
THE NUMBER OF OCCURRENCES OF PATTERNS IN A

RANDOM TREE OR FOREST PERMUTATION

SVANTE JANSON

Abstract. The classes of tree permutations and forest permutations were defined
by Acan and Hitczenko (2016). We study random permutations of a given length
from these classes, and in particular the number of occurrences of a fixed pattern
in one of these random permutations. The main results show that the distributions
of these numbers are asymptotically normal.

The proof uses representations of random tree and forest permutations that
enable us to express the number of occurrences of a pattern by a type of U -
statistics; we then use general limit theorems for the latter.

1. Introduction

A number of authors have studied properties of random permutations drawn uni-
formly from all permutations of a given (large) length in some given class of permu-
tations. The chosen class of permutations is often a pattern class, ı.e., is the class
of all permutations avoiding a certain set of one or several given patterns; equiva-
lently, the class is closed under taking patterns (subpermutations). (See Section 2 for
definitions of various terms used here and below.) Several different properties have
been studied; in the present paper we consider the asymptotic distribution of the
number of occurences of some fixed pattern. For this problem (and many others), it
seems impossible to give general results valid for all such permutation classes. (See
e.g. Garrabrant and Pak [4] for some related impossibility results supporting this.)
Therefore, typically these classes are studied one by one, with methods depending on
the knowledge of some structure theorem for permutations in that particular class.
See e.g. [2] and [10] for some results of this type.

The present paper continues this line of research by studying the number of oc-
curences of a given pattern in a random tree permutation or forest permutation.
These classes of permutations were defined by Acan and Hitczenko [1] as follows.

Definition 1.1. For a permutation π of [n], its permutation graph Gπ is the (la-
belled, undirected) graph with vertex set [n], and an edge ij for every inversion (i, j)
in π, i.e., for every pair (i, j) such that i < j and π(i) > π(j).

A permutation π is a tree permutation if Gπ is a tree, and a forest permutation if
the graph Gπ is a forest (i.e., acyclic).

Thus, every tree permutation is a forest permutation.
Acan and Hitczenko [1] noted also the following characterization, showing that

the forest permutations form a pattern class.

Proposition 1.2 ([1]). The forest permutations are precisely the permutations avoid-
ing the patterns 321 and 3412.
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However, the class of tree permutations is not a pattern class, since a subper-
mutation of a tree permutation may be a forest permutation with a disconnected
permutation graph. (For example, 312 is a tree permutation, but its subpermuta-
tion 12 is not.)

The structures of tree permutations and forest permutations were studied in [1];
see Section 4. Using this, and results on (conditioned) U -statistics, we will show that
the number of occurences of a fixed pattern in a random tree or forest permutation
is asymptotically normal, as the length tends to ∞; precise results are stated in
Section 3, and proved in the remainder of the paper. Section 5 defines the versions
of U -statistics that are used in the paper, and cites some results for them from
[9] and [11]. Tree and forest permutations are studied in Sections 6–12, leading to
a representation of random forest permutations in Section 7 and a, quite different,
representation of random tree permutations in Section 10; these representations both
enable us to count patterns by U -statistics, which eventually yields proofs of the
theorems.

Remark 1.3. Although we use similar methods for patterns in random tree permu-
tations and in random forest permutations, the details are quite different, and we see
no direct relation between the results for the two cases. Note that a random forest
permutation is a (random) sum of tree permutations, but most of these are very
small (see (7.19) and (7.5)); hence there is no reason to expect a relation between
asymptotics for large forest permutations and large tree permutations. �

2. Definitions and notation

2.1. Permutations. Let Sn be the set of permutations of [n] := {1, . . . , n}, and
S∗ :=

⋃
nSn. Similarly, let Fn be the set of all forest permutations of length n and

Tn the subset of tree permutations, and let F∗ :=
⋃
n Fn and T∗ :=

⋃
n Tn. Thus

Tn ⊆ Fn ⊆ Sn.
We denote the length of a permutation π by |π|.

2.2. Occurrence of patterns. If σ = σ1 · · ·σm ∈ Sm and π = π1 · · ·πn ∈ Sn, then
an occurrence of σ in π is a subsequence πi1 · · ·πim , with 1 6 i1 < · · · < im 6 n,
that has the same order as σ, i.e., πij < πik ⇐⇒ σj < σk for all j, k ∈ [m]. In this
context, σ is often called a pattern; we may also say that σ is a subpermutation of
π. We let occσ(π) be the number of occurrences of σ in π, and note that∑

σ∈Sm

occσ(π) =

(
n

m

)
, (2.1)

for every π ∈ Sn and every m. For example, an inversion is an occurrence of 21,
and thus occ21(π) is the number of inversions in π.

We say that a permutation π avoids another permutation τ if occτ (π) = 0; oth-
erwise, π contains τ .

2.3. Sums and decompositions of permutations. If σ ∈ Sm and τ ∈ Sn, their
(direct) sum σ ⊕ τ ∈ Sm+n is defined by letting τ act on [m + 1,m + n] in the
natural way; more formally, σ ⊕ τ = π ∈ Sm+n where πi = σi for 1 6 i 6 m, and
πj+m = τj + m for 1 6 j 6 n. It is easily seen that ⊕ is an associative operation.
We say that a permutation π ∈ S∗ is decomposable if π = σ ⊕ τ for some σ, τ ∈ S∗,
and indecomposable otherwise; we also call an indecomposable permutation a block.
See further e.g. [3, Exercise VI.14].
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It is easy to see that any permutation π ∈ S∗ has a unique decomposition π =
π1⊕· · ·⊕π` into indecomposable permutations (blocks) π1, . . . , π` (for some, unique,
` > 1); we may call these the blocks of π

If i < j < k and ik is an edge in the permutation graph Gπ (i.e., an inversion),
then at least one of ij and jk is also an edge. It follows that the components of the
graph Gπ are intervals in [n], and then it is easy to see that they correspond to the
blocks of π; in particular, Gπ is connected if and only if π is indecomposable.

2.4. Random permutations. τn will always denote a uniformly random tree per-
mutation of length n; similarly, πn is a uniformly random forest permutation of
length n. In other words, these are uniformly random elements of Tn and Fn, re-
spectively.

τ̃ denotes a certain random tree permutation of random length defined in Sec-
tion 7, see (7.5); τ̃ 1, τ̃ 2, . . . will denote independent copies of τ̃ . Similarly, τ ∗

m is
another random tree permutation of random length, defined in Section 10.

2.5. Some further notation. Convergence in distribution is denoted by
d−→, and

convergence in probability by
p−→. We let

d
= denote equality in distribution.

Given sequences of random variables Xn and constants an > 0, and a fixed ex-
ponent q > 0, we let Xn = OLq(an) mean E |Xn/an|q = O(1). Moreover, we write
Xn = OL∗(an) if Xn = OLq(an) for every q <∞.

By “convergence of all moments” we mean both ordinary and absolute moments,
including centered versions.

We find it convenient to express some explicit constants using

φ :=
1 +
√

5

2
, (2.2)

the golden ratio. Recall that φ2 = φ+ 1. We will also let p := φ−2, see (7.1)–(7.3).
Unspecified limits are as n→∞.

3. Main results

Our main results are the following; the proofs are given later. In both cases, note
that if σ is not a forest permutation, then occσ(πn) = 0. Note also that we may
assume |σ| > 2, since the case σ = 1 is utterly trivial with occ1(π) = n for every
π ∈ Σn. Moreover, if τ ∈ Tn is a tree permutation, then occ21(τ) = n− 1, since the
number of inversions equals the number of edges in the tree Gτ .

Theorem 3.1. Let τn be a uniformly random tree permutation of length n, and let
σ be a fixed forest permutation with block decomposition σ = σ1⊕ · · · ⊕ σd. Then, as
n→∞, for some γ2 = γ2σ > 0,

occσ(τn)− nd/d!

nd−1/2
d−→ N

(
0, γ2

)
, (3.1)

with convergence of all moments. Moreover, γ2 > 0 unless |σi| 6 2 for every i, i.e.,
unless each block σi is either 1 or 21.

We state the special case d = 1 separately.
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Corollary 3.2. Let τn be a uniformly random tree permutation of length n, and let
σ be a fixed tree permutation. Then, as n→∞, for some γ2 = γ2σ > 0,

occσ(τn)− n√
n

d−→ N
(
0, γ2

)
, (3.2)

with convergence of all moments. Moreover, γ2 > 0 except in the trivial cases |σ| 6 2,
when occσ(τn) is deterministic (n or n− 1).

Furthermore, when σ is a tree permutation, we give an exact formula for E occσ(τn)
in Theorem 6.5; this expectation depends on n and |σ| only.

The asymptotic variance γ2σ in Theorem 3.1 and Corollary 3.2 can be found from
our proof, but we do not know any explicit formula; we evaluate it for some simple
cases in Example 12.3. Note that Example 12.3 shows that γ2σ in Corollary 3.2 really
depends on σ, and, moreover, that it is not simply a function of |σ|.

Remark 3.3. If σ is a foresst permutation with d > 2 blocks σi, all of lengths
|σi| 6 2, then γ2 = 0 in (3.1), but occσ(τn) is, in general, not deterministic. We
conjecture that occσ(τn) is asymptotically normal in this case too, with a variance
of smaller order than in Theorem 3.1, but we have not pursued this and leave it as
an open problem. (Cf. Theorem 3.6 below for random forest permutations πn.) �

Problem 3.4. Find a combinatorial explanation for the surprising fact that the
asymptotic expectation n in (3.2) is the same for all tree permutations σ. (We will
see in the proof that this is equivalent to the fact that the expectation in (11.23) is
the same for all tree permutations σ.)

More generally, find a combinatorial explanation for the fact that the asymptotic
expectation nd/d! (or, equivalently,

(
n
d

)
) in (3.1) depends only on the the number of

blocks d in σ.
Moreover, as just mentioned, Theorem 6.5 shows that for two tree permutations σ1

and σ2 of the same length, the expectations E occσ1(τn) and E occσ2(τn) are equal for
every n. (This obviously requires |σ1| = |σ2|, since occσ(τn) = 0 if n < |σ|.) Again,
we do not know a simple proof of this fact, although the proof of Theorem 6.5 gives
a kind of combinatorial reason. Also, we do not know whether the equality extends
to two forest permutations with the same length and the same number of blocks.

We turn to patterns in a random forest permutation.

Theorem 3.5. Let πn be a uniformly random forest permutation of length n, and
let σ be a fixed forest permutation with block decomposition σ = σ1 ⊕ · · · ⊕ σd. Let λ
be the number of blocks σi of length |σi| = 1, and let

µ̃σ :=
1

d!
(φ+ 2)λ−dφ4d−3λ−|σ| =

1

d!
5−(d−λ)/2φ3d−2λ−|σ|. (3.3)

Then, for some γ2σ > 0,

occσ(πn)− µ̃σnd

nd−1/2
d−→ N

(
0, γ2σ

)
, (3.4)

with convergence of all moments.
Furthermore, γ2σ > 0 except in the case σ = 1 · · · d (the identity permutation with

every |σi| = 1).

Again, the asymptotic variance γ2σ can in principle be found from our proof, but
we do not know any explicit formula; see Remark 9.1 and Example 9.2.
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In the exceptional case σ = 1 · · · d, the limit in (3.4) is 0, and a different normal-
ization is required.

Theorem 3.6. Let ιd be the identity permutation 1 · · · d for some d > 2. Then, for
some γ2ιd > 0,

occιd(πn)−
(
n
d

)
+ 5+

√
5

10(d−2)! n
d−1

nd−3/2
d−→ N

(
0, γ2ιd

)
, (3.5)

with convergence of all moments.

Remark 3.7. If we consider several patterns, (3.1), (3.2), (3.4) and (3.5) extend to
joint convergence to a multi-variate normal limit. This follows by the same proof,
using Remarks 5.7 and 5.13. We omit the details. �

4. Preliminaries on tree and forest permutations

We recall some facts from (mainly) [1] (in our notation); for completeness we
sometimes sketch the arguments, but we refer to [1] for further details.

Note first that a permutation is determined by its (labelled) permutation graph, in
other words, the mapping π 7→ Gπ is injective. Furthermore, the induced subgraphs
of Gπ are the inversion graphs of the patterns occuring in π, up to obvious relabelling.

In particular, it is easily seen that the only induced cycles in a permutation graph
are C3 and C4 (as unlabelled graphs); these are the permutation graphs of 321 and
3412 (and no other permutations), which proves Proposition 1.2.

Moreover, Gπ is a forest if and only if its component are trees, and thus π is a
forest permutation if and only its blocks are tree permutations. In other words,

π ∈ F∗ ⇐⇒ π = τ1 ⊕ · · · ⊕ τm (4.1)

for some (unique) sequence τ1, . . . , τm of tree permutations. (We will find the as-
ymptotic distribution of the number of blocks in a random forest permutation in
Theorem 9.3.)

Let tn := |Tn| be the number of tree permutations of length n. It is shown in [1]
that

tn =

{
1, n = 1,

2n−2, n > 2,
(4.2)

and thus the corresponding generating fuction T (z) is

T (z) :=
∞∑
n=1

tnz
n = z +

z2

1− 2z
=
z − z2

1− 2z
, |z| < 1/2. (4.3)

As a consequence of (4.3) and (4.1), if fn is the number of forest permutations of
length n (with f0 := 1), then the corresponding generating function is

F (z) :=

∞∑
n=0

fnz
n =

1

1− T (z)
=

1− 2z

1− 3z + z2
. (4.4)

The sequence (fn) is A001519 in [13] (where many other interpretations are given).

In a permutation π, label the left-to-right maxima by L, and the right-to-left
minima by R. Thus, i is labelled L if π(j) < π(i) for every j < i, ı.e., if there are no
inversions (j, i) with j < i. In other words,

i is labelled L ⇐⇒ i is the left endpoint of every adjacent edge in Gπ. (4.5)
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Similarly, i is labelled R if there are no inversions (i, j) with j > i, and

i is labelled R ⇐⇒ i is the right endpoint of every adjacent edge in Gπ. (4.6)

Now, let π be a forest permutation. If i < j < k, then ij and jk cannot both be
edges in Gπ, since otherwise, π(i) > π(j) > π(k), so (i, k) would also be an inversion,
and thus Gπ would contain a cycle ijk. If follows that every j ∈ [n] is labelled either
L or R, or possibly both.

Moreover, (4.5)–(4.6) imply that i is labelled both L and R if and only if i is
isolated in Gπ. In a tree permutation π with |π| > 2, this is impossible. Thus, if π is
a tree permutation with |π| > 2, then every i ∈ [n] is labelled L or R, but not both.
Each tree permutation τ with |τ | = n > 2 may thus be represented by a string Ωτ

of n symbols L or R. (The notation in [1] is different: there W1 [W0] denotes the set
of i labelled L [R] here.) The first symbol in Ωτ is always L and the last is R. We
let Σn :=

{
L{L,R}n−2R

}
be the set of such strings, so Ωτ ∈ Σn. It is shown in [1]

that the map τ 7→ Ωτ is a bijection between Tn and Σn, for every n > 2. (Note that
|Tn| = 2n−2 = |Σn| by (4.2).) In other words, for n > 2, the tree permutations in Tn
can be encoded by the strings in Σn.

We follow [1] and define the blocks B1, . . . , B2m of Ωτ as the successive runs of
L and R in Ωτ . Note that since Ωτ begins with L and ends with R, there is always
an even number of blocks; an odd-numbered block B2l−1 is a run of L and an even-
numbered block B2l is a run of R. (Note that we also use ’block’ in a different
sense for the block decomposition of a permutation into its blocks (components) in
Section 2.3; there should be no risk of confusion since the two different meanings
of ’block’ appear in different contexts, and we will not use both at the same time.)
[1, Lemma 8] shows how the edges and vertex degrees in Gτ can be found explicitly
from the code Ωτ and the blocks Bi. We summarize this as follows.

Lemma 4.1 ([1]). Let τ be a tree permutation with |τ | > 2. Then the pairs of
symbols in Ωτ that correspond to edges in Gτ (and thus to inversions in τ) are:

(e1) each L and the nearest following R;
(e2) each R and the nearest preceding L;
(e3) The last L in a block B2k−1 and the first R in B2k+2.

The symbols in Ωτ that correspond to leaves in Gτ are the following:

(l1) every L that is not the last L in its block;
(l2) the last but one symbol, if that is L;
(l3) every R that is not the first R in its block;
(l4) the second symbol, if that is R.

Proof. As said above, this is [1, Lemma 8], in different notation. (The four cases
(l1)–(l4) correspond to parts (a),(c),(d),(f) in that lemma.) �

If σ is a tree permutation with |σ| > 2 such that its code Ωσ has 2m blocks, we
define b(σ) := m; in other words the code of σ has b(σ) L-blocks and b(σ) R-blocks.
If |σ| = 1, we do not define any code Ωσ, but we define (for later convenience)
b(σ) := 1.

5. Preliminaries on U-statistics

A U -statistic is a random variable of the form

Un = Un(f) =
∑

16i1<···<id6n
f
(
Xi1 , . . . , Xid

)
, n > 0, (5.1)
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where X1, X2, . . . is an i.i.d. sequence of random variables with values in some mea-
surable space S, and f : Sd → R is a given measurable function of d > 1 variables.
(It is often assumed that f is a symmetric function; we do not assume this.) U -
statistics were introduced by Hoeffding [6]; we will use versions and results from [9]
and [11], see also [10] for similar applications to pattern occurences in some other
pattern classes.

The fundamental central limit theorem for U -statistics, due to Hoeffding [6] in
the symmetric case, can in the general (asymmetric) case be stated as follow, see
[7, Theorem 11.20] and [9, Corollary 3.5 and (moment convergence) Theorem 3.15].
Assume that the random variables Xi are i.i.d., let X denote a generic Xi, and define
(for a given f)

µ := E f(X1, . . . , Xd), (5.2)

fi(x) := E
[
f(X1, . . . , Xd) | Xi = x

]
, (5.3)

σij := Cov
[
fi(X), fj(X)

]
, (5.4)

σ2 :=

d∑
i,j=1

(i+ j − 2)! (2d− i− j)!
(i− 1)! (j − 1)! (d− i)! (d− j)! (2d− 1)!

σij . (5.5)

Note that fi(x) in [9; 11] is fi(x)− µ in the present notation.

Proposition 5.1 ([7; 9]). Suppose that (Xi)
∞
1 are i.i.d. random variables, and that

E |f(X1, . . . , Xd)|2 <∞. Then, with the notation in (5.2)–(5.5), as n→∞,

Un −
(
n
d

)
µ

nd−1/2
d−→ N

(
0, σ2

)
. (5.6)

Furthermore, σ2 > 0 unless fi(X) = µ a.s. for i = 1, . . . , d.
Moreover, if E |f(X1, . . . , Xd)|p <∞ for some p > 2, the (5.6) holds with conver-

gence of all moments of order 6 p. �

We will need a renewal theory version of Proposition 5.1. In addition to a sequence
(Xi)

∞
1 and a function f as above, let h : S → R be another measurable function,

and assume (for simplicity) that h(Xi) > 0 a.s. Define

ν := Eh(Xi), (5.7)

Sn = Sn(h) :=
n∑
i=1

h(Xi), (5.8)

and let for each x > 0

N(x) := inf{N : SN > x}. (5.9)

Remark 5.2. The definition (5.9) agrees with N+(x) in [10] but differs slightly
from N+(x) and N−(x) in [9] and [11]; this does not affect the asymptotic results
used here, see [11, Remark 3.19]. (For integer valued h and integer x, as in our
application, N(x) = N+(x − 1).) We will use results from [9] and [11]; note that
the event {Sk = n for some k > 0} equals {SN(n) = n} in the present notation, and
{UN−(n) = n} in the notation of [9] and [11]. (When we condition on this event
in propositions below, we tacitly consider only n such that the event has positive
probability.) �

The following results are special cases of [9, Theorems 3.11, 3.13(iii) and 3.18]
(with somewhat different notation).
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Proposition 5.3 ([9]). Suppose that (Xi) are i.i.d., E |f(X1, . . . , Xd)|2 < ∞, and
h(X) > 0 a.s., with ν := Eh(X) > 0 and Eh(X)2 < ∞. Then, with notations as
above, as x→∞,

UN(x) − µν−dd!−1xd

xd−1/2
d−→ N

(
0, γ2

)
, (5.10)

where, with σ2 given by (5.5),

γ2 := ν1−2dσ2 − 2
µν−2d

(d− 1)! d!

d∑
i=1

Cov
[
fi(X), h(X)

]
+
µ2ν−2d−1

(d− 1)!2
Var
[
h(X)

]
. (5.11)

Moreover, γ2 > 0 unless fi(X) = µ
ν h(X) a.s. for i = 1, . . . , d. �

Proposition 5.4 ([9]). Suppose in addition to the hypotheses in Proposition 5.3
that h(X) is integer-valued. Then (5.10) holds also conditioned on SN(x) = x (cf.
Remark 5.2) for integers x→∞. �

Proposition 5.5 ([9]). Suppose in addition to the hypotheses in Proposition 5.3 or
5.4 that E |f(X1, . . . , Xd)|p < ∞ and E |h(X)|p < ∞ for every p < ∞. Then the
conclusion (5.10) holds with convergence of all moments. �

Remark 5.6. In the special case d = 1, when the U -statistic (5.1) is a standard
single sum, (5.2)–(5.5) and (5.11) simplify to f1 = f , σ2 = σ11 = Var f(X), and

γ2 =
1

ν
σ2 − 2

µ

ν2
Cov

[
f(X), h(X)

]
+
µ2

ν3
Varh(X)

=
1

ν
Var
[
f(X)− µ

ν
h(X)

]
. (5.12)

This special case is classical, see e.g. [5, Theorem 4.2.3]. �

Remark 5.7. The results in Propositions 5.1–5.5 hold jointly for several f (possibly
with different d). This is not stated explicitly in [9] (except for (5.6)), but it follows
by the same proofs as in [9] (perhaps, for convenience, using the Skorohod coupling
theorem [12, Theorem 4.30] and a.s. convergence in the proofs). See also [11]. �

5.1. Constrained U-statistics. In this subsection we extend some of the results
above to constrained U -statistics, defined as follows. We consider here only a case
relevant for the application in the present paper; for more general definitions and
results, see [11] (with somewhat different notation).

Let, as above, (Xi)
∞
1 be an i.i.d. sequence of random variables in some measurable

space S.
Let d > 1 and let b1, . . . , bd be given non-negative integers. (These are regarded

as fixed in this subsection.) Let

b′j := bj − 1, (5.13)

Dj :=

j∑
1

bi, 0 6 j 6 d, (5.14)

D′j :=

j∑
1

b′i = Dj − j, 0 6 j 6 d, (5.15)

D := Dd =
d∑
i=1

bi = D′d + d. (5.16)
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Suppose that f : SD → R is a measurable function, and define the constrained
U -statistic

Ûn = Ûn(f) :=
∑
i1,...,id

f
(
(Xi1+k)

b′1
k=0, (Xi2+k)

b′2
k=0, . . . , (Xid+k)

b′d
k=0

)
(5.17)

summing over all i1, . . . , id such that i1 > 1, i1+b′1 < i2, i2+b′2 < i3, . . . , id−1+b′d−1 <
id, and id+b′d 6 n. (We have grouped the arguments of f in (5.17), using an obvious

notation.) In other words, Ûn is defined as Un in (5.1), with d replaced by D, but
only summing over i1, . . . , iD such that the b1 first indices are consecutive, as well

as the next b2, and so on. In particular, in the special case b1 = · · · = bd = 1, Ûn
equals the unconstrained U -statistic Un in (5.1).

By replacing ij by ij −D′j−1 in (5.17), we obtain the alternative formula

Ûn :=
∑

16i1<i2<···<id6n−D′d

f
(
(Xi1+k)

D′1
k=0, (Xi2+k)

D′2
k=D′1

, . . . , (Xid+k)
D′d
k=D′d−1

)
. (5.18)

Define, as in (5.2),

µ = µf := E f(X1, . . . , XD). (5.19)

By (5.18), the mean of Ûn is

E Ûn =

(
n−D′d
d

)
µ. (5.20)

Proposition 5.1 extends to constrained U -statistics as follows.

Proposition 5.8 ([11]). Let Ûn = Ûn(f) be a constrained U -statistic defined as
above, with (Xi)

∞
1 i.i.d., and assume E |f(X1, . . . , XD)|2 < ∞. Then, with µ = µf

given by (5.19) and some σ2 = σ2f > 0,

Ûn −
(
n
d

)
µ

nd−1/2
d−→ N

(
0, σ2

)
. (5.21)

Moreover, if E |f(X1, . . . , Xd)|p < ∞ for some p > 2, the (5.21) holds with con-
vergence of all moments of order 6 p.

It does not matter whether we subtract E Ûn or
(
n
d

)
µ in (5.21), since the difference

is O
(
nd−1

)
= o
(
nd−1/2

)
by (5.20).

Proof. This is a special case of [11, Theorems 3.9 and 3.15]. �

The variance σ2 in (5.21) can be calculated explicitly, see [11, Remark 6.2], but
the formulas are a bit complicated, and we omit them. Instead, we give a criterion
that often can be used in applications to show that σ2 > 0. We define, in analogy
with (5.3),

fj
(
x1, . . . , xbj

)
:= E

[
f
(
X1, . . . , XD

)
| (XDj−1+1, . . . , XDj ) = (x1, . . . , xbj )

]
. (5.22)

We extend the definition (5.8) to functions g : Sb → R for any b > 1 by defining, for
such g,

Sn(g) :=
n∑
i=1

g
(
Xi, . . . , Xi+b−1

)
. (5.23)



10 SVANTE JANSON

Proposition 5.9. In Proposition 5.8, the asymptotic variance σ2f = 0 if and only if

for every j ∈ [d], there exists a function ψj : Sbj−1 → R such that a.s.

fj
(
X1, . . . , Xbj

)
− µ = ψj

(
X2, . . . , Xbj

)
− ψj

(
X1, . . . , Xbj−1

)
, (5.24)

and thus a.s., for every n > 1,

Sn(fj − µ) = ψj
(
Xn+1, . . . , Xn+bj−1

)
− ψj

(
X1, . . . , Xbj−1

)
. (5.25)

Consequently, if σ2f = 0, then Sn(fj) is independent of Xbj , . . . , Xn for every j ∈ [d]
and n > bj.

Proof. This is essentially a special case of [11, Theorem 8.4]; the difference is mainly
notational. The function gj in [11, Theorem 8.4 and Remark 6.2] is, in our case,
given by

gj
(
x1, . . . , xD′d+1

)
= fj

(
xD′j−1+1, . . . , xD′j−1+bj

)
− µ; (5.26)

thus gj is essentially the same as fj −µ but contains some redundant variables. [11,

Theorem 8.4] says that σ2f = 0 if and only if there exists a function ϕj : SD′d → R
such that a.s.

gj
(
X1, . . . , XD′d+1

)
= ϕj

(
X2, . . . , XD′d+1

)
− ϕj

(
X1, . . . , XD′d

)
. (5.27)

This is (5.24), except that we have redundant variables. These may be eliminated
one by one. For example, if D′j−1 > 0, and thus gj does not depend on x1 by

(5.26), then (5.27) implies that for a.e. fixed x1 ∈ S, we have ϕj
(
X1, . . . , XD′d

)
=

ϕj
(
x1, X2, . . . , XD′d

)
a.s., and thus a.s.

ϕj
(
X1, . . . , XD′d

)
= ϕ′j

(
X2, . . . , XD′d

)
(5.28)

for some function ϕ′j : SD′d−1 → R. Continuing in this way, from both ends, we see
that a.s.

ϕj
(
X1, . . . , XD′d

)
= ψj

(
XD′j−1+1, . . . , XD′j−1+bj−1

)
(5.29)

for some function ψj , and thus (5.27) reduces to (5.24). (Alternatively, one might
note that (5.27) implies Var

[
Sn(fj−µ)

]
= VarSn(gj) = O(1), and then [8, Theorem

2] yields (5.24) – this essentially repeats part of the argument in [11] yielding (5.27).)
Conversely, (5.24) trivially yields (5.27) for a suitable ϕj . �

We will use a renewal theory version of constrained U -statistics. We assume again
that h : S → R with h(Xi) > 0 a.s., and use the notation (5.7)–(5.9). The following
results are special cases of [11, Theorems 3.20, 8.7, 3.21, and 3.23].

Proposition 5.10 ([11]). Let Ûn = Ûn(f) be a constrained U -statistic defined as
above, with (Xi)

∞
1 i.i.d. Suppose that E |f(X1, . . . , XD)|2 < ∞, and that h(X) > 0

a.s., with ν := Eh(X) > 0 and Eh(X)2 < ∞. Then, with notations as above, as
x→∞,

ÛN(x) − µν−dd!−1xd

xd−1/2
d−→ N

(
0, γ2

)
, (5.30)

for some γ2 > 0. Moreover, γ2 > 0 unless, for each j = 1, . . . , d, the conditions in
Proposition 5.9 hold with f − µ replaced by the function fj(X1, . . . , Xbj )−

µ
ν h(X1).
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Proof. The limit (5.30) is a special case of [11, Theorem 3.20]. The only detail that
requires a comment is that [11, Theorem 8.7] says that if γ2 = 0, then a.s.

gj
(
X1, . . . , XD′d+1

)
+ µ− µ

ν
h(X1) = ϕj

(
X2, . . . , XD′d+1

)
− ϕj

(
X1, . . . , XD′d

)
(5.31)

for some function ϕ, where as above gj is given by (5.26). If we use (5.26) and define

ϕj
(
x1, . . . , xD′d

)
:= ϕj

(
x1, . . . , xD′d

)
−
D′j−1∑
i=1

µ

ν
h(xi), (5.32)

then (5.31) is equivalent to

fj
(
XD′j−1+1, . . . , XD′j−1+bj

)
− µ

ν
h
(
XD′j−1+1

)
= ϕj

(
X2, . . . , XD′d+1

)
− ϕj

(
X1, . . . , XD′d

)
.

(5.33)

The result follows by eliminating redundant variables as in the proof of Proposi-
tion 5.9. �

Proposition 5.11 ([11]). Suppose in addition to the hypotheses in Proposition 5.10
that h(X) is integer-valued. Then (5.30) holds also conditioned on SN(x) = x for
integers x→∞. �

Proposition 5.12 ([11]). Suppose in addition to the hypotheses in Proposition 5.10
or 5.11 that E |f(X1, . . . , XD)|p < ∞ and E |h(X)|p < ∞ for every p < ∞. Then
the conclusion (5.30) holds with convergence of all moments. �

Remark 5.13. Again, the results in Propositions 5.8 and 5.10–5.12 hold jointly for
several f (possibly with different d and b1, . . . , bd), see [11]. �

6. Patterns and codes of tree permutations

Consider an occurrence of a tree permutation σ ∈ T` in another tree permutation
τ ∈ Tn. The occurrence is defined by a subset I = {i1, . . . , i`} of the index set
[n]. We colour each symbol in the code Ωτ red if its index belongs to I, and black
otherwise. We use also the same colours for the corresponding vertices in Gτ . (All
colourings in this paper are in red and black. We may regard the red symbols or
vertices as marked.)

Note that in the resulting coloured copy of Ωτ , the red symbols form the code Ωσ

of σ; this is a consequence of (4.5)–(4.6) and the fact that the corresponding (red)
induced subgraph of Gτ equals Gσ up to an order-preserving relabelling. However,
not every subset of ` symbols in the right order corresponds to an occurrence of σ.
There is a 1–1 correspondence between

(1) (nonempty) subsets of [n],
(2) (nonempty) subsequences of Ωτ ,
(3) occurences of some permutation υ in τ ,
(4) (nonempty) labelled subgraphs of the permutation graph Gτ .

However, the subgraph in (4) is not necessarily a tree, and thus, the permutation υ
in (3) is not necessarily a tree permutation.

We may characterize the subsets of symbols in Ωτ that yield occurences of σ as
follows.
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Lemma 6.1. Let τ and σ be tree permutations with |τ | > |σ| > 2. A colouring of
the code Ωτ corresponds to an occurrence of σ in τ if and only if we may the delete
the black symbols one by one in some order according to the following rules (always
interpreted for the current string) until only red symbols remain, and these form the
code Ωσ. The allowed deletions are (in any order, and possibly repeated):

(A1) a black L that is immediately followed by another L;
(A2) a black L in the last but one position;
(A3) a black R that is immediately preceded by another R;
(A4) a black R in position 2.

Proof. Consider first the case of deleting one vertex i ∈ [n] from the tree Gτ , i.e.,
restricting the permutation τ to [n] \ {i} and then relabelling to get a permutation
τ1 in Sn−1. The permutation graph Gτ1 is an induced subgraph of Gτ , and is thus
always a forest; it is a tree if and only if it is connected, which is the case exactly
when i is leaf in Gτ . By Lemma 4.1, the black vertices that may be deleted leaving
a tree correspond precisely to the symbols listed in (A1)–(A4).

Thus, to repeatedly remove black symbols according to the rules in the lemma, is
equivalent to repeatedly removing black leaves of Gτ , leaving a red subtree; if the
resulting red code is Ωσ, then this yields an occurence of σ.

Conversely, if the colouring of Ωτ corresponds to an occurrence of σ in τ , then the
red vertices form a red subtree in Gτ , and we may remove the black vertices of Gτ is
some order such that we always remove a black leaf of the current tree; this means
that we may remove the black symbols in some order such that the rules (A1)–(A4)
are followed. �

We may invert the deletions in Lemma 6.1, and instead insert black symbols into
Ωσ.

Lemma 6.2. Let τ and σ be tree permutations with |τ | > |σ| > 2. A colouring of
the code Ωτ corresponds to an occurrence of σ in τ if and only if we may obtain it by
from a red code Ωσ by inserting black symbols one by one according to the following
rules (always interpreted for the current string). The allowed insertions are (in any
order, and possibly repeated):

(B1) a black L immediately to the left of any L;
(B2) a black L immediately to the left of the last symbol;
(B3) a black R immediately to the right of any R;
(B4) a black R immediately to the right of the first symbol.

Proof. Immediate from Lemma 6.1. �

We have so far considered deleting or inserting one symbol at a time. Since only
the end result matters, the following version is more convenient for our purposes.
(Recall that the first red symbol always is L, and the last is R.)

Lemma 6.3. Let σ be a tree permutation with |σ| > 2. A coloured code Ω corresponds
to a marked (red) occurrence of σ in some tree permutation τ if and only if we may
obtain Ω from a red code Ωσ by inserting black symbols as follows (the strings may
be empty):

(C1) a string of black L immediately to the left of each red L except the first;
(C2) a string of black L immediately to the left of the last red R;
(C3) a string of black R immediately to the right of each red R except the last;
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(C4) a string of black R immediately to the right of the first red L;
(C5) any black string that is empty or begins with L before the first red symbol;
(C6) any black string that is empty or ends with R after the last red symbol.

Proof. It is easily seen that if we take any coloured code obtained by these rules, and
insert another black symbol according to the rules in Lemma 6.2, then the result is
also described by (C1)–(C6). Hence, by induction, all possible coloured codes are
given by the insertions (C1)–(C6).

Conversely, suppose that Ω is obtained from a red Ωσ by (C1)–(C6); we have to
show that it also can be obtained by repeating (B1)–(B4) in some order. Evidently,
(C1)–(C4) can be obtained by repeating (B1)–(B4), so it remains only to show that
we may add an arbitrary black string beginning with L before the first red symbol,
and an arbitrary black string ending with R after the last red symbol. To see this,
note that we may first add a black L to the left by (B1). Then, when the code
begins with a black L, we may by either add a black R as the second symbol by
(B4), or a black L as the first symbol by (B1), but the latter gives the same result
as adding a black L as the second symbol. Hence, we may add an arbitrary black
symbol immediately after the first one, and by repeating this we may obtain any
black string beginning with L, verifying (C5). The argument for the right side is
symmetric. �

Lemma 6.4. Fix a tree permutation σ with |σ| > 2. For every n, let an;σ be the
number of pairs (τ, σ′) of a tree permutation τ of length |τ | = n together with a
marked occurence σ′ of the pattern σ. Define also the generating function

Aσ(z) :=
∑
n>|σ|

an;σz
n. (6.1)

Then,

Aσ(z) =
z|σ|

(1− z)|σ|−2(1− 2z)2
. (6.2)

Proof. By Lemma 6.3, an;σ equals the number of coloured codes of length n that can
be obtained from a red Ωσ by the rules (C1)–(C6). These insertions are independent
of each other, so they correspond to multiplying factors in the generating function
Aσ(z).

Each possible application of (C1)–(C4) yields a factor
∑∞

k=0 z
k = (1−z)−1. There

is one possible such application for each symbol in Ωσ, by (C1) or (C4) for each L, and

by (C2) or (C3) for each R. Hence, the total contribution of (C1)–(C4) is (1−z)−|σ|.
By (C5), we may to the left add a black prefix that is either empty or is an

arbitrary sting beginning with L, which gives 2k−1 possible prefixes of length k for
every k > 1 (and 1 prefix of length 0). This contributes to Aσ(z) a factor

1 +

∞∑
k=1

2k−1zk = 1 +
z

1− 2z
=

1− z
1− 2z

. (6.3)

Black suffixes by (C6) contribute the same factor. These factors all multiply the

term corresponding to the original red symbols Ωσ, which is z|σ|. Hence, we obtain

Aσ(z) = z|σ|(1− z)−|σ|
( 1− z

1− 2z

)2
, (6.4)

which yields (6.2). �
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This yields an exact formula for the expected number of occurences of σ; note
that the result depends only on |σ| and n.

Theorem 6.5. Fix a tree permutation σ with |σ| > 2. Then, for n > |σ|,

E occσ(τn) = [zn]
(
z|σ|(2− z)2−|σ|(1− z)−2

)
= [zn−|σ|]

(
(2− z)2−|σ|(1− z)−2

)
= n+ 3− 2|σ|+ 2−n

|σ|−3∑
i=0

(|σ| − 2− i)2|σ|−i−1
(
n− |σ|+ i

i

)
. (6.5)

Proof. The total number of occurences of σ in tree permutations of length n is an;σ,
and the number of such tree permutations is tn = 2n−2 by (4.2). Hence, by (6.1)–
(6.2),

E occσ(τn) =
an;σ
2n−2

= [zn]
(
22−nAn(z)

)
= [zn]

(
4An(z/2)

)
= [zn]

z|σ|

(2− z)|σ|−2(1− z)2
, (6.6)

which gives the first two expressions in (6.5); the explicit formula then follows from
the partial fraction expansion, with m = |σ| − 2 > 0,

1

(2− z)m(1− z)2
=

1

(1− z)2
− m

1− z
+

m∑
j=1

m− j + 1

(2− z)j
. (6.7)

�

7. A random tree permutation of random length

Recall that T (z) is the generating function in (4.3), and let, throughout the paper,
p be the (unique) positive root of

T (p) = 1. (7.1)

By (4.3), this yields 0 < p < 1/2 and p− p2 = 1− 2p, or p2 − 3p+ 1 = 0, and thus

p =
3−
√

5

2
= 0.381966 . . . . (7.2)

Recalling the golden ration φ in (2.2), we thus have

p = φ−2 = 2− φ. (7.3)

We note also

1− p = φ− 1 = φ−1, 1− 2p = p(1− p) = φ−3. (7.4)

We now define a random tree permutation τ̃ to be a random element of T∗ with
the distribution

P(τ̃ = τ) = p|τ |, τ ∈ T∗. (7.5)

Note that the sum over all τ ∈ T∗ of the probabilities in (7.5) equals
∑

n tnp
n =

T (p) = 1, and thus (7.5) really defines a probability distribution.
The random tree permutation τ̃ thus has random length. It follows from (7.5)

that the probability generating function of |τ̃ | is

G|τ̃ |(z) :=
∞∑
n=1

tnp
nzn = T (pz). (7.6)
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Lemma 7.1. We have

E |τ̃ | = φ+ 2 =
5 +
√

5

2
=
√

5φ
.
= 3.618, (7.7)

E |τ̃ |2 = 11φ+ 8 =
27 + 11

√
5

2

.
= 25.798, (7.8)

Var |τ̃ | = 6φ+ 3 = 3φ3 = 6 + 3
√

5
.
= 12.708, (7.9)

E |τ̃ |k <∞, ∀k <∞. (7.10)

Proof. By (7.6) and straightforward calculations using (7.3)–(7.4),

E |τ̃ | = G′|τ̃ |(1) = pT ′(p) =
p(1− 2p+ 2p2)

(1− 2p)2
= φ4(φ−3 + 2φ−4) = φ+ 2. (7.11)

Similarly,

E
[
|τ̃ |(|τ̃ | − 1)

]
= G′′|τ̃ |(1) = p2T ′′(p) =

2p2

(1− 2p)3
= 2φ5 = 10φ+ 6 (7.12)

and thus, combining (7.11) and (7.12),

E |τ̃ |2 = 11φ+ 8 (7.13)

and

Var |τ̃ | =
(
11φ+ 8

)
− (φ+ 2)2 = 6φ+ 3. (7.14)

This shows (7.7)–(7.9).
Finally, (7.10) follows because G|τ̃ |(z) has radius of convergence greater than 1.

(Or directly from (4.2) and (7.5).) �

7.1. From random trees to random forests. Recall that forest permutations are
sums of tree permutations (4.1). Let τ̃ 1, τ̃ 2, . . . be an infinite sequence of indepen-
dent random tree permutations with the distribution (7.5), and let

Sm :=

m∑
i=1

|τ̃ i|, (7.15)

the total length of the m first of these tree permutations. Thus, for any m > 1,
τ̃ 1 ⊕ · · · ⊕ τ̃m is a forest permutation of length Sm, having m blocks.

Suppose that π is a forest permutation with m blocks τ1, . . . , τm. Then, by (7.5),

P
(
τ̃ 1 ⊕ · · · ⊕ τ̃m = π

)
= P

(
τ̃ i = τi, ∀i 6 m

)
=

m∏
i=1

P
(
τ̃ i = τi

)
=

m∏
i=1

p|τi| = p|π|.

(7.16)

Note that this depends only on |π|.
In order to obtain arbitrary forest permutations, we have to consider a random

number of blocks. We use a renewal theoretic approach. For any n > 1, let, as in
(5.9),

N(n) := min{m > 1 : Sm > n}. (7.17)

Then, SN(n) > n. Moreover, if π ∈ Fn hasm blocks π1, . . . , πm, then τ̃ 1⊕· · ·⊕τ̃m = π
entails Sm = |π| = n, and thus N(n) = m. Hence, using also (7.16),

P
(
τ̃ 1 ⊕ · · · ⊕ τ̃N(n) = π

)
= P

(
N(n) = m & τ̃ 1 ⊕ · · · ⊕ τ̃m = π

)
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= P
(
τ̃ 1 ⊕ · · · ⊕ τ̃m = π

)
= p|π| = pn. (7.18)

This probability is thus the same for all π ∈ Fn. Consequently, conditioned on
SN(n) = n, so that τ̃ 1 ⊕ · · · ⊕ τ̃N(n) ∈ Fn, (7.18) implies that τ̃ 1 ⊕ · · · ⊕ τ̃N(n) has
the uniform distribution in Fn, and thus

πn
d
=
(
τ̃ 1 ⊕ · · · ⊕ τ̃N(n) | SN(n) = n

)
. (7.19)

In words, we can construct a uniformly random πn ∈ Fn from the infinite sequence
(τ̃ i) by composing τ̃ 1, τ̃ 2, . . . until their total length is at least n, and then condition
on the total length being exactly n.

8. Trees in a random tree permutation τ̃

The construction (7.19) suggests that it is useful to study the random variable
occσ(τ̃ ), for a given permutation σ. We do this first for a tree permutation σ.

Lemma 8.1. Let σ be a tree permutation, and let τ̃ be random with the distribution
(7.5). Then,

µσ := E[occσ(τ̃ )] =

{
E |τ̃ | = φ+ 2, |σ| = 1,

p|σ|(1− p)−|σ|
( 1−p
1−2p

)2
= p|σ|/2−2 = φ4−|σ|, |σ| > 2.

(8.1)

E[occσ(τ̃ )k] <∞, ∀k > 1. (8.2)

Proof. First, if |σ| = 1, i.e., σ = 1, then trivially occσ(τ) = |τ | for any permutation
τ , and thus this case of (8.1) follows from Lemma 7.1.

Assume now |σ| > 2, and let an;σ and Aσ(z) be as in Lemma 6.4. Then,∑
τ∈Tn

occσ(τ) = an;σ, (8.3)

and thus it follows from (7.5) that

E occσ(τ̃ ) =
∑
τ∈T∗

occσ(τ)p|τ | =
∑
n>|σ|

pn
∑
τ∈Tn

occσ(τ) =
∑
n>|σ|

pnan;σ = Aσ(p). (8.4)

Consequently, (8.1) follows from (8.4) och (6.4), using (7.4).
Finally, (8.2) follows from (7.10), since occσ(τ) 6 |τ | for any σ. �

Example 8.2. The only tree permutation σ with |σ| = 2 is 21, and occ21(τ) counts
the number of inversions in τ , i.e., the number of edges in Gτ . If τ is a tree permu-
tation, we thus have occ21(τ) = |τ | − 1. Indeed, Lemma 8.1 yields E occ21(τ̃ ) = φ2,
which equals E

[
|τ̃ | − 1

]
= E |τ̃ | − 1 = φ+ 1 given by Lemma 7.1. �

9. Patterns in a random forest permutation

We are now prepared to prove Theorems 3.5 and 3.6 on patterns in πn.

Proof of Theorem 3.5. Let π ∈ Sn have block decomposition π = π1 ⊕ · · · ⊕ πN .
If σ = σ1 ⊕ · · · ⊕ σd occurs as a pattern in π, then each block σj is mapped into
some block πij , but it is possible that several blocks of σ fit in the same block of
π. Let occ′σ(π) be the number of occurrences of σ such that the blocks are mapped
to different blocks in π, i.e., where the function j 7→ ij is injective, and let occ′′σ(π)
denote the number of the remaining occurrences.
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Let us first consider occ′σ, which will be the main term. We have

occ′σ(π) =
∑

16i1<···<id6N

d∏
j=1

occσj (πij ). (9.1)

Thus, by (7.19),

occ′σ(πn)
d
=
( ∑
16i1<···<id6N(n)

d∏
j=1

occσj (τ̃ ij )
∣∣∣ SN(n) = n

)
. (9.2)

This is a conditioned U -statistic of the type in Proposition 5.4, based on the i.i.d.
sequence Xi := τ̃ i, with S = S∗, the (discrete) space of all permutations, and

h(τ) := |τ |; more precisely, we then have occ′σ(πn)
d
=
(
UN(n)(f) | SN(n) = n

)
with

f
(
τ1, . . . , τd

)
:=

d∏
j=1

occσj (τj). (9.3)

Note that (8.2) and Hölder’s inequality imply that E
[∣∣f(τ̃ 1, . . . , τ̃ d)

∣∣p] <∞ for every

p <∞. Similarly, E
[
h(τ̃ 1)

p
]
<∞ by (7.10).

It follows from Proposition 5.4 that (3.4) holds for occ′σ, with some µ̃σ and γ2σ;
note that in the notation of Section 5, by Lemma 7.1,

ν := Eh(τ̃ ) = E |τ̃ | = φ+ 2, (9.4)

and by (5.2), (9.3), the independence of τ̃ i, and (8.1) in Lemma 8.1,

µ = µσ :=
d∏
j=1

E
[
occσj (τ̃ j)

]
=

d∏
j=1

µσj = (φ+ 2)λφ4(d−λ)−(|σ|−λ). (9.5)

Thus, by (5.10), µ̃σ in (3.4) (so far for occ′σ) is given by

µ̃σ =
µσ
νdd!

=
µσ

(φ+ 2)dd!
=

1

d!
(φ+ 2)λ−dφ4d−3λ−|σ|, (9.6)

which yields (3.3).
Similarly, by (5.3),

fi(τ) = occσi(τ)
∏
j 6=i

E occσj (τ̃ j) =
∏
j 6=i

µσj · occσi(τ) =
µσ
µσi

occσi(τ). (9.7)

Suppose that |σi| > 1. We may have, with positive probabilities,

(1) |τ̃ | = 1, and then occσi(τ̃ ) = 0,
(2) τ̃ = σi, and then occσi(τ̃ ) = 1 > 0.

Thus it is impossible to have fi(τ̃ ) = c|τ̃ | a.s., for any real c. Consequently, Propo-
sition 5.3 yields γ2σ > 0 if any block σi with |σi| > 1 exists.

It remains to show that occ′′σ(πn) is negligible. By grouping the blocks of σ that
are mapped into the same block of π, we see that occ′′σ(π) can be written as a sum
over all decompositions σ = σ̃1 ⊕ · · · ⊕ σ̃k with k < d, of the number of occurrences
with each σ̃i mapped into a block of π, with these blocks distinct. (Here σ̃i are
necessarily forest permutations.) It follows, using again (7.19), and N(n) 6 n, that

E occ′′σ(πn) 6
1

P(SN(n)=n)
E occ′′σ

(
τ̃ 1 ⊕ · · · ⊕ τ̃N(n)

)
6 C E occ′′σ

(
τ̃ 1 ⊕ · · · ⊕ τ̃n

)
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= C

d−1∑
k=1

∑
σ̃1,...,σ̃k

∑
16i1<···<ik6n

E
k∏
j=1

occσ̃j (τ̃ ij ). (9.8)

The number of terms in the multiple sum is O
(
nd−1

)
, and each term is O(1), using in-

dependence, the trivial occσ̃j (τ̃ ) 6 |τ̃ ||σj |, and (7.10). Hence, E occ′′σ(πn) = O
(
nd−1

)
,

and (3.4) follows from the result for occ′σ(πn).
Moment convergence follows in the same way, using Proposition 5.5 and Minkowski’s

inequality; we omit the details. �

Proof of Theorem 3.6. We have the trivial identity∑
σ∈Sd

occσ(πn) =

(
n

d

)
. (9.9)

Furthermore, we only have to consider forest permutations σ ∈ Fd in (9.9), since
otherwise occσ(πn) = 0.

Let σ ∈ Fd, and let d′ be its number of blocks. If σ 6= ιd, then d′ < d. If d′ 6 d−2,

then (3.4) implies that occσ(πn)/nd−3/2
p−→ 0, so such terms can be ignored.

The remaining terms in (9.9) have d′ = d − 1, and thus 1 block of length 2 and
d − 2 blocks of length 1. There are d − 1 such permutations; for example, if d = 4,
they are 2134, 1324 and 1243. For each such σ, we have by (3.3)

µ̃σ =
1

(d− 1)!
(φ+ 2)−1φ4(d−1)−3(d−2)−d =

1

(d− 1)!
(φ+ 2)−1φ2, (9.10)

where, see (7.7),

(φ+ 2)−1φ2 =
φ2√
5φ

=
φ√
5

=
5 +
√

5

10
. (9.11)

Hence, Theorem 3.5 yields

occσ(πn)− 5+
√
5

10 (d− 1)!−1nd−1

nd−3/2
d−→ N

(
0, γ2σ

)
, (9.12)

Moreover, the proof of Theorem 3.5 applies also to the sum
∑′

σ occσ over these d−1
permutations σ. (Consider the sum of the corresponding functions (9.3). See also
Remark 3.7.) Thus,∑′

σ occσ(πn)− 5+
√
5

10 (d− 2)!−1nd−1

nd−3/2
d−→ N

(
0, γ2

)
, (9.13)

where γ2 > 0 by the argument in the proof of Theorem 3.5.
As said above, we may add all σ ∈ Fk with less than d − 1 blocks to the sum in

(9.13) without changing the limit. The resulting sum is, by (9.9),∑
σ∈Fd\{ιd}

occσ(πn) =

(
n

d

)
− occιd(πn), (9.14)

and thus (3.5) follows, with γ2ιd = γ2 in (9.13),
Moment convergence follows by the same argument. �

Remark 9.1. The asymptotic variance γ2σ can by (5.11) and (5.5) be computed
from variances and covariances of the occσi(τ̃ ) and |τ̃ |. (See also Remark 5.6 when
σ is a tree permutation, so d = 1.) We do not know any general formula, but at
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least for a specific σ, it should be possible to calculate these using methods similar
to those in the proof of Lemmas 8.1 and 6.4. �

Example 9.2. Consider the simplest example σ = 21, where we count the number
of inversions in a random forest permutation πn. In this case, σ is indecomposable,
so d = 1. Furthermore, by (9.3) and Example 8.2,

f(τ) = occ21(τ) = |τ | − 1 = h(τ)− 1, (9.15)

and thus, using also (9.4),

µ21 = E f(τ̃ ) = ν − 1 = φ+ 1 = φ2, (9.16)

in agreement with (9.5). Hence, by (9.6) (or (3.3)) and (9.11),

µ̃21 =
µ21
ν

=
φ2

φ+ 2
=

5 +
√

5

10
. (9.17)

Moreover, (5.12) yields, using also (7.9) and (7.7),

γ221 =
1

ν
Var
[
|τ̃ | − 1− ν − 1

ν
|τ̃ |
]

= ν−3 Var |τ̃ | = 3φ3

(
√

5φ)3
= 3 · 5−3/2 .

= 0.268.

(9.18)

Consequently, Theorem 3.5 yields

occ21(πn)− 5+
√
5

10 n

n1/2
d−→ N

(
0, 3 · 5−3/2

)
. (9.19)

This implies also that for the case d = 2 of Theorem 3.6, we have γ212 = γ221 =

3 · 5−3/2. �

Note that occ21(πn) equals the number of edges in the forest Gπn , and thus
n − occ21(πn) is the number of components of Gπn , which equals the number of
blocks in πn. Hence, Example 9.2 implies a central limit theorem for the number of
blocks in a random forest permutation:

Theorem 9.3. Let T (πn) be number of blocks in a random forest permutation πn,
i.e., the number of tree permutations in a decomposition (4.1) of πn. Then

T (πn)− 5−
√
5

10 n

n1/2
d−→ N

(
0, 3 · 5−3/2

)
, (9.20)

with convergence of all moments. �

10. Random tree permutations from random blocks

In the remaining sections, we study patterns in a random tree permutation τn. In
analogy with the construction of πn from random tree permutations τ̃ i in Section 7,
we may construct the random tree permutation τn with given length from a code
with blocks of random lengths. There is only one L-block or R-block of each length,
and therefore (cf. (7.5)) we simply let (Li)

∞
1 and (Ri)

∞
1 be two infinite sequences of

random variables, all i.i.d., with the geometric distribution

P(Li = `) = P(Ri = `) = 2−`, ` > 1. (10.1)

We also define the random vector

Xi := (Li, Ri), (10.2)
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and, for a vector x = (`, r),

h(x) := `+ r. (10.3)

We use the notation of Section 5; in particular,

Sm :=
m∑
i=1

h(Xi) =
m∑
i=1

(Li +Ri). (10.4)

For m > 1, let τ ∗
m be the random tree permution that has a code with 2m blocks

of lengths L1, R1, . . . , Lm, Rm, and thus (random) length Sm. Then, for every tree
permutation τ having a code Ωτ with 2m blocks with lengths `1, r1, . . . , `m, rm, by
independence and (10.1),

P
(
τ ∗
m = τ

)
= P

(
L1 = `1, R1 = r1, . . . , Lm = `m, Rm = rm

)
=

m∏
i=1

P(L1 = `i)P(Ri = ri) =

m∏
i=1

2−`i2−ri = 2−|τ |. (10.5)

It follows as in Section 7.1, cf. (7.18)–(7.19), that if τ is a tree permutation of length
n that has 2m blocks in its code, then

P
(
τ ∗
N(n) = τ

)
= P

(
N(n) = m & τ ∗

m = τ
)

= P
(
τ ∗
m = τ

)
= 2−|τ |, (10.6)

which is the same for all τ ∈ Tn, and thus

τn
d
=
(
τ ∗
N(n) | SN(n) = n

)
. (10.7)

Note that XN(n) does not have the same distribution as Xi for a fixed i, see e.g.
[5, Section 2.6]. We will use a simple (coarse) estimate (valid for much more general
Xi and h(Xi)). Define for convenience h(Xi) := 0 for i 6 0.

Lemma 10.1. For any j > 0, k > 1 and n > 1,

P
[
h(XN(n)−j) = k

]
6
(
k + j Eh(X1)

)
P
(
h(X1) = k

)
. (10.8)

Hence, for any q > 0,

E
[
h(XN(n)−j)

q
]
6 E

[
h(X1)

q+1
]

+ j Eh(X1)E
[
h(X1)

q
]
. (10.9)

Proof. Write Yi := h(Xi) and Zi :=
∑j

s=1 Yi+s. If YN(n)−j = k, then there exists
some m > 0 (viz. N(n)−j−1) such that Sm < n, Ym+1 = k, and Sm+Ym+1+Zm+1 >
n. For a given m, Sm, Ym+1 and Zm+1 are independent, and thus

P
(
YN(n)−j = k

)
6
∞∑
m=0

n−1∑
i=0

P
(
Sm = i, Ym+1 = k, k + Zm+1 > n− i

)
=

∞∑
m=0

n−1∑
i=0

P
(
Sm = i

)
P
(
Ym+1 = k

)
P
(
k + Zm+1 > n− i

)
= P

(
Y1 = k

) n−1∑
i=0

∞∑
m=0

P
(
Sm = i

)
P
(
k + Z1 > n− i

)
6 P

(
Y1 = k

) n−1∑
i=0

P
(
k + Z1 > n− i

)
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6 P
(
Y1 = k

) ∞∑
s=1

P
(
k + Z1 > s

)
= P

(
Y1 = k

)
E
(
k + Z1

)
= (k + j EY1)P

(
Y1 = k

)
. (10.10)

This proves (10.8). We obtain (10.9) by multiplying (10.8) by kq and summing over
k. �

We record a simple fact.

Lemma 10.2. We have ELi = ERi = 2, and thus

ν := Eh(Xi) = 4. (10.11)

Proof. By definition, Li
d
= Ri ∼ Ge(1/2), and thus, as is well known, ELi = ERi =

2. (See also (11.16) below.) Hence, (10.11) follows. �

11. Trees in a given tree permutation

We next express the number of occurences of a pattern σ in a tree permutation
using codes and block lengths. We consider here only the case when σ is a tree
permutation.

Lemma 11.1. Let σ be a tree permutation with |σ| > 3 having a code with 2b blocks
of lengths `1, r1, . . . , `b, rb, and let τ be a tree permutation with |τ | > 3 having a code
with 2m blocks of lengths `′1, r

′
1, . . . , `

′
m, r

′
m. Then

occσ(τ) =
m−b∑
s=0

b∏
i=1

αL,i

(
˜̀′
i+s

)
αR,i

(
r̃′i+s

)
(11.1)

where

˜̀′
k := `′k − 1{k = 1, `1 > 1}, (11.2)

r̃′k := r′k − 1{k = m, rb > 1}, (11.3)

and

αL,i(`
′) :=

(
`′ − 1 + 1{i = 1, `1 > 1}+ 1{i = b, rb = 1}

`i − 1 + 1{i = b, rb = 1}

)
, (11.4)

αR,i(r
′) :=

(
r′ − 1 + 1{i = b, rb > 1}+ 1{i = 1, `1 = 1}

ri − 1 + 1{i = 1, `1 = 1}

)
. (11.5)

Proof. The occurrences of σ in τ are described by colourings of Ωτ that can be

obtained as in Lemma 6.3. Consider one such colouring, Ω̂τ say. We find some
properties of it.

(i): Consider first the red symbols in Ω̂τ that correspond to a single block Bj in
Ωσ. These red symbols have the same type (L of R), and there are no other red
symbols between them. It follows from Lemma 6.3 that they have to belong to the
same block, B′k say, in τ , except for the first and last blocks B1 and B2b. If |B1| > 2,
it is also possible that the first L in B1 corresponds to the last in B′k−2, while all
others correspond to red L in B′k (for some odd k > 3). We have a symmetric
situation for the last block B2b if |B2b| > 2. Write k = k(j) for the index of the block

B′k in Ω̂τ that corresponds to Bj . (To be precise in all cases, B′k(j) contains the last

red L in Bj if j is odd, and the first red R in Bj if j is even.)
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(ii): Furthermore, for an L-block B2i−1 in Ωσ, the last L in the corresponding block

B′k(2i−1) in Ω̂τ has to be red, except in the case of the last L-block B2b−1 if |B2b| = 1;

in that exceptional case there is no restriction on the red subset of B′k(2b−1) (except

it having the size `b of B2b−1). For an R-block B2i there is a symmetric condition,
unless i = 1 and |B1| = 1.

(iii): In all cases, k = k(j) ≡ j (mod 2). Moreover, no completely black blocks
can be inserted between the red symbols in two consecutive blocks of Ωσ. Hence,
k(j + 1) = k(j) + 1 for every j < 2b, and thus there exists s ∈ [0,m − b] such that
k(j) = j + 2s for all i.

Conversely, any choice of red symbols satisfying (i)–(iii) for some s ∈ [0,m − b]
gives a colouring of the code Ωτ that can be constructed as in Lemma 6.3, and thus
corresponds to an occurrence of σ in τ .

For each choice of s, the choices of red symbols permitted by (i)–(iii) for an L-

block B2i−1 is αL,i(˜̀′
s+i); note that for 1 < i < b, this is just

(`′i+s−1
`i−1

)
, while for

i = 1 and b there are (possibly) some adjustments that are taken care of by the
indicator functions in (11.2) and (11.4). Similarly, the choices of red symbols for an
R-block B2i is αR,i(r̃

′
s+i). Hence, still for a fixed s, the total number of choices of red

symbols in Ωτ is given by the product in (11.1), because the choices for the different
blocks B1, . . . , B2b can be made independently of each other. Consequently, (11.1)
holds. �

Remark 11.2. The condition |σ| > 3 in Lemma 11.1 excludes the two cases σ =
1 and σ = 21. Recall that both these cases are trivial, with occ1(τ) = |τ | and
occ21(τ) = |τ | − 1 for any tree permutation τ . (The latter because the number of
inversions in τ equals the number of edges in the tree Ωτ .) Note that 21 has the
code LR, so in the notation above, it has b = 1 and `1 = r1 = 1; however, (11.1) is
not valid in this case. �

Recall that b in Lemma 11.1 is denoted b(σ), see Section 4, and that we also have
defined b(1) := 1 for the case σ = 1. For any tree permutation σ we define, for
b = b(σ) vectors xj = (`′j , r

′
j),

fσ
(
x1, . . . , xb

)
:=

b∏
i=1

αL,i

(
`′i
)
αR,i

(
r′i
)
, if |σ| > 3, (11.6)

with αL,i and αR,i given by (11.4)–(11.5), and

fσ(x1) := `′1 + r′1 = h(x1) if |σ| 6 2. (11.7)

(In the exceptional cases 1 and 21 where (11.7) applies, we have b(σ) = 1.)
We compute also some expectations needed later.

Lemma 11.3. Let σ be as in Lemma 11.1 and let αL,i and αR,i be given by (11.4)–
(11.5). Let Li and Ri have the geometric distribution in (10.1). Then,

EαL,i(Li) =
(
1 + 1{i = 1, `1 > 1}

)(
1 + 1{i = b, rb = 1}

)
, (11.8)

EαR,i(Ri) =
(
1 + 1{i = b, rb > 1}

)(
1 + 1{i = 1, `1 = 1}

)
. (11.9)

Proof. In the definition (11.4), there are two special cases: (I) i = 1 and `1 > 1; (II)
i = b and rb = 1. Note that both may occur together, if b = 1; thus there are four
possible combinations.
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Case 1: Neither (I) nor (II). In this case, (11.4) is simply
(
`′−1
`i−1

)
, and thus

EαL,i(Li) = E
(
Li − 1

`i − 1

)
. (11.10)

To compute this binomial moment, we note that the probability generating function
of Li − 1 is, by (10.1),

gL−1(z) :=
∞∑
`=1

z`−12−` =
1/2

1− z/2
=

1

2− z
, (11.11)

and thus,

E
(
Li − 1

k

)
=

1

k!

dk

dzk
gL−1(1) = 1, k > 0. (11.12)

(Alternatively, compute [zk]gL−1(1 + z).) Hence, in this case,

EαL,i(Li) = 1. (11.13)

Case 2: (I) but not (II). Then, `1 > 2 and (11.4) yields

EαL,i(Li) = E
(

Li
`i − 1

)
. (11.14)

The probability generating function of Li is, by (11.11),

gL(z) = zgL−1(z) =
z

2− z
=

2

2− z
− 1, (11.15)

and thus,

E
(
Li
k

)
=

1

k!

dk

dzk
gL(1) = 2, k > 1. (11.16)

(Alternatively, use (11.12) and
(
Li
k

)
=
(
Li−1
k

)
+
(
Li−1
k−1

)
.) Hence, (11.14) yields

EαL,i(Li) = 2. (11.17)

Case 3: (II) but not (I). Then, (11.4) yields, using (11.16),

EαL,i(Li) = E
(
Li
`i

)
= 2. (11.18)

Case 4: Both (I) and (II). Then, b = i = 1, `1 > 2, and (11.4) yields

EαL,i(Li) = E
(
Li + 1

`i

)
. (11.19)

The probability generating function of Li + 1 is, by (11.15),

gL+1(z) = zgL(z) =
2z

2− z
− z =

4

2− z
− 2− z, (11.20)

and thus,

E
(
Li + 1

k

)
=

1

k!

dk

dzk
gL(1) = 4, k > 2. (11.21)

(Alternatively, use (11.16) and
(
Li+1
k

)
=
(
Li
k

)
+
(
Li
k−1
)
.) Hence, by (11.19),

EαL,i(Li) = 4. (11.22)
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We may summarize the four cases (11.13), (11.17), (11.18) and (11.22) as (11.8).
Similarly, by only notational changes, (11.5) yields (11.9). �

Lemma 11.4. Let σ be any tree permutation, let b := b(σ), and let (Xi)i be the i.i.d.
random vectors defined in (10.2). Then

E fσ
(
X1, . . . , Xb

)
= 4. (11.23)

Proof. The case |σ| 6 2 is immediate by (11.7) and Lemma 10.2.
Assume thus |σ| > 3. Then, by (11.6), independence, and Lemma 11.3,

E fσ(X1, . . . , Xb) = E
b∏
i=1

αL,i

(
Li
)
αR,i

(
Ri
)

=
b∏
i=1

EαL,i

(
Li
) b∏
i=1

EαR,i

(
Ri
)

=
(
1 + 1{`1 > 1}

)(
1 + 1{rb = 1}

)
·
(
1 + 1{rb > 1}

)(
1 + 1{`1 = 1}

)
=
(
1 + 1{`1 > 1}

)(
1 + 1{`1 = 1}

)
·
(
1 + 1{rb = 1}

)(
1 + 1{rb > 1}

)
= (1 + 1)(1 + 1) = 4, (11.24)

which completes the proof. �

We have no simple explanation for the, perhaps surprising, fact that the expecta-
tion (11.23) is the same for every tree permutation σ, cf. Problem 3.4.

12. Patterns in a random tree permutation of given length

We next consider the occurrences of a pattern σ in a random tree permutation
τn. We use the construction and notation in Sections 10 and 5. In particular, Xn

and Sm are defined by (10.1)–(10.4) and N(n) by (5.9).
We first consider the case of a tree permutation σ. Recall fσ defined by (11.6)–

(11.7).

Lemma 12.1. Let σ be a tree permutation and let b := b(σ). Then

occσ(τn)
d
=
(N(n)−b∑

s=0

fσ
(
Xs+1, . . . , Xs+b

) ∣∣∣ SN(n) = n
)

+OL∗(1). (12.1)

Proof. Assume first |σ| > 3, so fσ is given by (11.6). Recall τ ∗
m defined in Section 10,

and note that τ ∗
N(n) is a tree permutation having a code with 2N(n) blocks of lengths

L1, . . . , RN(n). Lemma 11.1 thus shows that

occσ
(
τ ∗
N(n)

)
=

N(n)−b∑
s=0

b∏
i=1

αL,i

(
Li+s − 1{s = 0, i = 1, `1 > 1}

)
· αR,i

(
Ri+s − 1{s = N(n)− b, i = b, rb > 1}

)
. (12.2)

Except in the extreme cases s = 0 and s = N(n) −m, the product in the sum in
(12.2) is

b∏
i=1

αL,i

(
Li+s

)
αR,i

(
Ri+s

)
= fσ

(
Xs+1, . . . , Xs+b

)
. (12.3)
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In the cases s = 0 and s = N(n)− b, the product might be smaller, but is still > 0.
Hence, (12.2) yields

N(n)−b−1∑
s=1

fσ
(
Xs+1, . . . , Xs+b

)
6 occσ

(
τ ∗
N(n)

)
6

N(n)−b∑
s=0

fσ
(
Xs+1, . . . , Xs+b

)
. (12.4)

We claim that

fσ
(
X1, . . . , Xb

)
, fσ

(
XN(n)−b+1, . . . , XN(n)

)
= OL∗(1). (12.5)

This implies that the difference of the first and last sums in (12.4) is OL∗(1), and
thus

occσ
(
τ ∗
N(n)

)
=

N(n)−b∑
s=0

fσ
(
Xs+1, . . . , Xs+b

)
+OL∗(1). (12.6)

To show (12.5), note first that (11.6) and (11.4)–(11.5) imply that

fσ(Xk+1, . . . , Xk+b) 6
b∏
i=1

(Lk+i +Rk+i)
c =

b∏
i=1

h(Xk+i)
c, (12.7)

for some c <∞ depending on σ only. Hence, using Hölder’s inequality, (12.5) follows
if we show that for every q <∞ and every j ∈ [1, b],

Eh(Xj)
q = O(1), Eh(XN(n)−b+j)

q = O(1), (12.8)

The first part is trivial, since for any fixed j, we have Eh(Xj)
q = Eh(X1)

q < ∞.
The second part follows from Lemma 10.1.

Hence, (12.6) holds, and (12.1) follows by conditioning on SN(n) = n, recall-
ing (10.7). Note that the error term OL∗(1) survives this conditioning, because
P(SN(n) = n)→ 1/Eh(X1) > 0, see e.g. [5, Theorem 2.4.2], and thus for any q <∞,

E
[
|OL∗(1)|q | SN(n) = n

]
6

E
[
|OL∗(1)|q

]
P
[
SN(n) = n

] = O(1). (12.9)

Finally, if |σ| 6 2, then b = 1 and

N(n)−b∑
s=0

fσ(Xs+1) =

N(n)−1∑
s=0

h(Xs+1) = SN(n). (12.10)

Furthermore, occσ(τn) = n or n− 1, and thus (12.1) is trivial. �

The sum in (12.1) is a constrained U -statistic of the type in (5.17), with d = 1
and b1 = b(σ). We extend Lemma 12.1 to forest permutations σ.

Lemma 12.2. Let σ be a forest permutation with block decomposition σ = σ1⊕· · ·⊕
σd. Let bj := b(σj), and define

fσ
(
(x1i)

b1
i=1, . . . , (xdi)

bd
i=1

)
:=

d∏
j=1

fσj
(
xj1, . . . , xjbj

)
. (12.11)

Then

occσ(τn)
d
=
(
ÛN(n)(fσ)

∣∣∣ SN(n) = n
)

+OL∗(n
d−1). (12.12)
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Proof. Recall again τ ∗
m from Section 10, and consider first occσ(τ ∗

m), for some given
m. By definition, τ ∗

m has 2m blocks, which we denote by B′1, . . . , B
′
2m.

As before, we mark an occurrence of σ in τ = τ ∗
m by colouring the corresponding

symbols in the code Ωτ red (and the remaining ones black). Then each σj corresponds
to a set of red symbols, Aj say; these sets Aj are subsets of {1, . . . , |τm|}.

As in (5.13), let b′j := bj − 1. For each σj with |σj | > 3, the red symbols Aj
are as in the proof of Lemma 11.1, and they lie in some blocks B′2ij−1, . . . , B

′
2(ij+b′j)

,

possibly also with a red symbol in B′2ij−3 or B′2(ij+b′j)+2.

If |σj | = 2, so σj = 21, then the red symbols in Aj are an L and an R forming
an edge, and thus described by Lemma 4.1(e1)–(e3); we then define ij so that the L
belong to B′2ij−1 (and thus the R to B′2ij or B′2ij+2).

Finally, if σj = 1, Aj is a single red symbol, which can be either L or R; we define
ij such that this symbol belongs to B′2ij−1 or B′2ij .

The sets Aj follow each other in order, and thus we must have 1 6 i1 6 i2 6
. . . id 6 m. (Equality is possible, e.g. if |σj | = 1.) Moreover, for a given sequence
i1, . . . , id, if all gaps ij+1 − ij > 3, then the sets Aj can be chosen independently,
without interfering with each other (by colliding, having symbols in wrong order, or
causing edges between two of them). If furthermore i1 > 1 and id + b′d < m, the

number of choices for each σj with |σj | > 3 is fσj
(
Xij , . . . , Xij+b′j

)
by the proof of

Lemma 11.1. The same holds for |σj | 6 2 by the definition (11.7): if σj = 1, then
Aj is one of the Lij + Rij symbols in B′2ij−1 ∪ B

′
2ij

; if σ = 21, then Aj consists

of an L in B′2ij−1 and an R in B′2ij or B′2ij+2 chosen according to one of (e1)–

(e3) in Lemma 4.1, and this too gives Lij + Rij choices. (Note that (e1) and (e2)
overlap in one possibility.) Hence, for such i1, . . . , id the number of possible choices
of A1, . . . , Ad is

d∏
j=1

fσj
(
Xij , . . . , Xij+b′j

)
= fσ

(
(Xi)

i1+b′1
i=i1

, . . . , (Xi)
id+b

′
d

i=id

)
. (12.13)

If some gap ij+1 − ij 6 2, the number of possibilities may be smaller, but we may
conclude that, recalling the definition (5.17),∣∣occσ

(
τ ∗
m

)
− Ûm(fσ)

∣∣ 6∑*
fσ
(
(Xi)

i1+b′1
i=i1

, . . . , (Xi)
id+b

′
d

i=id

)
, (12.14)

where
∑* denotes the sum over i1, . . . , id ∈ [1,m − b′d] such that either i1 = 1,

id = m− b′d, or ij 6 ij+1 6 ij + 2 for some j.
We now take m = N(n), condition on SN(n) = n and use (10.7). It remains only

to show that the sum in (12.14) (with m = N(n)) is OL∗(n
d−1); this then survives

the conditioning as in (12.9). To see this, consider first the terms with i1 = 1 or
ij 6 ij+1 6 ij + 2 for some i. Since m = N(n) 6 n, we may extend the sum to all

i1, . . . , id ∈ [1, n] satisfying one of these conditions. This is a sum of O(nd−1) terms,
and each term is OL∗(1) by (12.11), (12.7)–(12.8) and Hölder’s inequality. Hence the
sum of these terms is OL∗(n

d−1) by Minkowski’s inequality.
The remaining sum consists of terms with id = m− b′d = N(n)− b′d, and is thus

6 fσd
(
XN(n)−b′d , . . . , XN(n)

) n∑
i1,...,id−1=1

d−1∏
j=1

fσj
(
Xij , . . . , Xij+b′j

)
. (12.15)
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The first factor is OL∗(1) as shown in (12.7)–(12.8), and the sum is again a sum
of O(nd−1) terms that are OL∗(1), and thus this sum is OL∗(n

d−1) by Minkowski’s
inequality. Hence, (12.15) is OL∗(n

d−1) by Hölder’s inequality, which completes the
proof. �

Proof of Theorem 3.1. Lemma 12.2 and Proposition 5.11 show that

occσ(τn)− µν−dd!−1nd

nd−1/2
d−→ N

(
0, γ2

)
, (12.16)

with convergence of all moments by Proposition 5.12; note that E |f(X1, . . . , XD)|p <
∞ and Eh(X1)

p <∞ for every p <∞ by (12.11), (12.5), and (12.8). Furthermore,
(12.11) and Lemma 11.4 imply that

µ = E f(X1, . . . , XD) =
d∏
j=1

E fσj (X1, . . . , Xbj ) = 4d, (12.17)

while ν = 4 by Lemma 10.2. Hence, µν−d = 1, and (3.1) follows from (12.16).
To see that γ2 > 0 if some |σj | > 3, we use the criterion in Proposition 5.9. By

(5.22) and (12.11),

fσ,j(x1, . . . , xbj ) = fσj (x1, . . . , xbj )
∏
i 6=j

E fσi
(
X1, . . . , Xbi

)
= cfσj (x1, . . . , xbj )

(12.18)

for some constant c > 0. Now suppose that |σj | > 3. Then, (12.18), (11.6) and

(11.4)–(11.5) show that, with xi = (`′i, r
′
i), fσ,j(x1, . . . , xbj ) is a polynomial in {`′i, r′i}

of total degree

δj :=

bj∑
i=1

(
`i − 1 + ri − 1

)
+ 1{rbj = 1}+ 1{`1 = 1}. (12.19)

We see also that the polynomial has only one term with this degree, and that this
term has a positive coefficient. Note further that

δj >
(
`1 − 1 + 1{`1 = 1}

)
+
(
rbj − 1 + 1{rbj = 1}

)
> 2. (12.20)

In particular, if we take x1 = · · · = xbj = (s, s), then fσ,j(x1, . . . , xbj ) is a polynomial
in s of degree δj > 2. Hence, if we fix any n > 2bj , and consider the event (which
has positive probability)

Xi = (Li, Ri) =

{
(s, s), bj < i 6 2bj ,

(1, 1), otherwise
(12.21)

for an integer s > 1, we see that Sn(fσ,j) defined in (5.23) is a polynomial in s of
degree δj > 2. Furthermore, on the same event, Sn(h) is a polynomial in s of degree

1, and thus, Sn
(
fσ,j−

µ
ν h
)

is a non-constant polynomial in s. Consequently, the con-

dition in Proposition 5.9 cannot be satisfied for fσ,j −
µ
ν h, and thus Proposition 5.10

shows that γ2 > 0. �

We compute the asymptotic variance γ2 only in a simple special case.
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Example 12.3. Suppose that σ is a tree permutation with b(σ) = 1; thus its code

has only two blocks, of lengths `1 = ` and r1 = r. Then, the U -statistic ÛN (fσ) in
(12.12) is simply a partial sum:

ÛN (fσ) =
N∑
i=1

fσ(Xi) = SN (fσ). (12.22)

This is the special case d = 1 of an unconstrained U -statistic discussed in Remark 5.6,
and (5.12) yields, since µ = ν = 4 by (12.17) and (10.11),

γ2 =
1

4
Var
[
fσ(X)− h(X)

]
=

1

4

(
Var
[
fσ(X)

]
− 2 Cov

[
fσ(X), h(X)

]
+ Var

[
h(X)

])
, (12.23)

where X = (L,R) with independent L,R ∼ Ge(1/2) as in (10.1)–(10.2). We recall
that EL = ER = 2. A simple calculation, for example using (11.16), yields VarL =
VarR = 2 and thus Varh(X) = Var(L+R) = 4.

We consider several cases.

Case 1: ` = r = 1. This means Ωσ = LR, and thus σ = 21. As we have seen earlier,
this case is trivial and occσ(τn) is deterministic. Indeed, we have fσ = h and thus
(12.23) yields γ2 = 0.

Case 2: ` > 1, r = 1. This means that σ is the permutation 23 · · · (`+ 1)1.
By (11.6) and (11.4)–(11.5),

fσ(L,R) = αL,1(L)αR,1(R) =

(
L+ 1

`

)(
R− 1

0

)
=

(
L+ 1

`

)
. (12.24)

We have, using (11.21),

E
[
L

(
L+ 1

`

)]
= (`− 1)E

(
L+ 1

`

)
+ (`+ 1)E

(
L+ 1

`+ 1

)
= 8`, ` > 2, (12.25)

and thus (12.23) yields, using also EL2 = 6,

γ2 =
1

4
Var

[(
L+ 1

`

)
− (L+R)

]
=

1

4

(
Var

[(
L+ 1

`

)
− L

]
+ 2

)
=

1

4

(
E

[((
L+ 1

`

)
− L

)2
]
− 2

)
=

1

4
E

[(
L+ 1

`

)2
]
− 4`+ 1. (12.26)

This can easily be evaluated for any ` > 2, although we do not know a closed formula.

Case 3: ` = 1, r > 1. This means that σ is the permutation (r + 1)1 · · · r ∈ Tr+1.
This case is the same as the preceding one, if we exchange `↔ r and L↔ R.

Case 4: ` > 1, r > 1. This means that σ = 2 · · · `(`+ r)1(`+ 1) · · · (`+ r − 1). By
(11.6) and (11.4)–(11.5),

fσ(L,R) = αL,1(L)αR,1(R) =

(
L

`− 1

)(
R

r − 1

)
. (12.27)

We have, using (11.16),

E
[
L

(
L

`− 1

)]
= (`− 1)E

(
L

`− 1

)
+ `E

(
L

`

)
= 4`− 2, ` > 2, (12.28)
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and thus (12.23) yields

γ2 =
1

4
E

[((
L

`− 1

)(
R

r − 1

)
− L−R

)2
]

=
1

4
E

[(
L

`− 1

)2
]
E

[(
R

r − 1

)2
]
− 1

2
E
[(

L

`− 1

)(
R

r − 1

)
(L+R)

]
+

1

4
E(L+R)2

=
1

4
E

[(
L

`− 1

)2
]
E

[(
R

r − 1

)2
]
− 4(`+ r) + 9. (12.29)

Again, this is easily evaluated for any `, r > 2.
Some numerical values for small ` and r are given in Table 1. These values are

integers (but they do not seem to correspond to any integer sequence in [13]); we
conjecture that γ2(`, r) is an integer for all `, r > 1, but we have no proof.

Note that γ2(1, 3) 6= γ2(2, 2), which verifies our claim after Corollary 3.2 that γ2σ
can differ for different tree permutations σ, even if they have the same length. �

Problem 12.4. In Example 12.3, is γ2 an integer for every `, r > 1?

Problem 12.5. Is γ2σ an integer for every tree permutation σ? For every forest
permutation σ?

`\r 1 2 3 4 5

1 0 6 52 306 1664
2 6 2 28 174 944
3 52 28 154 800 4150
4 306 174 800 3946 20196
5 1664 944 4150 20196 103010

Table 1. Some numerical values of γ2 = γ2(`, r) in Example 12.3.
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