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Abstract. For each n ≥ 1, let Xn,1, . . . , Xn,Nn be real random variables and

Sn =
∑Nn

i=1Xn,i. Let mn ≥ 1 be an integer. Suppose (Xn,1, . . . , Xn,Nn ) is

mn-dependent, E(Xni) = 0, E(X2
ni) <∞ and σ2

n := E(S2
n) > 0 for all n and

i. Then,

dW

(Sn

σn
, Z
)
≤ 30

{
c1/3 + 12Un(c/2)1/2

}
for all n ≥ 1 and c > 0,

where dW is Wasserstein distance, Z a standard normal random variable and

Un(c) =
mn

σ2
n

Nn∑
i=1

E
[
X2

n,i 1
{
|Xn,i| > cσn/mn

}]
.

Among other things, this estimate of dW
(
Sn/σn, Z

)
yields a similar estimate

of dTV

(
Sn/σn, Z

)
where dTV is total variation distance.

1. Introduction

Central limit theorems (CLTs) for m-dependent random variables have a long
history. Pioneering results, for a fixed m, were given by Hoeffding and Robbins [15]
and Diananda [11] (for m-dependent sequences), and Orey [17] (more generally,
and also for triangular arrays). These results were then extended to the case of
increasing m = mn; see e.g. Bergström [1], Berk [2], Rio [20], Romano and Wolf
[22], and Utev [24], [25].

Obviously, CLTs for m-dependent random variables are often corollaries of more
general results obtained under mixing conditions. A number of CLTs under mix-
ing conditions are actually available. Without any claim of being exhaustive, we
mention [3], [10], [18], [20], [24], [25] and references therein. However, mixing con-
ditions are not directly related to our purposes (as stated below) and they will not
be discussed further.

This paper deals with an (mn)-dependent array of random variables, where (mn)
is any sequence of integers, and provides an upper bound for the Wasserstein dis-
tance between the standard normal law and the distribution of the normalized
partial sums. A related bound for the total variation distance is obtained as well.
To be more precise, we need some notation.
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For each n ≥ 1, let 1 ≤ mn ≤ Nn be integers, (Xn,1, . . . , Xn,Nn) a collection of
real random variables, and

Sn =

Nn∑
i=1

Xn,i.

Suppose

(Xn,1, . . . , Xn,Nn) is mn-dependent for every n,(1)

E(Xni) = 0, E(X2
ni) <∞, σ2

n := E(S2
n) > 0 for all n and i,(2)

and define

Un(c) =
mn

σ2
n

Nn∑
i=1

E
[
X2
n,i 1

{
|Xn,i| > cσn/mn

}]
for all c > 0.

Our main result (Theorem 4) is that

dW

(Sn
σn
, Z
)
≤ 30

{
c1/3 + 12Un(c/2)1/2

}
for all n ≥ 1 and c > 0,(3)

where dW is Wasserstein distance and Z a standard normal random variable.

Inequality (3) provides a quantitative estimate of dW
(
Sn/σn, Z

)
. The connec-

tions between (3) and other analogous results are discussed in Remark 12 and
Section 4. To our knowledge, however, no similar estimate of dW

(
Sn/σn, Z

)
is

available under conditions (1)–(2) only. In addition, inequality (3) implies the
following useful result:

Theorem 1 (Utev [24, 25]). Sn/σn
dist−→ Z provided conditions (1)–(2) hold and

Un(c)→ 0 for every c > 0.

Based on inequality (3), we also obtain quantitative bounds for dK
(
Sn/σn, Z

)
and dTV

(
Sn/σn, Z

)
, where dK and dTV are Kolmogorov distance and total varia-

tion distance, respectively. As to dK , it suffices to recall that

dK

(Sn
σn
, Z
)
≤ 2

√
dW

(Sn
σn
, Z
)

;

see Lemma 2. To estimate dTV , define

ln = 2

∫ ∞
0

t |φn(t)| dt

where φn is the characteristic function of Sn/σn. By a result in [19] (see Theorem
3 below),

dTV

(Sn
σn
, Z
)
≤ 2 dW

(Sn
σn
, Z
)1/2

+ l2/3n dW

(Sn
σn
, Z
)1/3

.

Hence, dTV
(
Sn/σn, Z

)
can be upper bounded via inequality (3). For instance, in

addition to (1)–(2), suppose Xni ∈ L∞ for all n and i and define

cn =
2mn

σn
max
i
‖Xni‖∞.

On noting that Un(cn/2) = 0, one obtains

dTV

(Sn
σn
, Z
)
≤
√

120 c1/6n + 301/3 l2/3n c1/9n .
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The rest of this paper is organized as follows. Section 2 just recalls some def-
initions and known results, Section 3 is devoted to proving inequality (3), while
Section 4 investigates dTV

(
Sn/σn, Z

)
and the convergence rate provided by (3).

Section 5 contains some examples that illustrate the main results. Section 6 ends
the paper with an extension that does not require (mn)-dependence (but uses some
other conditions).

The numerical constants in our results are obviously not best possible; we have
not tried to optimize them. More important are the powers, c1/3 and Un(c/2)1/2

in (3) and similar powers in other results; we do not believe that these are optimal.
This is discussed in Section 4. How far (3) can be improved, however, is essentially
an open problem.

2. Preliminaries

The same notation as in Section 1 is adopted in the sequel. It is implicitly
assumed that, for each n ≥ 1, the variables (Xni : 1 ≤ i ≤ Nn) are defined on the
same probability space (which may depend on n).

Let k ≥ 0 be an integer. A (finite or infinite) sequence (Yi) of random variables
is k-dependent if (Yi : i ≤ j) is independent of (Yi : i > j + k) for every j. In
particular, 0-dependent is the same as independent. Given a sequence (kn) of non-
negative integers, an array (Yni : n ≥ 1, 1 ≤ i ≤ Nn) is said to be (kn)-dependent
if (Yni : 1 ≤ i ≤ Nn) is kn-dependent for every n.

Let X and Y be real random variables. Three well known distances between
their probability distributions are Wasserstein’s, Kologorov’s and total variation.
Kolmogorov distance and total variation distance are, respectively,

dK(X,Y ) = sup
t∈R
|P (X ≤ t)− P (Y ≤ t)| and

dTV (X,Y ) = sup
A∈B(R)

|P (X ∈ A)− P (Y ∈ A)|.

Under the assumption E|X|+ E|Y | <∞, Wasserstein distance is

dW (X,Y ) = inf
U∼X,V∼Y

E|U − V |

where inf is over the real random variables U and V , defined on the same probability
space, such that U ∼ X and V ∼ Y . Equivalently,

dW (X,Y ) =

∫ ∞
−∞
|P (X ≤ t)− P (Y ≤ t)| dt = sup

f
|Ef(X)− Ef(Y )|

where sup is over the 1-Lipschitz functions f : R→ R. The next lemma is certainly
known, but we give a proof since we do not know of any reference for the first
claims.

Lemma 2. Suppose EX2 ≤ 1, EY 2 ≤ 1 and EY = 0. Then,

dW (X,Y ) ≤
√

2,

dW (X,Y ) ≤ 4
√
dK(X,Y ).

If Y ∼ N(0, 1), we also have

dK(X,Y ) ≤ 2
√
dW (X,Y ).
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Proof. Take U independent of V with U ∼ X and V ∼ Y . Then,

dW (X,Y ) ≤ E|U − V | ≤
{
E
(
(U − V )2

)}1/2 ≤ √2.

Moreover, for each c > 0,

dW (X,Y ) =

∫ ∞
−∞
|P (X ≤ t)− P (Y ≤ t)| dt

≤ 2 c dK(X,Y ) +

∫ ∞
c

|P (X > t)− P (Y > t)| dt

+

∫ ∞
c

|P (−X > t)− P (−Y > t)| dt

≤ 2 c dK(X,Y ) +

∫ ∞
c

{
P (|X| > t) + P (|Y | > t)

}
dt

≤ 2 c dK(X,Y ) +

∫ ∞
c

2

t2
dt = 2 c dK(X,Y ) +

2

c
.

Hence, letting c = dK(X,Y )−1/2, one obtains dW (X,Y ) ≤ 4
√
dK(X,Y ).

Finally, if Y ∼ N(0, 1), it is well known that dK(X,Y ) ≤ 2
√
dW (X,Y ); see e.g.

[7, Theorem 3.3]. �

Finally, under some conditions, dTV can be estimated through dW . We report a
result which allows this; in our setting we simply take V = 1 below.

Theorem 3 (A version of [19, Theorem 1]). Let Xn, V, Z be real random variables,
and suppose that Z ∼ N(0, 1), V > 0, EV 2 = EX2

n = 1 for all n, and V is
independent of Z. Let φn be the characteristic function of Xn, and

ln = 2

∫ ∞
0

t |φn(t)| dt.

Then,

dTV (Xn, V Z) ≤
{

1 + E(1/V )
}
dW (Xn, V Z)1/2 + l2/3n dW (Xn, V Z)1/3

for each n.

Proof. This is essentially a special case of [19, Theorem 1], with β = 2 and the
constant k made explicit. Also, the assumption dW (Xn, V Z)→ 0 in [19, Theorem

1] is not needed; we use instead dW (Xn, V Z) ≤
√

2 from Lemma 2. Using this and
EX2

n = 1, the various constants appearing in the proof can be explicitly evaluated.
In fact, improving the argument in [19] slightly by using P (|Xn| > t) ≤ EX2

n/t
2 =

t−2, and as just said using dW (Xn, V Z) ≤
√

2, we can take k∗ = 5 + 4
√

2 in the
proof. After simple calculations, this implies that the constant k in [19] can be
taken as

k =
1

2
· 3

2
· 21/3(5 + 4

√
2)1/3π−2/3 < 1.

�
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3. An upper bound for Wasserstein distance

As noted in Section 1, our main result is:

Theorem 4. Under conditions (1)–(2),

dW

(Sn
σn
, Z
)
≤ 30

{
c1/3 + 12Un(c/2)1/2

}
for all n ≥ 1 and c > 0, where Z denotes a standard normal random variable.

Before proceeding, we note a simple special case for bounded random variables.

Corollary 5. Suppose that conditions (1)–(2) hold and

max
i
|Xn,i| ≤ σnγn a.s. for some constants γn.(4)

Then,

dW

(Sn
σn
, Z
)
≤ 30 · 21/3 (mnγn)1/3 ≤ 40 (mnγn)1/3,

where Z denotes a standard normal random variable.

Proof. Take c = 2mnγn in Theorem 4 and note that Un(c/2) = 0. �

In turn, Theorem 4 follows from the following result, which is a sharper version
of the special case mn = 1.

Theorem 6. Let X1, . . . , XN be real random variables and S =
∑N
i=1Xi. Suppose

(X1, . . . , XN ) is 1-dependent and

E(Xi) = 0, E(X2
i ) <∞ for all i and σ2 := E(S2) > 0.

Then,

dW

(S
σ
, Z
)
≤ 30

{
c1/3 + 6L(c)1/2

}
for all c > 0,

where Z is a standard normal random variable and

L(c) =
1

σ2

N∑
i=1

E
[
X2
i 1
{
|Xi| > cσ

}]
.

To deduce Theorem 4 from Theorem 6, define Mn = dNn/mne, Xn,i = 0 for
i > Nn, and

Yn,i =

imn∑
j=(i−1)mn+1

Xn,j for i = 1, . . . ,Mn.

Since (Yn,1, . . . , Yn,Mn) is 1-dependent and
∑
i Yn,i =

∑
iXn,i = Sn, Theorem 6

implies

dW

(Sn
σn
, Z
)
≤ 30

{
c1/3 + 6Ln(c)1/2

}
(5)

where

Ln(c) =
1

σ2
n

Mn∑
i=1

E
[
Y 2
n,i 1

{
|Yn,i| > cσn

}]
.

Therefore, to obtain Theorem 4, it suffices to note the following inequality:
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Lemma 7. With notations as above, for every c > 0,

Ln(2c) ≤ 4Un(c).

In the rest of this section, we prove Lemma 7 and Theorem 6. We also obtain a
(very small) improvement of Utev’s Theorem 1.

3.1. Proof of Lemma 7 and Utev’s theorem.

Proof of Lemma 7. Fix c > 0 and define

Vn,i =

imn∑
j=(i−1)mn+1

Xn,j 1{|Xn,j | > cσn/mn}.

Since |Yn,i| ≤ |Vn,i|+ c σn, one obtains

|Yn,i| 1{|Yn,i| > 2 c σn} ≤
(
|Vn,i|+ c σn

)
1{|Vn,i| > cσn} ≤ 2 |Vn,i|.

Therefore,

σ2
n Ln(2c) =

Mn∑
i=1

E
[
Y 2
n,i 1{|Yn,i| > 2 c σn}

]
≤ 4

Mn∑
i=1

E(V 2
n,i)

≤ 4mn

Mn∑
i=1

imn∑
j=(i−1)mn+1

E
[
X2
n,j 1{|Xn,j | > cσn/mn}

]
= 4mn

Nn∑
i=1

E
[
X2
n,i 1{|Xn,i| > cσn/mn}

]
= 4σ2

n Un(c).

�

We also note that, because of (5), Theorem 6 implies:

Corollary 8. Sn/σn
dist−→ Z if conditions (1)–(2) hold and Ln(c) → 0 for every

c > 0.

Corollary 8 slightly improves Theorem 1. In fact, Un(c)→ 0 for all c > 0 implies
Ln(c)→ 0 for all c > 0, because of Lemma 7, but the converse is not true.

Example 9. (Ln(c) → 0 does not imply Un(c) → 0). Let (Vn : n ≥ 1) be an
i.i.d. sequence of real random variables such that V1 is absolutely continuous with
density f(x) = (3/2)x−4 1[1,∞)(|x|). Let mn and tn be positive integers such that
mn →∞. Define Nn = mn (tn + 1) and

Xn,i = Vi if 1 ≤ i ≤ mntn and Xn,i = Vmntn+1 if mntn < i ≤ mn(tn + 1).

Define also

Tn =

∑mn
j=1 Vj√
mn

.

Then, EV 2
1 = 3, σ2

n = 3 (mntn +m2
n) and

Ln(c) =
1

σ2
n

Mn∑
i=1

E
[
Y 2
n,i 1{|Yn,i| > cσn}

]
≤ 1

σ2
n

tn∑
i=1

E
[
Y 2
n,i 1{|Yn,i| > cσn}

]
+

3m2
n

σ2
n

=
mntn
σ2
n

E
[
T 2
n 1{|Tn| > cσn/

√
mn}

]
+

3m2
n

σ2
n

.
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If mn = o(tn), then m2
n/σ

2
n → 0, mntn/σ

2
n → 1/3 and σn/

√
mn → ∞. Moreover,

the sequence (T 2
n) is uniformly integrable (since Tn

dist−→ N(0, 3) with (trivial) con-
vergence of second moments). Hence, if mn = o(tn), one obtains, for every c > 0,

lim sup
n

Ln(c) ≤ 1

3
lim sup

n
E
[
T 2
n 1{|Tn| > cσn/

√
mn}

]
= 0.

However,

Un(c) =
mn

σ2
n

Nn∑
i=1

E
[
X2
n,i 1{|Xn,i| > cσn/mn}

]
=
mnNn
σ2
n

E
[
V 2
1 1{|V1| > cσn/mn}

]
=

3mnNn
σ2
n

∫ ∞
c σn/mn

x−2dx =
3Nn
c σ2

n

m2
n

σn
≥ 3tnm

3
n

c(6mntn)3/2

for each n such that c σn/mn ≥ 1 and mn ≤ tn. Therefore, Ln(c) → 0 and
Un(c) → ∞ for all c > 0 whenever mn = o(tn) and tn = o(m3

n). This happens, for
instance, if mn →∞ and tn = m2

n.

3.2. Proof of Theorem 6. Our proof of Theorem 6 requires three lemmas. A
result by Röllin [21] plays a crucial role in one of them (Lemma 11).

In this subsection, X1, . . . , XN are real random variables and S =
∑N
i=1Xi. We

assume that (X1, . . . , XN ) is 1-dependent and

E(Xi) = 0, E(X2
i ) <∞ for all i and σ2 := E(S2) > 0.

Moreover, Z is a standard normal random variable independent of (X1, . . . , XN ).

For each i = 1, . . . , N , define

Yi = Xi − E(Xi | Fi−1) + E(Xi+1 | Fi)

where F0 is the trivial σ-field, Fi = σ(X1, . . . , Xi) and XN+1 = 0. Then,

E(Yi | Fi−1) = 0 for all i and

N∑
i=1

Yi =

N∑
i=1

Xi = S a.s.

Lemma 10. Let γ > 0 be a constant and V 2 =
∑N
i=1E(Y 2

i | Fi−1). Then,

E
{(V 2

σ2
− 1
)2}
≤ 16 γ2

provided maxi|Xi| ≤ σ γ/3 a.s.

Proof. First note that

σ2 = E(S2) = E
{( N∑

i=1

Yi
)2}

=

N∑
i=1

E(Y 2
i ) = E

( N∑
i=1

Y 2
i

)
.

Moreover, since maxi|Yi| ≤ γ σ a.s., one obtains

N∑
i=1

E(Y 4
i ) ≤ γ2σ2

N∑
i=1

E(Y 2
i ) = γ2σ4.
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Therefore,

E
{(V 2

σ2
− 1
)2}
≤ 2

σ4

{
E
[( N∑

i=1

(E(Y 2
i | Fi−1)− Y 2

i )
)2]

+ Var
( N∑
i=1

Y 2
i

)}
=

2

σ4

{ N∑
i=1

E
(
Y 4
i − E(Y 2

i | Fi−1)2
)

+

N∑
i=1

Var(Y 2
i )

+ 2
∑

1≤i<j≤N

Cov(Y 2
i , Y

2
j )
}

≤ 4

σ4

{ N∑
i=1

E(Y 4
i ) +

∑
1≤i<j≤N

Cov(Y 2
i , Y

2
j )
}

≤ 4 γ2 +
4

σ4

∑
1≤i<j≤N

Cov(Y 2
i , Y

2
j ).

To estimate the covariance part, define

Qi = Y 2
i − E(Y 2

i ) and Ti =

i∑
k=1

Yk =

i∑
k=1

Xk + E(Xi+1 | Fi).

For each fixed 1 ≤ i < N , since (T1, . . . , TN ) is a martingale,∑
j>i

Cov(Y 2
i , Y

2
j ) =

∑
j>i

E
(
QiY

2
j

)
= E

{
Qi
∑
j>i

Y 2
j

}
= E

{
Qi
(
TN − Ti

)2}
= E

{
Qi
(
TN − Ti+1

)2}
+ E

(
QiY

2
i+1

)
≤ E

{
Qi
(
TN − Ti+1

)2}
+ E(Y 4

i ) + E(Y 4
i+1).

Finally, since (X1, . . . , XN ) is 1-dependent, EQi = 0 and EXj = 0,

E
{
Qi
(
TN − Ti+1

)2}
= E

{
Qi

( N∑
k=i+2

Xk − E(Xi+2 | Fi+1)
)2}

= E
{
Qi

(
E(Xi+2 | Fi+1)2 − 2Xi+2E(Xi+2 | Fi+1)

)}
= −E

{
QiE(Xi+2 | Fi+1)2

}
≤ E(Y 2

i )E
{
E(Xi+2 | Fi+1)2

}
≤ γ2σ2E(Y 2

i ).

To sum up,

E
{(V 2

σ2
− 1
)2}
≤ 4 γ2 +

4

σ4

N−1∑
i=1

(
E(Y 4

i ) + E(Y 4
i+1) + γ2σ2E(Y 2

i )
)
≤ 16 γ2.

�

Lemma 11. If maxi|Xi| ≤ σ γ/3 a.s., then

dW

(S
σ
, Z
)
≤ 15 γ1/3.

Proof. By Lemma 2, dW
(
S/σ, Z

)
≤
√

2. Hence, it can be assumed that γ ≤ 1.
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Define

τ = max
{
m : 1 ≤ m ≤ N,

m∑
k=1

E(Y 2
k /σ

2 | Fk−1) ≤ 1
}
,

Ji = 1{τ ≥ i} Yi
σ

+ 1{τ = i− 1}
(

1−
i−1∑
k=1

E(Y 2
k /σ

2 | Fk−1)
)1/2

Z for i = 1, . . . , N,

JN+1 = 1{τ = N}
(

1−
N∑
k=1

E(Y 2
k /σ

2 | Fk−1)
)1/2

Z.

Since τ is a stopping time, Z is independent of (X1, . . . , XN ), and E(Yi | Fi−1) = 0,
one obtains

E(Ji | Fi−1) = 0 for all i and

N+1∑
k=1

E(J2
k | Fk−1) = 1 a.s.

Therefore, for each a > 0, a result by Röllin [21, Theorem 2.1] implies

dW

(N+1∑
i=1

Ji , Z
)
≤ 2a+

3

a2

N+1∑
i=1

E|Ji|3.

To estimate E|Ji|3 for i ≤ N , note that E|Z|3 ≤ 2 and (1/σ) maxi|Yi| ≤ γ a.s.
Therefore, for 1 ≤ i ≤ N ,

E|Ji|3 = E
{

1{τ ≥ i} |Yi|
3

σ3

}
+E

{
1{τ = i− 1}

(
1−

i−1∑
k=1

E(Y 2
k /σ

2 | Fk−1)
)3/2
|Z|3

}
≤ γ E

{
1{τ ≥ i} Y

2
i

σ2

}
+ E

{
1{τ = i− 1}

(
1−

i−1∑
k=1

E(Y 2
k /σ

2 | Fk−1)
)1/2}

E|Z|3

≤ γ E
{

1{τ ≥ i} Y
2
i

σ2

}
+ 2E

{
1{τ = i− 1}

( i∑
k=1

E(Y 2
k /σ

2 | Fk−1)−
i−1∑
k=1

E(Y 2
k /σ

2 | Fk−1)
)1/2}

= γ E
{

1{τ ≥ i} Y
2
i

σ2

}
+ 2E

{
1{τ = i− 1}E(Y 2

i /σ
2 | Fi−1)1/2

}
≤ γ E

{
1{τ ≥ i} Y

2
i

σ2

}
+ 2 γ P (τ = i− 1).

Hence,

N∑
i=1

E|Ji|3 ≤ γ E
[ N∑
i=1

Y 2
i

σ2

]
+ 2γ = 3γ.
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Similarly,

E|JN+1|3 = E
{

1{τ = N}
(

1−
N∑
k=1

E(Y 2
k /σ

2 | Fk−1)
)3/2}

E|Z|3

≤ 2E
{

1{τ = N}
(

1−
N∑
k=1

E(Y 2
k /σ

2 | Fk−1)
)}

≤ 2E
{(

1−
N∑
k=1

E(Y 2
k /σ

2 | Fk−1)
)2}1/2

= 2E
{(

1− V 2

σ2

)2}1/2

≤ 8 γ

where the last inequality is due to Lemma 10. It follows that

dW

(N+1∑
i=1

Ji , Z
)
≤ 2a+

3

a2
(3γ + 8γ) = 2a+

33 γ

a2
,

for each a > 0. Choosing a = 3γ1/3, this yields

dW

(N+1∑
i=1

Ji , Z
)
≤
(

6 +
11

3

)
γ1/3 ≤ 10 γ1/3.

Next, we estimate dW
(
S/σ,

∑N
i=1 Ji

)
. To this end, we let

Wi =

i∑
k=1

E(Y 2
k /σ

2 | Fk−1)

and we note that

S

σ
−

N∑
i=1

Ji =

N∑
i=1

(Yi
σ
− Ji

)
=

N∑
i=1

1{τ < i}
(Yi
σ
− Ji

)
=

N−1∑
i=1

1{τ = i}
{ N∑
k=i+1

Yk
σ
−
(
1−Wi

)1/2
Z
}
.
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Therefore, recalling the definition of τ ,

dW

(S
σ
,

N∑
i=1

Ji

)2
≤
(
E
∣∣∣S
σ
−

N∑
i=1

Ji

∣∣∣)2 ≤ E{(S
σ
−

N∑
i=1

Ji

)2}
=

N−1∑
i=1

E
{

1{τ = i}
{ N∑
k=i+1

Yk
σ
−
(
1−Wi

)1/2
Z
}2}

=

N−1∑
i=1

E
{

1{τ = i}
{ N∑
k=i+1

E(Y 2
k /σ

2 | Fk−1) + 1−Wi

}}

≤
N−1∑
i=1

E
{

1{τ = i}
{ N∑
k=i+2

E(Y 2
k /σ

2 | Fk−1) + 2E(Y 2
i+1/σ

2 | Fi)
}}

≤
N−1∑
i=1

E
{

1{τ = i}
{
V 2/σ2 − 1 + 2 γ2

}}
≤ E|V 2/σ2 − 1|+ 2 γ2

≤ 4 γ + 2 γ2

where the last inequality is because of Lemma 10. Since we assumed γ ≤ 1, we
obtain

dW

(S
σ
,

N∑
i=1

Ji

)
≤
√

6 γ.

Finally, using Lemma 10 again, one obtains

dW

( N∑
i=1

Ji ,

N+1∑
i=1

Ji

)
≤ E|JN+1| ≤ E

{∣∣∣V 2

σ2
− 1
∣∣∣1/2} ≤ E{(V 2

σ2
− 1
)2}1/4

≤ 2
√
γ.

Collecting all these facts together yields, using again γ ≤ 1,

dW

(S
σ
, Z
)
≤ dW

(S
σ
,

N∑
i=1

Ji

)
+ dW

( N∑
i=1

Ji ,

N+1∑
i=1

Ji

)
+ dW

(N+1∑
i=1

Ji , Z
)

≤
√

6 γ + 2
√
γ + 10 γ1/3 ≤ 15 γ1/3.

This concludes the proof. �

Remark 12. If we do not care about the value of the constant in the estimate, the
proof of Lemma 11 could be shortened by exploiting a result by Fan and Ma [12];
this result, however, does not provide explicit values of the majorizing constants.
We also note that, under the conditions of Lemma 11, Heyde–Brown’s inequality
[14] yields

dK

(S
σ
, Z
)
≤ b

{
E
((V 2

σ2
− 1
)2)

+
1

σ4

N∑
i=1

EY 4
i

}1/5

for some constant b independent of N . By Lemmas 2 and 10, this implies

dW

(S
σ
, Z
)
≤ 4

√
dK

(S
σ
, Z
)
≤ 4
√
b
{

16 γ2+
γ2

σ2

N∑
i=1

EY 2
i

}1/10

= 4
√
b 171/10 γ1/5.

Hence, in this case, Lemma 11 works better than Heyde–Brown’s inequality to
estimate dW

(
S/σ , Z

)
.
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Recall L(c) defined in Theorem 6.

Lemma 13. Letting σ2
c = Var

(∑N
i=1

Xi
σ 1
{
|Xi| ≤ cσ

})
, we have

|σc − 1| ≤ |σ2
c − 1| ≤ 13L(c) for all c > 0.

Proof. Fix c > 0 and define

Ai =
{
|Xi| > cσ

}
, Ti =

Xi

σ
1Ai − E

(Xi

σ
1Ai

)
, Vi =

Xi

σ
1Aci − E

(Xi

σ
1Aci

)
.

On noting that σ2
c = Var

(∑N
i=1 Vi

)
, one obtains

1 = Var
( N∑
i=1

(Ti + Vi)
)

= Var
( N∑
i=1

Ti

)
+ σ2

c + 2 Cov
( N∑
i=1

Ti ,

N∑
i=1

Vi

)
.

Since (X1, . . . , XN ) is 1-dependent, it follows that

|σ2
c − 1| ≤ Var

( N∑
i=1

Ti

)
+ 2

∣∣∣Cov
( N∑
i=1

Ti ,

N∑
i=1

Vi

)∣∣∣
= Var

( N∑
i=1

Ti

)
+ 2

∣∣∣ N∑
i=1

Cov (Ti, Vi)

+

N−1∑
i=1

Cov (Ti, Vi+1) +

N∑
i=2

Cov (Ti, Vi−1)
∣∣∣.

Moreover,

Var
( N∑
i=1

Ti

)
=

N∑
i=1

Var(Ti) + 2

N−1∑
i=1

Cov(Ti, Ti+1)(6)

≤
N∑
i=1

Var(Ti) +

N−1∑
i=1

(
Var(Ti) + Var(Ti+1)

)
≤ 3L(c).

Similarly,

Cov (Ti, Vi) = −E
(Xi

σ
1Ai

)
E
(Xi

σ
1Aci

)
= E

(Xi

σ
1Ai

)2
≤ E

(X2
i

σ2
1Ai

)
and∣∣∣Cov (Ti, Vi−1)

∣∣∣ ≤ E( |XiXi−1|
σ2

1Ai 1Aci−1

)
+ E

( |Xi|
σ

1Ai

)
E
( |Xi−1|

σ
1Aci−1

)
≤ 2 cE

( |Xi|
σ

1Ai

)
≤ 2E

(X2
i

σ2
1Ai

)
where the last inequality is because

c |Xi|
σ

1Ai ≤
|X2

i |
σ2

1Ai .

By the same argument,
∣∣∣Cov (Ti, Vi+1)

∣∣∣ ≤ 2σ−2E
(
X2
i 1Ai

)
. Collecting all these

facts together, one finally obtains

|σ2
c − 1| ≤ 3L(c) + 10

N∑
i=1

E
(X2

i

σ2
1Ai

)
= 13L(c).
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This completes the proof, since obviously |σc − 1| ≤ |σ2
c − 1|. �

Having proved the previous lemmas, we are now ready to attack Theorem 6.

Proof of Theorem 6. Fix c > 0. We have to show that

dW

(S
σ
, Z
)
≤ 30

{
c1/3 + 6L(c)1/2

}
.

Since dW
(
S/σ, Z

)
≤
√

2, this inequality is trivially true if L(c) ≥ 1/100 or if c ≥ 1.
Hence, it can be assumed L(c) < 1/100 and c < 1. Then, Lemma 13 implies σc > 0.

Define Ti and Vi as in the proof of Lemma 13. Then |Vi| ≤ 2c for every i, and
thus (V1, . . . , VN ) satisfies the conditions of Lemma 11 with σ replaced by σc and
γ = 6 c/σc. Hence,

dW

(∑N
i=1 Vi
σc

, Z
)
≤ 15

(
6c/σc

)1/3
.

Now, recall from (6) that Var
(∑N

i=1 Ti
)
≤ 3L(c). Hence, using Lemma 13 again,

and the assumptions L(c) < 1 and c < 1,

dW

(S
σ
, Z
)
≤ dW

(S
σ
,

N∑
i=1

Vi

)
+ dW

( N∑
i=1

Vi, σcZ
)

+ dW (σcZ, Z)

≤ E
∣∣∣S
σ
−

N∑
i=1

Vi

∣∣∣+ σc dW

(∑N
i=1 Vi
σc

, Z
)

+ |σc − 1|

≤

√√√√Var
( N∑
i=1

Ti
)

+ 15
(
6 c σ2

c

)1/3
+ 13L(c)

≤
√

3L(c) + 15 (6 c)1/3
(
1 + 13L(c)

)2/3
+ 13L(c)

≤
(√

3 + 13
)
L(c)1/2 + 15 (6 c)1/3

(
1 +

(
13L(c)

)2/3)
≤ 15 (6 c)1/3 +

(√
3 + 13 + 15 · 61/3 · (13)2/3

)
L(c)1/2

≤ 30 c1/3 + 170L(c)1/2.

This concludes the proof of Theorem 6. �

4. Total variation distance and rate of convergence

Theorems 3 and 4 immediately imply the following result.

Theorem 14. Let φn be the characteristic function of Sn/σn and

ln = 2

∫ ∞
0

t |φn(t)| dt.

If conditions (1)–(2) hold, then

dTV

(Sn
σn
, Z
)
≤
√

120
{
c1/3+12Un(c/2)1/2

}1/2

+ 301/3 l2/3n

{
c1/3+12Un(c/2)1/2

}1/3

for all n ≥ 1 and c > 0, where Z is a standard normal random variable.
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Proof. First apply Theorem 3, with V = 1 and Xn = Sn
σn

, and then use Theorem 4.
�

Obviously, Theorem 14 is non-trivial only if ln <∞. In this case, the probability
distribution of Sn is absolutely continuous. An useful special case is when conditions
(1)–(2) hold together with (4) (as in Corollary 5). Then, by taking c = 2mnγn so
that Un(c/2) = 0, Theorem 14 yields

dTV

(Sn
σn
, Z
)
≤
√

120 (2mn γn)1/6 + 301/3 l2/3n (2mn γn)1/9.

Sometimes, this inequality allows to obtain a CLT in total variation distance; see
Example 17 below.

We next discuss the convergence rate provided by Theorem 4 and we compare
it with some existing results.

A first remark is that Theorem 4 is calibrated to the dependence case, and that
it is not optimal in the independence case. To see this, it suffices to recall that we
assume mn ≥ 1 for all n. If Xn1, . . . , XnNn are independent, the best one can do
is to let mn = 1, but this choice of mn is not efficient as is shown by the following
example.

Example 15. Suppose Xn1, . . . , XnNn are independent and conditions (2) and (4)
hold. Define mn = 1 for all n. Then, Un(γn) = 0 and Theorem 4 (or Corollary 5)
yields dW

(
Sn/σn, Z

)
≤ 30 (2 γn)1/3. However, the Bikelis nonuniform inequality

yields ∣∣∣P (Sn/σn ≤ t)− P (Z ≤ t)
∣∣∣ ≤ b

(1 + |t|)3
Nn∑
i=1

E
{ |Xn,i|3

σ3
n

}
≤ b γn

(1 + |t|)3

for all t ∈ R and some universal constant b; see e.g. [9, p. 659]. Hence,

dW

(Sn
σn
, Z
)

=

∫ ∞
−∞
|P (Sn/σn ≤ t)− P (Z ≤ t)| dt ≤

∫ ∞
−∞

b γn
(1 + |t|)3

dt = b γn.

Leaving independence aside, a recent result to be mentioned is [10, Corollary
4.3] by Dedecker, Merlevede and Rio. This result applies to sequences of random
variables and requires a certain mixing condition (denoted by (H1)) which is auto-
matically true when mn = m for all n. In this case, under conditions (2) and (4),
one obtains

dW

(Sn
σn
, Z
)
≤ b γn

(
1 + cn log

(
1 + cn σ

2
n

))
(7)

where b and cn are suitable constants with b independent of n. Among other
conditions, the cn must satisfy

cn σ
2
n ≥

Nn∑
i=1

EX2
n,i.

Inequality (7) is actually sharp. However, if compared with Theorem 4, it has three
drawbacks. First, unlike Theorem 4, it requires condition (4). Secondly, the mixing
condition (H1) is not easily verified unless mn = m for all n. Thirdly, as seen in
the next example, even if (4) holds and mn = m for all n, it may be that

γn → 0 but γn cn log
(
1 + cn σ

2
n

)
→∞ as n→∞.
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In such situations, Theorem 4 works while inequality (7) does not.

Example 16. Let (an) be a sequence of numbers in (0, 1) such that limn an = 0.
Let (Ti : i ≥ 0) and (Vn,i : n ≥ 1, 1 ≤ i ≤ n) be two independent collections of real
random variables. Suppose (Ti) is i.i.d. with P (T0 = ±1) = 1/2 and Vn,1, . . . , Vn,n
are i.i.d. with Vn,1 uniformly distributed on the set (−1,−1 + an) ∪ (1− an, 1).

Fix a constant α ∈ (0, 1/3) and define Nn = n and

Xn,i = n−1/2Vn,i + n−α(Ti − Ti−1)

for i = 1, . . . , n. The array (Xn,i) is centered and 1-dependent (namely, mn = 1 for

all n). In addition, Sn = n−1/2
∑n
i=1 Vn,i + n−α(Tn − T0) and

σ2
n = EV 2

n,1 + 2n−2α,

n∑
i=1

EX2
n,i = EV 2

n,1 + 2n1−2α.

Since limn σ
2
n = limnEV

2
n,1 = 1, one obtains

max
i

|Xn,i|
σn

≤ n−1/2 + 2n−α

σn
≤ 3n−α

σn
< 4n−α for large n.

Hence, for large n, condition (4) holds with γn = 4n−α. Consequently, Corollary 5
yields

dW

(Sn
σn
, Z
)
≤ 60n−α/3 for large n.

However,

4n−α cn log
(
1 + cn σ

2
n

)
≥ 4n−α

1

σ2
n

n∑
i=1

EX2
n,i log

(
1 +

n∑
i=1

EX2
n,i

)
≥ 4 (1− 2α)

n1−3α

σ2
n

log n −→∞.

In addition to [10, Corollary 4.3], there are some other estimates of dW
(
Sn/σn, Z

)
.

Without any claim of exhaustivity, we mention Fan and Ma [12], Röllin [21] and
Van Dung, Son and Tien [26] (Röllin’s result has been used for proving Lemma 11).
There are also a number of estimates of dK

(
Sn/σn, Z

)
which, through Lemma 2,

can be turned into upper bounds for dW
(
Sn/σn, Z

)
; see [10], [12] and references

therein. However, to our knowledge, none of these estimates implies Theorem 4.
Typically, they require further conditions (in addition to (1)–(2)) and/or they yield
a worse convergence rate; see e.g. Remark 12 and Example 16. This is the cur-
rent state of the art. Our conjecture is that, under conditions (1)–(2) and possibly
(4), the rate of Theorem 4 can be improved. To this end, one possibility could be
using an upper bound provided by Haeusler and Joos [13] in the martingale CLT.
Whether the rate of Theorem 4 can be improved, however, is currently an open
problem.

5. Further examples and applications

To illustrate the results above, we give some applications of Theorems 4 and 14.
As usual, Z denotes a standard normal random variable. We begin with a CLT in
total variation distance.
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Example 17. Let (Xn,i) and (Vn,i) be as in Example 16. Denote by ψn the
characteristic function of

∑n
i=1 Vn,i. Then, for each t ∈ R,

ψn(t) =
( 1

an

∫ 1

1−an
cos(t x) dx

)n
and

|φn(t)| ≤
∣∣∣ψn[t (nσ2

n)−1/2
]∣∣∣ =

∣∣∣ 1

an

∫ 1

1−an
cos
[
t (nσ2

n)−1/2 x
]
dx
∣∣∣n.

After some algebra (we omit the explicit calculations) it can be shown that

ln = 2

∫ ∞
0

t |φn(t)| dt ≤ b a−2n

for some constant b independent of n. Recalling that mn = 1 and γn = 4n−α for
large n (see Example 16), Theorem 14 yields (taking again c = 2mnγn = 8n−α)

dTV

(Sn
σn
, Z
)
≤
√

120 (2mn γn)1/6 + 301/3 l2/3n (2mn γn)1/9

≤
√

120 81/6 n−α/6 + 301/3 b2/3 81/9
(
a4n n

α/3
)−1/3

for large n. Therefore, the probability distribution of Sn/σn converges to the stan-
dard normal law, in total variation distance, provided a4n n

α/3 →∞.

The next two examples are connected to the Breuer-Major theorem [4] (hence-
forth, BMT). In both the examples, g : R → R is a Borel function with Hermite
degree d ≥ 1. This means that E

(
g2(Z)

)
<∞ with a series expansion of the type

g =

∞∑
j=d

cj Hj , cd 6= 0,

where Hj is the Hermite polynomial of degree j.

Example 18. There is recently a certain interest on the asymptotic behavior of

Qn =

∑n−1
i=0 g(Yi)√

Var
[∑n−1

i=0 g(Yi)
] ,

where (Yn : n ≥ 0) is a stationary Gaussian sequence of standard normal random

variables; see e.g. [5], [16] and references therein. Because of BMT, Qn
dist−→ Z

provided
∑
n|E(YnY0)|d < ∞ (recall that d ≥ 1 is the Hermite degree of g). To

obtain a quantitative estimate of dW (Qn, Z), some further conditions are needed.
Essentially, g must belong to a suitable Sobolev space.

At the price of assuming (mn)-dependence, Theorem 4 allows to improve BMT.
Among other things, the stationarity assumption is dropped, sequences are replaced
by arrays, and the conditions on g are much more general.

For each n ≥ 1, suppose

(Xn,1, . . . , Xn,Nn) is Gaussian, Xn,i ∼ N (0, 1) for all i,

and E
(
Xn,iXn,j

)
= 0 whenever |i− j| > mn.
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Moreover, fix any Borel function gn : R → R such that E
(
gn(Z)

)
= 0 and

E
(
g2n(Z)

)
<∞ and suppose

σ2
n := Var

[
Nn∑
i=1

gi(Xn,i)

]
> 0.

Then, Theorem 4 yields

dW (Q∗n, Z) ≤ 30 c1/3 +
360
√
mn

σn

(
Nn∑
i=1

E
[
g2i (Z) 1

{
|gi(Z)| > cσn/2mn

}])1/2

for all n ≥ 1 and c > 0, where

Q∗n =
1

σn

Nn∑
i=1

gi(Xn,i).

This upper bound is effective if the sequence (g2n(Z) : n ≥ 1) is uniformly integrable.
Note also that, if gn(Z) ∈ L∞ for all n, Corollary 5 yields

dW (Q∗n, Z) ≤ 40

(
mn

σn
max

1≤i≤Nn
‖gi(Z)‖∞

)1/3

.

Example 19. Let Y = (Yt : t ≥ 0) be a real cadlag process. To begin with,
suppose Y is stationary, Gaussian, Y0 ∼ N (0, 1), and define

Zε(t) =
√
ε

∫ t/ε

0

g(Ys) ds for all ε > 0 and t ≥ 0.

If
∫
|E(YtY0)|d dt < ∞ then, as ε → 0, the finite dimensional distributions of Zε

converge weakly to those of σW , where σ is an explicit constant and W a stan-
dard Brownian motion. This is BMT in continuous-time. By a result in [5], if

E
(
|g(Z)|p

)
< ∞ for some p > 2, one also obtains Zε

dist−→ σW in the space
C([0,∞), R) (equipped with the topology of uniform convergence on compacta).

Next, suppose Y is a Levy process. Let f : R→ R be a continuous function and
λ : (0,∞)→ (0,∞) a non-increasing function such that

a := sup|f | <∞ and b := supλ <∞.
Roughly speaking, λ should be regarded as a delay in observing Y . Given ε > 0
and s ≥ λ(ε), the actual value of Y at time s− λ(ε) is not Ys−λ(ε) but Ys. Hence,
Ys − Ys−λ(ε) may be seen as an observation error. Let

Z∗ε (t) =
√
ε

∫ t/ε

0

f
(
Ys − Y(s−λ(ε))+

)
ds.

In order to apply Theorem 4 to Z∗ε , fix t > 0 and define

nε(t) =

⌊
t

ελ(ε)

⌋
− 1 and It =

{
ε > 0 : nε(t) ≥ 1

}
.

For ε ∈ It and i ≥ 1, define also

Xε,i =
√
ε

∫ (i+1)λ(ε)

iλ(ε)

f
(
Ys − Ys−λ(ε)

)
ds, Vε(t) =

nε(t)∑
i=1

Xε,i, σ2
ε (t) = E

(
V 2
ε (t)

)
.
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Assume E
[
f
(
Yλ(ε)

)]
= 0 (for example, this holds if f is odd and Yλ(ε) is symmetric),

and also σ2
ε (t) > 0 for ε ∈ It. Then, E

[
f
(
Ys − Ys−λ(ε)

)]
= E

[
f
(
Yλ(ε)

)]
= 0 for

s ≥ λ(ε), so that E
(
Xε,i

)
= 0, and since the array(
Xε,i : ε ∈ It, i = 1, . . . , nε(t)

)
is 1-dependent, Theorem 4 yields, for any c > 0,

dW

(
Vε(t)

σε(t)
, Z

)
≤ 30 c1/3 + 360

√
nε(t)

σ2
ε (t)

E
[
X2
ε,1 1

{
|Xε,1| > cσε(t)/2

}]
.

Moreover, since |Xε,i| ≤ a b
√
ε, Corollary 5 yields

dW

(
Vε(t)

σε(t)
, Z

)
≤ 30

(
2 a b
√
ε

σε(t)

)1/3

.

Since f is continuous and the Y -paths are cadlag, one also obtains

lim
ε→0

σ2
ε (t) = lim

ε→0

{
nε(t)E

(
X2
ε,1

)
+ 2(nε(t)− 1)E

(
Xε,1Xε,2

)}
=
t r

b

where

r = E
[(∫ 2b

b

f
(
Ys−Ys−b

)
ds
)2]

+ 2E
[∫ 2b

b

f
(
Ys−Ys−b

)
ds

∫ 3b

2b

f
(
Ys−Ys−b

)
ds
]
.

Hence, if r > 0, then limε→0 dW

(
Vε(t)
σε(t)

, Z
)

= 0. Since∣∣∣Z∗ε (t)− Vε(t)
∣∣∣ ≤ 2 a b

√
ε,(8)

it follows that

Z∗ε (t)
dist−→

√
t r

b
Z ∼

√
r

b
Wt, as ε→ 0,

where W is a standard Brownian motion. Moreover, with exactly the same argu-
ment, one also obtains(

Z∗ε (t1), . . . , Z∗ε (tk)
) dist→ √

r

b

(
Wt1 , . . . ,Wtk

)
(9)

for all k ≥ 1 and all 0 ≤ t1 < t2 < . . . < tk. Finally,

Z∗ε
dist→

√
r

b
W in the space C([0,∞), R).(10)

We just give a sketch of the proof of (10). Let D be the space of real cadlag
functions on [0,∞) endowed with the Skorohod topology. First, one proves that

E
[(
Vε(s)− Vε(t)

)4] ≤ α ε2 (b t

ελ(ε)
c − b s

ελ(ε)
c
)2

for all 0 ≤ s < t, all ε > 0, and some constant α. Based on [16, Lemma 3.1], this and

the finite-dimensional convergence following from (8) and (9) imply Vε
dist→

√
r
b W

in the space D. Because of (8), one also obtains Z∗ε
dist→

√
r
b W in the space D.

Finally, (10) follows since Z∗ε and
√

r
b W have continuous paths.

Our last example may be useful as regards the CLT for high dimensional data.
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Example 20. For i = 1, . . . , N , let

Xi = (Xi,1, . . . , Xi,p)

be a p-dimensional random vector. Suppose:

(i) The vectors X1, . . . , XN are m-dependent and Xi,j ∈ L∞ for all i, j;
(ii) E(Xi,j) = 0 and E

(
Xi,jXh,k

)
= 0 for all i, j, h, k with j 6= k;

(iii) σ2
j = E

[(∑N
i=1Xi,j

)2]
> 0 for all j = 1, . . . , p.

Define

Y =

N∑
i=1

p∑
j=1

ajXi,j

σj
,

where the aj are constants satisfying
∑p
j=1 a

2
j = 1, and note that Var(Y ) = 1.

Upper bounds for dW (Y,Z) allow to estimate the goodness of the normal approxi-
mation for the distribution of Y . For instance, they are involved in the study of the
dependence graph of high-dimensional time series; see [6] and references therein.
Under conditions (i)-(iii), Corollary 5 yields

dW (Y, Z) ≤ 40
(
m
√
p max

i,j

‖Xi,j‖∞
σj

)1/3
.

This can be compared to the related estimate in [6, Corollary 1] (which is for the
Kolmogorov distance, and among other differences includes a different power m2/3).

6. Final comment: beyond (mn)-dependence

We close with a result which enlarges the scope of Theorem 4. It is motivated by
the following (natural) question. Let (Xn,i) be an arbitrary array of real random
variables. Under what conditions (Xn,i) can be approximated by a (mn)-dependent
array? Sometimes, this approximation is possible. As suggested by an anonymous
referee, for instance, it is actually possible if (Xn,i) satisfies a suitable mixing con-
dition or some form of physical dependence. Generally, however, the approximation
of (Xn,i) by a (mn)-dependent array requires strong conditions. Therefore, we fo-
cus on a related problem, that is, we look for a version of Theorem 4 where (Xn,i)
is not required to be (mn)-dependent. To this end, we need some notation. Define

Wn,i = E
(
Xn,i +Xn,i+1 | Fn,i

)
− E

(
Xn,i +Xn,i+1 | Fn,i−1

)
where Fn,i = σ(Xn,1, . . . , Xn,i) and Fn,0 is the trivial σ-field. Define also

γn =
1

σn
max
i
‖Xn,i‖∞, a2n = E

[( Nn∑
i=2

E(Xn,i | Fn,i−2)
)2]

, w2
n =

Nn−1∑
i=1

E
(
W 2
n,i

)
.

Proposition 21. Suppose:

• (Xn,i) satisfies condition (2) and Xn,i ∈ L∞ for all n and i;
• There are constants α and β such that

σn ≤ αwn and
∣∣∣ ∑
1≤i<j<Nn

Cov
(
W 2
n,i, W

2
n,j

)∣∣∣ ≤ β γ2nσ4
n

for all n ≥ 1. Then, there is a constant q (independent of n) such that

dW

(Sn
σn
, Z
)
≤ q

(an
σn

+ γ1/3n

)
for all n ≥ 1.
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Proof. Letting

An =

Nn∑
i=2

E
(
Xn,i | Fn,i−2

)
, Wn =

Nn−1∑
i=1

Wn,i, Ln = Xn,Nn−E
(
Xn,Nn | Fn,Nn−1

)
,

one obtains

Sn = An +Wn + Ln.

Note also that
(
Wn,i : 1 ≤ i < Nn

)
is a martingale difference sequence, and thus

E(W 2
n) = w2

n.

Hence,

dW

(Sn
σn
, Z
)
≤ dW

(Sn
σn
,
An +Wn

σn

)
+ dW

(An +Wn

σn
,
Wn

σn

)
+ dW

(Wn

σn
,
Wn

wn

)
+ dW

(Wn

wn
, Z
)

≤ 2 γn +
an
σn

+
∣∣∣1− wn

σn

∣∣∣+ dW

(Wn

wn
, Z
)
.

Since
(
Wn,i : 1 ≤ i < Nn

)
is a martingale difference sequence and

max
i
|Wn,i| ≤ 4 max

i
‖Xn,i‖∞ ≤ 4σn γn ≤ 4αwn γn a.s.,

the arguments of Lemmas 10 and 11 can be applied to Yi = Wn,i (with σn replaced

by wn). Therefore, dW

(
Wn

wn
, Z
)
≤ q∗ γ1/3n for some constant q∗ that depends on α

and β (but nothing else). In addition,∣∣∣1− w2
n

σ2
n

∣∣∣ =
1

σ2
n

∣∣∣E[(An +Wn + Ln)2
]
− E(W 2

n)
∣∣∣

=
1

σ2
n

∣∣∣E[(An + Ln)2
]

+ 2E
[
Wn(An + Ln)

]∣∣∣
≤ 2

σ2
n

{
E(A2

n) + E(L2
n) + wn

√
E(A2

n) + wn
√
E(L2

n)
}

=
2

σ2
n

{
a2n + E(L2

n) + wn
(
an +

√
E(L2

n)
)}
,

so that ∣∣∣1− wn
σn

∣∣∣ =

∣∣∣1− w2
n

σ2
n

∣∣∣
1 + wn

σn

≤ 2
(a2n
σ2
n

+
an
σn

+ 4 γ2n + 2 γn

)
.

Collecting all these facts together,

dW

(Sn
σn
, Z
)
≤ 3

an
σn

+ 2
a2n
σ2
n

+ 8 γ2n + 6 γn + q∗ γ1/3n .

Hence, with q = 14 + q∗, if an
σn
≤ 1 and γn ≤ 1, one obtains

(11) dW

(Sn
σn
, Z
)
≤ 5

an
σn

+ (14 + q∗) γ1/3n ≤ q
(an
σn

+ γ1/3n

)
,

and otherwise (11) is trivial since dW

(
Sn
σn
, Z
)
≤
√

2 by Lemma 2. �

It is worth noting that Proposition 21 deviates from some analogous results avail-
able in the literature (such as [8] and [23]) for it does not require either stationarity-
mixing assumptions or martingale assumptions. Furthermore, Proposition 21 pro-
vides a quantitative bound as well.
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