2 C m()V
E|on By, f — Ag| < W”JCHB(W (4.42)

Furthermore,

EAf = U()f = I:(vlof — l/f (443)
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and
E[Af? < CRoV £ 1. (4.44)
Proof. First note that, since Re A > 1/2 and 0 < v, < 1, we have
[T+ (A=1)| = Re(1 + (A =1)) =1 — v+ ReA > /2, k>0, (4.45)
and thus by, () # 0 by (8.39). Hence by, # 0 on o(Rpr), so by, is analytic in

a neighbourhood of o(Rp/) = {A} and it follows that, as an operator on D', By,, =
bmn(Rpr) is invertible with inverse B, = bl (Rpr).

If 0 < i < n, then (3.72) (or (3.3)) shows that Bo;B;, = By, which yields
BinBy, = By (4.46)

Let f € D'. By (3.26), applied to Bojif, and (4.46]), we have
n

0, By, f = vof + Z’Yi—lAMiBO_,ilf- (4.47)
i=1

Since E;,—1 AM; = 0, (4.47) shows that (nnBO_Jllf)n>0 is a martingale. (Cf. the closely

related (3.73)).) We will show that the martingale (4.47) is L? bounded; the result (4.41))

then follows by the martingale convergence theorem.

Let 0 < e < ReX —1/2, and let K be the closed disc {z: |z — A| < e}. Then Rez > 1/2
for all z € K, and it follows, as in (4.45)), that |1 +7y(z —1)| > 1/2 on K. Hence, each by, ,,
is non-zero on K, and thus is invertible on K; furthermore, gives the trivial bound

bn(2) 7' <27™,  0<m<n, 2€K. (4.48)
To get a better bound, we fix m > 1 such that (3.45) holds for all n > m and z € K.
Thus, using ([4.48) for by m(2) 71,
mg(E)+n

‘bO,n(z)_l‘ — ‘bO,m(z)_lbm,n<z)_1} < C]bm,n(z)]_l _ C‘e*(zfl)log mO(E)+m+O(1)|
mo(E) +n \ 1-ReAte
< —_— < mg(E . 4.4
_C’< 0(E)+m> < C(mo(E)+n) (4.49)

By , the same bound holds trivially (with a suitable C') also for 1 < n < m, so the
estimate holds for all n > 1 and z € K.

Since o(Rp) = {A}, it follows from ([3.37), taking I to be the circle {z: [z — A = ¢} C
K, together with that

IByallpr < Csup b (2)] < C (mo(E) +n)' " HMe n> 1, (4.50)
zeK

For f € D' and i > 1, we thus have, by (3.12) and (4.50)),
1,2 ~ _
E‘%flAMiBo,ilf‘ < CrfmgV ||Bo,z‘1f||2D/
< CmgV (mo(E) + i)~ (mo(E) +0)* X)) 73,
= CmgV (mo(E) + i)~ 2BeA=2)|| 712, (4.51)

Since 2(Re A —¢) > 1, it follows from (4.47)) (where the terms are orthogonal), (3.11)), and
(4.51), that

o0
_ 2 _ 2 ~
E[v,Bytf|” < loof? + Y E|ni1 AMiBy ) £ < CioV || £, (4.52)
=1

and thus the martingale (4.47)) converges in L? and a.s., as claimed. The properties (4.42)),
(4.43)) and (4.44) immediately follow from (4.47) and (4.51))—(4.52). O

We combine Lemma [4.2] with a standard result for functions of nilpotent operators.
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Lemma 4.3. Suppose that D' is an R-invariant subspace of B(W) such that (Rp —
A" =0 for some complex A\ and integer k > 1. Let h be a function that is analytic in a

neighbourhood of X\. Then, for f € D',

k—1
R (X)
hRp)f =Y o (R NEF. (4.53)
k=0
Proof. A Taylor expansion yields, for some function h, analytic in the same domain as h,
Kk—1
R () 5
h(z)=>_ P M (2= N)fhe(2). (4.54)
k=0

We have (Rpr — A\)® = 0 by assumption, and thus (4.54) yields, using (3.36]),

k—1
Rk (X
h(Rp) = k'( )(RD’ -\, (4.55)
k=0
as operators on D', which is (4.53)). O

We can now show the convergence ([2.38)) for f in a generalized eigenspace.

Lemma 4.4. Suppose that D' is an R-invariant subspace of B(W) such that (Rpr—\)* =
0 for some complex \ with 1/2 < Re X < 1 and some integer k > 1. If f € D', then, for
some complex random variable A,
nl—)\
———0,f = A (4.56)
log" " n

a.s. and in L? as n — co. Furthermore,

['(mo(E) +1)
(k= DIT(mo(E) + N)
Proof. Note that the assumption (Rp — A)® = 0 implies that o(Rp/) = {A}, for example

by the spectral mapping theorem [5, Theorem VII.4.10]. Hence, Lemma applies.
We use also Lemma with h = by ,. This yields, defining f; := (R — N\ f/k!,

EA= og(R— \)" 1. (4.57)

k—1
Bonf = bon(Rp)f = D650 (N fi (4.58)
k=0
and thus
k—1
0nf = 0,85 Bonf = bs (N on By fi (4.59)
k=0

Each random variable v, B, }L fi converges a.s. and in L? as n — oo by Lemma and it
remains to study the coefficients bg;)l(A). By (3.41]) we have

mo(E) + n>“

(BT (4.60)

bon(z) = (1 + ho,n(z)) <

In a fixed neighbourhood of A, the functions hg,(z), n > 1, are uniformly bounded by
(3.43), and thus Cauchy’s estimates show that for each fixed k£ > 0,

(V)| < C. (4.61)

Furthermore,

i (i s) - (RE) () o
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Hence, using (4.60) and Leibniz’ rule, for a fixed k and n > 1,

A—1
0~ (50t (ST

<C (“W(E)JF”>RM_1 (1 V logh=1 <W>> : (4.63)

my(E) +1 o(E)
By (4.63]), each coefficient bgf%()\) in (4.59) with k£ < k — 1 satisfies
_ k
‘ <mo<E> +n>1 S 1Y § ¢ o
k—1 E)+n\ | — E)+n\ -’ ’
mo(E) + 1 1V log (ngE)H) 1V log (“n?lg((E))H)
Using (4.63)) with £ = k — 1, we similarly deduce that
_ (k—1)
<m§EE§ n 1> 1 e~ (L hoa(V)| < o (e (409)
Viog™ t (REyTT) Vlog (L2 izt

We obtain from (4.59)), (4.64), (4.65), and the fact that hg () is uniformly bounded, with
Ay, , from Lemma

(mo(E) + n>“ O f
mO(E) +1 1V logn—l (mo(E)-l—n)

mo(E)+1
—1 —1
=0 |UnBo,nfk‘

E)+n
1V log (TQ((E))H)

In addition, (3.41)), (3.46) and a well-known consequence of Stirling’s formula (see e.g. [29]
5.11.13]) imply that for any fixed z,

- (1 + hom()‘))Afm—l

+C

00 Bgnfu1 = Ag |-

(4.66)

_(mo(BE) +n\ "7 _(mo(E) +n\ "7 T(n+mo(E) + 2) T(mo(E) + 1)
L+ honlz) = (mo<E> +1> onlz) = (mo<E> +1> T(n + mo(E) + 1) T(mo(E) + 2)

- | T(mo(E) + 1) |

= (mo(B) + 1)~ r<m§<E> ) (1+o(3))

- | T(mo(E) + 1) |

_(mo(E)+1)1—ZP(m2(E)+z) () (4.67)

Lemma implies that the right-hand side of (4.66|) tends to 0 a.s. as n — co. Hence,
(4.66) and (4.67) imply that

on f

(mo(E) +n)' — o A (4.68)
log" ™! (:12%15))+1)
holds a.s. with
A= Dmo(B)+1) (4.69)

L(mo(E) +A)
We may simplify (4.68]) and conclude that (4.56) holds a.s.
Moreover, (4.42)) and (4.44)) imply that for every fixed k& > 0,
1,2 ~ 2 ~ ~
ElonBynfi|” < OmoVIlfellzon) + CBAs | < OBV Ilfkllsr) < OmoV If1law).
(4.70)

Taking the expectation of the square in (4.66[), we deduce using (4.70]) and (4.42]),
2

E 1= oy, CmoV | flZ
E <$OEE; j—?) logh—1 fmo(E)-i-n N (1 T ho’n()\))Af“—l < log?2 mo(g‘fg
0 1 \/ Og (mo(E)+1 ) 1 \/ Og (mo(E)+1 )

(4.71)



FLUCTUATIONS OF BALANCED URNS WITH INFINITELY MANY COLOURS 31

Furthermore, by (4.67)), (4.69)) and (4.44)),

2
C 2 C
< SEA P < SRV IR (472)

E ‘ (L4 hon(N)Ay,_, — (mO(E)1+ 1)HA

Combining (4.71]) and (4.72)), we obtain

2
A Unf

K— E +n o
1V log"™! (I:lgEE))H)

dren) WV
2 E)+n :
1V log (EEEE§+1)

E‘(mo(E) +n)'”

< C(mo(E) +1) (4.73)

Hence, (4.68) holds also in L2, and thus so does (4.56). Finally, (#.57) follows by (4.69),
(4.43), and the definition of f;_1, which completes the proof. O

We are now ready to prove Theorem m(?)); we assume that the operator Rp is slqc
and that the spectrum of Rp is given by

o(Rp) ={L,A1,....,. ,JUA,  p>1, (4.74)

where Re(A\1) = --- = Re()\y) = 0p € (1/2,1), and supRe(A) < Op. Note that this
implies that Aq,...,A; are isolated points of the spectrum o(Rp), and that A is a clopen
subset. Thus the spectral projections II); and IIa are defined and, for any f € D, recalling

Lemma [3.5]
p p
F=M0f+ ) T\ f+Taf =vf+) Iy f+Iaf (4.75)

J=1 Jj=1

Hence, it suffices to prove for the functions v f, Il f and IIa f separately; in other
words, it suffices to consider the cases f = c constant, f € I, D and f € lIanD. Recall
that m,, — v = v,,.

First, we may ignore the constant term v f in , since v,1 = 0.

Secondly, Lemma applies to each space II); D, since we assume and thus

(R = Xj)" = 0 on Dj := My, D. Tt follows that, for some complex random variable
Aj S L2,
nl—Re/\j {Im o\
munHAjf — TLI m ]Aj —0 (476)
a.s. and in L?. Furthermore, (2.20) and Lemma imply that
v(R— X)) I, f = (1= )" 'y, f =0, (4.77)

so that (4.57)) yields ([2.39).
Thirdly, Lemma applies to IInD and ¢’ := p = Re A1, and shows

nl Ry TIAf — 0 (4.78)

a.s. and in L?.
Theorem [2.13((3) follows by combining (4.75)) with (4.76) and (4.78). This completes
the proof of Theorem [2.13 ]

Remark 4.5. Note that implies an upper bound 0(1/ log n) for the speed of
convergence in L? of , which yields the same rate in in Lemma Since,
in addition, in the proof of Lemma yields an upper bound O(n~¢) (for some
e=0 —0">0) for the speed of convergence in L? in (3.8F)), one finds O(1/logn) as an
explicit upper bound for the speed of convergence in L? of Theorem m(3) O
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Remark 4.6. If mg is random, then under the conditions of Lemma (4.73) holds

conditioned on my. Taking the expectation, we see by dominated convergence that if

further

E[(mo(E) + 1) VagV] < oo, (4.79)

then the left-hand side of (4.73) converges to 0 as n — oco. With the notation
(mo(E) +n)'

- k—1 E)+n\’
1Vlog™ (RUETT)

this says that a,b,f — A in L?. Since we also have convergence a.s. (by and
conditioning on mg), this implies that the sequence |a, v, f|? is uniformly integrable, see
e.g. [I2, Theorem 5.5.2]. Let by, := n'~*/log" ' n. Then, for n > 3, |b,| < |an|, and it
follows that also |b,v,f|? is uniformly integrable. Furthermore, also b,v,f — A a.s., and
thus [12, Theorem 5.5.2] again shows that b,v,f — A in L2. Consequently, under the
assumption , holds both a.s. and in L?.

By combining this and Remark it follows as above that in Theorem m(?;)
holds also in L? for random m that satisfies , as claimed in Remark O

(4.80)

n .

5. PROOF OF THEOREMS [2.25/2.27].

In this section we prove Theorems [2.25H2.27| on possible degeneracies in the limit dis-
tributions in Theorem 2.13]
Lemma 5.1. Suppose that f € B(W) and that v|f| = 0, or, equivalently,
f(z) =0 forv-a.e. z. (5.1)
(i) Then v|IRf| =0, i.e., (5.1) holds for Rf too.
(ii) Moreover, for v-a.e. x,

RMf=0 a.s. (5.2)

Proof. By linearity we may assume that f > 0. Let N := {z: f(z) # 0}; then vN = 0 by
the assumption (5.1). If z ¢ N, then R&l)f > 0, because RrY is positive on E \ {z} and
f(x) = 0. Hence, by taking the expectation, also
Rf(z)=ERVf>0, z¢N. (5.3)
Thus Rf > 0 v-a.e.
On the other hand, by (2.20) and the assumption (5.1]),
v(Rf)=wR)f =vf=0. (5.4)
It follows from ([5.3) and (5.4)) that Rf = 0 v-a.e., which proves
Moreover, let Ny := {z : Rf(z) # 0}. If 2 ¢ N U Ny, then, as just shown, Rg([;l)f >0,

and also ER&l)f = Rf(z) = 0; hence, (5.2)) holds. This proves since ¥(N71) = 0 by
and thus v(N U N;p) =0. O

Proof of Theorem [2.25. By replacing f by f — vf, we may for simplicity assume v f = 0.
Note first that (2.26)) implies 0?(f) =0 = x(f) = 0. Hence, |(i)| <= follows from
the formula for X(f) in (2.27). .
Next, s — e*Rf is a continuous map [0,00) — B(W), and thus, by Remark El and
vW? < o0, s — vC (eSRf) is a continuous function of s > 0. Furthermore, by @, we
have C(e*®f) > 0, and thus vC(e*® f) > 0. Consequently, by ,

c2(f)=0 < vC(eRf)=0 for every s > 0. (5.5)

In particular, taking s = 0, we see that = |(ii1)
Furthermore, vC(f) =0 <= C,f = 0 for v-a.e. &, which by (2.30) is equivalent to

Rg;l)f =0 a.s., for v-a.e. x. Hence, <:>
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Finally assume and let N C F be a set with v(N) = 0 such that Rél)f =0 a.s.

when z ¢ N. By taking the expectation, we obtain Rf(z) = ERg([;l)f =0 forz ¢ N.
Hence, Rf = 0 v-a.e., i.e., Rf satisfies (5.1). We may thus apply Lemma to Rf and
conclude by induction that R*¥ f = 0 v-a.e., for every k > 1. Consequently, for any s > 0,

ok
SRf— = Z %ka =0 v-a.e. (5.6)
k=1 "

We apply Lemma again, this time to e*®f — f, and conclude by Lemma that
for v-a.e. x,

Rg(gl)(eSRf -f)=0 a.s. (5.7)
Together with the assumption Rg(gl)f = 0 a.s. for v-a.e. z, this shows that for v-a.e. x,
RP(eRf)=0  as. (5.8)

Hence, ([2.30) yields C,(e*®f) = 0 for v-a.e. x, and thus vC(e*®f) = 0, for every s > 0.
Consequently, (5.5) shows that o2(f) = 0. We have shown that = which
completes the proof. O

Proof of Theorem [2.26, The equivalence = follows as in the proof of Theo-
rem

Let g; := (R — )\jI)”_IH,\jf. Note that by , g; = 0 if k; < k, which shows the
equivalence <~ |(iv)]

By , it remains only to show that

vC(gj) =0 < g; =0 v-ae. (5.9)
To see this, we first note that by definition of k,
(R —=Aj)g; = (R —N)"IL; f = 0. (5.10)
and thus
Rgj = Aj95- (5.11)

In other words, g; is (if non-zero) an eigenfunction with eigenvalue \; # 0.
Assume now vC(gj) = 0. Then, using (2.30)) again, for v-a.e. x, we have C,(g;) = 0

and thus Rg) gj = 0 a.s. Taking the expectation shows that for such x, we have Rg;(z) =
ER;l)gj = 0. Consequently, Rg; = 0 v-a.e., and (5.11]) implies g; = 0 v-a.e. This shows
one implication in ({5.9)).

Conversely, assume g; = 0 v-a.e. Then Lemma shows that for v-a.e. x, we have
Rg;l)gj = 0 a.s., and thus C,(g;) = 0 by (2.30). Hence, vC(g;) = 0. This completes the
proof of (5.9)), and thus of |(ii)| <= and of the theorem. O

Proof of Theorem [2.27. We note first that (5.11)) holds in the present case too, and thus
g; is an eigenfunction of R with eigenvalue A\; # 1. Hence, v and g; are left and right
eigenvectors of R with different eigenvalues (recall (2.20])), which implies, as is well known,

vg; =0, (5.12)
because we have
vg; = (VR)gj = v(Rg;) = Xj(vg;). (5.13)
(1) <= Obvious.
= |(iv Suppose now that holds, i.e., A; = EA; as. The proofs of
Theorem [2.13|(3) and Lemma (in particular (4.69))) show that
Aj = CAgj (514)
where ¢ > 0 is an explicit constant and Ay, is given by Lemma Since Ay, is constructed
in the proof of Lemma as the limit of the martingale (4.47)) (with f replaced by g;),
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it follows that A; = EA; a.s. if and only if all martingale differences in (4.47)) vanish a.s.,
i.e.,

Aj=EAjas. < AMiB(;}gj =0 a.s., for every ¢ > 1. (5.15)
Moreover, as remarked above, Rg; = A;g;, Hence, by ,
By g; = boi(R)"g; = boi(Xj) g5, (5.16)
where bo;(A;) # 0 by (3.39), 0 < v, < 1, and Re\; > 0. Thus yields
AM,;g; =0 a.s., for every i > 1. (5.17)
Using also (and replacing i by n + 1), (5.17)) says that, for every n > 0,
Rg;::i)gj =m,Rg; as. (5.18)

Conditioning on m,, and recalling that Y, has the conditional distribution m,,, we see
that (5.18) implies that m,, is a.s. such that, conditioned on m,,,

RIMVg: = @,Rg; a.s., for f,-ae. z. (5.19)

Consider first the case n = 0. Recall that mg is non-random, and let a := ﬁojo (a
non-random real number). Then the case n = 0 of (5.19) says

RVg; =a as., for mp-a.e. z. (5.20)

Now return to a general n > 0. Since m, is a positive number times m,, we may in

(5.19) equivalently write “for m,-a.e. ”. Furthermore, m, > mg, and thus (5.19)) implies

that the equality holds for mgp-a.e. . Moreover, Rénﬂ) is independent of m,,, and thus

its conditional distribution equals the distribution of RV, Hence, ((5.20]) shows that, also
conditioned on m,,

R Vg —a as., for mp-a.e. z. (5.21)
Consequently, comparing and , we obtain, for every n > 0,
m,Rg; =a as. (5.22)
Thus, shows that, for every n > 0, m,, is a.s. such that
RVgi=a as., for m,-a.e. z. (5.23)
By again conditioning on m,, it follows from that
Rgi)gj =a as. (5.24)
Consequently, by and induction,
m,g; = mog; +na a.s. (5.25)
On the other hand, taking the expectation in yields that m,, is a.s. such that
Rgj(z) =ERWg; =a for my-ae. . (5.26)
Recalling , this implies that
m,g; = A;lﬁln(jo) = A;la a.s. (5.27)
Consequently, recalling ,
mpg; = W (E)i,g; = (mo(E) +n)A; la = mo(E)a/A; +na/A;  as. (5.28)

Comparing (5.25) and (5.28), we see that a = a/);, and thus (since \; # 1), a = 0.
Consequently, ) says myg; = 0 a.s., which completes the proof of — m

Moreover, (5.26) with a = 0 and (5.11)) show that a.s., g;(x) = 0 for my-a.e. x, which is
the same as m,|g;| = 0. Hence, also = |(vi)

[(vi)] =[(iv)} Trivial.
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iv)| = |(iii)f Now suppose m,g; = 0 a.s., for every n > 0. Then m,g; = 0 a.s., and,
j j
using (|5.12]),

Opg; = Myg; —vg; =0 as. (5.29)

Furthermore, g; is an eigenfunction of R by (5.11)), and thus also an eigenfunction of
Bo,n = bon(R). Hence, (5.29) implies

v Byag; =0 aus. (5.30)

for every n > 0. By Lemma we have anO_JIng 22 Ay;. Thus implies Ay, =0
a.s., which by yields A; = 0 a.s. and thus shows

(iii)| = Trivial.

(iv)| <= Obvious by (2.2).

(

(

vi)| <= [(vii)} Trivial.
vi)| <= |(viii)} |(vi)|is equivalent to
Em,|g;| =0 for every n > 0. (5.31)
By and induction, recalling and ,
E, = o Boy = fobo.n(R). (5.32)

Since bp,n(R) is a polynomial in R of degree (exactly) n, (5.31) is equivalent to
which shows the equivalence [(vi)| <= [(viii
= |(ix)| when R is slqc: Theorem [2.10| then applies to all functions in B(W), and

in particular to |g;|. Hence, m,|g;| == v|g;|. The condition thus implies v|g;| = 0,

which is
(ix)| = |(viii)| when my is absolutely continuous w.r.t. v: By Lemma and induction,
(ix)| implies R™|g;| = 0 v-a.e. for every n > 0. Our assumption my < v then yields

(Vi) 0
Example 5.2. Let E = [0, 1], and let 1 be the Lebesgue measure on E. Let 0 < 6 < 1
and let Rg«l) be the (non-random) replacement kernel given by

RW =R, =" z 70 (5.33)
* 050+ (1 —0)u, x=0.

We take W =V = 1, and it is trivial to verify[(B)} [[H)} and[[N)| with v = u. The operator
R (considered on B(E) as usual) has rank 2 and it is easily seen that o(R) = {0,6, 1}, with
the spectral projections II; and Il both having rank 1 and corresponding eigenvectors 1
and 1yy. Hence R is always slqc on B(W), and small if and only if § < 1/2; moreover,
our parameter 6 is as in .

If we start with mg = p, or with ¢, for any x # 0, then a.s. m,, = mg + nu, so the MVPP
is deterministic. However, if we take my = dg, then the evolution is different; the MvPP
then is essentially a triangular urn of the type considered in e.g. [20], where its asymptotic
distribution can be found. (To see this, call colour 0 "'white’ and lump all other colours in
E together as 'non-white’.)

In particular, if 1/2 < 6 < 1, then Theorem [2.13|(3) applies with D = B(E), p = 1 and
A1 = 0. Moreover, if we take f := 1oy, then Theorem applies with g1 = f = 1ypy. Tt
follows easily that the limit A; =0 in if and only if mp{0} = 0.

This, admittedly artifical, example shows that one cannot always ignore functions that

are v-a.e. 0; thus some care may be required when considering R as acting on L>*(E,v).
O
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Example 5.3. We may vary Example [5.2| by fixing 3 distinct points xg, x1, 2 € [0, 1] and
defining (non-random)

- %511 + %5122, r = o,
RY =R, =160, +(1—0)pu, =z=ua,z0, (5.34)
Ly otherwise.

The spectrum is still {0,6,1}, and the range of the spectral projection Iy has dimension
2. Let % < 0 < 1, so that Theorem [2.13(3) applies. One can easily check that f :=
1,, — 1,, € IIp and that Theorem ‘ applies with g; = f. Using Theorem [2.27(viii)
it follows that A; = 0 if and only if mg{zo,x1,22} = 0. In particular, note that A is
non-random if myp = d,,; this shows that in Theorem it is not enough to assume
molg;| = 0. O

6. EXAMPLES
We consider some examples, in separate subsections.

6.1. Out-degree distribution in the random recursive tree. This example is already
considered by [19] in the Pdlya urn context and in [27] in the MVPP context. The random
recursive tree is built recursively as follows: at time 1 the tree has one node, its root, and,
at every discrete time-step, we add one node to the tree, and this new node chooses its
parent uniformly at random among the nodes that are already in the tree. The out-degree
of a node is its number of children. For all n > 1 and k > 0, we set Ug(n) the number of
vertices of out-degree k in the n-node RRT, and

my, = Z Uk(n)ék (61)
k>0
(We start this process at time n = 1; this is just a matter of notation.) We show that

Proposition 6.1. If f : Ng — C satisfies f(k) = O(r*) for some r < /2, then there
exists a covariance matriz 3(f) such that, as n — 400,

n?3 (M = 271) £(k) 5 N (0,3()). (6.2)
>0 -
We show how to calculate X(f) at the end of the section, at least in some cases.

Remark 6.2. We compare Proposition to the results of [19] and [27]. The results
in [19] give an equivalent of Proposition but only for functions f with finite support.
The results of [27] apply to unbounded functions f as long as they are negligible in front
of x — 277¢ for some ¢ > 0. This class of functions is larger than the one in Proposi-
tion ﬂ but [27] proves a.s. convergence of = 3", Uk(n) f(k) to Y_,~02 %1 f(k) while
Proposition [6.1] gives the fluctuations around this almost-sure limit. ([l

Proof. To prove this proposition, first note that (m;),>1 is an MvpPP with £ = Ny :=
{0,1,2,...}, and deterministic R™ = RW = R such that, for all k > 0,

RY =6p1 — 66400, k>0 (6.3)

Note that this includes subtracting the drawn ball k£ (unless £ = 0). In other words, the
operator R is defined by (2.18)) as

Rf(k) =Ref = f(k+1)— f(k)+ f(0), k>0 (6.4)
Dually,
xR = Ry = 041 — 0p, + b0, (6.5)
and thus, for any complex measure p on Ny, (with u{—1} :=0)
(LR)(k) = pfk — 1} — p{k} + Lp—o(p1). (6.6)
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The urn is balanced by (6.3)), i.e., |(B)| holds.

We first choose W = V = 1. Then holds since HR,(:)H < 3 for every k > 0, see
Remark Furthermore, it is easily checked from that the probability measure

v{k} =271 keN, (6.7)

(i.e., a geometric distribution Ge(1/2)) is an eigenvector satisfying YR = v, and thus |(N)|
holds too.

We next show that R is a small operator on B(W) = B(E). To do so, we show first
that the dual operator R* is a small operator on M(E); recall that R* is the operator in
(6.5)—(6.6) which we there, as usually, denote by R (acting on the right).

The space M(E) of complex measures is naturally identified with ¢1; we also identify
it with the space

A= {ki;o apzt ki;o lak| < oo} (6.8)

of analytic functions. (The functions in A are thus the analytic functions in the unit
disc with a Taylor series that is absolutely convergent on the closed unit disc.) The
identification is the obvious one, mapping a measure p € M(E) to > 7o, u{k}2*. Note
that A is a Banach algebra under pointwise multiplication. (The norm in A is inherited
from M(E) = (1.

The operator R* acting on M(FE) by corresponds to the operator R : A — A
given by

RzF = 2FH1 2k 41 (6.9)
This means that, for all f € A, cf. ,
Rf(2) = 2f(2) = f(2) + f(1) = (= = D f(2) + f(1). (6.10)
We first show that
cR)C{A: A +1]<1}U{1}; (6.11)

this implies that [(QC2)| holds. Fix A € C such that |[A + 1| > 1 and X\ # 1; our aim is

to show that A\ ¢ o(R), i.e. A € p(R). To do so, we fix g € A and consider the equation
(A=R)f =g. By (6.10), the equation can be written

(L+A—2)f(z) — f(1) = g(2). (6.12)
In particular, taking z = 1 yields

(A~ 1Df(1) = g(1). (6.13)
Then, gives f(1) =¢g(1)/(A—1), and is solved (uniquely) by
_ 9@+ 1) _9(z)+9(1)/(A-1)
J() = 1+A—2z 1+A—2 ’ (6.14)

Furthermore, this solution f belongs to A, since 1/(1 4+ X — 2) € A when |[A+ 1] > 1 and
A is a Banach algebra. Hence, (A — f{) f = g has a unique solution f € A for every g € A;
in other words, A € p(R), which concludes the proof of and thus of

Furthermore, the resolvent (A — R)™1g is given by (6.14), and thus, by [5, Equa-
tion VIL.6.9], the spectral projection II; is given by

Myg(z) = i ﬁ(A _R)g(z)d) = % ﬁ 9(2) H(i)@ “Daxn, <1, (6.15)

where I' is a small circle around 1. (Any circle of radius less that 1 will do.) If |z| < 1,
then 1/(1+ A —z) is an analytic function of A on and inside I', and it follows by the residue
theorem that the integral (6.15]) equals the residue at A = 1, which is ¢g(1)/(2 — z). Thus,

mgx) = 2 <, (6.16)
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which together with shows that [(QC1)| holds with the eigenfunction 1/(2 — z) =
Yoro 2=k=1.k " This eigenfunction corresponds to v in , which shows again that
vR=w.

Therefore, R is an slqc operator on A. Furthermore, we conclude from that it is
a small operator on 4, and thus that R* is a small operator on M(E). By Corollary
with X = B(E) and Y = M(E), this implies that R is a small operator on B(E).

We have verified the conditions of Theorem [2.13(1), which thus applies and shows
asymptotic normality of m, f as in for every f € B(W) = B(E).

We can extend the range of this result by considering other functions W. Fix r > 1
and take now

W (k) = Wy(k) :==r". (6.17)

Thus V (k) = W (k)? = r% for some q > 2. Recall that requires vV < oo. Since v still
is given by (6.7)), this is equivalent to ¢ < 2. Similarly, (6.4)) shows that

RV =V(k+1)-V(k)+V(0)=(r?—1)V(k)+1, (6.18)
and thus [(T)(i)] holds if and only if 7¢ < 2. It is easily seen that [(H)(ii)| holds for every

r > 1. Furthermore, the urn starts with the composition &y, and thus |(H)(ii1)| is trivial.
Hence, and both hold if and only if r? < 2. Since holds regardless of W, we
conclude that

[(B)] [}, and [[N)] hold for some ¢ > 2 <= r < /2. (6.19)

We now have to find the spectral gap of R as an operator on B(W,.). We argue as in
the case r = 1 above, and begin by noting that M(W,) = {p : 0% [u{k}r* < oo} is
a norm-determining subspace of B(W;)*. Moreover, M(W,) may be identified with the
space

Ay = {i apz® i lag|r* < oo} (6.20)
k=0 k=0

of analytic functions. The functions in A, are continuous in the closed disc {z : |z| < r}
and analytic in its interior. A, is, as A = A; studied above, a Banach algebra under
pointwise multiplication.

As in the case r = 1, the operator R* on M(W,) corresponds to an operator R on A,
given by and . The argument above then shows that A\ € p(R) provided A # 1
and 1/(1+AX—2) € A, ie,if A\ # 1 and |1 + A| > r. Consequently, (6.11)) is replaced by

cR*) C{A:[A+1| <r}uU{l}. (6.21)
Hence, on B(W,), using Lemma and with ¢(R*)™ defined in Definition
oR) CoR") " C{A: | +1| <r}u{l}. (6.22)
In particular,
Opow,) <7 —1. (6.23)

We have seen above that we have to take r < v/2 in order to have and and
shows that in this case § < 1/2 follows. Consequently, if 7 < /2, then the asymptotic
normality extends to all f € B(W,), ie., all f such that f(k) = O(r¥). This
completes the proof. O

Remark 6.3. It is easy to see that we have equality in f. In fact, we know
that 1 is an eigenvalue by (2.19). Moreover, if |1 + A| < r and A # 0, then f(k) :=
(L+ A% +1/(X — 1) satisfies f € B(W,) and Rf = Af by (6.4), see also (6.25) below, so
A is an eigenvalue of R and thus A € o(R). Hence, we have equality in ([6.22)—(6.23) too.
(For A\=0and r > 1, f(k) =k — 1 is an eigenfunction, but this case follows also because
o(R) is closed.) Consequently, R is a small operator in B(W,) <= r < 3/2. O
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In the rest of this subsection, we show how to calculate the asymptotic covariance
matrix X(f) in Proposition for the following functions f: Fix r € [1,4/2) and let, for
a complex a with |a| <,

fa(k) = a". (6.24)
Then f, € BW,), vf, = 50,2 % 1a* =1/(2 — a), and, by (6.4),

R(fo —vfa) =™ —ab+1— 1 = gk 2T 1) vfa). (6.25)
2—a 2—a
In other words, provided a # 1 (so the function does not vanish), f, := f, — vf, € B(W,;)
is an eigenfunction of R with eigenvalue a — 1. This makes it easy to compute asymptotic
variances and covariances in Theorem for the functions f,.
Let a and b be complex numbers with |a,|b] < r. First, note that by (2.36)), since

RS) = R, is deterministic,
B(fa. o) =R.fa  R.fy = Rfa) Rf) = (a—1)(b—1)fufo
=(a—=1)(b—1)(fas — Wfa)fo — (WSfo) fa + (W fa)(V f3))- (6.26)

Hence,

VB (fa, fo) = (a—1)(b— 1) (v fap — (vfa) (W Sp))

B 1 1  2(a—1)2(b—1)?
= (o= 1= (5= - PEnE b)) “G—ae_oe-y 20
and thus, recalling again ,
/OO vB (eSRfa, eSRﬁ,)e*S ds = /Oo vB (es(afl)fa, es(bfl)fb)e*s ds
0 0
- / VB (o, fy)e 3o ds
0
_ 2(a —1)2(b—1)? (6.28)

B-a_b)2—ab)(2—a)(2_b)

Taking b = a in (6.28) gives x(f,) in (2:28), and taking b = @ gives o2(f,) in (2.29).
(See Remark [2.15). In particular, for a real with |a| < /2, Theorem [2.13| shows (see

Remark that
w2 (L k- ) = - vfe) S MO0 (629
k=0

2—a
with
2(a —1)4
(3—2a)(2—a2)(2—a)?

More generally, we have joint convergence for several (real or complex) a, with asymptotic
covariances easily found from ((6.28)).

U2(fa) =

(6.30)

Remark 6.4. It follows that the asymptotic variances and covariances of n~"?Uyj(n) can
be obtained as Taylor coefficients of the bivariate rational function in (6.28)); this was
earlier shown in [I9] by related calculations using urns with finitely many colours. O

Remark 6.5. Moreover, using Fourier analysis, any function f in Proposition [6.1] may be
expressed as an integral of functions f,: for any p € (r,v/2),

~

2 .
f L / f(p_le_‘t)fpeit dt (6.31)
0

T o
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where f(z) =302 f(k)zF. By substituting (6.31)) in (2.28) and (2.29)), and using (6.28),
one can obtain integral formulas for x(f) and o?(f), and thus for ¥(f). The result is
rather complicated, however, and we leave the details to the reader. ]

Remark 6.6. The asymptotic variance in diverges as a 7 v/2, and thus the result
cannot be extended (in this form at least) to a > V2. Hence, the condition r < V2
in Proposition and the argument above is not just a technical condition required by
our proofs; it is essential for 7, which strongly suggests that it is necessary in
Proposition too. This also shows that the technical conditions and are more
or less best possible; in particular, it is not enough to take g < 2 in |(H)| ]

We do not know what happens for functions f that grow faster than allowed in Propo-
sition [6.1] In particular, the following case seems interesting.

Problem 6.7. What is the asymptotic distribution of Y32, Ux(n)a* for a > /27
Is there any difference between the cases a < 3/2 and a > 3/2?7 (Recall that R is a
small operator in B(W,) for a < 3/2, but not for larger a.)

6.2. The heat kernel on the square. Imagine some flowers planted in a closed square
room: we start with one flower in the room (say at the centre of the room). Each flower
blooms at exponential rate, independently from the others, and when a flower blooms, it
sends one seed in the air, which travels in the air according to a Brownian motion reflected
at the walls for a unit-time, then fall onto the ground and instantly becomes a new flower.
We assume that the rate of blooming is so small that we can imagine that the seeds
perform their unit-one Brownian motions instantly. We set 7, to be the instant of the
n-th bloom (7p := 0), and &, to be the position of the n-th flower in [0, )% (& = (¢/2,4/2)).
We are interested in the long-term behaviour of the distribution of flowers in the room:

En=) 0. (6.32)
i>0
It is expected that =, /n converges to the uniform distribution on the square, and this

is indeed confirmed by Theorem [2.10}(ii); Theorem allows to study the fluctuations
around this limit. This yields the following.

Proposition 6.8. For all bounded measurable functions f : [0, ¢]?

1 1
== Z f(&) — 7 f(z)dz,  almost surely when n — +o0. (6.33)
— [Ové]z
For all m,p € N2, set
72(m2 + p?
Am.p i= €xXp (—(%2)> : (6.34)

and

Omp(T,y) = cos (ﬂ?x) cos (mgy). (6.35)

Also, set 1(£) := {(m,p) € N3: \p < 1/2} and let D be the closed linear span in B([0,{]?)
of 1 and {omyp: (m,p) € I(0)}. Similarly, set J(€) := {(m,p) € N&: Anp < 12} and let
D' be the closed linear span of 1 and {@mp: (m,p) € J(£)}.

(i) For every function f € D, there exists a covariance matriz 3(f) such that

v 1 ) : _l x T
<n;f(&) (2 /[07512 fy)d dy) _>N(O7E(f))> (6.36)

in distribution as n — 400.
(i) If zlﬁigg?@ € {m?+p*: (m,p) € N2}, so J(€) # I(£), then for every function f € D',
there exists a covariance matriz Z( f) such that

logn (log )2 ( Zf &) — o f(z,y) dxdy) — N(0,2(f)), (6.37)
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in distribution as n — +oo0.
(iii) If ¢ > w/v/21og2, then for every function f € B([0,{]?), there exists a random
variable W (f) such that

nl—exp(_ﬂ'z/%z) (Tll Z f(&) o 6% /[05]2 f(l‘, y) dz dy> — W(f)7 (638>
=0 ’

almost surely and in L? when n — 400.

Remark 6.9. If / < 7/1/21og2, then D = B([0,4]?), and then |(i)| applies to all bounded
f. Similarly, if £ = 7//2log2, then D' = B([0,¢]?) and [(ii)| applies to all bounded f. [

Proof. First note that Z,, is an MVPP with colour space E = [0, /]2, initial composition
d(¢/2,¢/2), and random replacement kernel
1
R{Y = O, (6.39)

where B = (B¢)¢>0 is the standard Brownian motion on the square of side-length ¢ started

at B(()x) = z and reflected at the boundary. Note that RSJ) is a positive measure. We have
R, = L£(B"), (6.40)

the distribution of the reflected Brownian motion. Hence, for any probability measure p
on F,

LR = g(Bf), (6.41)

the distribution of the reflecting Brownian motion at time 1 when started according to p.
This MVPP satisfies Assumption We choose W = V = 1, and then holds

by Remark Furthermore, holds because the uniform distribution v on [0,]? is

invariant for the reflected Brownian motion and thus satisfies YR = v by .

The kernel R, in of R is known as the heat kernel with Neumann boundary
conditions. Its eigenvalues and eigenfunctions are well known, and can be found e.g. as
follows. (We give a sketch, omitting the standard details.) First, since the kernel is
absolutely continuous, and depends continuously on z, it is easily seen that it does not
matter whether we consider R as an operator on B(E) or L*(FE). (See Lemma
with N the space of bounded functions that are 0 a.e.) Furthermore, the density of
R, is bounded, uniformly in z, and it follows that R maps L?(E) into L>®(E). Hence,
Lemma shows that eigenvalues and other spectral properties are the same in L*°(FE)
and in L*(E) (except possibly at 0, which is not important for us). Finally, we regard
L2(E) = L?([0,{)?) as the subspace of L?([—/, £]?) consisting of functions that are even in
each variable, and then extend these functions periodically to R?. We then can replace
the reflecting Brownian motion by ordinary Brownian motion on R?, and it follows that
the functions ¢, , in form a complete orthogonal set of eigenfunctions in L?(E),
with corresponding eigenvalues A, ; given by . (In this example, R is a self-adjoint
operator on L?, which makes the spectral theory in L? particularly simple.)

Since Ay, p — 0 as m + p — oo, it follows that

o(R) = {Amp : m,p € No} U {0}, (6.42)

in L?(E), and by Lemma as indicated above, also in L*°(FE) and in B(FE).

The eigenvalue 1 is obtained only for m = p = 0, and thus it follows from (6.42)) that
R is slqc. Moreover, the second largest eigenvalue is A\ g = Ag1 = exp(—7r2 / (2% , and
thus R is small if and only if 72/(2¢2) > log2, i.e., if £ < 7/y/21log 2.

The almost sure convergence in is thus a direct consequence of Theorem [2.10{(1)|
which also gives an (upper) estimate of the rate.

Next, we show that

ocRp) ={Amp: (m,p) € I({) U{(0,0)}} = {Amp : Amp < Y2} U{1}. (6.43)
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To see this, we first note that if D is the closure of D in L?(E), i.e., the closed linear
span in L*(E) of 1 and {¢mp: (m,p) € I({)}, then o(Ryp) is given by (6.43), since the
functions ¢y, p are orthogonal eigenfunctions. Then, (6.43) follows by Lemma because

R:D— D.

It follows from ((6.43)) that Rp is a small operator, and thus |(i)|is a direct consequence
of Theorem ).

Similarly, by the same argument,

o(Rp) = {Amp : (m,p) € J(O) U{(0,0)}} = {Amp : Amp < 1/2} U{1}. (6.44)
and follows from Theorem 2),withp=1, A\ =35, and Kk = kK = 1.

Finally, follows from Theorem [2.13(3), with p = 1, A = ¢ ™ /%) and k = k) =
1. O

Remark 6.10. The covariance matrices of the limits in (6.36)) and (6.37) can easily
be computed from the formulas in Theorem [2.13] and a Fourier expansion of f into the
functions ¢, ,; we leave the details to the reader. O

We can use Theorems [2.:252.27| to see whether the limit distributions in Proposition [6.8|
are degenerate. Note that if X\ # 0, then II, is a projection onto a finite-dimensional space
spanned by some ¢, ,; these are all continuous, and thus II,f is continuous for any
f € B(E).

First, for (1), it is easily seen from Theorem that the limit in is degenerate
only if f = ¢ a.e. for some constant c.

Secondly, for Theorem [2.26] (with £ = 1 and p = 1) shows that the limit is de-
generate if and only if II; 5 f = 0 a.e.; since 1l /5 f is continuous, this holds if and only if
I jof = 0. It is easily seen that this holds if and only if f € D (and thus ((i)| applies, and
gives a more precise result).

Similarly, for Theorem shows that the limit is degenerate if and only if Iy, f =
0, where \; = e ™ /(2¢) " Assume this. The next largest eigenvalue of R is Ao = e~/

Hence, if A2 < 1/2, we can apply or to f. If Ay > 1/2, we may instead apply
Theorem 3) to the subspace D; := (I — II,)B(E); note that T is slqc in D; and
_71_2/[2 )

1
27
L,

9[)1:)\226

Remark 6.11. In this example, the generalized eigenspaces Il (A # 0) are all spanned
by eigenvectors. Hence, k = 1 in Theorem [2.13] regardless of the multiplicities of the
eigenvalues. The multiplicities show up when considering joint convergence of several f,
as discussed in Remark In fact, in Proposition [6.§(iii), the dominating eigenvalue
A1,0 = Ao,1 has multiplicity 2, and thus there is a two-dimensional space of limits.

In Proposition [6.§(ii), the dimension of the space of limits equals the multiplicity of the
eigenvalue 1/2, which equals the number of solutions to m? + p? = N := (2log2)¢?/72.
A formula for the number of such solutions is well known (and was stated already by
Gauss), see [14] Theorem 278 and Notes p. 243], as well as a criterion for the existence of
any solutions at all (so D’ # D) [14, Theorem 366]. O

Remark 6.12. We could replace [0,¢]? by any finite measure space (F, 1) and the Brow-

nian motion B%w) by jumps according to any transition kernel P(z, dy) on F that has
a density with respect to u that is bounded (or, more generally, in L?(y)), uniformly in
x € E. The operator R then maps L%*(u) — B(FE). Moreover, R is a Hilbert-Schmidt
integral operator on (FE, 1), and thus R is a compact operator on L?(u). By the spectral
theorm for compact operators, [5, Theorem VIL.7.1], the spectrum o(R) can be written
as {1, U {0} for some N < oo and eigenvalues \; # 0; either N < oo or \; — 0 as
i — o0o. Furthermore, II,(L?(E.u)) has finite dimension for every A;. R is a bounded
operator also on L>°(F) and B(FE), and by Lemmas and the spectrum of 7" is the
same for these spaces as for L2(E, ).

The function 1 is an eigenfunction with eigenvalue 1, so 1 € o(T), and |\;| < 1 for
all i since |R||gry = 1. In particular, R is slqc provided II;(R) does not contain any
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non-constant function. Assuming the latter property, we thus obtain the same type of
behaviour as in Proposition [6.8

The main advantage of choosing the Brownian motion on E = [0, £]? is that its spectral
decomposition is explicitly known and very simple. (That the operator is self-adjoint on
L? helps but is not essential.) Other examples for which the spectral decomposition is
fully known are the reflected Brownian motion on the rectangle, on the isosceles triangle
(see e.g. [16, Chapter 5]) or on the annulus (see [25] and [I1] for surveys on eigenfunctions
and eigenvalues of the heat kernel). O

6.3. A branching random walk. The following branching random walk is studied in
[17]. Let G be a compact group, and let (Y,,)7° be an i.i.d. sequence of random variables
in G with some distribution p € P(G). Let Xy € G be given. (In [I7], Xy may be
random. We assume here that X is non-random; otherwise we may condition on Xy, cf.
Remark ) For n > 1, let I, be uniformly distributed on {0,...,n — 1} and assume
that all I, and Y;,, are independent. Then define X,, € GG inductively by

X = X1, Y, n > 1. (6.45)
In other words, for each n, we first choose a parent uniformly among X, ..., X,,_1, and

then let X,, be a daughter with a random displacement Y,, from its parent.
This process can be regarded as a MVPP with colour space ' = G by defining

my =) dx,. (6.46)
=0

The construction of X, in (6.45) then means that (m,), is a MVPP with replacements
given by

RM =6y, zeG. (6.47)
We choose W =V =1, and let v be the normalized Haar measure. The conditions |(B)]

(H)l and are easily verified. We have

R, = L(zY1), (6.48)

which is p left translated by x. Hence, R acts on functions by convolution Rf = f * fi,
where fi is the distribution of Y 1.

The results in [I7] are about asymptotic normality, under certain conditions, of the
sums

Su(f) =Y f(Xi) =mpf (6.49)
1=0

for suitable functions f. (The proof uses the method of moments.)

Consider for simplicity the case when G is commutative. (The case of non-commutative
G is similar but more technical and requires study of the irreducible representations of
G; see [17].) Let G be the dual group, consisting of all characters on G (i.e., continuous
homomorphisms G — {z € C: |z| = 1}), and define the Fourier transform of p by

a(y) = /Gv(g) du(g) =Ex(v1), y€G. (6.50)
Then, every character « is an eigenfunction of R, with
Ry = fi(7)7- (6.51)
Hence, on the Hilbert space L?(G), R has an ON basis of eigenfunctions, and
o(R) = {fi(y) : v € G}. (6.52)

If we assume (as in [17]) that p is not supported on any proper closed subgroup of G, then
i(y) # 1 and thus Rei(y) < 1 for every v # 1. If we further assume, for example, that u

~

is absolutely continuous w.r.t. the Haar measure v, then i € ¢o(G) by (a general version
of) the Riemann-Lebesgue lemma, and it follows that R is slqc on L?(G). Moreover, if
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the density du/dv of p is in L?(G), then R : L? — B(G), and it follows from Lemmas |B.4
and that R is slqc also on L>°(G) and on B(G).
Theorem then applies and yields asymtotic normality of S, (f) if

0 :=sup{Rep(y) : v # 1} < 1/ (6.53)

this is essentially [17, Theorems 3.1 and 3.2], although the technical conditions there on
f and p are somewhat different from ours. (They neither imply or are implied by our
conditions here; an example where Theorem applies but not [I7] is when du/dv €
L*(G)\ L*(G), and f € B(G) \ C(G).) Moreover, if 1/2 < 6 < 1, then Theorem [2.13(3)
applies, and extends the brief comments given in [17] for that case.

Remark 6.13. [I7] considers also a generalization to compact homogeneous spaces; this
is treated by constructing a branching random walk as above on a compact group G, and
then considering the projection to G/H for a closed subgroup H of G. (This assumes that
the distribution g is invariant under left or right multiplication by elements of H.) The
space B(G/H) can be identified with a subspace of B(G), and thus Theorems and
can be applied in this setting too. O

Remark 6.14. This example is closely related to the one in Section In fact, the
latter example can, by identifying [—¢, £]? with the group T?, be treated as a branching
random walk as above on the group G = T?, but considering only the subspace of bounded
functions that are even in each coordinate. ]

6.4. Reinforced process on a countable state space. In this section, we consider a
reinforced process which is a particular case of balanced Pdlya urn on a countable state
space. Let (X, )nez, be an irreducible Markov chain evolving in a countable state space E,
and denote by P, and [E, the law and expectation of the process starting from Xo = x € F.
Similarly, if v € P(E), we use P, and E, for the Markov chain started with a random
Xo ~ v. We assume that X admits a Lyapunov type function: there exist a function
Vi E — [1,400) such that {z € F: V(x) < A} is finite for every A < oo, and for some
constants A € (0,1) and C < oo,

E,[V(X1)] <AV(z)+C for all z € E. (6.54)

We fix T' € {2,3,...} and consider the reinforced process Z = (Z,)n,>0 constructed as
follows: Zy = zp € E is fixed and Z evolves according to the dynamic of X up to time
T — 1. At time T, it jumps to a random position distributed according to its empirical
occupation measure % Z?:_ol 0z,; in other words, the process jumps back to its position at
a uniformly random earlier time i € [0,7"). Then Z evolves according to the dynamic of
X up to time 27— 1 and, at time 27", it jumps to a random position distributed according
to its current empirical occupation measure, and so on. (The process thus jumps back to
a random earlier position at times k7', k € N.)

Let w,, := %H Y0z, denote the empirical occupation measure of Z at time n; i.e.

1 n
puf =g ;f(Zi)- (6.55)

We show that p,, converges almost surely (and in a weak L? sense) to the unique invariant
distribution of X, and that, at least if T" is large enough, w, satisfies a central limit
theorem.

Proposition 6.15. The Markov chain X has a unique invariant distribution v. Moreover:
(a) For any q > 2, there exists § = 6(q) > 0 such that, for every f € B(V'7),

Elp,f —vf]* =0(n"%). (6.56)
and

n’ |y f = vf| == 0. (6.57)
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(b) If in addition (3 ﬁ) /1 < L/2, then, for any f € B(V'/%), one of the conclusions

(1), (2) or (3) of Theorem [2.13 holds with:
o (n/T)1/2( f —vf) instead of n'?(m,f — vf) in (1),
o (U (ot —vf) instead of 2l (@ f —vf) in (2),

o u,f instead of m, f and A; = T1 )‘JA instead of Aj in (2.38]).
(¢) There ezists Ty = To(q) > 2 such that, for any T > Ty, conclusion (1) of Theo-

rem holds for all f € B(V'/9).

The proof uses the following lemma, which we prove at the end of this subsection. We
use the notations r(R) and r.(R) for the spectral radius and essential spectral radius of
the operator R; see Definition [B.6]

Lemma 6.16. Let R be the operator given by (2.18) for some probability kernel R from
E to E, andlet V : E — [1,400) be a function such that {z € E : V(x) < A} is finite for
every A < oco. If there exist ¥ < 1 and C < 0o such that

RV <9V + C, (6.58)

then, for every q > 1, R acts as a bounded operator on B(Vl/q) with spectral radius
r(R) = 1 and essential spectral radius ro(R) < 94,

In particular, R then is quasi-compact, see Remark

Proof of Proposition[6.15 We observe that the sequence
| (HOT=1

Z 6z, (6.59)

is an MVPP on the set F with (random) 1n1t1al measure

=
=7 > bz, (6.60)
i=0
and replacement kernel

1 g Z‘SXN where (X;);>0 has law P. (6.61)

We start by proving that m satisfies assumptions [(B)], [(H)| and [[N)} Assump-
tion holds true since

pdl Z 5x,(E (6.62)
We now show that Assumption - holds with W := V1/4 and
T-1
1 ;1 1=)2T
ﬁ._T;)\—T 5 €(0.1). (6.63)

Note that ¥ € (0,1) since A € (0,1) and T > 2.
For [(H)(i), we obtain from ((6.54) used iteratively that, for all x € F and all n > 0,

E, V(Xpi1) < AE, V(X,) +C < A"V (2) + Oy, (6.64)
where C := Y22 N'C' < +o0. Hence

’ﬂ
L

RV = Z E, % NV () + C1) = 0V (2) + C1. (6.65)

7

I
o

This proves [(H)(i)
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then follows by Remark since Rg) >0 a.s.
For |(H)(iii), we simply observe that mgV = .1 V(Z;) < +oco. This concludes the

proof that Assumption holds true.

We now show that Assumption holds. Recall and note that it follows that
the set {x € E : E,[V(X1)] > V(z) — 1} is finite. Hence, by [6, Theorem 7.5.3][| it
follows from (6.54) and the irreducibility of X that X is positive recurrent and thus,
see [6, Theorem 7.2.1 and Definition 7.2.2], that it admits a unique invariant probability
measure v. Thus, for every bounded measurable function f and all n > 0,

E, f(X,) =vf. (6.66)
Hence, still for every bounded f,
B = =
vRf =By |7 D f(X0)| =5 > B [f(X0)] =vf (6.67)
i=0 i=0

and thus ¥R = v. It remains to verify that vV < oo, which follows by the following
standard arguments. By irreducibility of X and the fact that E is countable, we have
v({z}) > 0 for all z € E and hence (see for instance [0, Theorems 5.2.11 and 5.2.9]), for
all A>0and x € E,

1 n
- Z(V(Xl) A A) — v(VANA) Pgalmost surely. (6.68)
i=1
By dominated convergence and using (|6.64)), this implies that
1 ¢ 1~
A)= lim E;— X;)NA) <liminf — A = .
v(VAA)= lim n;;w )A)_ﬁg&n;; Viz)+C)=0C1  (6.69)

and hence, letting A — +oo, that vV < (7 < +oo. This completes the proof that
Assumption holds true.

Furthermore, R is the probability kernel of an irreducible Markov chain on E, and thus
we deduce from [6l Theorem 7.5.3] and that v is the unique invariant probability
measure of R.

We now show that Theorem [2.10| applies to m, which implies Proposi-
tion (a). We first show that R defined by (2.18) is an slqc operator on B(W) =
B(V'9), i.e. that it satisfies conditions |(QC1) and |(QC2)| of Definition which entails
that Theorem [2.10| applies.

Note that holds by (6.65). Hence, according to Lemma ro(R) < 971 < 1
and thus by Definition for any p € (9"/9,1), there exists a decomposition of B(W)
into two closed R-invariant subspaces:

B(W)=F,&H,, (6.70)

such that F), has finite dimension, and the spectral radius of R H, is less than p. Since the
spectrum of F), is finite, this says that the spectrum o(R) contains only a finite number
of points A with |[A| > p; moreover, these points satisfy |A| < r(R) =1 and thus Re A < 1
unless A = 1. This shows both that [(QC2)| holds and that 1 is an isolated point in o(R).
(As always, 1 € o(R) because R1 = 1.)

The generalized eigenspace of R corresponding to the eigenvalue 1 is a subspace of F),,
and thus has finite dimension. In order to verify [(QC1), it remains to show that this
dimension is 1, i.e., that the eigenvalue 1 has algebraic multiplicity 1.

We first show that the eigenvalue 1 is simple: The corresponding eigenfunctions of R
satisfy Rf = f, which means that they are harmonic functions for the Markov kernel R.
As shown above, v is the unique invariant probability measure for R, and furthermore

ITheorem 7.5.3 in [6] is not stated correctly, but the direction we use is correct. The other direc-
tion becomes correct if, for example, one replaces the irreducibility assumption by a strong irreducibility
assumption, which corresponds to our (classical) notion of irreducibility.
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vV < oo; hence, [0, Proposition 5.2.12] shows that every harmonic function in B(V) is
constant v-a.e., and hence constant everywhere because v({z}) > 0 for all z € E. This
implies that 1 has simple geometric multiplicity: it remains to prove that it also has simple
algebraic multiplicity. To do so, let f € B(W) be such that (R —1)2f = 0. Then (R—1I)f
is an eigenfunction associated to 1 and hence it is equal to a constant, say ¢ € C. We
deduce that Rf = f 4 ¢ and hence R"f = f + nc for all n > 1. Moreover, for all n > 1

and x € F, by iterating ([6.65)),

n—1
R"V(z) <OR" V() + Cy <0"V(2)+ > _9'Cy < CV(x) (6.71)
=0
which implies, by Jensen’s inequality,
R"W(z) < (R"V(2))1 < CW (). (6.72)

In particular, for all n > 0,

[f (@) +ne| = [R"f(2)] < [[flow) R"W () < | fllBow)CW (), (6.73)

which implies that ¢ = 0 and hence that (R — I)f = 0, so that f is an eigenfunction
associated to 1 and hence is constant. We have shown that ker((R —I)?) = ker(R —1I) =
{cl : ¢ € C}. This implies that the algebraic multiplicity of 1 in the finite-dimensional
space I}, is 1, and it follows that holds true, which completes the proof that R is
slqc.

We set, as in (2.22)), 6 := supRe(c(R) \ {1}). By Theorem (with D := B(W)),

0 < 1 and, for every ¢ € (0,1 —6), there exists a constant Cs such that, for all f € B(W),

E (|ﬁn e m0> < CsmoV <((EE))I:L

But mp(E) =1 and, by (6.60) and (|6.64|)

2611
) 1Ay, Vo >1 (6.74)

T—l
E[moV] = Z EV(Z Z V(X;) < +o0. (6.75)
1:0

Hence, (6.74]) yields, up to a change of Cs,
E (|fn — vf1") < Con M| f 30, (6.76)
If furthermore ¢ < 1/2, then for all f € B(W),

S —
For alln > 1 and k € {0,...,7 — 1}, we have
nT+k—1 T nT+k—1
S S S e

and thus, for all f € B(W) such that || f||pwy < 1,

| Ttk T nT+k—1
Z;) — M,,_ < 6.79
nT + k iz; 1(Z) nT+k‘m 1/ nT+k‘ izn:T ( )

(n+1)T - nT
<t W W W, (6.80
STk T+ kot (6.80)

Hence,
nT+k—1
Porihrf —vf| = +k: Z f(Zi) —vf
nT (n+1)T
T+k| v+ T+k‘m”‘1f_yf‘+T7+k:‘m” — v



48 SVANTE JANSON, CECILE MAILLER, AND DENIS VILLEMONAIS

nl T
W — oW
o e W W sy

1 - - N 1
< (v f | @ f = v 2R W = oW (R W oW oW (6.81)

w

We now obtain (/6.56)) from (6.81)) and (6.76]) by Minkowski’s inequality. Similarly, (6.57)
follows from (6.81)) and (6.77)), which concludes the proof of Proposition [6.15(a).

We next show that Theorem|[2.13|applies to m which implies Proposition[6.15|(b).
We have proved that R is an slqc operator on D = B(W); moreover, by Lemma and
(6-65), re(R) < 9"/ where ¥ is given by (6:63). We now assume that 9"/¢ < 1/2, and thus
re(R) < 1/2. This means that we may take p < 1/2 in (6.70), which entails that the set

{A€a(R):ReAr > p} ={rcoa(R]|g,): ReA > p} (6.82)

is finite. Since in addition we have E((1+mg(E))mgV) < 400, it follows from Remark [2.14]
that one of the cases (1), (2) or (3) in Theorem applies to m with D = B(W). (The
case depends on whether 6 is < 1/2, = 1/2, or > 1/2.) Moreover, in cases (2) and (3), we
have k < oo by Remark

In addition, by , form>1land 0 <k <T,

| Ltk T | DT
E Z;) = —— 1 f| <E W(Z;
nT + k ; H2) = i f| < [nT—i—k :ZnT ( )}
_ _ T (n)
—E[— — (W m, W] = T BRI (6.83)
and thus
1 nT+k—1 T (
Z) —m,_1f] < E[RVW E|m,_ 6.84
nT 1k z; [(Zi) = f| < g IRy W] Bl (6.84)

Both E[ﬁln_lW] and E[Rgz ) W] are uniformly bounded in n by (3.10) in Lemma
and (3.16)) in its proof. Hence, (/6.84]) yields

1 nT+k—1
E|tripaf =W f| =B > f(Z) = fnrf| =00/n).  (6.85)
1=0

and, in particular, as n — oo, for any fixed o < 1,

n® (Mg sh—1f — Wn1f) == 0. (6.86)

If conclusion (1) of Theorem holds for m, this implies that (n/T)"* (u,, f — vf) has
the same limit in distribution as (n/T)1/2(tT1L(n+1)/TJ,1f — v f), which equals the limit in

(2.27)), and similarly for conclusion (2).
If conclusion (3) of Theorem holds for m, we use (6.80) which entails

~ (n+1)T - nT ~
- - < —Fmy, - n— n—
|1 f — W1 f| < AL T ED 1W+nT+k:‘m 1f]

(n+1)T - nl —k _
W= ——m, W

- nT—i—km nT—i—km !
T+k - nl —k , ~

= L o
nT—i—kmn +nT—i—k(mn =1 )
2 ~ ~

< S W [ W — . (6.87)

In particular, setting a, := nl_Re)‘l/log"‘_1 n, we get

Oén(HnT+k,1f — I/f) — ZniIm)‘jAj S ay, (ﬁin—lf _ Vf) _ Znih’n)\jAj

J=1 J=1
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+ o [M, W — W W |+ —m,W.  (6.88)

The first term on the right-hand side converges to 0 a.s. and in L? as n — oo according to
conclusion (3) of Theorem for m; it is easy to see that we may replace m,, by m,_1 in
because oy, /ay,—1 — 1. Similarly, the third term in the right-hand side converges to
0 a.s. and in L? according to Theorem for m and the fact that «,, = o(n); note that
E|m,W|?* = O(1) by taking the expectation in combined with (6.75]). It remains to
consider the second term in the right-hand side, for which we observe that

p
an (M, W —m, W) = ay, (m, W —vW) — Z nHmA A
j=1

- (an (@ W — W) = > niImAfAj>, (6.89)
j=1

where both terms go to 0 a.s. and in L? as n — +oo according to conclusion (3) of
Theorem for m. Consequently, the left-hand side of (6.88) converges to 0 a.s. and in
L?. Finally, QnTk—1/0n — T1-Red a5 — oo and 0 < k < T, and it follows easily that

p
an(pnf —vf) =Y NTMTIZAA -0 (6.90)
j=1

a.s. and in L2 as N — co.

We conclude by proving Proposition (c) In order to do so, we note that
Lemma applied to the transition probability kernel P of X, using , implies that
the corresponding operator P is quasi-compact on B(W) with r.(P) < r(P) = 1. Hence,
there exists p < 1 and a decomposition as in , and it follows that the spectrum
o(P) has only finitely many points A with |[A| > p, and these points all have |[A| < 1. In
particular, 1 is isolated in o(P) and thus

n:=inf{|1—s|:s € o(P)\{1}} > 0. (6.91)

We have R = % ZiT;()l P?, and thus the spectral mapping theorem [5, Theorem VII.4.10]
shows that the spectrum of R is given by

T—1
1 i
oc(R) = {ngs :SEJ(P)}, (6.92)
and thus
LT
cR)\ {1} = {TZSZ :sea(P)\{l}}. (6.93)
=0
For every s € o(P) \ {1} we have |s| <1 and |1 — s| > 7, and thus
T—1
1 o (11=sT) 2
— == < — —0. 6.94
T;S ’T 1—s | = nT Tortoo (6:94)

In particular, if we choose Ty such that Ty > 4 /7, then for every T' > Tp, we have by (6.93))
and (6.94)),
0 =sup{ReX: X €a(R)\{1}} <sup{|A\|: X € a(R)\ {1}} < 1/, (6.95)

and thus case (1) applies in part (b).
This concludes the proof of Proposition [6.15] O
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Proof of Lemma[6.16. The proof relies on [I5, Theorem XIV.3]. Fix ¢ > 1 and set as
usual W := V4. Jensen’s inequality and the assumption (6.58) entail that

RW < (RV)1 < 9V + )/ < 9w + ¢, (6.96)

In particular, this shows that R acts as a bounded operator on B(W); we regard in the
rest of the proof R as an operator on B(W). By induction similar to (6.71]), also
implies that R"W < CW for some constant C' > 0 and all n > 0. Thus |R"|gw) < C
and by the spectral radius formula [5, Proposition VII.3.8], the spectral radius U(R) of R
is at most 1. Since 1 € B(W) and we have R1 = 1, we deduce that 1 is an eigenvalue of
R. We can thus conclude that the spectral radius of R, as a bounded operator on B(W),
equals 1

To apply [15, Theorem XIV.3], we consider the Banach space (B(W), ||| gaw)), endowed
with the continuous norm || - || g(y). We check that

(i) R({f € BW): |fllpw) < 1}) is totally bounded in (B(W), || - | zv));
(ii) there exists a constant M > 0 such that, for all f € B(W), [|[Rfl|pwv) < M| flaw)

(iii) for any € > 0, there exists a constant C. > 0 such that

IRf || pow) < (97 +€)HfHB ) + Cell fllBv (6.97)

Once this is proved, the conclusion of Lemma 1mmed1ately follows from [I5, Theo-
rem XIV.3].

We first prove . Recall that a set in a metric space is totally bounded if for every
€ > 0 there is a finite e-net in it, i.e., a finite subset F' such that every point in the set
has distance at most € to F. (This is also called precompact, and in a complete metric
space it is equivalent to relatively compact. Thus says that R is a compact operator
B(W) — B(V). See e.g. [7, 1.6.14-15].) Let

U:={feBW):|flsw) <1} ={f€C”:|f(x)] <W(z), Vz € E} (6.98)
be the unit ball of B(WW). Since R is bounded on B(W), R(U) C CU for some constant
C, and it suffices to show that U is totally bounded for the norm || - || gy

Let € > 0. Fix M > 0, and let Kj; := {z € E: V() < M}; recall that this set is finite.
Consider first the restrictions to Kyr. Unr = {f|xk,, : f € U} is a bounded set in the
finite-dimensional space CXM | and thus it is relatively compact. (In fact, it is compact.)
Hence, there exists a finite set { fi}¢]i1 C Uy such that for every f € U there exists an f;
with

— fi <e. 6.99
mmax |f(x) — fi(z)] <e (6.99)

Extend every f; to a function on F, still denoted f;, by fi(x) :=0for z ¢ Ky;. If f €U
and z ¢ Ky, then for every i € {1,..., N},

[f(z) = filx)] _ f(x)] _ W(x) o1 11
= < =V LM 6.100
Ve V@) SV TS (0:100)
By choosing M large enough, this is less than €. Hence, if f; is chosen to satisfy ,
then | f(z) — fi(z)|/V(z) < € for every € E, and thus || f — fi| vy < e. Hence {fi}1 is
a finite e-net in U. Consequently, holds.
The property (ii)]is a consequence of ([6.58)), which indeed implies that, for all f € B(W),

Rf f/V]ee RV (2
Bl p| @ _ g LI/V o RV @)
meE V(z) z€E V(z)

We now prove Since inf,gf,, W(r) > M — +oo when M — +o0, we deduce
from (6.96|) that, for any € > 0, there exists M (g) > 0 and a constant ¢. > 0 such that

RW < (94 + &)W + 1k, (), Vo € E. (6.102)
Hence, for all = ¢ K.,
RS ()] < |1/ W ]loo RW (z) < || fllow) (97 4 €) W (2). (6.103)

< | fllsvy (¥ +C). (6.101)
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But, according to (6.58), for all x € Ky (),
IRf (@) < 1f/ Ve RV (2) < [ fllBev) (94 C) V()
V()
< 94+ C) max ——= W(x). 6.104
Il 0+ ) mase o biwia (6.104)
Setting C; = (¥ + C) maxye Ko % and using the two previous inequalities, we deduce
that, for all z € F,

RS (2)]

1
W) < (@01 + ) fllsowy + Ce Fll vy (6.105)
which concludes the proof of and hence of Lemma O

APPENDIX A. KERNELS AND THE DEFINITION OF THE MVPP

We use the notation introduced in Section [[-4]

A.1. Kernels. Recall that given two measurable spaces (5,S) and (7, 7), a kernel from
S to T is a map s — [ from S to the set M (T") of positive measures on (7,7) that is
measurable; in other words, s — [s(B) is S-measurable for every fixed set B € T. See
e.g. [22, pp. 20-21] or [23], Section 1.3] for a detailed discussion; we summarize a few facts
that we need.

A probability kernel is the special case when each [, is a probability measure on 7.

A signed kernel is defined in the same way, with 35 a signed measure on 7.

If a € P(S) and S is a probability kernel from S to T', then a® 3 denotes the probability
measure on S X T' given by

0@ BA) = /S da(s) /T La(s, £) dBu(0). (A1)

This means that if (X,Y") is a random variable in S x T with the distribution o ® 3, then
X has distribution «, and the conditional distribution of Y given X = z is 3, (for a.e. x);
hence formalizes the notion of choosing randomly first X with distribution «, and
then Y with distribution SBx.

The construction generalizes to the case where « is a probability kernel from a
third space U to S; then a ® § is a probability kernel from U to S x T.

A.2. The MvpP. The definition of the MVPP in Section |2 uses a family (Rg(gl))meE of
random (signed) measures in Mpg(FE). Only their distributions matter, so letting R, :=
E(R;(Bl)), the distribution of Rg(gl), it is equivalent to start with a family R = (R, z € E)
of probability distributions in Mg(F), or equivalently a map R : £ — P(Mg(E)); we
may then define, for each x € E, R, as a random measure in Mg(FE) with distribution
R., and R&") as a sequence of independent copies of Rg) .

Our basic assumption is that R = (R, x € E) is a probability kernel from E to Mg(E),
which we call the replacement kernel. (We abuse notation and use the same name also for

the corresponding family (Rg(cl))x of random measures.)

Remark A.1. The assumption that R is a probability kernel from E to Mg(F) implies
that its expectation R defined in ([2.5)) is a signed kernel from F to F, provided that ([2.4))
holds.

It is also easy to see that the assumption that R is a kernel implies that B,(f,¢g) in
(2.36)) is a measurable function of z; hence also B, (f) and C,(f) in (2.30)) are measurable.
O

Let us now try to formalize the definition of the MVPP, starting from a given replacement
kernel R and a given deterministic mp € M~o(£). Our aim is to define random variables
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Y, € FE and Rgz ) e Mpg(FE) for all n > 1 satisfying the description in Section then m,,
is given by

m, = mp + Z R;?. (A.2)

Equivalently, we want to construct the joint distribution of all (Yn,R( )), n>1 as a
probability measure on (E x Mg(FE))>*°. We will achieve this using the construction
twice. However, we have (so far) only been able to do so assuming one of the following
assumptions (or both).

(i) ;1) is always a positive measure, so there are no subtractions in the urn, or

(ii) E is a Borel space (see e.g. [22, Appendix A]).
The reasons for the technical assumption will be discussed below.

Consider first the simple case when RS) always is a positive measure, i.e., Rf(cl) €

M4 (E). In this case, there is no need to consider signed measures. Write X := E X
M, (E). Let n > 0 and assume that we have constructed the distribution p,, of (3, R(l) )i
as a probability measure on X"™. (This assumption is void for n = 0.) We write an element
of X™ as (yi,r;)7; then we can realize Y; and R() for i < n as the coordinate functions
y; and r; on the probability space (X", u,). By (A , m,, then is given by the function

n: X" — Mso(E) defined by

((yu 7"1 =mg + Z Ti. (A3)

Thus, the normalized measure m,, is given by the function v, : X™ — P(E) defined by

Nota that -, is a probability kernel from X" to E.
We want Y;, 1 to be a random element of E such that, conditioned on the history up to
time n, Y, 11 has the distribution m,,. In other words, conditioned on (Y7, R( )1 =, € A7,
Y41 has the conditional distribution 'yn(fn) This means that

and we may take this as a formal deﬁnltlon of (the distribution of) Y;,41.

Next, the replacement kernel R is now assumed to be a probability kernel from E to
M (E). We may (trivially) regard it as a kernel from A™ x E by letting R(¢, ») = Ra-
Hence, defines the probability measure (p, ®7,) ® R on X" x E x M (E) = X",

We want Rgz JS) to have the conditional distribution, given the previous history, Ry, ,,
and thus

(i, RO)T, Yo, Rgf‘ﬂ)) ~ i @ Y @ R. (A.6)

(Note that ® is associative: (i, @¥n) @ R = pin @ (7, ® R), so we may omit the brackets.)
We may take (A.6) as a formal definition of Rg;; i)

In other words, our formal construction is
fin+1 = [in ® Y @ R € P(X"). (A7)

This completes the inductive step, and starting from the trivial probability measure pg on
a one-point space, we obtain recursively a probability measure u,, on X™ for every n > 1.
Finally, since u,, are obtained recusively by composing with the probability kernels v, ® R,
the Ionescu Tulcea theorem [22, Theorem 6.17] now shows the existence of a probability

(n)

space and infinite sequences Y,, and RY with the desired distribution; this defines also m,,
by (A.2] - Equivalently, the Ionescu Tulcea theorem shows the existence of a probability
measure on X' with the desired projection u, to X™ for each n. This completes the
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construction in the special case when Rg(gl) € M, (FE). Tt follows from the construction

that (mn, Y, R‘(;:L))n>1 is a Markov chain.

@ Consider now the general case, when Rg) € Mg(F) is a signed measure, but
we assume that the urn is tenable. Assume now also that E is a Borel space. We may
now define X := E x Mg(F), and try to argue as above. The only problem is that -,
defined by is not a probability kernel, since my (&) is not a positive measure for all
& € X (We will even have m,(&,)(E) = 0 for some &,, and then v,(&,) is not even
defined.) We thus have to modify the definition of 7,. Consider again some n > 0 and
assume that we have constructed u, € P(X™). Note that for a Borel space E, M~o(F) is a
measurable subset of Mg (E), as may easily be verified. Let T, := m_ (Msq(E)), where
my : X" — Mg(FE) is the function defined in ; thus Y,, is a measurable subset of
X™. We assume that the urn is tenable, which means that m,, a.s. satisfies m,, € M~o(FE).
In other words, my(§) € Mso(E) for up-a.e. & equivalently, pn,(Yy) = 1.

We may now modify and define a probability kernel v, from X" to E by

) i {ﬁln(fn) = ma(60)/ma(En)(B). i & € T, (A8
v, if &, € X"\ 1y,
where v is an arbitrary, fixed probability measure on E. Then the construction proceeds
as above. (The choice of v does not affect 41, since u,(Y) = 1.) This completes the
construction in case when E is a Borel space.

What happens when E is not a Borel space? In some cases it might be possible to
modify the construction above; for example if (for each n > 1) there exists a measurable
subset T, of m, 1(Msq(E)) such that pu,(Y,) = 1. However, we will see in Example
that in general no such T, exists. In general, unless ar above holds, we have to
assume that the process m,, is defined by some external construction. (See Example
for an example where a construction is trivial.)

Example A.2. Let £ := {0, 1}* for some uncountable set A. Let Z be a random element
of E, with some distribution vz € P(F), and let

R, := =6, + 204, x € F; (A.9)

also, let mg := &5, for some xy € E. This describes an urn with balls (corresponding to
point masses) labelled by elements of F; we start with a single ball z¢, and in each step
we remove one randomly chosen ball, and add two new balls with label Z,,, where (Z,,)°
are i.i.d. This process is obviously well defined and tenable. Nevertheless, we will see
that there is no measurable set T such that the construction works for n = 1. (In
particular, M, (F) is not a measurable subset of Mr(E).) Note that necessarily Y; = zo,

and thus Rgfll) = —0z, + 20z,. Hence, the distribution p; of (Yl,R%)) is the product

measure 0, X E(Rg/ll)). Suppose that T1 C X = E x Mg(F) is measurable and such that
pi1(Y1) =1 and my(y,r) = mg + 7 € Mso(E) for every (y,r) € T1. We will show that
this leads to a contradiction.

Let A € Mg(E) be a non-empty measurable set. Recall that the o-field on Mg(F) is
generated by the mappings pu — p(B) for B € £, where £ is the o-field on E. It is well
known that this implies that there exists a countable family (B;) C £ such that A belongs
to the o-field generated by the mappings pu +— u(B;), i € N. (Because the union of these
o-field over all countable families (B;) is a o-field.)

Similarly, since the product o-field € is generated by the coordinate maps (x4)aca — Tq
for a € A, for each B € £ there is a countable subset Ap C A and a (measurable) set
B C {0,1}5 such that

B = B; x {0,1}4\z, (A.10)
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Fix a coordinate o’ € A\ |J; Ap,. Define, for j € {0,1}, the elements 2/ = (z}) € E by

: /

j._)) a=a; A1l

“a {0, a#d. (A.11)

Take a signed measure A € A, and for N >0, let Ay := A+ N (6,0 — ,1). For each B;,

we have a’ ¢ Ap,, and thus, by (A.10), 2° € B; += 2! € B;. Consequently, for every
N >0,

AN(B;) = A(B;) + N (1{z° € Ap,} — 1{z' € Ap,}) = \(B)) (A.12)

for every B;. Since A is in the o-field generated by the maps p +— p(B;), and A € A, it

follows that Ay € A. On the other hand, if B := {(z,) € F : x = 1}, then B € £ and

AN (B) = A(B) — N; hence, if N is large enough, Ay (B) < 1 and thus Ay +mg ¢ Mso(E).
We have shown that there is no nonempty measurable set A C Mg (FE) such that

AEAN — A+mpe M>0(E). (A.13)

However, if T is as above, then the section A := {r € Y1 : (x¢,r) € Y1} is measurable,

satisfies (A.13]), and also P(Rg/ll) € A) =1, a contradiction.
Note that the proof shows that Mso(E) is not a measurable subset of Mg(F), and,
moreover, that it does not contain any non-empty measurable subset. (The same holds

for M (E).) O
APPENDIX B. SOME FUNCTIONAL ANALYSIS

In this appendix we state some general results on spectra of operators in Banach spaces;
these are used in our examples in Section [} The results are simple and have presumably
been known for a long time, but since we have not found references to the results in the
form that we need, we give full proofs for completeness.

Recall that if T' is a bounded operator on X', and T* is its adjoint acting on the dual
space X'*, then [B, Proposition VIL.6.1]

o(T*) = o(T). (B.1)

Our first lemma deals with the situation when we instead consider 7™ as acting on a
subspace of X'*.

Definition B.1. If K is a compact subset of C, define K~ as the union of K and all
bounded connected components of C \ K; in other words, its complement C \ K~ is the
unbounded component of C\ K. (K~ is known as the polynomially convex hull of K, see
[5, Definition VII.5.2 and Proposition VIL.5.3].) In particular, if 7" is a bounded operator
on a Banach space and po(7T') denotes the unbounded component of the resolvent set
p(T) =C\ o(T), then

o(T)" := C\ poo(T). (B.2)

We let (x*,x) denote the pairing of elements z* € X* and x € X, for any Banach
space X.

Lemma B.2. Let T be a bounded operator on a complex Banach space X, and suppose
that Y C X* is a closed subspace of the dual space X* such that the adjoint operator T*
maps Y into itself.

(i) Then
o(T*y) Ca(T)". (B.3)
(ii) Suppose further that Y is norm-determining, i.e., that if x € X, then
Joll = sup{(a*,2) : &* € P, "] = 1}. (B.4)
Then also

o(T) C o(T*|y)~ (B.5)
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and thus
o(T*|y) =o(T)". (B.6)

Proof. As said above, the spectrum o(7*) of T* as an operator on X* equals o(7T),
and the resolvent is simply given by (z — T*)™! = ((z = T)"1)*, 2 € p(T) = C\ o(T).

We first show that this resolvent maps ) into itself, at least when z ¢ o(7")". To do so,
we take y € Y and let 2** € X** be such that 2** L Y, i.e., (z**,y') = 0 for every ¢/ € V.
Consider the function

9(2) = (™, (z =T 'y), 2z €p(T) = p(T7). (B.7)

The function g is analytic on p(T) see [0, Theorem VII.3.6]. Furthermore, if |z| > ||T,

then (2 —T%)~1 =322 ) 27 *~1(T*)* with an absolutely convergent sum, and thus, because
()<Y,

(z=T%)" y—Zz Yy e . (B.8)

Consequently, and imply that if |z| > ||T||, then g(z) = 0. By analytic
continuation, g(z) = 0 in the unbounded connected component p (1) of p(T').

This holds for any ™ 1 ), and thus, by definition of ¢ in , it follows that
(z—=T*)"ty € Y for all z € poo(T). In other words, for all z € poo(T), we have (z —T*)~ ! :
Y — Y, which means that it is the inverse of the restriction (z — 7%)|y. Hence, for all
Z € poo(T), z belongs to the resolvent set p(T*|y); in other words, pso (T') C p(T™|y), and

thus (B.3)) holds by .

e canonical embedding X — X** induces a linear map X — Y*, which is an
isometric embedding by the assumption (B.4). Hence, we may regard X" as a subspace of
y*. We may thus apply part . (i)| with X and Y, and also T and T, interchanged. This

yields (B , and . ) then easily follows from (B.3]) and ( - ([l

Corollary B.3. Let T be a bounded operator on a complex Banach space X, and suppose
that Y C X* is a closed subspace of the dual space X* such that the adjoint operator T*
maps Y into itself. Suppose further that Y is norm-determining. Then

(i) T is an slgc operator on X if and only if T* is an slqc operator on ).
(ii) T is a small operator on X if and only if T* is a small operator on ).

Proof. Suppose that T is an slqc operator. Let 6 := sup Re(c(T) \ {1}) and note that
6 <1 as in Lemma [2.9(i)] We then have

U:={X:ReX >0} \ {1} C p(T), (B.9)
which implies, since the set U is connected and unbounded,
{X:ReX >0} \ {1} C poo(T), (B.10)
and thus
o(T)"c {A:ReX <0} U{1}. (B.11)

Hence Lemma [B.2] yields
o(T*ly) =o(T)"C {A:ReX <0} U{1}, (B.12)

which implies [(QC2)| for 7|y, and also that 1 is isolated in o(7T*|y) if 1 belongs to this
spectrum at all. It remains to show only that 1 is an eigenvalue of 7%y and that the
corresponding spectral projection IT;(7%*|y) has rank 1.

We can regard T* as an operator on X'* or on its subspace ). In both cases we have,
see [5, Equation VIL.6.9],

* 1 *\ —
I (T*) = 5 F(Z—T ) tdz (B.13)
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where we choose I to be a small circle around 1 inside poo(T), cf. (B.10). By the proof
of Lemma if z € T, then (z — T*)~! maps Y into itself, and its restriction to ) is
(z—T*|y)~". Hence, shows that IT; (7™) maps ) into itself, and that its restriction
to YV is HI(T*b))-

Moreover, (z —T*)t = ((z — T)*l)* for z € T, and thus by (B.13) and the same
formula for T, we have II; (T*) = II;(T")*. By Assumption [(QC1)| II;(T") has rank 1, and
is thus given by

II (T)x = (x5, x) o (B.14)
for some non-zero xp € X and zj; € X* with (z{;, o) = 1. It follows that, for any z* € X,
I (T7)(2") = I (T)"(27) = («7, zo)xp. (B.15)

Since ) is norm-determining, there exists y € ) such that (y,xo) # 0. Since II;(T™) :
Y — Y, we have II; (T*)(y) € Y, and then shows that zf € V.

We have shown that II;(7%|y) is the rank 1 operator defined by restricted to
x* € Y. In particular, z; € Y is an eigenvector with Tz = . Hence, in
Definition [2.6| holds for T*|y, which concludes the proof that T%|y is slqc if T is.

The converse follows, as in the proof of Lemma [B.2(ii)| by interchanging the roles of X
and ), noting that X always is norm-determining as a subspace of V*.

Now suppose that T is small. This means that in the proof of we have 6 < 1/2.
Hence, (B.12) shows that 7% is small. The converse follows as above. O

In the following lemma, we compare the spectra of the “same” operator in two different
spaces. When necessary, we use subscripts such as Ty to denote the space where we
consider the operator.

Lemma B.4. Let X and ) be two complex Banach spaces and suppose that Y C X with a
continuous, but not necessarily isometric, inclusion. Suppose that T is a bounded operator
on X such that T(X) C Y.

(i) Then

) o(Ty), y=2Xx,
oTx) = {a@y) U0}, Y. (B.16)

(We do not make any claims on whether 0 € o(Ty) or not.)

(ii) If A # 0 is an isolated point in o(Tx), then Ix(Ty) equals the restriction of I1\(Tx)
to Y. (Thus we can use the notation Iy for both without confusion.) Moreover,
I =1LY c V.

(iii) Tw s slgc if and only if Ty is slge. Ty is small if and only if Ty is small.

Proof. Note first that by the closed graph theorem, T': X — ) is a bounded operator.
Hence, the restriction Ty to ) is a bounded operator on Y, and the spectra o(Tx) and
o(Ty) are both defined.

If Y = X, then the norms on X and ) are equivalent, again by the closed graph theorem,
and thus o(Ty) = o(Ty).

Assume in the sequel that ) # X. In particular, since T'(X) C ), T is not onto X, and
thus Ty is not invertible; hence 0 € o(Tly).

Suppose that A € p(Tx). This means that the resolvent Ry := (A — T)~! exists as a
bounded operator on X. We have

I=(\A—-T)R\= ARy —TR,j. (B.17)
Hence, if y € ), then, using again T'(X) C ),
AMhy=y+TRyyec). (B.18)

Since 0 ¢ p(Tx), as remarked above, we have A # 0. Hence (B.18]) implies Ryy € Y, and
thus Ry : Y — Y. It follows immediately that the restriction of R) to ) is an inverse to
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A — Ty, and thus A € p(Ty). We have shown that
o(Tx) € p(Ty)\ {0}, (B.19)

Conversely, suppose that A € p(Ty), and let R} := (A —Ty)~! : Y — Y denote the
corresponding resolvent. Since T': X — Y, we may define the operator Q := I + R\T on
X. For any ¢ € X, we then have, since Tz € ),

A=—T)Qz=N-T)z+XN-T)R\Tz = v — Tz +Tx =z (B.20)
and
QA-T)r=AN-T)z+R\TAN-T)x=MN-T)x+ R\\—T)Tx = x — Tx + Tx
= A\z. (B.21)

Hence, if also A # 0, then A™'Q is an inverse of A — T on X, and thus A\ € p(Tx).
Consequently, p(Ty) \ {0} C p(X). Thus equality holds in (B.19), and thus holds.

Let I' be a sufficiently small circle around A, such that I' and its interior are disjoint
from o(Tx) \ {\}. Then the spectral projections II)(7Tx) and II)(Ty) are both obtained
by integrating the respective resolvents along I', as in . If N € T, then, as shown in
the proof of [()} (N — Ty)~! is the restriction of (' — Tx)~! to ; hence it follows that
II)(Ty) is the restriction of the projection II)(7Tx) to Y. Consequently,

Y = (ILX) N Y. (B.22)

Moreover, T maps I\ X into itself, and the restriction of T to I\ X is invertible (since its
spectrum is {A}, and A # 0), and thus onto. Since T : X — ), it follows that I[,X C ).
Combined with (B.22)), this yields II) X = I1\) as asserted.

An immediate consequence of [(i)| and O

Lemma B.5. Let N be a closed subspace of a complex Banach space X, and let Z :=
X/N. Suppose that T is a bounded operator on X such that Tn = 0 for every n € N.
Then T can also be regarded as an operator on Z, and the following holds.
(i) If N # {0}, then o(Tx) = o(T=z)U{0}. (If N = {0}, then trivially o(Tx) = o(Tz).)
(i) If X # 0 is an isolated point in o(Tx), then IZLN = {0}, and thus I1\(Tx) induces an
operator on Z = X /N'; this induced operator equals 11\(Tz). Moreover, the quotient
map X — Z is a bijection II\(Tx)X — I\(T2)Z.
(iii) Tw s slgc if and only if Tz is slgc. Tx is small if and only if Tz is small.

Proof. That T can be regarded as an operator on the quotient space Z is well known.
Moreover, Z* is identified with the closed subspace {z* € X* : *(N) = 0} of X*.

If ¥ € X* and n € N, then (I™z*,n) = (z*,Tn) = 0; thus T"z* € Z* for every
r* € X*. Hence, we can apply Lemma [B.4] to T* on the spaces X* and Z* C X*.
If N # {0}, then yields o(T5.) = o(T%.)U{0}, and thus o(Tx) = o(Tz)U{0}
by (B.1).
By , A is an isolated point of o(7T%.). Recall also that (by the argument in the
proof of Corollary II\(T)* = I\(T™), for any of the spaces X and Z. Lemma |B.4{ii)}
thus shows that II)\(Tx)* : X* — Z*. Hence, if n € N, then for any z* € X* we have
(x*,IIyn) = (II5z*,n) = 0, and thus ITyn = 0. Hence IIZAV = {0} as claimed.

Moreover, if 7 : X — Z is the quotient mapping, then 7* : Z* — X* is the inclusion
mapping, and Lemma [B.4{(ii)| shows also that ITy(Tx)*7* = 7*I1\(Tz)*. Hence, by taking
adjoints,

mI\(Tx) = I\(Tz)m, (B.23)
which shows that ITy(7) induces IIy(Tz) on Z. Furthermore, (B.23) also implies
WHA(Tx)X = H)\(TZ)TFX = H)\(TZ)Z, (B24)

and thus 7 maps II)\(Tx)X onto IIy(7Tz)Z. Moreover, 7 is injective on II)(7Tx)X, since
mxz = 0 for some x € II\(Tx)X means that z € N, and thus 2 = II(Tx)z = 0 as shown
above.
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An immediate consequence of |(i)| and O
We end this appendix with a standard definition.

Definition B.6. Let T" be a bounded operator in a complex Banach space B. Let r(T)
denote the spectral radius of T'. Furthermore, consider all decompositions B = F' @ H as
a direct sum of two closed T-invariant subspaces such that dim(F') < oo, and define the
essential spectral radius of T by

re(T) :=inf{r(T|g) : B=F & H as above}. (B.25)
Remark B.7. It is easily seen that the definition (B.25) is equivalent to [I5, Defini-
tion XIV.1]. There are several other, equivalent, definitions; for example, r.(T") equals the
spectral radius of 7" in the Banach algebra B(B)/K(B), where B(B) is the Banach algebra

of bounded linear operators and K(B) is the ideal of compact operators. For this, and the
relation to the essential spectrum (which has several, non-equivalent, versions), see e.g. [8,

§1.4] and [24], p. 243]. O

Remark B.8. Taking F' = {0} and H = B in (B.25]) shows that r.(T") < r(T) for every
T. An operator T is quasi-compact if r(T) < r(T). (See [15, Definition II.1] for another,
equivalent, definition.) O

APPENDIX C. A TECHNICAL LEMMA
We state an elementary lemma that is used in the proof of Theorem [2.13]
Lemma C.1. Let o € R and k > 0. Then, as n — oo,

i logh+1
S 1 dogh(oyy) = { (L F o) Fa=0 (C.1)
< O(log" n) if a # 0.

Proof. We first approximate the sum by an integral. Let g,(z) := z~ " ®log®(n/z), z > 1.
Then, assuming in the sequel n > 2,

g (x) = (=1 —ia)z 2 log®(n/x) — kx =27 log" Y (n/z) = O((logk n)z %), x> 1.

Hence, for j > 1,

1 41
mi) - [ @ ar= [ (00) - m@) ar =0t ©3

Consequently, with the change of variables x = n/y,

nolo il
Z] 1=ioyogh (n/;) = Zg” = gn(n —|—Z</ gn () dx—i—O((]ogk n)J—z))
=1 j=1 7
n n k
= / gn(2) dz + O (log" n) = / w dz + O (logh n)
1 1
—ia " 1ng Y k
=n Jia dy + O(log" n). (C4)
1
It thus suffices to consider the final integral in (C.4)).
If =0, then
/n logk y dy = /n lng y ay — 1ng+1 1ng+1 n (C 5)
1 yliia 1 y k + 1 k; + 1 ’ '
and thus (C.1)) follows in this case.
If o # 0, we use integration by parts and get
n io k n )
[ ot @ty = gt %] - [ o ey
1 1o 11 @ Jq
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= O(logk(n)) —I—/ O(logk_l(n))czy = O(logk(n)). (C.6)
1
Hence, (C.1)) follows from ((C.4)) in this case too. O

Remark C.2. It is possible to show that for o # 0, the sum in (C.1]) is asymptotic to
((1+ia) log® n. Moreover, for any «, an asymptotic expansion with an arbitrary number

of terms may be obtain by singularity analysis as in similar examples in [10, Section 3.1].
O
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