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Abstract. For a complex number α, we consider the sum of the αth powers
of subtree sizes in Galton–Watson trees conditioned to be of size n. Limiting
distributions of this functionalXn(α) have been determined for Reα 6= 0, revealing
a transition between a complex normal limiting distribution for Reα < 0 and a
non-normal limiting distribution for Reα > 0. In this paper, we complete the
picture by proving a normal limiting distribution, along with moment convergence,
in the missing case Reα = 0. The same results are also established in the case
of the so-called shape functional X ′n(0), which is the sum of the logarithms of all
subtree sizes; these results were obtained earlier in special cases. Additionally,
we prove convergence of all moments in the case Reα < 0, where this result was
previously missing, and establish new results about the asymptotic mean for real
α < 1/2.

A novel feature for Reα = 0 is that we find joint convergence for several α to
independent limits, in contrast to the cases Reα 6= 0, where the limit is known to
be a continuous function of α. Another difference from the case Reα 6= 0 is that
there is a logarithmic factor in the asymptotic variance when Reα = 0; this holds
also for the shape functional.

The proofs are largely based on singularity analysis of generating functions.

1. Introduction and main results

This paper is a sequel to [5]. As there, we consider a conditioned Galton–Watson
tree Tn of size n, and the random variables

Xn(α) := Fα(Tn) :=
∑
v∈Tn

|Tn,v|α, (1.1)

where Tn,v is the fringe subtree of Tn rooted at a vertex v ∈ Tn, i.e., the subtree
consisting of v and all its descendants. This is a special case of what is known as
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an additive functional: a functional associated with a rooted tree T that can be
expressed in the form

F (T ) =
∑
v∈T

f(Tv) (1.2)

for a certain toll function f . Thus, Fα is the additive functional on rooted trees
defined by the toll function fα(T ) := |T |α. As in [5], we allow the parameter α to
be any complex number; this is advantageous, even for the study of real α, since it
allows us to use powerful results from the theory of analytic functions in the proofs,
and it also yields new phenomena for non-real α, for example Theorem 1.4 below for
purely imaginary α. (See further Section 2 for the notation used here and below.)

In [5], it is assumed that the conditioned Galton–Watson tree Tn is defined by
some offspring distribution ξ with E ξ = 1 and 0 < σ2 := Var ξ < ∞. The main
results are limit theorems showing that then the random variables Xn(α) converge in
distribution after suitable normalization. The results differ for the two cases Reα < 0
and Reα > 0: Typical results are the following (here somewhat simplified), where

X̃n(α) := Xn(α)− EXn(α). (1.3)

For further related results, and references to previous work, see [5].

Theorem 1.1 ([5, Theorem 1.1]). If Reα < 0, then

n−1/2X̃n(α)
d−→ X̂(α), (1.4)

where X̂(α) is a centered complex normal random variable with distribution depend-
ing on the offspring distribution ξ.

Theorem 1.2 ([5, Theorem 1.2]). If Reα > 0, then

n−α−
1
2 X̃n(α)

d−→ σ−1Ỹ (α), (1.5)

where Ỹ (α) is a centered random variable with a (non-normal) distribution that
depends on α but does not depend on the offspring distribution ξ.

Note the three differences between the two cases:

(i) the normalization is by different powers of n, with the power constant for
Reα < 0 but not for Reα > 0;

(ii) the limit is normal for Reα < 0 but not for Reα > 0;
(iii) the limit distribution is universal for Reα > 0 in the sense that it depends

on ξ only by the scale factor σ−1, but for Reα < 0, the distribution seems to
depend on the offspring distribution ξ in a more complicated way. (In the latter
case, the distribution is complex normal, so it is determined by the covariance

matrix of
(
Re X̂(α), Im X̂(α)

)
; a complicated formula for covariances is given in

[5, Remark 5.1], but we do not know how to evaluate it for concrete examples,

not even when α < 0 is real and thus X̂(α) is a real random variable.)

The results above leave a gap: the case Reα = 0, and the main purpose of the
present paper is to fill this gap, and to compare the results with the cases above. The
case α = 0 is trivial, since Xn(α) = n is non-random. (If α = 0, then each vertex v
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of the tree contributes |Tn,v|α = 1 to (1.1).) However, in this case we instead study
the derivative

X ′n(0) =
∑
v∈Tn

log |Tn,v| = log
∏
v∈Tn

|Tn,v|, (1.6)

which is known as the shape functional. This functional was introduced by Fill [3] in
the (different) context of binary search trees under the random permutation model,
for which he argued that the functional serves as a crude measure of the “shape” of
a random tree, and then studied in some special cases of simply generated trees in
e.g. [16; 19; 7; 4; 1], see Section 3.

Another gap in [5] is that moment convergence was proved for Reα > 0 (Theo-
rem 1.2) but not for Reα < 0 (Theorem 1.1). We fill that gap too.

For technical convenience, we assume throughout the paper the weak extra mo-
ment condition

E ξ2+δ <∞, (1.7)

for some δ > 0; we also continue to assume E ξ = 1. We let T be an unconditioned
Galton–Watson tree with offspring distribution ξ, and define, for complex α with
Reα < 1

2 ,

µ(α) := E |T |α =

∞∑
n=1

nα P(|T | = n), (1.8)

µ′ := µ′(0) = E log |T | =
∞∑
n=1

P(|T | = n) log n. (1.9)

(The sum (1.8) converges for Reα < 1
2 , since P(|T | = n) = O(n−3/2); see (2.25).)

Our main results are the following. Note that X ′n(0) is a real random variable,
while Xn(it) and Xn(α) for α /∈ R are non-real except in trivial cases. As said above,
special cases of Theorem 1.3 have been proved by Pittel [19], Fill and Kapur [7], and
Caracciolo, Erba, and Sportiello [1].

Theorem 1.3. Assume (1.7) with δ > 0. Then,

X ′n(0)− µ′n√
n log n

d−→ N
(
0, 4(1− log 2)σ−2

)
(1.10)

together with convergence of all moments.

Theorem 1.4. Assume (1.7) with δ > 0. Then, for any real t 6= 0,

Xn(it)− µ(it)n√
n log n

d−→ ζit (1.11)

together with convergence of all moments, where ζit is a symmetric complex normal
variable with variance

E |ζit|2 =
1√
π

Re
Γ(it− 1

2)

Γ(it)
σ−2 > 0. (1.12)
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Theorem 1.5. Assume (1.7) with δ > 0. Then, for any complex α with Reα < 0,

Xn(α)− µ(α)n√
n

d−→ X̂(α) (1.13)

together with convergence of all moments, where X̂(α) is a centered complex normal
random variable with positive variance and distribution depending on the offspring
distribution ξ. Hence, (1.4) holds with convergence of all moments.

Remark 1.6. By “convergence of all moments”, we mean in the case of complex
variables, Zn say, convergence of all mixed moments of Zn and Zn, which is equivalent
to convergence of all mixed moments of ReZn and ImZn. Since we have conver-
gence in distribution, this is by a standard argument using uniform integrability also
equivalent to convergence of all absolute moments.

Note that, conversely, by the method of moments applied to (ReZn, ImZn), this
implies convergence in distribution of Zn, provided, as is the case here, the limit
distribution is determined by its moments. Thus, our proof of moment convergence
provides a new proof of Theorem 1.1, very different from the proof in [5]. �

Remark 1.7. Since the statements include convergence of the first moments (to
0), we may in Theorems 1.3–1.5 replace µ′n, µ(it)n, and µ(α)n by the expectations
EX ′n(0), EXn(it), and EXn(α), respectively; in particular, this gives the last sen-
tence in Theorem 1.5. More precise estimates of the expectations are given in (3.11),
(3.20), (4.14), and (5.10). �

Theorems 1.3 and 1.4 combine some of the features found for Reα < 0 and
Reα > 0 in (i)–(iii) above. First, the variances in Theorems 1.3 and 1.4 are of order
n log n. This might be a surprise since it is not what a naive extrapolation from
either Reα < 0 in Theorem 1.1 or Reα > 0 in Theorem 1.2 would yield, where
the variances are of order n (Reα < 0) and n1+2 Reα (Reα > 0); however, it is not
surprising that a logarithmic factor appears when the two different expressions meet.
(Compare for instance the result on the mean of Xn(α) in [5, Theorem 1.7], or the
discussion of the binary search tree recurrence in [9, Example VI.15, p. 428–429],
where the emergence of similar logarithmic factors is observed.) Secondly, the limits
are normal, as heuristically would be expected by “continuity” from the left, see
(ii). Thirdly, the limits are universal and depend only on σ as a scale factor, as
heuristically would be expected by “continuity” from the right, see (iii).

The proofs in [5] use two different methods, which are combined to yield the full
results: (1) methods using complex analysis and the fact that Xn(α) is an analytic
function of α, and (2) analysis of moments for a fixed α using singularity analysis of
generating functions based on results of Fill, Flajolet, and Kapur [4], also presented
in [9, Section VI.10]. In the present paper, we will use only the second method.
We follow the proofs in [5] with some variations (see also [6] and [7]). However,
some new leading terms will appear in the singular expansions of the generating
functions, which will dominate the terms that are leading in [5]; this explains both
the logarithmic factors in the variance (and in higher moments) in Theorems 1.3 and
1.4, and the fact that these theorems yield normal limits while Theorem 1.2 does
not.
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After some preliminaries in Section 2, we first study the shape functional and
prove Theorem 1.3 in Section 3; we then study the case of imaginary exponents
and prove Theorem 1.4 in Section 4; after that, we consider the case Reα < 0 and
prove Theorem 1.5 in Section 5. These three sections use the same method (from
[7] and [5]), and are thus quite similar, but some details differ. The differences arise
partly because X ′n(0) is real, while Xn(it) and (in general) Xn(α) are not; we will
also see that the logarithmic factors in the first two cases appear in the moments in
somewhat different ways, and that there is a cancellation of some leading terms in
our induction for the first and third case, but not for Xn(it). For this reason, we
give complete arguments for all three cases, and we encourage the reader to compare
them and see both similarities and differences.

In Section 6 we show how the centering functions (1.8) and (1.9) can be compared
across variation in the offspring distribution when (real) α satisfies α < 1

2 .

Remark 1.8. The results in [5] show also joint convergence for different α in The-

orems 1.1 and 1.2, with limits X̂(α) and Ỹ (α) that are analytic, and in particular
continuous, random functions of the parameter α in the half-planes Reα < 0 and
Reα > 0, respectively. This does not extend to the imaginary axis Reα = 0; we
will see in Theorem 4.2 that Xn(α) for different imaginary α are asymptotically in-
dependent (for Imα > 0), and thus it is not possible to have joint convergence to a
continuous random function. �

Remark 1.9. Let α = s+it, where t is real and fixed, and let s↘ 0. (Thus s > 0 is

real.) It is shown in [5, Appendix D] that if t 6= 0, then the limit Ỹ (s+ it) diverges

(in probability, say) as s↘ 0, and that s1/2Ỹ (s+ it)
d−→ ζ, where ζ is a symmetric

complex normal variable with

E |ζ|2 =
1

2
√
π

Re
Γ(it− 1

2)

Γ(it)
> 0. (1.14)

(However, unfortunately there is a typographical error in [5, (D.2)], see the cor-
rigendum to [5] for a correction.) Similarly, it is shown in [5, Appendix C] that

s−1/2Ỹ (s)
d−→ N(0, 2(1− log 2)) as s↘ 0; in particular s−1Ỹ (s) diverges.

These results may be compared to Theorems 1.3–1.4; note that the limits are
the same, except that the variances in both cases differ by a factor 1/2 (which of
course depends on the chosen normalizations). Both sets of results can be regarded

as iterated limits of X̃n(s + it), taking n→∞ and s ↘ 0 in different orders. The

divergence of Ỹ (s + it) as s ↘ 0 (for fixed t 6= 0) thus seems to be related to the
fact that the asymptotic variance in Theorem 1.3 is of greater order than n, and

similarly the divergence as s↘ 0 of s−1Ỹ (s) (which loosely might be regarded as an

approximation of n−1/2X̃ ′n(0)) seems related to Theorem 1.4. However, we do not

see why the factors s±
1
2 in these limits should correspond to the factor (log n)1/2 in

Theorems 1.3 and 1.4 [or more precisely to the factor (2 log n)1/2, to get exactly the
same limit distributions]. �

We end with some problems suggested by the results and comments above.
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Problem 1.10. Is there a simple explanation of the equality discussed in Remark 1.9
of iterated limits in different orders, but with different normalizations? Is this an
instance of some general phenomenon? What happens if s ↘ 0 and n→∞ simul-

taneously, i.e., for X̃n(sn + it) where sn ↘ 0 at some appropriate rate?

The asymptotic independence of X(it) for t > 0 mentioned in Remark 1.8 suggests

informally that the stochastic process (X̃n(it) : t > 0) asymptotically looks something
like white noise. This might be investigated further, for example as follows.

Problem 1.11. Consider the integrated process
∫ t

0 X̃n(iu) du. What is the order of
its variance? Does this process after normalization converge to a process with paths
that are continuous in t?

The moment assumption (1.7) is used repeatedly to control error terms, but it
seems convenient rather than necessary.

Problem 1.12. We conjecture that Theorems 1.3–1.5 hold also without the assump-
tion (1.7). Prove (or disprove) this!

2. Notation and preliminaries

2.1. General notation. As said above, T is a Galton–Watson tree defined by an
offspring distribution ξ with mean E ξ = 1 and finite non-zero variance σ2 := Var ξ <
∞, and we assume E ξ2+δ < ∞ for some δ > 0. Furthermore, the conditioned
Galton–Watson tree Tn is defined as T conditioned on |T | = n. We assume for
simplicity that ξ has span 1; the general case follows by standard (and minor) mod-
ifications. (Recall that the span of an integer-valued random variable ξ, denoted
span(ξ), is the largest integer h such that ξ ∈ a+hZ a.s. for some a ∈ Z; we consider
only ξ with P(ξ = 0) > 0 and then the span is the largest integer h such that ξ/h ∈ Z
a.s., i.e., the greatest common divisor of {n : P(ξ = n) > 0}.)

In the sequel, Γ(z) denotes the Gamma function, ψ(z) := Γ′(z)/Γ(z) is its loga-
rithmic derivative, and γ = −ψ(1) is Euler’s constant.

A random variable ζ has a complex normal distribution if it takes values in C and
(Re ζ, Im ζ) is a 2-dimensional normal distribution (with arbitrary covariance ma-
trix). In particular, ζ is symmetric complex normal if further E ζ = 0 and (Re ζ, Im ζ)

has covariance matrix
(
ς2/2 0

0 ς2/2

)
for some ς2 = E |ζ|2, which is called the variance;

equivalently, E ζ = 0, E ζ2 = 0, and E |ζ|2 = ς2. (See e.g. [11, Proposition 1.31].) A
symmetric complex normal distribution with variance ς2 is determined by the mixed
moments of ζ and ζ, which are given by (see [11, p. 14])

E
[
ζ
`
ζ
r]

=

{
ς2``!, ` = r,

0, ` 6= r.
(2.1)

Unspecified limits are as n→∞. We let
d−→ denote convergence in distribution.

For real x and y, we denote min(x, y) by x ∧ y.
The semifactorial `!! is defined for odd integers ` (the only case that we use) by

`!! := 1× 3× · · · × ` = 2(`+1)/2Γ
(
`
2 + 1

)
/
√
π. (2.2)
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Note that (−1)!! = 1!! = 1.
Throughout, ε denotes an arbitrarily small fixed number with ε > 0. (We will

tacitly assume that ε is sufficiently small when necessary.)
We let C and c denote unimportant positive constants, possibly different each

time; these may depend on the parameter α (or α1, α2 below). We sometimes use c
with subscripts; these keep the same value within the same section.

2.2. ∆-domains and singularity analysis. A ∆-domain is a complex domain of
the type

{z : |z| < R, z 6= 1, | arg(z − 1)| > θ} (2.3)

where R > 1 and 0 < θ < π/2, see [9, Section VI.3]. A function is ∆-analytic if it is
analytic in some ∆-domain (or can be analytically continued to such a domain).

Our proofs are based on singularity analysis of various generating functions (see
[9, Chapter VI]), using estimates as z → 1 in a suitable ∆-domain; the domain may
be different each time. In particular, we use repeatedly [9, Theorem VI.3, p. 390] to
estimate error terms when we identify coefficients. All estimates below of analytic
functions tacitly are valid in some ∆-domains (possibly different ones for different
functions), even when that is not said explicitly.

2.3. Polylogarithms. Liα(z) and Liα,r(z) denote polylogarithms and generalized
polylogarithms, respectively; they are defined for α ∈ C and r = 0, 1, . . . by the
power series

Liα(z) :=

∞∑
n=1

n−αzn, (2.4)

Liα,r(z) :=
∞∑
n=1

(log n)r
zn

nα
(2.5)

for |z| < 1, and then extended analytically to C \ [0,∞) (in particular they are ∆-
analytic); see e.g. [9, Section VI.8]. Note that Liα,0(z) = Liα(z). We will also use
the notation

L(z) := − log(1− z) =

∞∑
n=1

zn

n
= Li1(z). (2.6)

We will use singular expansions of polylogarithms and generalized polylogarithms
into powers of 1− z, possibly including powers of L(z). Infinite singular expansions
of polylogarithms and generalized polylogarithms are given by Flajolet [8, Theorem
1] (also [9, Theorem VI.7]); we will mainly use only the following simple versions
keeping only the main terms.

For any real a, let Pa be the set of all polynomials in z of degree < a. In particular,
if a 6 0, then Pa = {0}. If 0 6 a 6 1, then every polynomial in Pa is constant.
These simple cases are the ones of most interest to us.

We then have, for each α /∈ {1, 2, . . . },

Liα(z) = Γ(1− α)(1− z)α−1 + P (z) +O
(
|1− z|Reα

)
, (2.7)
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for some P (z) ∈ PReα.
Moreover, in our proofs we will often go back and forth between expansions in

powers of 1 − z (including powers of L(z)) and expansions in (generalized) poly-
logarithms, using the following simple consequence of the singular expansions of
generalized polylogarithms, proved in [7]. (Here slightly simplified.)

Lemma 2.1 ([7, Lemmas 2.5–2.6]). Suppose that Reα < 1. Then, for each r > 0,
in any fixed ∆-domain and for any ε > 0,

Liα,r(z) =
r∑
j=0

ρr,j(α)(1− z)α−1L(z)j + cr(α) +O
(
|1− z|Reα−ε), (2.8)

for some coefficients ρr,j(α) and cr(α), with leading coefficient

ρr,r(α) = Γ(1− α). (2.9)

Conversely,

(1− z)α−1L(z)r =

r∑
j=0

ρ̂r,j(α) Liα,j(z) + ĉr(α) +O
(
|1− z|Reα−ε), (2.10)

for some coefficients ρ̂r,j(α) and ĉr(α), with

ρ̂r,r(α) = ρr,r(α)−1 = Γ(1− α)−1. (2.11)

Remark 2.2. The lemmas in [7] are stated for real α, but the proofs hold also
for complex α. Moreover, the results extend to α with Reα > 1, assuming α /∈
{1, 2, . . . }, provided the error terms O

(
|1− z|Reα−ε) are replaced by O(|1− z|) when

Reα > 1. �

2.4. Hadamard products. Recall that the Hadamard product A(z)�B(z) of two
power series A(z) =

∑∞
n=0 anz

n and B(z) =
∑∞

n=0 bnz
n is defined by

A(z)�B(z) :=
∞∑
n=0

anbnz
n. (2.12)

(See e.g. [4] or [9].) As a simple example, for any complex α and β,

Liα(z)� Liβ(z) = Liα+β(z), (2.13)

and, more generally, by (2.5),

Liα,r(z)� Liβ,s(z) = Liα+β,r+s(z). (2.14)

We note also, for any constant c and power series A(z) =
∑∞

n=0 anz
n, the trivial

result

c�A(z) = ca0. (2.15)

For our error terms, we will use the following lemma; it is part of [5, Lemma
12.2] and taken from [4, Propositions 9 and 10(i)] and [9, Theorem VI.11, p. 423].
(Further related results are given in [4], [9, Section VI.10.2], and [5].)
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Lemma 2.3 ([4; 9]). If g(z) and h(z) are ∆-analytic, then g(z)�h(z) is ∆-analytic.
Moreover, suppose that g(z) = O(|1− z|a) and h(z) = O(|1− z|b), where a and b are
real with a+ b+ 1 /∈ {0, 1, 2, . . . }; then, as z → 1 in a suitable ∆-domain,

g(z)� h(z) = P (z) +O
(
|1− z|a+b+1

)
, (2.16)

for some P (z) ∈ Pa+b+1.

2.5. Generating functions for Galton–Watson trees. Let pk := P(ξ = k) de-
note the values of the probability mass function for the offspring distribution ξ, and
let Φ be its probability generating function:

Φ(z) := E zξ =
∞∑
k=0

pkz
k. (2.17)

Similarly, let qn := P(|T | = n), and let y denote the corresponding probability
generating function:

y(z) := E z|T | =
∞∑
n=1

P
(
|T | = n

)
zn =

∞∑
n=1

qnz
n. (2.18)

As is well known, then

y(z) = zΦ
(
y(z)

)
. (2.19)

Under our assumptions E ξ = 1 and 0 < Var ξ <∞, the generating function y(z)
extends analytically to a ∆-domain and is thus ∆-analytic; see [12, Lemma A.2] and
[5, §12.1] (and under stronger assumptions [9, Theorem VI.6, p. 404]). Furthermore,
see again [12, Lemma A.2], there exists a ∆-domain where |y(z)| < 1, and thus

Φ(y(z)) is ∆-analytic, as well as Φ(m)
(
y(z)

)
for every m > 1.

We note some useful consequence of our extra moment assumption (1.7); we may
without loss of generality assume δ 6 1. (Compare [5, (12.5), (12.30), and (12.31)]
without the assumption (1.7) but with weaker error terms, and [9, Theorem VI.6]
with stronger results under stronger assumptions.)

Lemma 2.4. If (1.7) holds with 0 < δ 6 1, then, for z in some ∆-domain,

y(z) = 1−
√

2σ−1(1− z)1/2 +O
(
|1− z|

1
2

+ δ
2
)
, (2.20)

y′(z) = 2−1/2σ−1(1− z)−1/2 +O
(
|1− z|−

1
2

+ δ
2
)
. (2.21)

zy′(z)

y(z)
= 2−1/2σ−1(1− z)−1/2 +O

(
|1− z|−

1
2

+ δ
2
)
, (2.22)

In particular, all three functions are ∆-analytic.

Proof. That y(z) is ∆-analytic was noted above, and the estimate (2.20) was shown
in [5, Lemma 12.15]. A differentiation then yields (2.21) in a smaller ∆-domain, using
Cauchy’s estimates for a disc with radius c|1−z| centered at z (see [9, Theorem VI.8,
p. 419]).

Note that zy′(z)/y(z) is analytic in any domain where y is defined and analytic
with |y(z)| < 1, since then (2.19) holds in the domain and implies that y(z) 6= 0
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for z 6= 0, and also that z/y(z) is analytic at z = 0. Hence, also zy′(z)/y(z) is
∆-analytic. Finally, (2.22) follows from (2.20) and (2.21). �

By (2.7), and using Γ(−1/2) = −2
√
π, we can rewrite (2.20) as

y(z) = −
√

2

Γ(−1
2)σ

Li3/2(z) + c+O
(
|1− z|

1
2

+ δ
2
)

=
1√
2πσ

Li3/2(z) + c+O
(
|1− z|

1
2

+ δ
2
)
, (2.23)

where (although we do not need it) c = 1 − ζ(3/2)/
√

2πσ2. Furthermore, by (2.4)
and singularity analysis [9, Theorem VI.3, p. 390], (2.23) implies

qn = P(|T | = n) =
1√
2πσ

n−3/2 +O
(
n−

3
2
− δ

2
)

=
1 +O

(
n−δ/2

)
√

2πσ
n−3/2. (2.24)

Remark 2.5. It is well known that the asymptotic formula

qn = P(|T | = n) =
1 + o(1)√

2πσ
n−3/2 as n→∞ (2.25)

holds with a weaker error bound than (2.24), assuming only Var ξ <∞ (and E ξ = 1);
see e.g. [18] (assuming an exponential moment), [15, Lemma 2.1.4] or [13, Theorem
18.11] (with τ = Φ(τ) = 1) and the further references given there. �

Lemma 2.6. Assume (1.7) with 0 < δ 6 1. Then, for z in some ∆-domain,

Φ
(
y(z)

)
= 1 +O

(
|1− z|

1
2
)
, (2.26)

Φ′
(
y(z)

)
= 1 +O

(
|1− z|

1
2
)
, (2.27)

Φ′′
(
y(z)

)
= σ2 +O

(
|1− z|

δ
2
)
, (2.28)

and, for each fixed m > 3,

Φ(m)
(
y(z)

)
= O

(
|1− z|

δ
2

+1−m
2
)
. (2.29)

Proof. The assumption (1.7) implies the estimate, see e.g. [5, Lemma 12.14],

Φ(z) = z + 1
2σ

2(1− z)2 +O
(
|1− z|2+δ

)
, |z| 6 1. (2.30)

By differentiation of (2.30), for the remainder term using Cauchy’s estimates for a
disc with radius (1− |z|)/2 centered at z, we obtain for all z with |z| < 1, and each
fixed m > 3,

Φ′(z) = 1− σ2(1− z) +O
(
|1− z|2+δ/(1− |z|)

)
, (2.31)

Φ′′(z) = σ2 +O
(
|1− z|2+δ/(1− |z|)2

)
, (2.32)

Φ(m)(z) = O
(
|1− z|2+δ/(1− |z|)m

)
. (2.33)

For z in a suitable ∆-domain we have (2.20), and as a consequence, if |1 − z| is
small enough,

c|1− z|1/2 6 1− |y(z)| 6 |1− y(z)| 6 C|1− z|1/2. (2.34)
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The result follows by (2.30)–(2.34). �

Remark 2.7. In fact, (2.27) holds without the extra assumption (1.7), assuming
only E ξ2 <∞, because then Φ is twice continuously differentiable in the closed unit
disc with Φ′(1) = 1, and y(z) = 1 −

√
2σ−1(1 − z)1/2 + o(|1 − z|1/2) as is shown in

[12, Lemma A.2], see also [5, (12.5)]. �

3. The shape functional

We consider here the shape functional X ′n(0). Asymptotics for the mean and vari-
ance of this functional were found by Fill [3] in the case of binary search trees under
the random permutation model; these are not simply generated trees. Asymptotics
for the mean and variance were found by Meir and Moon [16] for simply generated
trees under a condition equivalent to our conditioned Galton–Watson trees with ξ
having a finite exponential moment E erξ < ∞ for some r > 0. Pittel [19] showed
asymptotic normality in the case of uniform labelled trees [the case ξ ∼ Po(1)] by es-
timating cumulants. Fill and Kapur [7] considered uniform binary trees [ξ ∼ Bi(2, 1

2)]
and showed asymptotic normality by estimating moments by singularity analysis, see
also Fill, Flajolet, and Kapur [4]. Asymptotic normality has recently been shown,
by similar methods, also for uniformly random ordered trees [the case ξ ∼ Ge(1

2)]
by Caracciolo, Erba, and Sportiello [1], who further [personal communication] have
extended the results to arbitrary offspring distributions ξ (with E ξ = 1 as here), at
least provided that ξ has a finite exponential moment E erξ <∞ for some r > 0.

We will here extend these results to any offspring distribution ξ satisfying the
standard condition E ξ = 1 and the weak moment condition (1.7) for some δ > 0.
We assume without loss of generality that 0 < δ 6 1. We will use singularity analysis
to estimate moments, in the same way as [7; 4; 1].

In this section, we define (corresponding to [5, (12.46)])

bn := log n− µ′, n > 1, (3.1)

where µ′ = E log |T | =
∑∞

n=1 qn log n as in (1.9), and we let F be the additive
functional defined by the toll function f(T ) := b|T |. Thus, by (1.6),

F (Tn) = X ′n(0)− µ′n. (3.2)

The generating function of bn is, by (2.4)–(2.5) and noting Li0(z) = z/(1− z),

B(z) =

∞∑
n=1

(log n− µ′)zn = Li0,1(z)− µ′ Li0(z). (3.3)

Hence, by Lemma 2.1 (or [9, Figure VI.11, p. 410] with more terms),

B(z) = (1− z)−1L(z)− c(1− z)−1 +O
(
|1− z|−ε

)
(3.4)

= O
(
|1− z|−1−ε). (3.5)

We define the generating functions, for ` > 1,

M`(z) := E
[
F (T )`z|T |

]
=

∞∑
n=1

qn E[F (Tn)`]zn. (3.6)
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These generating functions can be calculated recursively by the following formula
(valid for any sequence bn) from [5], where A(z)�` denotes the `th Hadamard power
of a power series A(z).

Lemma 3.1 ([5, Lemma 12.4]). For every ` > 1,

M`(z) =
zy′(z)

y(z)

∑̀
m=0

1

m!

∑**
(

`

`0, . . . , `m

)
B(z)�`0 �

[
zM`1(z) · · ·M`m(z)Φ(m)

(
y(z)

)]
,

(3.7)

where
∑** is the sum over all (m + 1)-tuples (`0, . . . , `m) of non-negative integers

summing to ` such that 1 6 `1, . . . , `m < `.

Note that B(z) is ∆-analytic by (3.3); furthermore, zy′(z)/y(z) and Φ(m)
(
y(z)

)
are also ∆-analytic, see Section 2.5. Hence, (3.7) and induction using Lemma 2.3
show that every M`(z) is ∆-analytic.

It will be convenient to denote the sum in (3.7) by R`(z). Thus,

M`(z) =
zy′(z)

y(z)
R`(z). (3.8)

3.1. The mean. We begin with the mean EX ′n(0) and the corresponding generating
function M1(z). The following result includes earlier results for special cases in
[3; 16; 19; 7; 4; 1], but our error term is weaker [since we have the weaker moment
assumption (1.7)]. Recall that ψ(z) := Γ′(z)/Γ(z), and note that

ψ(−1
2) = ψ(1

2) + 2 = −γ − 2 log 2 + 2, (3.9)

see [17, 5.5.2 and 5.4.13].

Lemma 3.2. Assume (1.7) with 0 < δ 6 1. Then, for any ε > 0,

M1(z) = −σ−2L(z) +
µ′ − ψ(−1

2)

σ2
+O

(
|1− z|

δ
2
−ε) (3.10)

and

EX ′n(0) = µ′n−
√

2π

σ
n1/2 +O

(
n

1
2
− δ

2
+ε
)
. (3.11)

Proof. For ` = 1, the sums in (3.7) reduce to a single term with m = 0 and `0 = 1,
and thus, as in [5, (12.29)], using (2.19),

M1(z) =
zy′(z)

y(z)
·
(
B(z)� zΦ

(
y(z)

))
=
zy′(z)

y(z)
·
(
B(z)� y(z)

)
. (3.12)

By (2.14), (2.15), (3.3) and (2.23) we obtain, using Lemma 2.3 and (3.5) for the
error term,

B(z)� y(z) =
1√
2πσ

Li3/2,1(z)− µ′√
2πσ

Li3/2(z) + c1 +O
(
|1− z|

1
2

+ δ
2
−ε). (3.13)
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Further, by our choice (1.9) of µ′,

(B � y)(1) =
∞∑
n=1

bnqn =
∞∑
n=1

qn(log n− µ′) = µ′ − µ′ = 0. (3.14)

By (2.7), we have

Li3/2(z) = Γ(−1
2)(1− z)1/2 + c2 +O

(
|1− z|

)
. (3.15)

Moreover, by [9, Theorem VI.7, p. 408] (or [8, Theorem 1]),

Li3/2,1(z) = Γ(−1
2)(1− z)1/2L(z) + Γ′(−1

2)(1− z)1/2 + c3 +O
(
|1− z|

)
. (3.16)

Hence, (3.13) and (3.15)–(3.16) yield, using (3.14) to see that the constant terms
cancel,

B(z)� y(z) =
Γ(−1

2)
√

2πσ
(1− z)1/2L(z) +

Γ′(−1
2)− µ′Γ(−1

2)
√

2πσ
(1− z)1/2 +O

(
|1− z|

1
2

+ δ
2
−ε)

= −
√

2

σ
(1− z)1/2L(z) +

√
2
(
µ′ − ψ(−1

2)
)

σ
(1− z)1/2 +O

(
|1− z|

1
2

+ δ
2
−ε).

(3.17)

Finally, (3.12), (2.22), and (3.17) yield (3.10).
Since L(z) =

∑∞
n=1 z

n/n, (3.10) yields by standard singularity analysis, recalling
the definition (3.6),

qn EF (Tn) = −σ−2n−1 +O
(
n−1− δ

2
+ε
)
. (3.18)

Hence, using also (2.24),

EF (Tn) = −
√

2π

σ
n1/2 +O

(
n

1
2
− δ

2
+ε
)

(3.19)

and (3.11) follows by (3.2). �

Remark 3.3. Under stronger moment conditions on the offspring distribution ξ, we
may in the same way obtain an expansion of the mean EX ′n(0) with further terms.
For example, if E ξ3+δ <∞, then the same argument yields

EX ′n(0) = µ′n−
√

2π

σ
n1/2 +

E[ξ(ξ − 1)(ξ − 2)]

3σ4
log n+O(1). (3.20)

In the special case of binary trees, this was given in [7, (4.2)]. Note that the coefficient
of log n in (3.20) vanishes for binary trees, but not in general. �

3.2. The second moment.

Lemma 3.4. Assume (1.7) with 0 < δ 6 1. Then, for any ε > 0,

M2(z) = 23/2(1− log 2)σ−3(1− z)−1/2L(z) + c4(1− z)−1/2 +O
(
|1− z|−

1
2

+ δ
2
−ε).
(3.21)
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Proof. We use Lemma 3.1 with the notation R`(z) as in (3.8). For ` = 2, Lemma 3.1
shows, using (2.19), that

R2(z) = B(z)�2 � y(z) + 2B(z)�
[
zM1(z)Φ′(y(z))

]
+ zM1(z)2Φ′′

(
y(z)

)
. (3.22)

We consider the three terms separately.
First, by (3.5), (2.20) and Lemma 2.3 (twice), we have

B(z)�2 � y(z) = B(z)�2 �
(
y(z)− 1

)
= c5 +O

(
|1− z|

1
2
−2ε
)
. (3.23)

For the remaining two terms, we have to be more careful, since it will turn out
that their main terms cancel.

For the second term, we note first that (3.10) implies M1(z) = O
(
|1− z|−ε

)
, and

thus (2.27) yields

zM1(z)Φ′(y(z)) = M1(z) +O
(
|1− z|

1
2
−ε). (3.24)

Hence, (3.5) and Lemma 2.3 yield

B(z)�
[
zM1(z)Φ′(y(z))

]
= B(z)�M1(z) + c6 +O

(
|1− z|

1
2
−2ε
)
. (3.25)

This implies, using (3.5), (3.10), and Lemma 2.3 again, followed by (3.3), and recall-
ing Li0,1�L(z) = Li0,1�Li1,0(z) = Li1,1(z),

B(z)�
[
zM1(z)Φ′(y(z))

]
= −σ−2B(z)� L(z) + c7 +O

(
|1− z|

δ
2
−2ε
)

= −σ−2
(
Li0,1(z)� L(z)− µ′L(z)

)
+ c7 +O

(
|1− z|

δ
2
−2ε
)

= −σ−2 Li1,1(z) + σ−2µ′L(z) + c7 +O
(
|1− z|

δ
2
−2ε
)
.
(3.26)

We use the singular expansion of Li1,1(z):

Li1,1(z) = 1
2L

2(z)− γL(z) + c8 +O
(
|1− z|1−ε

)
, (3.27)

which follows from [8, p. 380] and is given in [7, p. 96], except that the error term
there should be O(|(1− z)L(z)|), not O(|1− z|). Consequently, (3.26) yields

B(z)�
[
zM1(z)Φ′(y(z))

]
= −1

2σ
−2L2(z) + σ−2(γ + µ′)L(z) + c9 +O

(
|1− z|

δ
2
−2ε
)
.

(3.28)

For the third term in (3.22), we have by (2.28) and (3.10), again using M1(z) =
O
(
|1− z|−ε

)
,

zM1(z)2Φ′′
(
y(z)

)
= σ2M1(z)2 +O

(
|1− z|

δ
2
−2ε
)

= σ−2L2(z)− 2
µ′ − ψ(−1

2)

σ2
L(z) + c10 +O

(
|1− z|

δ
2
−2ε
)
. (3.29)

Finally, (3.22) yields, by summing (3.23), (3.28) (twice) and (3.29), recalling (3.9),

R2(z) = 2
γ + ψ(−1

2)

σ2
L(z) + c11 +O

(
|1− z|

δ
2
−2ε
)

= 4(1− log 2)σ−2L(z) + c11 +O
(
|1− z|

δ
2
−2ε
)
. (3.30)
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The result (3.21) now follows by (3.30), (3.8), and (2.22), and replacing ε by ε/2 (as
we may because ε is arbitrary). �

This gives the asymptotics for the second moment of the shape functional. Again,
the result includes earlier results for special cases in [3; 16; 19; 7; 1]. Recall from
(3.2) that F (Tn) = X ′n(0)− µ′n.

Lemma 3.5. Assume (1.7) with δ > 0. Then

E
[(
X ′n(0)− µ′n

)2]
= E

[
F (Tn)2

]
= 4(1− log 2)σ−2n log n+O

(
n
)
, (3.31)

and thus

VarX ′n(0) = VarF (Tn) = 4(1− log 2)σ−2n log n+O
(
n
)
. (3.32)

Proof. We may assume δ 6 1. The definition (3.6) and the singular expansion (3.21)
yield by standard singularity analysis (using (2.10)–(2.11) or [9, Figure VI.5, p. 388])

qn E
[
F (Tn)2

]
=

23/2(1− log 2)√
π

σ−3n−1/2 log n+O
(
n−

1
2
)
. (3.33)

Hence, (3.31) follows by (2.24). Finally, (3.32) follows by (3.31) and (3.19). �

3.3. Higher moments. We extend the results above to higher moments, using the
method used earlier for special cases in [7; 1]; see also [19] for a different method (in
another special case).

We prove the following analogue of [5, Lemma 12.8]. Note that (3.34) is not true
for ` = 1, since the leading power of L(z) in that case is L(z)1 by (3.10). (Also (3.35)
fails for ` = 1 in general.)

Lemma 3.6. Assume (1.7) with 0 < δ 6 1. Then, for every ` > 2, M`(z) is
∆-analytic, and, for any ε > 0,

M`(z) = σ−`−1(1− z)(1−`)/2
b`/2c∑
j=0

κ`,jL(z)j +O
(
|1− z|−

1
2
`+ 1

2
+ δ

2
−ε) (3.34)

= σ−`−1

b`/2c∑
j=0

κ̂`,j Li(3−`)/2,j(z) +O
(
|1− z|−

1
2
`+ 1

2
+ δ

2
−ε), (3.35)

for some coefficients κ`,j and κ̂`,j. The leading coefficients κ∗2k := κ2k,k in the case
that ` = 2k is even are given by the recursion

κ∗2 = 23/2(1− log 2), (3.36)

κ∗2k = 2−3/2
k−1∑
i=1

(
2k

2i

)
κ∗2iκ

∗
2(k−i), k > 2. (3.37)

Furthermore,

κ̂2k,k = Γ
(
k − 1

2

)−1
κ2k,k = Γ

(
k − 1

2

)−1
κ∗2k. (3.38)



16 JAMES ALLEN FILL, SVANTE JANSON, AND STEPHAN WAGNER

Proof. Note first that (3.34) and (3.35) are equivalent by Lemma 2.1, and that (3.38)
follows using (2.11).

We use induction on `. The base case ` = 2 (including (3.36)) is Lemma 3.4, so
we assume ` > 3. We follow the proof of [5, Lemma 12.8], mutatis mutandis.

We first note that L(z) = O
(
|1 − z|−ε

)
. Hence, for every `′ < `, the induction

hypothesis and (for the case `′ = 1) Lemma 3.2 show that

M`′(z) = O
(
|1− z|−

1
2
`′+ 1

2
−ε). (3.39)

(Here and in the sequel we replace without further comment, as we may, cε by ε,
for any constant c possibly depending on `.) Hence, using Lemma 2.6, for a typical
term in (3.7) (with m > 0),

zM`1(z) · · ·M`m(z)Φ(m)
(
y(z)

)
= O

(
|1− z|−

1
2

∑m
i=1 `i+

1
2
m−εΦ(m)

(
y(z)

))
=

{
O
(
|1− z|−

1
2

(`−`0)+ 1
2
m−ε), m 6 2,

O
(
|1− z|−

1
2

(`−`0)+1+ δ
2
−ε), m > 3.

(3.40)

Since `− `0 > m, the exponent here is < 0. Hence, (3.5) and Lemma 2.3 applied `0
times yield

B(z)�`0 �
[
zM`1(z) · · ·M`m(z)Φ(m)

(
y(z)

)]
=

{
O
(
|1− z|−

1
2
`+ 1

2
`0+ 1

2
m−ε), m 6 2,

O
(
|1− z|−

1
2
`+ 1

2
`0+1+ δ

2
−ε), m > 3.

(3.41)

If m = 0, then `0 = ` > 3, and if m = 1, then `1 < ` and thus `0 = `−`1 > 1. Hence,
except in the two cases (1) m = 1 and `0 = 1 and (2) m = 2 and `0 = 0, we have
m+ `0 > 3, and then the exponent in (3.41) is > −1

2`+ 1 + δ
2 − ε. Consequently, by

(3.7)–(3.8),

Rl(z) = `B(z)�
[
zM`−1(z)Φ′

(
y(z)

)]
+

1

2

`−1∑
j=1

(
`

j

)
zMj(z)M`−j(z)Φ

′′(y(z)
)

+O
(
|1− z|−

1
2
`+1+ δ

2
−ε). (3.42)

By (2.27), (3.39), (3.5) and Lemma 2.3, we have, similarly to (3.25),

B(z)�
[
zM`−1(z)Φ′(y(z))

]
= B(z)�M`−1(z) +O

(
|1− z|−

1
2
`+ 3

2
−ε). (3.43)

Hence, using also (2.28) and (again) (3.39), we can simplify (3.42) to

Rl(z) = `B(z)�M`−1(z) +
σ2

2

`−1∑
j=1

(
`

j

)
Mj(z)M`−j(z) +O

(
|1− z|−

1
2
`+1+ δ

2
−ε).
(3.44)

In the remaining estimates we have to be more careful, in particular since there
will be important cancellations. (This is as in the case ` = 2 treated earlier, but
somewhat different.)

Consider first the Hadamard product in (3.44) (the case m = 1 and `0 = 1 above).
We now use the induction hypothesis in the form (3.35) and obtain by (2.14) and
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(3.3), using again (3.5) and Lemma 2.3 for the error term, and finally rewriting by
(2.8),

B(z)�M`−1(z)

= σ−`
b(`−1)/2c∑

j=0

κ̂`−1,j

(
Li(4−`)/2,j+1(z)− µ′ Li(4−`)/2,j(z)

)
+O

(
|1− z|−

1
2
`+1+ δ

2
−ε)

= σ−`
b(`+1)/2c∑
k=0

c
(1)
`,k Li(4−`)/2,k(z) +O

(
|1− z|−

1
2
`+1+ δ

2
−ε)

= σ−`(1− z)−
1
2
`+1

b(`+1)/2c∑
k=0

c
(2)
`,kL(z)k +O

(
|1− z|−

1
2
`+1+ δ

2
−ε), (3.45)

where the leading coefficient in the sum is, using (2.9) and (2.11),

c
(2)
`,b(`+1)/2c = Γ(`/2− 1)c

(1)
`,b(`+1)/2c = Γ(`/2− 1)κ̂`−1,b(`−1)/2c = κ`−1,b(`−1)/2c.

(3.46)

The leading term in (3.45) is thus

σ−`κ`−1,b(`−1)/2c(1− z)−
1
2
`+1L(z)b(`+1)/2c. (3.47)

Consider now the terms with j = 1 and j = ` − 1 in the sum in (3.44). By
Lemma 3.2 and the induction hypothesis, we have

σ2M1(z)M`−1(z) = σ−`(1− z)−
1
2
`+1

b(`−1)/2c∑
j=0

κ`−1,j

[
−L(z)j+1 + cL(z)j

]
+O

(
|1− z|−

1
2
`+1+ δ

2
−ε). (3.48)

Note that the leading term in (3.48) cancels (3.47). Consequently, (3.45)–(3.48) yield

`B(z)�M`−1(z) +
σ2

2
· 2 ·

(
`

1

)
M1(z)M`−1(z)

= (1− z)−
1
2
`+1

b(`−1)/2c∑
k=0

c
(3)
`,kL(z)k +O

(
|1− z|−

1
2
`+1+ δ

2
−ε). (3.49)

The remaining terms in (3.44) yield immediately, by the induction hypothesis,

σ2

2

`−2∑
j=2

(
`

j

)
Mj(z)M`−j(z) = (1− z)−

1
2
`+1

b`/2c∑
k=0

c
(4)
`,kL(z)k +O

(
|1− z|−

1
2
`+1+ δ

2
−ε).
(3.50)

Finally, (3.44) and (3.49)–(3.50) yield

R`(z) = (1− z)−
1
2
`+1

b`/2c∑
j=0

c
(5)
`,jL(z)j +O

(
|1− z|−

1
2
`+1+ δ

2
−ε), (3.51)
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and (3.34) follows by (3.8) and (2.22), which completes the induction step.
It remains only to show the recursion (3.37) for the leading coefficients. If ` = 2k

is even, with ` > 4, then (3.49) does not contribute to c
(5)
2k,k nor thus to κ2k,k, and

neither do the terms in (3.50) with j odd. Hence, the argument above yields

c
(5)
2k,k =

1

2

k−1∑
i=1

(
2k

2i

)
σ−2kκ2i,iκ2k−2i,k−i (3.52)

and thus, recalling again (2.22),

κ2k,k = 2−3/2
k−1∑
i=1

(
2k

2i

)
κ2i,iκ2k−2i,k−i, (3.53)

which is (3.37). �

The recursion (3.37) is the same as [5, (C.35)], and thus has the same solution [5,
(C.40)], i.e.,

κ∗2k = 23/2 (2k)! (2k − 2)!

(k − 1)! k!
dk1, k > 1, (3.54)

with, see [5, (C.36)] and (3.36),

d1 := 2−3/2κ∗2/2 = 1
2(1− log 2). (3.55)

This is what we need to complete the proof of the asymptotic normality of F (Tn).

Proof of Theorem 1.3. If ` > 2, then (3.6), the expansion (3.35), (2.5), and standard
singularity analysis yield

qn E
[
F (Tn)`

]
= σ−`−1κ̂`,b`/2cn

(`−3)/2(log n)b`/2c +O
(
n(`−3)/2(log n)b`/2c−1

)
. (3.56)

Hence, using (2.24),

E
[
F (Tn)`

]
= σ−`

√
2πκ̂`,b`/2cn

`/2(log n)b`/2c +O
(
n`/2(log n)b`/2c−1

)
. (3.57)

Consequently,

E
[
F (Tn)`

]
(n log n)`/2

→

{
0, ` = 2k + 1 > 3,

σ−2k
√

2πκ̂2k,k, ` = 2k > 2.
(3.58)

Furthermore, (3.58) holds also for ` = 1 (with limit 0) by (3.19).
For even ` = 2k, the limit in (3.58) is by (3.38), (3.54), and (3.55), cf. [5, (C.41)],

σ−2k

√
2π

Γ(k − 1
2)
κ∗2k = σ−2k 4

√
π

Γ(k − 1
2)

(2k)! (2k − 2)!

(k − 1)! k!
dk1 = σ−2k22k (2k)!

k!
dk1

=
(
8d1σ

−2
)k · (2k − 1)!! =

(
4(1− log 2)σ−2

)k · (2k − 1)!!. (3.59)

Consequently, the limits appearing in (3.58) are the moments of a normal distribution
N
(
0, 4(1 − log 2)σ−2

)
, and thus (1.10) follows by the method of moments. (Recall

that F (Tn) = X ′n(0)− µ′n by (3.2).) �
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4. Imaginary powers

In this section, we consider Xn(α) in (1.1) when the exponent α is purely imag-
inary, i.e., Reα = 0. We exclude the trivial case α = 0, when Xn(α) = n is
non-random. We assume throughout the section that 0 < δ < 1 and that (1.7)
holds. As above, ε is an arbitrarily small positive number, and we replace cε by ε
without comment.

We follow rather closely the argument for the case 0 < Reα < 1/2 in [5, §12.4–6],
but we will see new terms appearing that will lead to the dominating terms with
logarithmic factors for the moments; this is very similar to the argument in Section 3,
but we will see some differences. (Notably, there are no cancellations of leading terms
like those in Section 3.)

As in [5, §12.4], we define

bn := nα − µ(α), (4.1)

with the following generating function (cf. [5, (12.44)] and (2.7), and note Li0(z) =
z(1− z)−1):

B(z) = Bα(z) :=
∞∑
n=1

bnz
n = Li−α(z)− µ(α) Li0(z) (4.2)

= Γ(1 + α)(1− z)−α−1 − µ(α)(1− z)−1 +O(1) (4.3)

= O
(
|1− z|−1

)
. (4.4)

Let now F (T ) = Fα(T ) denote the additive functional defined by the toll function
fα(T ) := b|T |. Thus,

Fα(Tn) = Xn(α)− nµ(α). (4.5)

4.1. The mean. For the mean, we define the generating function

Mα(z) := E
[
Fα(T )z|T |

]
=

∞∑
n=1

qn E[Fα(Tn)]zn. (4.6)

We then have, as in (3.12) and [5, (12.29)],

Mα(z) =
zy′(z)

y(z)
·
(
Bα(z)� y(z)

)
. (4.7)

Thus Mα(z) is ∆-analytic. Further, we have by (2.13), (4.2), and (2.23), using (4.4)
and Lemma 2.3 for the error term in (2.23), and then using for the second line (2.7)
and Γ(−1

2) = −2
√
π,

Bα(z)� y(z) =
1√
2πσ

Li3/2−α(z)− µ(α)√
2πσ

Li3/2(z) + c1 +O
(
|1− z|

1
2

+ δ
2
)

=
Γ(α− 1

2)
√

2πσ
(1− z)

1
2−α + 21/2σ−1µ(α)(1− z)1/2 + c2 +O

(
|1− z|

1
2

+ δ
2
)
. (4.8)
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Further, similarly to (3.14),

(Bα � y)(1) =

∞∑
n=1

bnqn =

∞∑
n=1

qn[nα − µ(α)] = E |T |α − µ(α) = 0. (4.9)

Thus, letting z → 1 in (4.8) shows that c2 = (Bα � y)(1) = 0.
Finally, (4.7), (2.22), and (4.8) yield, using (2.7) again,

Mα(z) =
Γ(α− 1

2)

2
√
πσ2

(1− z)−α + σ−2µ(α) +O
(
|1− z|

δ
2
)

(4.10)

=
Γ(α− 1

2)

2
√
πσ2Γ(α)

Li1−α(z) + c3 +O
(
|1− z|

δ
2
)
. (4.11)

Singularity analysis now yields, from (4.6) and (4.11),

qn E[Fα(Tn)] =
Γ(α− 1

2)

2
√
πσ2Γ(α)

nα−1 +O
(
n−1− δ

2
)

(4.12)

and thus, by (2.24),

E[Fα(Tn)] =
Γ(α− 1

2)
√

2σΓ(α)
n

1
2

+α +O
(
n

1
2
− δ

2
)

(4.13)

Hence, recalling (4.5),

EXn(α) = µ(α)n+
Γ(α− 1

2)
√

2σΓ(α)
n

1
2

+α +O
(
n

1
2
− δ

2
)
. (4.14)

This agrees with [5, Theorem 1.7(ii)] (proved without (1.7), and by different meth-
ods), except that the error estimate here is smaller.

4.2. Higher moments. For higher moments, we need mixed moments for α and
α = −α. Thus, somewhat more generally, fix α1 and α2 with Reα1 = Reα2 = 0 but
α1 6= 0 6= α2. We define, for integers `1, `2 > 0, the generating function

M`1,`2(z) := E
[
Fα1(T )`1Fα2(T )`2z|T |

]
=

∞∑
n=1

qn E
[
Fα1(Tn)`1Fα2(Tn)`2

]
zn. (4.15)

Thus M1,0 = Mα1 and M0,1 = Mα2 are given by (4.7). The functions M`,r can then
be found by the following recursion, given in [5, (12.75)], for every `, r > 0 with
`+ r > 1:

M`,r(z) =
zy′(z)

y(z)

`+r∑
m=0

1

m!

∑**
(

`

`0, . . . , `m

)(
r

r0, . . . , rm

)
Bα1(z)�`0

�Bα2(z)�r0 �
[
zM`1,r1(z) · · ·M`m,rm(z)Φ(m)

(
y(z)

)]
, (4.16)

where
∑** is the sum over all pairs of (m+ 1)-tuples (`0, . . . , `m) and (r0, . . . , rm) of

non-negative integers that sum to ` and r, respectively, such that 1 6 `i + ri < `+ r
for every i > 1. (Note that there are two typographical errors in [5]: the lower
summation limit should be m = 0, and the final qualification “i > 1” is missing
there.) It follows by induction that every M`,r is ∆-analytic.
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We define for convenience R`,r(z) as the sum in (4.16); thus

M`,r(z) =
zy′(z)

y(z)
R`,r(z). (4.17)

Let us first consider second moments. Taking ` = r = 1 in (4.16) yields, recalling
(2.19),

R1,1(z) = Bα1(z)�Bα2(z)� y(z) +Bα1(z)� [zM0,1(z)Φ′(y(z))]

+Bα2(z)� [zM1,0(z)Φ′(y(z))] + zM1,0(z)M0,1(z)Φ′′(y(z)). (4.18)

The first term is, by (4.4) and (4.8) (where c2 = 0 by (4.9)) together with Lemma 2.3,

O
(
|1− z|−1

)
�O

(
|1− z|1/2

)
= c4 +O

(
|1− z|1/2

)
. (4.19)

For the other terms in (4.18), we first note from (4.10) that M1,0(z) = Mα1(z) = O(1)
and M0,1(z) = Mα2(z) = O(1). Thus, using also (2.27)–(2.28), (4.4) and Lemma 2.3,
we may simplify to

R1,1(z) = c5 +Bα1(z)�M0,1(z) +Bα2(z)�M1,0(z) +M1,0(z)M0,1(z)σ2

+O
(
|1− z|δ/2

)
. (4.20)

Furthermore, (4.10) yields

M1,0(z)M0,1(z) = c6(1− z)−α1 + c7(1− z)−α2 + c8(1− z)−α1−α2 + c9 +O
(
|1− z|

δ
2
)
.

(4.21)

We compute the Hadamard products in (4.20) by (2.13), (4.2) and (4.11), using
again (4.4) and Lemma 2.3 for the error term. Together with (4.21), this yields from
(4.20) a result that we write, using (2.7), as

R1,1(z) =
( Γ(α2 − 1

2)

2
√
πσ2Γ(α2)

+
Γ(α1 − 1

2)

2
√
πσ2Γ(α1)

)
Li1−α1−α2(z)

+ c10(1− z)−α1 + c11(1− z)−α2 + c8(1− z)−α1−α2 + c12

+O
(
|1− z|δ/2

)
. (4.22)

If α1 + α2 6= 0, we use (2.7) also on the first term and obtain

R1,1(z) = c13(1− z)−α1−α2 + c10(1− z)−α1 + c11(1− z)−α2 + c14

+O
(
|1− z|δ/2

)
. (4.23)

On the other hand, if α1 + α2 = 0, we recall that Li1(z) = L(z), and thus (4.22)
yields

R1,1(z) =
1√
πσ2

Re
Γ(α1 − 1

2)

Γ(α1)
· L(z) + c10(1− z)−α1 + c11(1− z)−α2 + c15

+O
(
|1− z|δ/2

)
. (4.24)

We can now obtain M1,1(z) from (4.23)–(4.24) by (4.17) and (2.22). We do not
state the result separately, but proceed immediately to a general formula.



22 JAMES ALLEN FILL, SVANTE JANSON, AND STEPHAN WAGNER

Lemma 4.1. Let α 6= 0 with Reα = 0, and take α1 = α and α2 = α = −α. Then,
for each pair of integers `, r > 0 with `+ r > 2, M`,r(z) is ∆-analytic and we have,
for some coefficients κ`,r;j,k and κ̂`,r;j,k, and every ε > 0,

M`,r(z) =
∑
j,k

κ`,r;j,k(1− z)(1−`−r)/2+jαL(z)k +O
(
|1− z|

1
2

(1−`−r)+ δ
2
−ε) (4.25)

=
∑
j,k

κ̂`,r;j,k Li(3−`−r)/2+jα,k(z) +O
(
|1− z|

1
2

(1−`−r)+ δ
2
−ε), (4.26)

where the sums are over integers j and k with −` 6 j 6 r and 0 6 k 6 ` ∧ r.
Furthermore, if `+ r = 1, then (4.25) holds (but not (4.26)).
If ` = r, then the only non-zero coefficients with k = ` = r are

κ`,`;0,` = σ−2`−1κ∗` , (4.27)

κ̂`,`;0,` = Γ
(
`− 1

2

)−1κ`,`;0,` =
σ−2`−1

Γ
(
`− 1

2

)κ∗` , (4.28)

where κ∗` is given by the recursion

κ∗1 =
1√
2π

Re
Γ(α− 1

2)

Γ(α)
, (4.29)

κ∗` = 2−3/2
`−1∑
i=1

(
`

i

)2

κ∗i κ∗`−i, ` > 2. (4.30)

Proof. Note first that for ` + r = 1, (4.25) follows from (4.10). (We see also from
(4.11) that (4.26) would hold if we add a constant term; the problem is that Li1(z)
is L(z) and not a constant.)

Assume in the rest of the proof that ` + r > 2. Then the expansions (4.25) and
(4.26) are equivalent by Lemma 2.1; furthermore, for the leading terms, (4.27) and
(4.28) are equivalent by (2.11).

Consider next the case ` + r = 2. If (`, r) = (2, 0) or (0, 2), we can obtain the
functions M2,0(z) and M0,2(z) as special cases of M1,1(z) where α1 = α2 = ±α and
thus use (4.23) with α1 = α2 = ±α and obtain (4.25) by (4.17) and (2.22). (Now
only terms with k = 0 appear.)

If ` = r = 1, we similarly use (4.24), (4.17) and (2.22) and obtain (4.25) including

a single term with k = 1, viz. κ1,1;0,1L(z)(1−z)−1/2 with κ1,1;0,1 given by (4.27) and
(4.29).

For ` + r > 3, we use induction on ` + r. By the induction hypothesis (4.25)
(including the case ` + r = 1 just proved by (4.10)), we have for every (`′, r′) with
1 6 `′ + r′ < `+ r,

M`′,r′(z) = O
(
|1− z|−

1
2

(`′+r′)+ 1
2
−ε). (4.31)

Consequently, for a typical term in (4.16), as in (3.40) and using again Lemma 2.6,

zM`1,r1(z) · · ·M`m,rm(z)Φ(m)
(
y(z)

)
= O

(
|1− z|−

1
2

∑m
i=1(`i+ri)+

1
2
m−εΦ(m)

(
y(z)

))
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=

{
O
(
|1− z|−

1
2

(`+r−`0−r0)+ 1
2
m−ε), m 6 2,

O
(
|1− z|−

1
2

(`+r−`0−r0)+1+ δ
2
−ε), m > 3.

(4.32)

Again the exponent here is < 0, and it follows by (4.4) and Lemma 2.3 that

Bα1(z)�`0 �Bα2(z)�r0 �
[
zM`1,r1(z) · · ·M`m,rm(z)Φ(m)

(
y(z)

)]
=

{
O
(
|1− z|−

1
2

(`+r)+ 1
2

(`0+r0)+ 1
2
m−ε), m 6 2,

O
(
|1− z|−

1
2

(`+r)+ 1
2

(`0+r0)+1+ δ
2
−ε), m > 3.

(4.33)

As in the proof of Lemma 3.6, except in the two cases (1) m = 1 and `0 + r0 = 1
and (2) m = 2 and `0 = r0 = 0 we have m+ `0 + r0 > 3, and then the exponent in
(4.33) is > −1

2(`+ r) + 1 + δ
2 − ε. Consequently, by (4.16)–(4.17),

Rl,r(z) = `Bα1(z)�
[
zM`−1,r(z)Φ

′(y(z)
)]

+ rBα2(z)�
[
zM`,r−1(z)Φ′

(
y(z)

)]
+

1

2

∑∑
0<i+j<`+r

(
`

i

)(
r

j

)
zMi,j(z)M`−i,r−j(z)Φ

′′(y(z)
)

+O
(
|1− z|−

1
2

(`+r)+1+ δ
2
−ε). (4.34)

As in (3.42)–(3.44) and (4.18)–(4.20), this can be simplified, using (2.27)–(2.28),
(4.31), (4.4) and Lemma 2.3, and we obtain

Rl,r(z) = `Bα1(z)�M`−1,r(z) + rBα2(z)�M`,r−1(z)

+
σ2

2

∑∑
0<i+j<`+r

(
`

i

)(
r

j

)
Mi,j(z)M`−i,r−j(z) +O

(
|1− z|−

1
2

(`+r)+1+ δ
2
−ε).

(4.35)

By the induction hypothesis in the form (4.26) and (4.2), using as always Lemma 2.3
for the error term, we have

Bα1(z)�M`−1,r(z) =
∑
j,k

κ̂`−1,r;j,k Li(4−`−r)/2+jα,k(z)�
(
Li−α(z)− µ(α) Li0(z)

)
+O

(
|1− z|−

1
2

(`+r)+1+ δ
2
−ε) (4.36)

summing over −(` − 1) 6 j 6 r and 0 6 k 6 (` − 1) ∧ r. By (2.14), this can be
rearranged as∑

j,k

c
(1)
`,r;j,k Li(4−`−r)/2+jα,k(z) +O

(
|1− z|−

1
2

(`+r)+1+ δ
2
−ε), (4.37)

now summing over −` 6 j 6 r and 0 6 k 6 (`− 1)∧ r. By Lemma 2.1, this can also
be written∑

j,k

c
(2)
`,r;j,k(1− z)

(2−`−r)/2+jαL(z)k +O
(
|1− z|−

1
2

(`+r)+1+ δ
2
−ε), (4.38)

still summing over −` 6 j 6 r and 0 6 k 6 (`− 1) ∧ r.
By symmetry, Bα2(z) �M`,r−1(z) can also be written as (4.38) (with different

coefficients c
(2)
`,r;j,k), now summing over −` 6 j 6 r and 0 6 k 6 ` ∧ (r − 1).
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Finally, the double sum in (4.35) can by the induction hypothesis (4.25) also be
written as (4.38), summing over −` 6 j 6 r and 0 6 k 6 ` ∧ r.

Consequently, (4.35) yields

R`,r(z) =
∑
j,k

c
(3)
`,r;j,k(1− z)

(2−`−r)/2+jαL(z)k +O
(
|1− z|−

1
2

(`+r)+1+ δ
2
−ε), (4.39)

summing over −` 6 j 6 r and 0 6 k 6 ` ∧ r. By (4.17) and (2.22), this implies
(4.25), which completes the induction proof of (4.25)–(4.26).

Now consider the case ` = r > 2. We see that then the only terms above with
k = ` = r come from the double sum in (4.35); moreover, they appear only for terms
there with i = j, and we obtain by induction that the only non-zero coefficient in
(4.39) with k = ` is, using (4.27),

c
(3)
`,`;0,` =

σ2

2

`−1∑
i=1

(
`

i

)2

κi,i;0,iκ`−i,`−i;0,`−i =
1

2
σ−2`

`−1∑
i=1

(
`

i

)2

κ∗i κ∗`−i (4.40)

Hence, when deriving (4.25) from (4.39) by (4.17) and (2.22), we also find that the
only non-zero coefficient with k = ` is

κ`,`;0,` = 2−1/2σ−1c
(3)
`,`;0,` = 2−3/2σ−2`−1

`−1∑
i=1

(
`

i

)2

κ∗i κ∗`−i. (4.41)

This proves (4.27) and (4.30). �

The recursion (4.30) is the same as [5, (D.6)], and thus has the same solution [5,
(D.10)]

κ∗` = 23/2 `! (2`− 2)!

(`− 1)!
d`1, (4.42)

with, by [5, (D.9)] and (4.29),

d1 := 2−3/2κ∗1 =
1

4
√
π

Re
Γ(α− 1

2)

Γ(α)
. (4.43)

Proof of Theorem 1.4. We have α = it. If ` + r > 2, then (4.15), (4.26), (2.5), and
singularity analysis yield

qn E
[
Fα(Tn)

`
Fα(Tn)

r]
= qn E

[
Fα(Tn)`Fα(Tn)r

]
= O

(
n(`+r−3)/2(log n)`∧r

)
. (4.44)

When ` = r, we find more precisely

qn E
[
Fα(Tn)

`
Fα(Tn)

`]
= κ̂`,`;0,`n(2`−3)/2(log n)` +O

(
n(2`−3)/2(log n)`−1

)
. (4.45)

Hence, using (2.24) and (4.28),

E
[
Fα(Tn)

`
Fα(Tn)

r]
=

{
O
(
n(`+r)/2(log n)`∧r

)
, ` 6= r,

σ−2`
√

2π
Γ(l− 1

2
)
κ∗`n`(log n)` +O

(
n`(log n)`−1

)
, ` = r.

(4.46)
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Consequently,

E
[
Fα(Tn)

`
Fα(Tn)

r]
(n log n)(`+r)/2

→

{
0, ` 6= r,

σ−2`
√

2π
Γ(l− 1

2
)
κ∗` , ` = r > 1.

(4.47)

Furthermore, (4.47) holds also for `+ r = 1 by (4.13).
For ` = r, the limit in (4.47) is by (4.42) and (4.43), cf. [5, (D.11)],

σ−2`

√
2π

Γ(`− 1
2)
κ∗` = σ−2` 4

√
π

Γ(`− 1
2)

`! (2`− 2)!

(`− 1)!
d`1 = σ−2`22``! d`1

=
(
4d1σ

−2
)` · `! =

( 1√
πσ2

Re
Γ(α− 1

2)

Γ(α)

)`
· `!. (4.48)

Consequently, by (2.1), the limits in (4.47) are the moments of a symmetric complex
normal distribution with variance (1.12), and thus (1.11) follows by the method of
moments. (Recall that Fα(Tn) = Xn(α)− µ(α)n by (4.5).)

Finally, the claim in (1.12) that the variance is nonzero follows from the same
claim in (1.14) (where the variance is the same up to a factor σ2/2), which is shown
in [5, Theorem D.1, as corrected in the corrigendum]. �

4.3. Joint distributions. We can extend the arguments above to joint distributions
of severalXn(α) with different imaginary α. Since we haveXn(α) = Xn(α), it suffices
to consider the case Imα > 0. In this case, different Xn(α) are asymptotically
independent, as is stated more precisely in the following theorem.

Theorem 4.2. For any finite set t1, . . . , tr of distinct positive numbers, the com-
plex random variables

(
Xn(itk) − µ(itk)n

)
/
√
n log n converge, as n→∞, jointly in

distribution to independent symmetric complex normal variables ζitk with variances
given by (1.12).

This can be interpreted as joint convergence (in the product topology) of the
entire family {Xn(it) : t > 0} of random variables, after normalization, to an (un-
countable) family of independent symmetric complex normal variables ζit. As said
in Remark 1.8, this behaviour is strikingly different from the cases Reα < 0 and
Reα > 0, where we have joint convergence to analytic random functions of α.

Proof. We argue as above, using the method of moments and singularity analysis
of generating functions, with mainly notational differences. We give only a sketch,
leaving further details to the reader.

For a sequence of arbitrary non-zero imaginary numbers α1, . . . , α` (allowing rep-
etitions), define the generating function

Mα1,...,α`(z) := E
[
Fα1(T ) · · ·Fα`(T )z|T |

]
=

∞∑
n=1

qn E
[
Fα1(Tn) · · ·Fα`(Tn)

]
zn. (4.49)

When ` = 1 and 2, these are the same as Mα1(z) or M1,1(z) in the notation used
above. The recursion (4.16) extends as follows. We write again

Mα1,...,α`(z) =
zy′(z)

y(z)
Rα1,...,α`(z). (4.50)
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Then, by a straightforward extension of the proof of [5, Lemma 12.4], cf. (4.16),

Rα1,...,α`(z) =
∑̀
m=0

1

m!

∑
Bαi1 (z)� · · · �Bαiq (z)�

[
zMA1(z) · · ·MAm(z)Φ(m)

(
y(z)

)]
(4.51)

where we sum over all partitions of [`] := {1, . . . , `} into an ordered sequence of
m+1 sets I0, . . . , Im with I1, . . . , Im neither empty nor equal to the full set [`] (while
I0 may be empty or equal to [`]), and ij are defined by I0 = {i1, . . . , iq} and, for
1 6 j 6 m, Aj is the sequence (αi : i ∈ Ij).

As in Lemma 4.1, it follows by induction that for any sequence A = (α1, . . . , α`)
of length |A| = ` > 2,

MA(z) =
∑
β,k

κA;β,k(1− z)(1−`)/2+βL(z)k +O
(
|1− z|

1
2

(1−`)+ δ
2
−ε) (4.52)

=
∑
β,k

κ̂A;β,k Li(3−`)/2+β,k(z) +O
(
|1− z|

1
2

(1−`)+ δ
2
−ε), (4.53)

where we sum over 0 6 k 6 `/2 and all β such that −β equals the sum of some
subsequence of A. (The two expansions are equivalent by Lemma 2.1.) The base
case ` = 2 follows from (4.23)–(4.24) by (4.17) and (2.22); note also that (4.52)
(but not (4.53)) holds for ` = 1 by (4.10). The induction then proceeds for ` > 3
as in the proof of Lemma 4.1; note that the notation has changed slightly: ` here
corresponds to `+ r there (so r should now be ignored), and q = `0. With these and
other notational changes, (4.31)–(4.33) still hold, and as there the only significant
contributions in (4.51) come from the cases (1) m = 1 and q = 1 and (2) m = 2 and
q = 0; it follows as in (4.36)–(4.39) that (4.52) and (4.53) hold for all `. Moreover,
we see from (4.36) that for the terms with m = 1 and q = 1, and thus |A1| = `− 1,
the index (exponent) k is not increased, and thus by induction these terms only
contribute to k 6 (` − 1)/2 < `/2. Hence, terms with k = `/2 come only from
the case m = 2 and q = 0 in (4.51), when the sequence A (regarded as a multiset)
is partitioned into two nonempty parts A1 and A2; each such partition yields the
contribution 1

2MA1(z)MA2(z) + lower order terms to (4.51). Furthermore, it follows
that contributions to κA;β,k with k = `/2 come only from κAj ;βj ,kj (with j = 1, 2)
where kj = |Aj |/2. This is obviously possible only when both `j := |Aj | are even,
and an induction shows, again using (4.23)–(4.24) for the base case ` = 2, that the
contribution is non-zero only if A is balanced in the sense that it can be partitioned
into `/2 pairs {αi,−αi}; moreover, we must have β = 0. We now write κ∗A := κA;0,k

if A is balanced with |A| = 2k. (We let κ∗A := 0 if A is not balanced.) For |A| > 4,
we thus obtain the recurrence, from the case m = 2 and q = 0 in (4.51), and recalling
(4.50) and (2.22),

κ∗A = 2−3/2σ
∑

κ∗A1
κ∗A2

, (4.54)

summing over all partitions of A into two nonempty sets A1 and A2 that both are
balanced.
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It follows by induction from (4.54) that if |A| = 2k > 2, then κ∗A can be written
as a sum

κ∗A =
(
2−3/2σ

)k−1
∑ k∏

j=1

κ∗Aj , (4.55)

where we sum over full binary trees with k leaves, where each leaf is labelled by a
pair Ij of indices such that I1, . . . , Ik form a partition of [2k], and furthermore the
corresponding sets Aj are balanced, i.e., αi + αi′ = 0 if Ij = {i, i′}.

Let A = (α1, . . . , α2k) consist of the numbers itj and −itj repeated kj times
each, for j = 1, . . . , r, where t1, . . . , tr are distinct and positive; thus |A| = 2k with
k =

∑
j kj . Then there are

∏
j kj ! ways to partition A into balanced pairs, and for

each binary tree with k leaves, these pairs can be assigned to the k leaves in k! ways.
Each tree and each assignment of balanced pairs Ai gives the same contribution to
the sum (4.55), and we obtain, since there are Ck−1 = (2k − 2)!/(k!(k − 1)!) full
binary trees with k leaves,

κ∗A =
(
2−3/2σ

)k−1 (2k − 2)!

(k − 1)!

r∏
j=1

[
(κ∗{±itj})

kjkj !
]
. (4.56)

Let σ2
it be the variance of ζit in (1.12). For the case A = {it,−it}, Lemma 4.1

applies and we have by (4.27) and (4.29), in the present notation,

κ∗{±it} = 2−1/2σ−1σ2
it. (4.57)

Hence, (4.56) yields

κ∗A = 2−2k+ 3
2σ−1 (2k − 2)!

(k − 1)!

r∏
j=1

(
σ

2kj
itj
kj !
)
. (4.58)

Since κ̂A;0,k = Γ(k − 1
2)−1κ∗A, we finally obtain from (4.53), using (2.24), that

n−k E
[
Fα1(Tn) · · ·Fα2k

(Tn)
]
→ 2−2k+2√π (2k − 2)!

Γ(k − 1
2)(k − 1)!

r∏
j=1

(
σ

2kj
itj
kj !
)

=

r∏
j=1

(
σ

2kj
itj
kj !
)
, (4.59)

which equals the corresponding mixed moment E
(
ζα1 · · · ζα2k

)
=
∏
j E |ζitj |2kj , see

(2.1). Similarly, all mixed moments with unbalanced indices converge after normal-
ization to 0. Hence, the result follows by the method of moments. �

Note that the combinatorial argument in the final part of the proof (restricted
to the case r = 1) yields an alternative proof that the recursion (4.41) is solved by
(4.42)–(4.43). Conversely, the argument above without detailed counting of possi-
bilities shows that the left-hand side of (4.59) converges to ck times the right-hand
side, for some combinatorial constant ck not depending on k1, . . . kr. Since (4.47)
shows that the formula is correct for r = 1, we must have ck = 1, and thus (4.59)
holds.
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5. Negative real part

In this section, we consider the case that α in (1.1) has negative real part. Applying
the same approach as in previous sections, we prove convergence of all moments for
the normalized random variable. As before, we assume throughout the section that
(1.7) holds with 0 < δ < 1. Again, we set

bn := nα − µ(α), (5.1)

with the generating function

B(z) = Bα(z) :=
∞∑
n=1

bnz
n = Li−α(z)− µ(α) Li0(z). (5.2)

In contrast to Section 4, the term µ(α) Li0(z) = µ(α)z(1− z)−1 now dominates. For
later convenience, we let η := min(−Reα, δ/2), and note that 0 < η < 1

2 (assuming
again δ < 1 as we may). Then (2.7) implies

B(z) = −µ(α)(1− z)−1 +O
(
|1− z|−1+η

)
. (5.3)

This is even true for α ∈ {−1,−2, . . . }, where logarithmic terms occur in the asymp-
totic expansion of Li−α, due to the aforementioned fact that η < 1

2 .
Once again, we let F (T ) = Fα(T ) denote the additive functional defined by the

toll function fα(T ) := b|T |, so that

Fα(Tn) = Xn(α)− nµ(α). (5.4)

5.1. The mean. We use the same notation for the generating function of the mean
as in Section 4, i.e.,

Mα(z) := E
[
Fα(T )z|T |

]
=
∞∑
n=1

qn E[Fα(Tn)]zn, (5.5)

and note that (4.7) still holds:

Mα(z) =
zy′(z)

y(z)
·
(
Bα(z)� y(z)

)
. (5.6)

Thus Mα(z) is still ∆-analytic. In analogy with (4.8), we now have

Bα(z)� y(z) =
1√
2πσ

Li3/2−α(z)− µ(α)√
2πσ

Li3/2(z) + c1 +O
(
|1− z|

1
2

+ δ
2
)

= 21/2σ−1µ(α)(1− z)1/2 + c2 +O
(
|1− z|

1
2

+η
)
. (5.7)

Moreover, (4.9) still holds, so c2 = 0. Combining this with (2.22) now yields

Mα(z) = σ−2µ(α) +O
(
|1− z|η

)
. (5.8)

Applying singularity analysis and (2.24), we find that

E[Fα(Tn)] = O
(
n

1
2
−η) (5.9)

or equivalently

EXn(α) = µ(α)n+O
(
n

1
2
−η). (5.10)
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5.2. Higher moments. As in Section 4.2, we consider the mixed moments of
Fα1(Tn) and Fα2(Tn) for two complex numbers α1 and α2 that are now both as-
sumed to have negative real part. In particular, this includes the special case that
α2 = α1. We are thus interested in the generating function

M`1,`2(z) := E
[
Fα1(T )`1Fα2(T )`2z|T |

]
(5.11)

for integers `1, `2 > 0, cf. (4.15). In particular, we have M1,0 = Mα1 and M0,1 = Mα2 .
Set η := min(−Reα1,−Reα2, δ/2) (again noting that η < 1

2). Then by (5.8) we
have

M1,0(z) = σ−2µ(α1) +O
(
|1− z|η

)
and M0,1(z) = σ−2µ(α2) +O

(
|1− z|η

)
. (5.12)

In order to deal with higher moments, we make use of the recursion (4.16). Let us
start with second-order moments: here, we obtain

M1,1(z) =
zy′(z)

y(z)

[
Bα1(z)�Bα2(z)� y(z) +Bα1(z)� (zM0,1(z)Φ′(y(z)))

+Bα2(z)� (zM1,0(z)Φ′(y(z))) + zM1,0(z)M0,1(z)Φ′′(y(z))
]
. (5.13)

In view of (5.8), (2.20), (2.27), and (2.28), the functions y(z), zM0,1(z)Φ′
(
y(z)

)
,

zM1,0(z)Φ′
(
y(z)

)
, and zM1,0(z)M0,1(z)Φ′′

(
y(z)

)
are all of the form c+O

(
|1− z|η

)
,

and taking the Hadamard product with Bα1(z) or Bα2(z) does not change this prop-
erty. Combining this with (2.22) we conclude that there is a constant κ1,1 such
that

M1,1(z) = 2−1/2σ−1κ1,1(1− z)−1/2 +O
(
|1− z|−

1
2

+η
)
, (5.14)

which implies by virtue of singularity analysis and (2.24) that

E[Fα1(Tn)Fα2(Tn)] = κ1,1 n+O
(
n1−η). (5.15)

We can obtain the functions M2,0(z) and M0,2(z) as special cases of M1,1(z) where
α1 = α2. Hence there are also constants κ2,0 and κ0,2 such that

M2,0(z) = 2−1/2σ−1κ2,0(1− z)−1/2 +O
(
|1− z|−

1
2

+η
)

(5.16)

and

M0,2(z) = 2−1/2σ−1κ0,2(1− z)−1/2 +O
(
|1− z|−

1
2

+η
)
, (5.17)

and thus

E[Fα1(Tn)2] = κ2,0 n+O
(
n1−η) and E[Fα2(Tn)2] = κ0,2 n+O

(
n1−η). (5.18)

We will use these as the base case of an inductive proof of the following lemma.

Lemma 5.1. Suppose that Reα1 < 0 and Reα2 < 0, and let

η = min(−Reα1,−Reα2, δ/2) (5.19)

be as above. Then, for all non-negative integers ` and r with s = ` + r > 1, the
function M`,r(z) is ∆-analytic and we have

M`,r(z) = κ̂`,r(1− z)(1−s)/2 +O
(
|1− z|(1−s)/2+η

)
, (5.20)
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where κ̂1,0 = σ−2µ(α1), κ̂0,1 = σ−2µ(α2), and, for s > 2,

κ̂`,r =
(s− 3)!!

σ2(s−1)/2

`∧r∑
j=0

j≡` mod 2

(
`

j

)(
r

j

)
j! (`− j − 1)!! (r − j − 1)!!κj1,1κ

(`−j)/2
2,0 κ(r−j)/2

0,2

(5.21)

if s is even, and κ̂`,r = 0 otherwise.

Proof. We prove the statement by induction on s = ` + r. Note that (5.12) as well
as (5.14), (5.16), and (5.17) are precisely the cases s = 1 and s = 2, respectively.

For the induction step, we take s > 3 and use recursion (4.16). It follows immedi-
ately from this recursion that all M`,r are ∆-analytic, so we focus on the asymptotic
behavior at 1. Let us first consider the product

zM`1,r1(z) · · ·M`m,rm(z)Φ(m)
(
y(z)

)
, (5.22)

where all `i and ri are non-negative integers, 1 6 `i + ri < s for every i > 1,
`0 + `1 + · · · + `m = `, and r0 + r1 + · · · + rm = r. By the induction hypothesis,
M`i,ri(z) = O

(
|1− z|(1−`i−ri)/2

)
for all i > 1, which can be improved to M`i,ri(z) =

O
(
|1 − z|(1−`i−ri)/2+η

)
if `i + ri is odd and greater than 1. Combining with (2.29),

we obtain

zM`1,r1(z) · · ·M`m,rm(z)Φ(m)
(
y(z)

)
= O

(
|1− z|(m−`1−···−`m−r1−···−rm)/2+ δ

2
+1−m/2)

= O
(
|1− z|(`0+r0−`−r)/2+1+η

)
(5.23)

for m > 3. By (5.3) and repeated use of Lemma 2.3, this estimate continues to hold

after taking the Hadamard product with Bα1(z)�`0�Bα2(z)�r0 , and the factor zy′(z)
y(z)

in (4.16) contributes −1
2 to the exponent by (2.22). Since `0 and r0 are non-negative,

it follows that the total contribution of all terms with m > 3 is O
(
|1 − z|(1−s)/2+η

)
and thus negligible. We can therefore focus on the cases m = 0, m = 1, and m = 2.
Here, Φ(m)

(
y(z)

)
is O(1) in all cases by (2.26)–(2.28), and we obtain

zM`1,r1(z) · · ·M`m,rm(z)Φ(m)
(
y(z)

)
= O

(
|1− z|(m−`1−···−`m−r1−···−rm)/2

)
= O

(
|1− z|(m+`0+r0−`−r)/2). (5.24)

Terms with m + `0 + r0 > 3 are negligible for the same reason as before. Likewise,
terms with m+ `0 + r0 = 2 are negligible if at least one of the sums `i+ ri with i > 1
is odd and greater than 1, as we can then improve the bound on M`i,ri(z). Let us
determine all remaining possibilities:

• m = 0 implies m+ `0 + r0 = `+ r = s > 3, so we have already accounted for
this negligible case.
• m = 1 gives us `0 + `1 = ` and r0 + r1 = r with 1 6 `1 + r1 < ` + r, thus
`0 + r0 > 1. So we have (`0, `1, r0, r1) = (1, ` − 1, 0, r) and (`0, `1, r0, r1) =
(0, `, 1, r − 1) as the only two relevant possibilities in this case.
• Finally, if m = 2, we must have `0 = r0 = 0 and `1 + `2 = ` and r1 + r2 = r.
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Now we divide the argument into two subcases, according as s = ` + r is even or
odd.

Odd s > 3. If m = 2, `0 = r0 = 0, and `1 + `2 + r1 + r2 = ` + r = s, then either
`1 + r1 or `2 + r2 is odd. Thus the corresponding term is asymptotically negligible
unless `1 + r1 = 1 or `2 + r2 = 1. So in this case, there are only four terms that
might be asymptotically relevant:

(`1, `2, r1, r2) ∈ {(1, `− 1, 0, r), (`− 1, 1, r, 0), (0, `, 1, r − 1), (`, 0, r − 1, 1)}. (5.25)

In addition, m = 1 contributes with two terms as mentioned above. Thus we obtain

M`,r(z) =
zy′(z)

y(z)

[
`Bα1(z)�

(
zM`−1,r(z)Φ

′(y(z)
))

+ rBα2(z)�
(
zM`,r−1(z)Φ′

(
y(z)

))
+`zM1,0(z)M`−1,r(z)Φ

′′(y(z)
)

+ rzM0,1(z)M`,r−1(z)Φ′′
(
y(z)

)]
+O

(
|1− z|(1−s)/2+η

)
. (5.26)

By the induction hypothesis, M`−1,r(z) = κ̂`−1,r(1− z)1− s
2 +O

(
|1− z|1−

s
2

+η
)
. Con-

sequently, using (5.8), (2.27), and (2.28), we get

zM`−1,r(z)Φ
′(y(z)

)
= κ̂`−1,r(1− z)1− s

2 +O
(
|1− z|1−

s
2

+η
)
, (5.27)

zM1,0(z)M`−1,r(z)Φ
′′(y(z)

)
= µ(α1)κ̂`−1,r(1− z)1− s

2 +O
(
|1− z|1−

s
2

+η
)
. (5.28)

Recall from (5.2) that Bα1(z) = Li−α1(z) − µ(α1) Li0(z). Applying the Hadamard
product gives us, using (2.7), (2.13), and Lemma 2.3,

Bα1(z)�
(
zM`−1,r(z)Φ

′(y(z)
))

= −µ(α1)κ̂`−1,r(1− z)1− s
2 +O

(
|1− z|1−

s
2

+η
)
,

(5.29)

so the first and third terms in (5.26) effectively cancel, and the same argument applies
to the second and fourth terms. Hence we have proven the desired statement in the
case that s is odd.

Even s > 4. In this case, we can neglect the terms with m = 1 and `1 + r1 =
`+ r− 1 = s− 1, since s− 1 is odd and greater than 1. Thus only terms with m = 2
and `0 = r0 = 0 matter. For the same reason, we can ignore all terms where `1 + r1

and `2 + r2 are odd: at least one of them has to be greater then 1, making all such
terms asymptotically negligible. Hence we obtain

M`,r(z) =
zy′(z)

y(z)
· 1

2

∑
`1,`2,r1,r2

`1+`2=`, r1+r2=r
`i+ri even and >0

(
`

`1

)(
r

r1

)
zM`1,r1(z)M`2,r2(z)Φ′′

(
y(z)

)

+O
(
|1− z|(1−s)/2+η

)
. (5.30)

Let us write
∑◦ for the sum in (5.30). Plugging in (2.22), (2.28), and the induction

hypothesis, we obtain

M`,r(z) = 2−3/2σ
∑◦

(
`

`1

)(
r

r1

)
κ̂`1,r1κ̂`2,r2(1− z)(1−s)/2 +O

(
|1− z|(1−s)/2+η

)
.

(5.31)
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Thus we have completed the induction for (5.20) with

κ̂`,r = 2−3/2σ
∑◦

(
`

`1

)(
r

r1

)
κ̂`1,r1κ̂`2,r2 . (5.32)

In order to verify the formula (5.21) for κ̂`,r given in the statement of the lemma,
in light of (5.14), (5.16), and (5.17) we need only show that κ̂`,r as defined in
(5.21) satisfies the recursion (5.32). This is easy to achieve by means of generating
functions, as follows. Set

K(x, y) :=
∑
s>2
s even

∑
`+r=s

κ̂`,r
x`

`!

yr

r!

=
∑
s>2
s even

∑
`+r=s

(s− 3)!!

σ2(s−1)/2

`∧r∑
j=0

j≡` mod 2

(
`

j

)(
r

j

)
j! (`− j − 1)!! (r − j − 1)!!

· κj1,1κ
(`−j)/2
2,0 κ(r−j)/2

0,2

x`

`!

yr

r!
. (5.33)

Setting `− j = 2a and r − j = 2b, this can be rewritten as

K(x, y) =
∑
s>2
s even

(s− 3)!!

σ2(s−1)/2

∑
a,b,j>0:

a+b+j=s/2

κj1,1κa2,0κb0,2xj+2ayj+2b

j! a! b! 2a+b

=
∑
s>2
s even

(s− 3)!!

σ2(s−1)/2(s/2)!

(
κ2,0 x

2

2
+ κ1,1 xy +

κ0,2 y
2

2

)s/2

=

√
2

σ

∑
t>1

(2t− 3)!!

t! 22t

(
κ2,0 x

2 + 2κ1,1 xy + κ0,2 y
2
)t

=

√
2

σ
− 1

σ

√
2− (κ2,0 x2 + 2κ1,1 xy + κ0,2 y2). (5.34)

The recursion (5.32) now follows by comparing coefficients of x`yr in the identity

K(x, y) = 2−3/2σK(x, y)2 +
κ2,0 x

2 + 2κ1,1 xy + κ0,2 y
2

23/2σ
. (5.35)

This completes the proof of the lemma. �

So the functions M`,r(z) are amenable to singularity analysis, and we obtain the
following theorem as an immediate application.

Theorem 5.2. Suppose that Reα1 < 0 and Reα2 < 0. Then there exist constants
κ2,0, κ1,1, and κ0,2 such that, for all non-negative integers ` and r,

E[Fα1(Tn)`Fα2(Tn)r]

n(`+r)/2
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→
`∧r∑
j=0

j≡` mod 2

(
`

j

)(
r

j

)
j! (`− j − 1)!! (r − j − 1)!!κj1,1κ

(`−j)/2
2,0 κ(r−j)/2

0,2 (5.36)

as n→∞ if `+ r is even, and
E[Fα1 (Tn)`Fα2 (Tn)r]

n(`+r)/2 → 0 otherwise.

Proof. In view of Lemma 5.1, singularity analysis gives us

[zn]M`,r(z) =
κ̂`,r

Γ((s− 1)/2)
n(s−3)/2 +O

(
n(s−3)/2−η) (5.37)

for s = `+ r > 2, so, using (2.24),

E[Fα1(Tn)`Fα2(Tn)r] =
[zn]M`,r(z)

qn
=

√
2πσκ̂`,r

Γ((s− 1)/2)
ns/2 +O

(
ns/2−η

)
. (5.38)

Since Γ((s−1)/2) = 21−(s/2)√π(s−3)!! for even s (recall (2.2)), the statement follows
immediately from the formula for κ̂`,r in Lemma 5.1 for all s > 2 and from (5.9) for
s = 1. �

The following lemma will be used in the proof of Theorem 1.5 to establish that
the limiting variance is positive. Recall the notation (1.1) and qk = P(|T | = k).

Lemma 5.3. Consider any complex α with Reα 6= 0. Then there exists k such that
qk > 0 and Fα(Tk) is not deterministic.

Proof. We know that p0 > 0 and that pj > 0 for some j > 2. Fix such a value j. Let
k = 3j + 1 > 7. Consider two realizations of the random tree Tk, each of which has
positive probability. Tree 1 has j children of the root, and precisely two of those j
children have j children each; the other j − 2 have no children. Tree 2 also has j
children of the root; precisely one of those j children (call it child 1) has j children,
while the other j − 1 have no children; precisely one of the children of child 1 has j
children, while the others have no children.

Then the values of Fα for Tree 1 and Tree 2 are, respectively,

3j − 2 + 2(j + 1)α + (3j + 1)α (5.39)

and

3j − 2 + (j + 1)α + (2j + 1)α + (3j + 1)α. (5.40)

These values can’t be equal, because otherwise we would have (j + 1)α = (2j + 1)α;
but the two numbers here have unequal absolute values. �

Proof of Theorem 1.5. The limit in (5.36) equals the mixed moment E
[
ζ`1ζ

r
2

]
, where

ζ1 and ζ2 have a joint complex normal distribution and E ζ2
1 = κ2,0, E ζ1ζ2 = κ1,1,

and E ζ2
2 = κ0,2; this follows by Wick’s theorem [11, Theorem 1.28 or Theorem 1.36]

by noting that the factor
(
`
j

)(
r
j

)
j! (`− j − 1)!! (r− j − 1)!! in (5.36) is the number of

perfect matchings of ` (labelled) copies of ζ1 and r copies of ζ2 such that there are
j pairs (ζ1, ζ2).

Hence, Theorem 1.5, except for the assertion of positive variance addressed next,
follows by the method of moments, taking α1 := α and α2 := α, cf. Remark 1.6.
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We already know from Theorem 5.2 that VarFα(Tn) = γ2 n+o(n) for some γ > 0;
we need only show that γ > 0. Fix k as in Lemma 5.3. Write vk > 0 for the variance
of Fα(Tk). Let Nn,k denote the number of fringe subtrees of size k in Tn. It follows
from [14, Theorem 1.5(i)] that

ENn,k ∼ qkn (5.41)

as n → ∞. If for Tn we condition on Nn,k = m and all of Tn except for fringe
subtrees of size k, then the conditional variance of Fα(Tn) is the variance of the sum
of m independent copies of Fα(Tk), namely, mvk. Thus

VarFα(Tn) > vk ENn,k > (1 + o(1))vkqkn, (5.42)

so the constant γ2 mentioned at the start of this paragraph satisfies γ2 > vkqk >
0. �

Remark 5.4. The same idea used at the end of the proof of Theorem 1.5 can be
used to give an answer to a question raised in [14, Remark 1.7], in the special case
that the toll function f depends only on tree size. Indeed, the same proof shows that
(with no other conditions on f) if F is not deterministic for all fixed tree sizes—more
precisely, if qk > 0 and vk := VarF (Tk) > 0 for some k, then

lim inf
n

VarF (Tn)

n
∈ [vkqk,∞] ⊆ (0,∞]. (5.43)

�

Remark 5.5. (a) It is by no means immediately clear that the constant κ1,1 appear-
ing in (5.14)–(5.15) agrees with the value produced in [5, Remark 5.1]. Appendix D
provides a reconciliation.

(b) Using the results of Appendix D, in Appendix E we discuss for real α < 0
calculation of the variance in Theorem 1.5. �

Remark 5.6. We recall that asymptotic normality of Xn(α), or equivalently of
Fα(Tn), is already proven in [5, Theorem 1.1]. Furthermore, [5, Section 5] shows joint
asymptotic normality for several α with Reα < 0, which for the case of two values α1

and α2 is consistent with (5.36) (by the argument in the proof of Theorem 1.5 above).
It would certainly be possible to generalize the moment convergence results in this
section to convergence of mixed moments for combinations of several αi, similarly to
Section 4.3, including also the possibility Reαi > 0 for some values of i. However,
this would require a lengthy case distinction (depending on the signs of the values
Reαi), so we did not perform these calculations explicitly. Instead we just note that
if we consider only the case Reαi < 0, then convergence of all mixed moments follows
from the joint convergence in (1.4) for several αi shown in [5, Section 5] together

with the uniform integrability of |n−1/2[Xn(α) − µ(α)n]|r for arbitrary r > 0 that
follows from Theorem 1.5 (see Remark 1.6). �
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6. Fractional moments (mainly of negative order) of tree-size:
comparisons across offspring distributions

Recall from [5, Theorem 1.7] that the αth moment µ(α) = E |T |α of tree size
defined at (1.8) is the slope in the lead-order linear approximation µ(α)n of EXn(α)
whenever Reα < 1

2 ; and from Theorem 1.5 that this linear approximation suffices as a
centering for Xn(α) in order to obtain a normal limit distribution when Re(α) < 0.
(See also Remark 1.7.) It is therefore of interest to compute µ(α) and, similarly,
the constant µ′ = E log |T | defined at (1.9), which serves as the centering slope in
Theorem 1.3.

In [5, Appendix A] it is noted that although µ(α) can be evaluated numerically, no
exact values for important examples of Galton–Watson trees are known in any simple
form except in the case that α is a negative integer. This section is motivated by our
having noticed that for all such values (for small k) reported for four examples in that
appendix, µ(−k) is smallest for binary trees [5, Example A.3], second smallest for
labelled trees [5, Example A.1], second largest for full binary trees [5, Example A.4],
and largest for ordered trees [5, Example A.2]. We wanted to understand why this
ordering occurs and whether any such ordering could be predicted for the values µ′

defined at (1.9).
In Section 6.1 we give a sufficient condition ((6.25) in Theorem 6.8) for such

(strict) orderings that is fairly easy to check. In Section 6.2 we give a class of
examples extending the four in [5, Appendix A] where this condition is met. In
Section 6.3 we discuss numerical computation of µ′, which we carry out for the four
examples in [5, Appendix A] and some additional examples.

The results of this Section 6 do not require (1.7).

6.1. Comparison theory. The main results of this section are in Theorem 6.8.
Working toward those results, we begin by recalling from [5, (A.6)] (where y is
called “g” and (1.7) is not required) that for Reα < 1

2 we have

µ(α) =
1

Γ(1− α)

∫ 1

0
(log 1

t )
−αy′(t) dt. (6.1)

To utilize (6.1) directly, even merely to obtain inequalities across models for real α,
one needs to compute the derivative of the tree-size probability generating function
y, or at least to compare the functions y′ for the compared models. This is nontrivial,
since explicit computation of y′ (or y) is difficult or even infeasible in examples such
as m-ary trees and full m-ary trees when m > 2. Fortunately, according to (6.3) (and
similarly (6.4) in regard to µ′) to follow, one need only treat the simpler offspring
probability generating function(s) Φ.

Before proceeding to our main results, we present a simple lemma, a recasting
of (6.1), and a definition.

Lemma 6.1. The function t 7→ t/Φ(t) is the inverse function of y : [0, 1] → [0, 1],
and it increases strictly from 0 to 1 for t ∈ [0, 1].
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Proof. It is obvious from (2.18) that y(z) is continuous and strictly increasing for
z ∈ [0, 1] with y(0) = 0 and y(1) = 1. Hence its inverse is also strictly increasing
from 0 to 1 on [0, 1]. Finally, (2.19) shows that the inverse is t 7→ t/Φ(t). �

We will henceforth write

R(η) :=
1

y−1(η)
=

Φ(η)

η
∈ [1,∞), η ∈ (0, 1]; (6.2)

this strictly decreasing function R will appear on several occasions in the sequel,
especially in Appendix A.2.

It follows from (6.1), Lemma 6.1, a change of variables from t to η = y(t),
and (2.19) that

µ(α) =
1

Γ(1− α)

∫ 1

0
[logR(η)]−α dη. (6.3)

Further, differentiation with respect to α at α = 0 gives

µ′ = −γ −
∫ 1

0
[log logR(η)] dη. (6.4)

For the remainder of Section 6 we focus on real α and utilize the following notation.

Definition 6.2. For two real-valued functions g1 and g2 defined on (0, 1), write
g1 6 g2 to mean that g1(t) 6 g2(t) for all t ∈ (0, 1); write g1 < g2 to mean that
g1 6 g2 but g2 66 g1 (equivalently, that g1(t) 6 g2(t) for all t ∈ (0, 1), with strict
inequality for at least one value of t); and write g1 ≺ g2 to mean that g1(t) < g2(t)
for all t ∈ (0, 1).

Consider two Galton–Watson trees, T (1) and T (2), with respective offspring dis-
tributions ξ1 and ξ2. Denote the trees’ respective Φ-functions by Φ1 and Φ2, and use
similarly subscripted notation for other functions associated with the trees.

We note in passing that, as a simple consequence of Lemma 6.1 whose proof is
left to the reader,

Φ1 6 Φ2 if and only if y1 6 y2, (6.5)

and hence also
Φ1 < Φ2 if and only if y1 < y2. (6.6)

The result (6.5) is perhaps of some independent interest but is used in the sequel
mainly in the proof of Theorem 6.5.

Theorem 6.3. Consider two Galton–Watson trees, T (1) and T (2). Suppose

Φ1 6 Φ2. (6.7)

(i) If α < 0, then
µ1(α) 6 µ2(α). (6.8)

(ii) If 0 < α < 1
2 , then

µ1(α) > µ2(α). (6.9)

(iii) The centering constants for the corresponding shape functionals satisfy

µ′1 > µ
′
2. (6.10)
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Proof. This is immediate from (6.3) and (6.4). �

Note that, by considering difference quotients, each of (i) and (ii) in Theorem 6.3
implies (iii) there; one doesn’t need the stronger hypothesis (6.7) for this conclusion.

Remark 6.4. The conclusions in Theorem 6.3 do not always extend from µ(α) to
EXn(α) for finite n. A counterexample with n = 3 is provided by taking ξ1 ∼
2 Bi(1, 1

2) (corresponding to uniform full binary trees, with X3(α) concentrated at

2+3α) and ξ2 ∼ Ge(1
2) (corresponding to ordered trees, with EX3(α) = 3

2 + 1
22α+3α).

As shown in Lemma 6.11, we have Φ1 6 Φ2, but Theorem 6.3(i)–(ii) with EX3(α)
in place of of µ(α) fails for every value of α, as does (6.10). �

The converse to Theorem 6.3 fails. That is, Theorem 6.3(i)–(ii) do not imply
that (6.7) does, too. A counterexample is provided in Appendix A.2. However, as the
next theorem shows, (6.7) has for α < 0 a stronger consequence than Theorem 6.3(i),
and this stronger consequence yields a converse result:

Theorem 6.5. We have

E(|T1| − 1 + t)α 6 E(|T2| − 1 + t)α for all integers α < 0 and all t ∈ (0,∞) (6.11)

if and only if (6.7) holds, in which case the inequality in (6.11) also holds for all real
α < 0 and all t ∈ (0,∞).

Proof. Setting α = −k in (6.3) and summing over positive integers k, for complex z
in the open unit disk let us define the function H as at [5, (A.7)]:

H(z) := E
(

1− z

|T |

)−1
=
∞∑
k=0

µ(−k)zk =

∫ 1

0
exp [z logR(η)] dη. (6.12)

Changing variables (back) from η to t = y−1(η) = 1/R(η), we then find

H(z) =

∫ 1

0
t−zy′(t) dt = 1 + z

∫ 1

0
t−z−1y(t) dt, (6.13)

with the last equality, resulting from integration by parts, as noted at [5, (A.9)]; thus

E(|T | − z)−1 = z−1(H(z)− 1) =

∫ 1

0
t−z−1y(t) dt. (6.14)

Since both the first and third expressions in (6.14) are analytic for all z with Re z < 1,
they are equal in this halfplane. Changing variables, we then find, for Re z > −1,
that

E(|T |+ z)−1 =

∫ ∞
0
e−zxy(e−x) dx. (6.15)

In particular, if (6.7) holds, then (recalling (6.5))

E(|T1| − 1 + t)−1 =

∫ ∞
0
e−txexy1(e−x) dx

6
∫ ∞

0
e−txexy2(e−x) dx = E(|T2| − 1 + t)−1 (6.16)

for real t > 0.
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But more is true. Let ∆(z) := ez[y2(e−z)− y1(e−z)]. Then for t > 0 we have that

h(t) := E(|T2| − 1 + t)−1 − E(|T1| − 1 + t)−1 =

∫ ∞
0
e−tx∆(x) dx (6.17)

is the Laplace transform of the bounded continuous function ∆ on (0,∞). It follows
from the Bernstein–Widder theorem (e.g., [2, Theorem XIII.4.1a]) that h satisfies
the (weak) complete monotonicity inequalities (6.11), i.e.,

(−1)rh(r)(t) > 0 for all integers r > 0 and all t ∈ (0,∞), (6.18)

if and only if ∆(x) > 0 for a.e. x > 0, which in turn is true if and only if y1 6 y2, or
(by (6.5)) equivalently (6.7), holds.

Next, if (6.7) holds, then for real α < 0 and t ∈ (0, 1] we have

E(|T1| − 1 + t)α =
∞∑
k=0

(
|α|+ k − 1

k

)
µ1(α− k) (1− t)k

6
∞∑
k=0

(
|α|+ k − 1

k

)
µ2(α− k) (1− t)k

= E(|T2| − 1 + t)α, (6.19)

where the inequality holds by Theorem 6.3(i).
Finally, if (6.7) holds, then for real α < 0 and t > 1, Theorem B.1 in Appendix B

implies that for j ∈ {1, 2} we have

E(|Tj | − 1 + t)α = (t− 1)α
∫ 1

0

[
1− cj(η)

Γ(−α)

]
dη, (6.20)

where cj is the incomplete gamma function value

cj(η) =

∫ ∞
(t−1) logRj(η)

w−α−1e−w dw, (6.21)

and from (6.20) it is evident that E(|T1| − 1 + t)α 6 E(|T2| − 1 + t)α. �

Remark 6.6. This remark concerns sufficient conditions for (6.7) (equivalently,
by (6.5), for y1 6 y2).

(a) The condition

|T (1)| > |T (2)| stochastically (6.22)

is stronger than y1 6 y2 and is of course equivalent to the condition that

E g(|T (1)|) > E g(|T (2)|) (6.23)

for every nonnegative nondecreasing function g defined on the positive integers. In
particular, (6.22) implies the conclusions of Theorem 6.3 and (6.11) in Theorem 6.5.

Note, however, that (6.22) is strictly stronger than y1 6 y2. While the stronger
condition (6.22) holds for some of the comparisons in Section 6.2 (for example,
binary trees vs. labelled trees, for which there is monotone likelihood ratio (MLR);
and full binary trees vs. ordered trees, for which there is no MLR but still stochastic
ordering), an example satisfying (6.7) (see Lemma 6.11 for a proof) but not (6.22) is
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ξ1 ∼ Po(1) (labelled trees) and ξ2 ∼ 2 Bi(1, 1
2) (full binary trees), because P(|T (1)| 6

2) = e−1 + e−2 > 1
2 = P(|T (2)| 6 2).

(b) Similarly, the condition

ξ1 > ξ2 stochastically (6.24)

is stronger than (6.7); indeed, it’s even stronger than (6.22). But this stochastic or-
dering of offspring distributions can only hold if ξ1 and ξ2 have the same distribution,
because E ξ1 = E ξ2 = 1. �

Remark 6.7. This remark concerns necessary conditions for (6.7).
(a) If (6.7) holds, then by a Taylor expansion near t = 1 [12, (A.6)] (or, alterna-

tively, recalling (6.5), by y1 6 y2 and [12, (A.5)]), σ2
1 6 σ2

2. (This does not require
the assumption (1.7); when (1.7) holds, we can also use [5, Lemma 12.14] or (2.20).)

(b) More generally, and by similar reasoning, if (6.7) holds and for some integer

r > 2 we have E ξj1 = E ξj2 6∞ for j = 1, . . . , r−1, then (−1)r E ξr1 6 (−1)r E ξr2 6∞.
See Appendix C for details.

(c) We can also consider a Taylor expansion near t = 0. Thus if (6.7) holds,
then P(ξ1 = 0) 6 P(ξ2 = 0). More generally, if for some integer r > 0 we have
P(ξ1 = j) = P(ξ2 = j) for j = 0, . . . , r − 1, then P(ξ1 = r) 6 P(ξ2 = r). �

We next address the question of a stronger condition than (6.7) under which the
inequalities in (6.8)–(6.10) and (6.11) are all strict. Recall the meaning of g1 < g2

described in Definition 6.2.

Theorem 6.8. Consider two Galton–Watson trees, T (1) and T (2). Suppose

Φ1 < Φ2. (6.25)

(i) If α < 0, then

µ1(α) < µ2(α). (6.26)

(ii) If 0 < α < 1
2 , then

µ1(α) > µ2(α). (6.27)

(iii) We have

µ′1 > µ′2. (6.28)

Proof. If (6.25) holds, then (by continuity of Φ1 and Φ2) strict inequality Φ1(t) <
Φ2(t) holds over some interval of positive length. The inequalities (6.26)–(6.28) are
then immediate from (6.3)–(6.4). �

Theorem 6.9. We have

E(|T1| − 1 + t)−m < E(|T2| − 1 + t)−m for all integers m > 0 and all t ∈ (0,∞)
(6.29)

if and only if (6.25) holds.

Proof. The forward direction (6.29) =⇒ (6.25) follows from Theorem 6.5.
For the opposite direction, use the representation (6.17) and take derivatives with

respect to t. �
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Remark 6.10. For all the comparison examples in Section 6.2 where the condition
(6.25) holds, we in fact have the stronger condition that Φ1 ≺ Φ2. When (6.25)
holds, we can’t have Φ1 = Φ2 over a nondegenerate interval because Φ2(z) − Φ1(z)
is analytic for z in the open unit disk. But it is possible to have Φ1(t) = Φ2(t) for
some values of t ∈ (0, 1). For an example with one such value, namely, t = 1/6, use

the notation of Appendix A.1 and take Φ1 = Φ and Φ2 = Φ̃0. �

6.2. Comparison examples. In this subsection we consider the following impor-
tant examples of critical Galton–Watson trees, and we fix the subscripting notation
in (6.30)–(6.34) for the remainder of Section 6:

m-ary trees: ξ1,m ∼ Bi(m, 1
m) (m > 2); (6.30)

labelled trees: ξ2 ∼ Po(1); (6.31)

full binary trees: ξ3 ∼ 2 Bi(1, 1
2); (6.32)

ordered trees: ξ4 ∼ Ge(1
2); (6.33)

full m-ary trees: ξ5,m ∼ mBi(1, 1
m) (m > 3). (6.34)

Observe that

σ2
1,m = 1− 1

m ↑ strictly as m ↑, (6.35)

that

σ2
5,m = m− 1 ↑ strictly as m ↑, (6.36)

and that, for any m > 2, we have

σ2
1,m < σ2

2 = σ2
3 < σ2

4 = σ2
5,3. (6.37)

Further,

E ξ3
2 = 5 > 4 = E ξ3

3 (6.38)

and

E ξ3
4 = 13 > 9 = E ξ3

5,3. (6.39)

According to Remark 6.7(a)–(b) and (6.35)–(6.39), the only possible Φ-orderings in
the order < among the trees listed in (6.30)–(6.34) are

Φ1,m ↑ strictly as m ↑, (6.40)

Φ5,m ↑ strictly as m ↑, (6.41)

and, for any m > 2,

Φ1,m < Φ2 < Φ3 < Φ4 < Φ5,3. (6.42)

Alternatively, we can note that

P(ξ1,m = 0) = (1− 1
m)m ↑ strictly as m ↑ (6.43)

(see (6.51) below with t = 0); that

P(ξ5,m = 0) = 1− 1
m ↑ strictly as m ↑; (6.44)

that, for any m > 2, we have

P(ξ1,m = 0) < e−1 = P(ξ2 = 0) < P(ξ3 = 0) = P(ξ4 = 0) < P(ξ5,3 = 0); (6.45)
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and, further, that
P(ξ3 6 1) = 1

2 <
3
4 = P(ξ4 6 1) (6.46)

to conclude again, now using Remark 6.7(c), that the only possible Φ-orderings in
the order < for (6.30)–(6.34) are (6.40)–(6.42).

Remarkably, all the inequalities in (6.40)–(6.42) are true, and in fact there is strict
inequality at every argument.

Lemma 6.11. For every t ∈ (0, 1) we have

Φ1,m(t) ↑ strictly as m ↑, (6.47)

Φ5,m(t) ↑ strictly as m ↑; (6.48)

and, for any m > 2,
Φ1,m ≺ Φ2 ≺ Φ3 ≺ Φ4 ≺ Φ5,3. (6.49)

Proof. The proof is a collection of simple exercises in calculus.

Proof of (6.47). Fix m > 2 and t ∈ (0, 1). Observe that

Φ1,m(t) = (m−1
m + 1

m t)
m = [1− 1

m(1− t)]m. (6.50)

Thus

log Φ1,m+1(t)− log Φ1,m(t)

= (m+ 1) log
(

1− 1− t
m+ 1

)
−m log

(
1− 1− t

m

)
= −

[
(1− t) +

(1− t)2

2(m+ 1)
+

(1− t)3

3(m+ 1)2
+ · · ·

]
+

[
(1− t) +

(1− t)2

2m
+

(1− t)3

3m2
+ · · ·

]
> 0. (6.51)

Proof of (6.48). Fix m > 3. Consider t ∈ (0, 1] and observe that

Φ5,m(t) = 1
m(m− 1 + tm) (6.52)

Let f(t) := Φ5,m+1(t)− Φ5,m(t). We have f(1) = 1− 1 = 0 and

f ′(t) = tm − tm−1 = −tm−1(1− t) < 0 (6.53)

for t ∈ (0, 1). Thus f(t) > 0 for t ∈ (0, 1).

Proof of Φ1,m ≺ Φ2 for 2 6 m <∞. From (6.50) we see that

Φ1,∞(t) := lim
m→∞

Φ1,m(t) = et−1 = Φ2(t). (6.54)

The result follows.

Proof of Φ2 ≺ Φ3. Consider t ∈ (0, 1] and let

f(t) := ln Φ3(t)− ln Φ2(t) = ln(1 + t2)− ln 2− (t− 1). (6.55)

We have f(1) = 0 and

f ′(t) = 2t(1 + t2)−1 − 1 = −(1− t)2(1 + t2)−1 < 0 (6.56)

for t ∈ (0, 1). Thus f(t) > 0 for t ∈ (0, 1).
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Proof of Φ3 ≺ Φ4. Consider t ∈ [0, 1] and let

f(t) := Φ4(t)− Φ3(t) = 1
2(1− 1

2 t)
−1 − 1

2(1 + t2) = 1
4 t(1− t)

2(1− 1
2 t)
−1. (6.57)

Clearly, f(t) > 0 for t ∈ (0, 1).

Proof of Φ4 ≺ Φ5,3. Consider t ∈ (0, 1) and let

f(t) :=
Φ5,3(t)

Φ4(t)
=

2
3 + 1

3 t
3

1
2(1− 1

2 t)
−1
. (6.58)

Then

f(t) = 1 + 1
3(1− 2t+ 2t3 − t4) = 1 + 1

3(1− t)3(1 + t) > 1, (6.59)

as desired. �

Theorem 6.12. (i) If α < 0, then

µ1,m(α) ↑ strictly as m ↑, (6.60)

µ5,m(α) ↑ strictly as m ↑; (6.61)

and, for any m > 2,

µ1,m(α) < µ2(α) < µ3(α) < µ4(α) < µ5,3(α). (6.62)

(ii) The orders in (i) are all reversed for 0 < α < 1
2 and for µ′.

Proof. The theorem is immediate from Lemma 6.11 and Theorem 6.8. �

Remark 6.13. The only two examples among (6.30)–(6.34) for which ξ 6 2 a.s. are
binary trees with Φ1,2(t) = 1

4(1+t)2 and full binary trees for which Φ3(t) = 1
2(1+t2).

These are two examples (c = 1
2 and c = 1, respectively), along with so-called Motzkin

trees (c = 2
3), of the most general critical Galton–Watson offspring distribution ξ(c)

to satisfy ξ(c) 6 2 a.s., with 0 < c 6 1 and

P(ξ(c) = 0) = P(ξ(c) = 2) = 1
2c, P(ξ(c) = 1) = 1− c. (6.63)

Generalizing Φ1,2 ≺ Φ3 from (6.49) in Lemma 6.11, we claim that Φ(c) is strictly
increasing in the order ≺. Indeed, for t ∈ (0, 1) we have

Φ(c)(t) = t+ 1
2c(1− t)

2, (6.64)

which is clearly strictly increasing in c ∈ (0, 1]. �

Remark 6.14. Despite a suggestion to the contrary provided by Lemma 6.11 and
Remark 6.13, the partial order 6 on tree-size probability generating functions is not

a linear order. An example of incomparable Φ and Φ̃ is provided in Appendix A.1
(taking ε ∈ (0, 1] in the notation there). For a simpler counterexample, which shows
that 6 does not even linearly order cubic probability generating functions, let

Φ(t) := Φ1,2(t) = 1
4(1 + t)2 (6.65)

correspond to binary trees, as at (6.30); and let

Φ̃(t) := (1
4 − 2ε) + (1

2 + 7ε)t+ (1
4 − 8ε)t2 + 3ε t3 (6.66)
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with 0 < ε 6 1/32. (For example, the choice ε = 1/32 gives

Φ̃(t) := 3
16 + 23

32 t+ 3
32 t

3.) (6.67)

Then Φ̃ has nonnegative coefficients and

Φ̃(1) = Φ̃′(1) = 1, (6.68)

as required, and one can simply note that

Φ̃(t)− Φ(t) = ε(−2 + 7t− 8t2 + 3t3) = 3ε(t− 2
3)(1− t)2 (6.69)

is negative for t < 2/3 and positive for t > 2/3. Alternatively, one can apply
Remark 6.7 and note that

P(ξ = 0) = 1
4 >

1
4 − 2ε = P

(
ξ̃ = 0

)
(6.70)

but

σ̃2 = E
[
ξ̃
(
ξ̃ − 1

)]
= 2(1

4 − 8ε) + 6(3ε) = 1
2 + 2ε > 1

2 = σ2. (6.71)

For another example of incomparable Φ and Φ̃ with respect to 6, consider qua-
ternary trees (m = 4 in (6.30)) and Motzkin trees (c = 2/3 in Remark 6.13).
�

6.3. Numerical computation of µ′. In this subsection we will compute the con-
stant µ′ for several examples of critical Galton–Watson trees. First, to set the stage
for what to expect, we consider in the next remark the possible values of µ′ as ξ
ranges over all critical offspring distributions.

Recall (6.4). For the next remark, we find it convenient to break the integral into
two pieces, using the notation x+ := max{x, 0} and x− := max{−x, 0}:

µ′ = −γ −
∫
t∈(0,1)

[log logR(t)]+ dt+

∫
t∈(0,1)

[log logR(t)]− dt

= −γ − J+ + J−, (6.72)

say.

Remark 6.15. In this remark we argue that there is no finite upper bound, nor
positive lower bound, on µ′ over all Galton–Watson trees.

(a) Referring to Remark 6.13, observe that

Φ(c)(t)↘ t (6.73)

for each t ∈ (0, 1) as c↘ 0. By the dominated convergence theorem (DCT), J+ ↘ 0
as c↘ 0. By the monotone convergence theorem (MCT), J− ↗∞ as c↘ 0. Thus,
as c↘ 0 we have

µ′(c) ↗∞. (6.74)

Indeed, it can be shown that µ′(c) = log 2
c + 1− γ + o(1) as c→ 0.

(b) For the offspring distributions ξ5,m, we have as m→∞ that

P(ξ5,m = 0) = 1− 1
m → 1, (6.75)
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and thus ξ5,m
p−→ 0, which implies convergence of the probability generating func-

tions for every t ∈ (0, 1); hence,

Φ5,∞(t) := lim
m→∞

Φ5,m(t) = 1, (6.76)

which is otherwise obvious by direct calculation (showing also that the limit is an
increasing one). By the MCT applied to J+ and the DCT applied to J−, we find

µ′5,m ↘ −γ −
∫ 1

0
(log log 1

t ) dt = 0 (6.77)

as m↗∞. Indeed, it can be shown that µ′5,m ∼ m−1 lnm as m→∞.

(c) We claim that the image of µ′ over Galton–Watson tree models is in fact
(0,∞). To see this, we first note that µ′(c) is continuous in c, with µ′(1) = µ′3, which

by (a) implies that the image contains [µ′3,∞). Further, by considering the offspring
probability generating functions

Φλ,m := λΦ5,m + (1− λ)Φ3 (6.78)

with λ ∈ [0, 1], one can show (by consideration of large m) that the image also
contains (0, µ′3); we omit the details.

(d) Similarly as for (c), for each fixed value of α < 0 the image of µ(α) over all
Galton–Watson tree models is (0, 1), and for each fixed value of α ∈ (0, 1

2) the image
is (1,∞). �

Example 6.16. The constant µ′1,2 is computed to 50 digits in [4, Section 5.2] using
the alternative form

µ′ = −γ −
∫ 1

0
(log log 1

t )y
′(t) dt (6.79)

of (6.4), explicit calculation of

y1,2(t) =
2− t− 2

√
1− t

t
= t(1 +

√
1− t)−2 (6.80)

and thence its derivative

y′1,2(t) = (1− t)−1/2(1 +
√

1− t)−2, (6.81)

and numerical integration. But it is easier to use (6.4) for (high-precision) compu-
tation of µ′, especially for the values µ′1,m and µ′5,m.

As examples, we find, rounded to five digits,

µ′1,2 = 2.0254, µ′2 = 1.5561, µ′3 = 1.4414, µ′4 = 1.1581. (6.82)

Note that

∞ > µ′1,2 > µ′2 > µ′3 > µ′4 > 0, (6.83)

as guaranteed by Lemma 6.11 and Theorem 6.8(iii); see also Remark 6.15 concerning
the a priori lack of an upper bound on µ′1,2 and a positive lower bound on µ′4.

As other examples, we find, rounded to five digits,

µ′1,2 = 2.0254, µ′1,3 = 1.8224, µ′1,103 = 1.5567; (6.84)

µ′5,3 = 1.0164, µ′5,4 = 0.80800, µ′5,106 = 1.5372× 10−5; (6.85)
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and, in the notation of Remark 6.13,

µ′(10−6) = 14.931, µ′(1/2) = µ′1,2 = 2.0254, µ′(1−10−2) = 1.4496; (6.86)

�
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Appendix A. Comparison counterexamples

A.1. A framework for comparison counterexamples. In this Appendix A.1 we
establish a framework for various counterexamples involving comparisons of offspring
distributions in Section 6. The idea is to set up two offspring distributions, say ξ

and ξ̃, with respective probability generating functions Φ and Φ̃, such that, for (real)

t ∈ [0, 1), the difference ∆(t) := Φ̃(t)−Φ(t) satisfies ∆(t) > 0 for most values of t, and
∆(t) 6 0 (but not by much) for t very near 1

6 (with this value somewhat arbitrarily
chosen).

Let ξ have the following probability mass function satisfying E ξ = 1, as required
for a critical offspring distribution:

p0 := P(ξ = 0) = 1
4 + 3e−3 + 5e−11 > 0, (A.1)

p1 := P(ξ = 1) = 1
2 > 0, (A.2)

p2 := P(ξ = 2) = 1
4 − 4e−3 + 36e−11 > 0, (A.3)

pk := P(ξ = k) = e−11 8k

k!
> 0 for k > 3. (A.4)

We denote its probability generating function by Φ.
Let ε > 0 and for t ∈ [0, 1] define

gε(t) := 1
2

[
1− cos

(
(4π)(3

5 t+ 2
5)
)]
− ε(1− t)3. (A.5)

Note that

gε(1) = g′ε(1) = 0; (A.6)

moreover, for every t ∈ [0, 1] we have

−ε 6 gε(t) 6 1 (A.7)

(in particular, g0(t) > 0), and one can verify for small ε > 0 that the set {t ∈ [0, 1) :

gε(t) < 0} is an open interval of length O(ε1/2) containing 1
6 .

Because 12π/5 < 8, it’s easy to check that there exists c1 > 0 such that for all
ε ∈ [0, 1] the function

Φ̃ε(t) := Φ(t) + c1gε(t) (A.8)

has a power series expansion about the origin with nonnegative coefficients. From

(A.6) it now follows that Φ̃ε is the probability generating function of a random

variable ξ̃ with E ξ̃ = 1.

As we have now discussed, the difference function ∆ε(t) := Φ̃ε(t) − Φ(t) is non-
negative when ε = 0; and when ε > 0 is small, the set

Iε := {t ∈ [0, 1) : ∆ε(t) < 0} = {t ∈ [0, 1) : gε(t) < 0} (A.9)
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is an open interval of length O(ε1/2) containing 1
6 .

Although not needed anywhere in Section 6 nor in this Appendix A, we note
in passing that both ξ and ξ̃ε have moment generating functions that are finite
everywhere and probability generating functions that are entire; in particular, both
satisfy (1.7).

A.2. The converse to Theorem 6.3 fails. In this subsection we show that (i)
and (ii) of Theorem 6.3 together do not imply (6.7). In fact, not even the strict
inequalities in (i)–(iii) of Theorem 6.8 do.

Example A.1. In the notation of Appendix A.1, take Φ1 to be Φ and Φ2 to be

the probability generating function Φ̃ε of (A.8). We do not have Φ1 6 Φ2. But
we claim that for all sufficiently small ε > 0 (not depending on α, to be clear),
Theorem 6.8(i)–(iii) hold.

To establish the desired inequalities about µ(α), we will utilize (6.3). For this we
apply the mean value theorem to the function x 7→ (log x)−α, x ∈ (1,∞), as follows.
Let 1 < x1 6 x2 <∞. If α 6 −1, then for some point x ∈ [x1, x2] we have

(log x2)−α − (log x1)−α

= (−α)x−1(log x)−α−1(x2 − x1)

∈ [(−α)x−1
2 (log x1)−α−1(x2 − x1), (−α)x−1

1 (log x2)−α−1(x2 − x1)]. (A.10)

Similarly, if α ∈ (−1, 0), then

(log x2)−α − (log x1)−α

∈ [(−α)x−1
2 (log x2)−α−1(x2 − x1), (−α)x−1

1 (log x1)−α−1(x2 − x1)]; (A.11)

and if α > 0, then

(log x1)−α − (log x2)−α

∈ [αx−1
2 (log x2)−α−1(x2 − x1), αx−1

1 (log x1)−α−1(x2 − x1)]. (A.12)

For t ∈ (0, 1) \ Iε we have Φ̃ε(t) > Φ(t) and thus R̃ε(t) > R(t); hence it follows
from (A.10)–(A.12) that

[log R̃ε(t)]
−α − [logR(t)]−α > |α| 1

R̃ε(t)
[logR(t)]−α−1 c1gε(t)

t
if α 6 −1; (A.13)

[log R̃ε(t)]
−α − [logR(t)]−α > |α| 1

R̃ε(t)
[log R̃ε(t)]

−α−1 c1gε(t)

t
if α ∈ (−1, 0);

(A.14)

[logR(t)]−α − [log R̃ε(t)]
−α > α

1

R̃ε(t)
[log R̃ε(t)]

−α−1 c1gε(t)

t
if α > 0. (A.15)

Denote the interval Iε defined at (A.9) by (aε, bε). Consider t ∈ Iε for the next

three displays; thus Φ(t) > Φ̃ε(t) and R(t) > R̃ε(t). If α 6 −1 we have, recalling
Lemma 6.1,

[log R̃ε(t)]
−α − [logR(t)]−α > −|α| 1

R̃ε(t)
[logR(t)]−α−1 c1|gε(t)|

t
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= −|α| 1

Φ̃ε(t)
[logR(t)]−α−1c1|gε(t)|

> −|α| 1

Φ̃ε(aε)
[logR(aε)]

−α−1c1ε, (A.16)

where we have used (A.7) at the last inequality; similarly, if α ∈ (−1, 0) we have

[log R̃ε(t)]
−α − [logR(t)]−α > −|α| 1

Φ̃ε(t)
[log R̃ε(t)]

−α−1c1|gε(t)|

> −|α| 1

Φ̃ε(aε)
[log R̃ε(bε)]

−α−1c1ε; (A.17)

and if α > 0 we have

[logR(t)]−α − [log R̃ε(t)]
−α > −α 1

Φ̃ε(t)
[log R̃ε(t)]

−α−1c1|gε(t)|

> −α 1

Φ̃ε(aε)
[log R̃ε(bε)]

−α−1c1ε. (A.18)

We continue by assessing the contribution to the difference sgn(α) · [µ(α)− µ̃ε(α)]
of integrals from t ∈ Iε, with asserted inequalities valid for all small ε > 0. If α 6 −1,
the contribution is, using (A.16), bounded below by

−|α|c1ε
1

Φ̃ε(aε)
[logR(aε)]

−α−1(bε − aε) > −|α|C1ε
3/2
[
log
(
R(1/6) + C2ε

1/2
)]−α−1

> −|α|C1ε
3/2[logR(1/7)]−α−1, (A.19)

where we have used Lemma 6.1 and where the constants C1 and C2 do not depend
on α. Similarly, for α ∈ (−1, 1

2) the contribution is bounded below by

−|α|C3ε
3/2[logR(1/5)]−α−1. (A.20)

Next we similarly assess the contribution to sgn(α) · [µ(α) − µ̃ε(α)] from values
t ∈ (0, 1) \ Iε. For all small ε > 0, for α 6 −1 the contribution is, using (A.13), at
least ∫ 1/8

1/9
|α| 1

Φ̃ε(t)
[logR(t)]−α−1c1gε(t) dt > |α| c2 [logR(1/8)]−α−1, (A.21)

where the constant c2 does not depend on α. Similarly, for α ∈ (−1, 1/2) the
contribution is, using (A.14)–(A.15), at least

|α|c3

∫ 1/3

7/24
[log R̃ε(t)]

−α−1 dt > |α|c4 [logR(1/4)]−α−1. (A.22)

Summarizing, for α 6 −1 we have, using (A.21) and (A.19),

µ̃ε(α)− µ(α) > |α|c2[logR(1/8)]−α−1 − |α|C1ε
3/2[logR(1/7)]−α−1; (A.23)

and for α ∈ (−1, 1
2) we have, using (A.22) and (A.20),

sgn(α) · [µ(α)− µ̃ε(α)] > |α|c4[logR(1/4)]−α−1 − |α|C3ε
3/2[logR(1/5)]−α−1.

(A.24)
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Since by Lemma 6.1

R(1/8) > R(1/7) and R(1/4) < R(1/5), (A.25)

for sufficiently small ε 6 (min{c2/C1, c4/C3})2/3 the desired strict inequalities (6.26)
and (6.27) follow. Furthermore, to obtain (6.28), we divide through by |α| in (A.24)
and let α tend to 0, which yields

µ′ − µ̃′ε = µ′(0)− µ̃′ε(0) > c4[logR(1/4)]−1 − C3ε
3/2[logR(1/5)]−1, (A.26)

which is (strictly) positive for sufficiently small ε 6 (c4/C3)2/3. �

Appendix B. Negative moments of affine functions of tree size

The representation (6.3) of µ(α) as an integral in terms of the offspring proba-
bility generating function Φ and the consequent ordering of µ-values exhibited in
Theorem 6.3(i) can be extended to treat means of more general functions of the
Galton–Watson tree-size. We illustrate this with the following theorem, used in the
proof of Theorem 6.5.

Theorem B.1. For real α < 0 and t > 1, we have

E(|T | − 1 + t)α = (t− 1)α
∫ 1

0

[
1− c(η;−α, t)

Γ(−α)

]
dη, (B.1)

where c(η;−α, t) is the incomplete gamma function value

c(η;−α, t) =

∫ ∞
(t−1) logR(η)

v−α−1e−v dv. (B.2)

Proof. Let f(s) := (s − 1 + t)α. Observe that s 7→ f(s)/s for s > 0 is the Laplace
transform of the (strictly) increasing function g mapping x > 0 to

g(x) := (t− 1)α
[
1− γ((t− 1)x;−α)

Γ(−α)

]
∈ (0, (t− 1)α), (B.3)

where here γ(·;−α) is the incomplete gamma function∫ ∞
·
v−α−1e−v dv. (B.4)

Therefore

E(|T | − 1 + t)α = E f(|T |)

=

∞∑
n=1

P(|T | = n)f(n) =

∞∑
n=1

nP(|T | = n)

∫ ∞
0

e−nxg(x) dx

=

∫ ∞
0
g(x)y′(e−x)e−x dx =

∫ 1

0
g(− log u)y′(u) du

=

∫ 1

0
g
(
log(R(η))

)
dη, (B.5)

again changing variables by u = y−1(η) = 1/R(η), and (B.1) follows by (B.3). �
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Appendix C. Comparisons allowing infinite offspring moments

Remark 6.7(b) follows quickly from the following theorem concerning Laplace
transforms.

Theorem C.1. Let ξ be a (not necessarily integer-valued) nonnegative random vari-
able with Laplace transform f and moments

mj := E ξj 6∞, j = 0, 1, 2, . . . (C.1)

(with m0 := 0). For a given positive integer r, suppose that mr−1 <∞. Then

g(t) := (−1)rt−rr!

f(t)−
r−1∑
j=0

(−1)jmj
tj

j!

 (C.2)

is nonnegative for t > 0 and increases (weakly) to mr 6∞ as t↘ 0.

We will prove Theorem C.1 using the following calculus lemma.

Lemma C.2. Let r be a fixed positive integer, and define

h(x) := (−1)rx−r

e−x − r−1∑
j=0

(−1)j
xj

j!

 , x > 0. (C.3)

Then h is (strictly) positive and (strictly) decreasing, with limit 1/r! as x↘ 0.

Proof. The lemma is immediate from the claim that

h(x) =
1

(r − 1)!

∫ 1

0
vr−1e−x(1−v) dv. (C.4)

We offer two proofs of this claim.

Proof #1 of (C.4). By Taylor’s theorem with remainder in integral form,

h(x) =
x−r

(r − 1)!

∫ x

0
(x− u)r−1e−u du. (C.5)

Now simply change the variable of integration from u to v = 1− u
x .

Proof #2 of (C.4). Let B denote Euler’s beta function. Then the right side of (C.4)
equals

1

(r − 1)!

∞∑
k=0

(−1)k
xk

k!

∫ 1

0
vr−1(1− v)k dv =

1

(r − 1)!

∞∑
k=0

(−1)k
xk

k!
B(r, k + 1)

= (−1)rx−r
∞∑
j=r

(−1)j
xj

j!
= h(x). (C.6)

�
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Proof of Theorem C.1. For t > 0 we have

g(t) = E

(−1)rt−rr!

e−tξ − r−1∑
j=0

(−1)j
(tξ)j

j!


= E

(−1)rt−rr!

e−tξ − r−1∑
j=0

(−1)j
(tξ)j

j!

 ; ξ > 0


= E [r!h(tξ) ξr; ξ > 0] . (C.7)

By Lemma C.2, the nonnegative random variables r!h(tξ) ξr1(ξ > 0) increase (weakly)
to ξr1(ξ > 0) = ξr as t↘ 0. Thus, by the MCT, g(t)↗ mr 6∞ as t↘ 0. �

Appendix D. On the variances and covariances of additive
functionals in conditioned Galton–Watson trees

It is by no means immediately clear that the approach in Section 5 of this paper
(the case Reα < 0) yields an asymptotic variance agreeing with that produced in
[5, Remark 5.1], which is simply a specialization of [14, (1.17)]. The notes in this
appendix provide a reconciliation, showing directly that variance formulas given by
the two approaches are equivalent.

Section D.1 deals with variances for general real additive functionals of the sort
discussed in [14], except that we specialize to the case that the toll functional depends
only on tree size. Section D.2 extends Section D.1 to covariances for complex additive
functionals. Finally, Section D.3 provides the desired agreement.

D.1. Variances for real additive functionals. We return to the setting of [14,
Theorem 1.5(ii)] and repeat the assumptions here for convenience. Let T denote the
countable set of all ordered rooted trees, and let Tn := {T ∈ T : |T | = n}. Let Tn
be a conditioned Galton–Watson tree of order n with offspring distribution ξ, where
E ξ = 1 and 0 < σ2 := Var ξ < ∞, and let T be the corresponding unconditioned
Galton–Watson tree. Suppose that f : T → R is a functional of rooted trees such
that E |f(T )| < ∞ (which, as noted in [14, Remark 1.6], is implied by either (D.1)
or (D.2) below), and let µ := E f(T ). Assume that

E |f(Tn)|2 → 0 as n→∞ (D.1)

and
∞∑
n=1

n−1
√
E |f(Tn)|2 <∞. (D.2)

Under these assumptions, [14, Theorem 1.5] asserts in part that the additive func-
tional F corresponding to toll function f satisfies

EF (Tn) = nµ+ o
(√
n
)

(D.3)

and

VarF (Tn) = nγ2 + o(n) (D.4)
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where

γ2 := 2E [f(T )(F (T )− |T |µ)]−Var f(T )− σ−2µ2

= 2E [f(T )(F (T )− |T |µ)]− E f2(T ) + (1− σ−2)µ2 (D.5)

is nonnegative and finite. Combining (D.3)–(D.4), note that we also have the con-
clusion

E[F (Tn)− nµ]2 = nγ2 + o(n). (D.6)

We now (crucially) suppose further for the remainder of this subsection that f
depends only on tree size and write fn := f(T ) for any T ∈ Tn. Then the assump-
tions (D.1) and (D.2) reduce to

fn → 0 as n→∞ (D.7)

and
∞∑
n=1

n−1|fn| <∞, (D.8)

respectively; the constant µ can be written as

µ =

∞∑
n=1

qnfn; (D.9)

and (D.5) can be written as

γ2 = 2

∞∑
n=1

qnfn E[F (Tn)− nµ]− ν + (1− σ−2)µ2 (D.10)

with

ν := E f(T )2 =
∞∑
n=1

qnf
2
n. (D.11)

Example D.1. Consider the toll function f(T ) = |T |α with real α < 0. Then
fn = nα satisfies (D.7)–(D.8) and hence also (D.9)–(D.11). Computation of γ2 in
this case is discussed in Appendix E. �

Now suppose that in place of a toll sequence (fn) satisfying (D.7)–(D.8) we use
the toll sequence (bn :≡ fn−µ), with µ given by (D.9), and denote the corresponding
additive functional by

F ◦(T ) = F (T )− nµ, T ∈ Tn. (D.12)

Then, by (D.3) and (D.6),

EF ◦(Tn) = o(
√
n), (D.13)

EF ◦(Tn)2 = nγ2 + o(n), (D.14)

where from (D.10) we have

γ2 = 2

∞∑
n=1

qnfn EF ◦(Tn)− ν + (1− σ−2)µ2. (D.15)
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We next wish to generalize the treatment in Section 5.1 to treat EF ◦(Tn). Let

M(z) := E[F ◦(T )z|T |] =
∞∑
n=1

qn E[F ◦(Tn)]zn. (D.16)

Then note that (5.6) generalizes (again, as so many times before in this paper, by
Lemma 3.1 and as in (3.12); note also the sentence preceding Lemma 3.1) to

M(z) =
zy′(z)

y(z)
· [B(z)� y(z)], (D.17)

where

B(z) :=
∞∑
n=1

bnz
n = −µz(1− z)−1 +

∞∑
n=1

fnz
n. (D.18)

The power series M(z) and B(z) converge in the open unit disc, since (D.13) holds

and bn = O(1) and qn = O(n−3/2) by (D.7) and (2.24). Furthermore, these estimates
show also that the power series B(z)� y(z) converges (absolutely and uniformly) in
the closed unit disc to a continuous function. We have

(B � y)(1) =

∞∑
n=1

qn(fn − µ) = E f(T )− µ = 0, (D.19)

by the definition of µ.
We assume in the sequel also:

the generating function
∞∑
n=1

fnz
n is ∆-analytic. (D.20)

(Recall that this means that the generating function can be analytically continued to
some ∆-domain, see Section 2.2.) Then (D.18) shows that also B(z) is ∆-analytic,
and so is M(z) by (D.17) and Lemmas 2.4 and 2.3.

Remark D.2. For convenience, we used here Lemma 2.4 which is stated under the
assumption E ξ2+δ <∞. Similarly, we use in the proof below (2.20) and (2.22) from
the same lemma. However, the version used below, with corresponding error terms
o
(
|1 − z|1/2

)
and o

(
|1 − z|−1/2

)
, requires only E ξ2 < ∞, see [12, Lemma A.2] and

[5, (12.5) and (12.31)]. Hence, this lemma holds assuming only E ξ2 <∞, and so do
all other results in this and the following subsection. �

Lemma D.3. Assume that the sequence (fn) satisfies the decay conditions (D.7)–
(D.8). Suppose also that (D.20) holds, and that the generating function satisfies

∞∑
n=1

fnz
n = o(|1− z|−1) (D.21)

as z → 1. Then, as z → 1 we have

M(z) = σ−2µ+ o(1). (D.22)

Recall our standing convention that estimates such as (D.21) and (D.22) hold as
z → 1 in some suitable ∆-domain (not necessarily the same each time).
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Proof. From (D.18) and (D.21) we have

B(z) = −µ(1− z)−1 + o(|1− z|−1), (D.23)

and therefore, using (2.20), together with Lemma 2.3 and the corresponding o-result
in [5, Lemma 12.2(ii)],

B(z)� y(z) = [−µ(1− z)−1 + o(|1− z|−1)]� [1− 21/2σ−1(1− z)1/2 + o
(
|1− z|1/2

)
]

= c1 + 21/2σ−1µ(1− z)1/2 + o(|1− z|1/2), (D.24)

for some constant c1. Furthermore, letting z ↗ 1 along the real axis, (D.24) and
(D.19) yield

c1 = lim
z↗1

(B � y)(z) = (B � y)(1) = 0. (D.25)

Now we use (D.17), (D.24)–(D.25), and (2.22) to conclude

M(z) =
[
2−1/2σ−1(1− z)−1/2 + o

(
|1− z|−1/2

)]
·
[
21/2σ−1µ(1− z)1/2 + o(|1− z|1/2)

]
= σ−2µ+ o(1), (D.26)

which is (D.22). �

We denote the limit σ−2µ in (D.22) by M(1).

Remark D.4. We do not know whether the power series M(z) converges absolutely
for z = 1, but it converges at least conditionally. In fact, the limit limz↗1M(z)
exists by (D.22), which means that the sum (D.16) for z = 1 is Abel summable to
M(1); furthermore, the terms qn E[F ◦(Tn)] = o(n−1) by (2.24) and (D.13); hence
Tauber’s theorem [10, Theorem 85] shows that the sum converges and

∞∑
n=1

qn EF ◦(Tn) = M(1) = σ−2µ. (D.27)

�

D.2. Covariances for complex additive functionals. The treatment in Appen-
dix D.1 extends routinely (using polarization and decomposition into real and imag-
inary parts) as follows. Let f and g now be complex-valued functions of rooted trees
each satisfying (D.1)–(D.2). Then, extending (D.6) and (D.5), for the corresponding
additive functionals F and G we have

E[(F (Tn)− nµf )(G(Tn)− nµg)] = cf,gn+ o(n), (D.28)

where µf := E f(T ), µg := E g(T ), and

cf,g := E [f(T )(G(T )− |T |µg)] + E [g(T )(F (T )− |T |µf )]

− E[f(T )g(T )] + (1− σ−2)µfµg. (D.29)

The argument in [14, (8.3)] shows that the expectations above are finite.
If we suppose further that f and g depend only on tree size [and write fn := f(T )

and gn := g(T ) for any T ∈ Tn], then the assumptions again reduce to (D.7)–(D.8)
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(for both f and g); furthermore, generalizing (D.10)–(D.11) [see also (D.12)–(D.15)],
we have, with absolutely convergent sums (by (2.24), (D.13), and (D.8)),

cf,g =
∞∑
n=1

qnfn EG◦(Tn) +
∞∑
n=1

qngn EF ◦(Tn)− µfg + (1− σ−2)µfµg (D.30)

with

µfg = E[f(T )g(T )] =

∞∑
n=1

qnfngn. (D.31)

Under certain regularity assumptions, we will in the following proposition express
cf,g in an alternative form to (D.30). Since we now consider several toll functions,
we modify the notation above and indicate the toll function by a subscript (as we
already have done with µf , µg, µfg); we thus write Bf (z), Bg(z), Mf (z), and so on;
for typographical reasons we also write bn(f) := fn − µf and bn(g) := gn − µg.

Proposition D.5. Assume that the sequences (fn) and (gn) both satisfy the decay
conditions (D.7)–(D.8). Suppose also that these sequences have generating functions
that are ∆-analytic and satisfy, as z → 1,

∞∑
n=1

fnz
n = o(|1− z|−1) and

∞∑
n=1

gnz
n = o(|1− z|−1). (D.32)

Then the sums

(Bf �Mg)(1) =
∞∑
n=1

bn(f)qn EG◦(Tn) and (Bg �Mf )(1) =
∞∑
n=1

bn(g)qn EF ◦(Tn)

(D.33)

converge, and the constant cf,g of (D.28) satisfies

cf,g = (Bf �Mg)(1) + (Bg �Mf )(1)− (Bf �Bg � y)(1) + σ−2µfµg. (D.34)

Proof. Note first that

(Bf �Mg)(1) =
∞∑
n=1

bn(f)qn EG◦(Tn) =
∞∑
n=1

fnqn EG◦(Tn)− µf
∞∑
n=1

qn EG◦(Tn),

(D.35)

where the first sum on the right-hand side converges as noted before (D.30), and the
second by Remark D.4. Hence, the sums in (D.33) converge.

Next, by (D.19),

(Bf � y)(1) = (Bg � y)(1) = (Bfg � y)(1) = 0. (D.36)

Hence,

0 = (Bfg � y)(1)

=

∞∑
n=1

qn(fngn − µfg)
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=
∞∑
n=1

qn[bn(f) + µf ][bn(g) + µg]− µfg

= (Bf �Bg � y)(1) + µf (Bg � y)(1) + µg(Bf � y)(1) + µfµg − µfg
= (Bf �Bg � y)(1) + µfµg − µfg. (D.37)

It follows from (D.30), (D.33), (D.27), and (D.37) that

cf,g =
∞∑
n=1

qn[bn(f) + µf ]EG◦(Tn) +
∞∑
n=1

qn[bn(g) + µg]EF ◦(Tn)

− µfg + (1− σ−2)µfµg

= (Bf �Mg)(1) + µfMg(1) + (Bg �Mf )(1) + µgMf (1)

− µfg + (1− σ−2)µfµg

= (Bf �Mg)(1) + σ−2µfµg + (Bg �Mf )(1) + σ−2µfµg

− (Bf �Bg � y)(1)− σ−2µfµg, (D.38)

which simplifies to (D.34). �

Remark D.6. Since the sum (Bf�Mg)(1) in (D.33) converges, it is Abel summable
by Abel’s theorem [10, §1.4], i.e.,

lim
z↗1

(Bf �Mg)(z) = (Bf �Mg)(1), (D.39)

for real z ↗ 1. It follows by Lemma 2.3 that (Bf �Mg)(z) is ∆-analytic, and we
conjecture that (D.39) holds also for complex z → 1 in a suitable ∆-domain, but we
have no proof of that. (Lemma 2.3 is not enough here, since the resulting exponent
is an integer (viz., 0), and this case is excepted for (2.16).) �

Remark D.7. If fn ≡ gn ≡ 1, then Bf (z) ≡ Bg(z) ≡ 0 and the right side of (D.34)
reduces to σ−2. Thus (D.34), like the formula in [14, Theorem 1.5], see [14, Remark
1.10], gives the wrong answer in this illegitimate case, but at least this wrong answer
is positive! �

D.3. Agreement with Section 5.2. In this final subsection of Appendix D we
reconcile Section 5.2 with this appendix by showing how (5.13) yields for κ1,1 of
(5.14)–(5.15) the value provided by (D.34) with fn ≡ nα1 and gn ≡ nα2 (which
satisfy all the conditions leading to Proposition D.5 since Reα1 < 0 and Reα2 < 0).
For the reader’s convenience, we repeat (5.13) here:

M1,1(z) =
zy′(z)

y(z)

[
Bα1(z)�Bα2(z)� y(z) +Bα1(z)� (zM0,1(z)Φ′(y(z)))

+Bα2(z)� (zM1,0(z)Φ′(y(z))) + zM1,0(z)M0,1(z)Φ′′(y(z))
]
. (D.40)

First note that the second Hadamard factor in the second term in square brackets
is, using (5.6) and the result of differentiating (2.19),

zM0,1(z)Φ′(y(z)) = z ·
[
zy′(z)

y(z)

]
· [Bα2(z)� y(z)] ·

[
z−1 − z−2 y(z)

y′(z)

]
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=

[
zy′(z)

y(z)
− 1

]
(Bα2 � y)(z)

= M0,1(z)− (Bα2 � y)(z). (D.41)

Thus the second term in square brackets in (D.40) equals

(Bα1 �M0,1)(z)− (Bα1 �Bα2 � y)(z). (D.42)

Similarly, the third term equals

(Bα2 �M1,0)(z)− (Bα1 �Bα2 � y)(z). (D.43)

Using (5.8) and (2.28), the fourth term equals (recall here that η is defined as η =
min(−Reα1,−Reα2, δ/2))

[1 +O(|1− z|)] · [σ−2µ(α1) +O(|1− z|η)] · [σ−2µ(α2) +O(|1− z|η)]

· [σ2 +O(|1− z|δ/2)] = σ−2µ(α1)µ(α2) +O(|1− z|η). (D.44)

Employing (2.22) for the first of the two factors in (D.40) and assembling the pieces
of our argument, we conclude

M1,1(z) =
[
2−1/2σ−1(1− z)−1/2 +O

(
|1− z|−

1
2

+ δ
2
)]

· [(Bα1 �M0,1)(z) + (Bα2 �M1,0)(z)− (Bα1 �Bα2 � y)(z)

+σ−2µ(α1)µ(α2) +O(|1− z|η)
]
. (D.45)

In particular, using (D.39), at least for real z ↗ 1 we have

M1,1(z) = 2−1/2σ−1(1− z)−1/2

· [(Bα1 �M0,1)(1) + (Bα2 �M1,0)(1)− (Bα1 �Bα2 � y)(1)

+σ−2µ(α1)µ(α2)
]

+ o(|1− z|−
1
2 ), (D.46)

demonstrating that κ1,1 of (5.14)–(5.15) equals

(Bα1 �M0,1)(1) + (Bα2 �M1,0)(1)− (Bα1 �Bα2 � y)(1) + σ−2µ(α1)µ(α2), (D.47)

in agreement with (D.34).

Appendix E. Variances for sums of negative real powers
of subtree sizes

In this appendix we produce rather simple integral expressions for the constants
γ2 ≡ γ2(α) of (D.10) for negative-power tolls fn = nα with α < 0, as in Example D.1.
Note that we have (see (D.6) and (D.28)) γ2 = cf,f given by (D.30) and (D.34). For
α = −1, exact values of γ2 are obtained for the four important examples in [5,
Appendix A] in Section E.1. Numerical integration can be used to compute γ2

for other negative-integer values of α for the same examples; this is discussed in
Section E.2.
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For general α < 0, in (D.10) we have µ = µ(α) and ν = µ(2α). These constants
are discussed in Section 6 (see especially (6.1) and (6.3); for the four examples, see
[5, Appendix A]), so in this appendix we need only focus on the sum

S ≡ S(α) :=

∞∑
n=1

qnn
α EF ◦(Tn) (E.1)

appearing in (D.10). Thus (D.10) yields, recalling (D.11),

γ2 = 2S − ν + (1− σ−2)µ2. (E.2)

E.1. Computation of γ2(−1) for general offspring distribution, with exam-
ples. As just said, we need only focus on computation of S. For that, when α = −1
we have, using (D.16)–(D.17),

S =

∫ 1

0
t−1M(t) dt =

∫ 1

0

y′(t)

y(t)
· [B(t)� y(t)] dt. (E.3)

But

B(z)� y(z) =
∞∑
n=1

n−1qnz
n − µ y(z) =

∫ z

0
t−1y(t) dt− µ y(z), (E.4)

so, using
∫ 1

0 y
′(t) dt = y(1)− y(0) = 1− 0 = 1, we find

S =

∫ 1

0

y′(t)

y(t)

∫ t

0
s−1y(s) ds dt− µ. (E.5)

After integration by parts, we find from (E.5) that

S =

∫ 1

0
[− log y(t)] t−1y(t) dt− µ. (E.6)

We could use (E.6) for computation of S and thence γ2(−1) for the four examples
of [5, Appendix A], because y is known explicitly for those examples. But to better
prepare for examples such as m-ary trees and full m-ary trees with m > 3, we first
recast (E.6) in terms of the probability generating function Φ, just as we recast (6.1)
as (6.3) in Section 6. (This recasting also leads to simpler calculations for the four
examples.)

In (E.6), make the change of variables from t to η = y(t). This gives

S + µ =

∫ 1

0
(− log η)Φ(η)

[
d

dη

η

Φ(η)

]
dη

=

∫ 1

0
(− log η) dη −

∫ 1

0
η(− log η)

Φ′(η)

Φ(η)
dη

= 1−
∫ 1

0
η(− log η)

Φ′(η)

Φ(η)
dη. (E.7)

We now use integration by parts again:∫ 1

0
η(− log η)

Φ′(η)

Φ(η)
dη =

∫ 1

0
[− log Φ(η)][(− log η)− 1] dη. (E.8)
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Thus

S = 1−
∫ 1

0
[− log Φ(η)][(− log η)− 1] dη − µ(−1). (E.9)

We now recall from (6.3) that

µ(−1) =

∫ 1

0
[log Φ(η)− log η] dη = 1−

∫ 1

0
[− log Φ(η)] dη. (E.10)

Combining (E.9) and (E.10) we find

S =

∫ 1

0
(2 + log η)[− log Φ(η)] dη. (E.11)

Example E.1. For labelled trees ([5, Example A.1]), we have Φ(z) ≡ ez−1, σ2 = 1,
µ = 1/2, ν = 5/12, and [from (E.11)] S = 1/4. We conclude

γ(−1)2 = 2 · 1
4 −

5
12 + (1− 1)(1

2)2 = 1
12

.
= 0.08333. (E.12)

�

Example E.2. For ordered trees ([5, Example A.2]), we have Φ(z) ≡ 1
2(1− 1

2z)
−1,

σ2 = 2, µ = 2−2 log 2, ν = 2 log2 2−4 log 2− 1
6π

2 +4, and S = −1
6π

2 +2 log 2+log2 2.
We conclude

γ(−1)2 = 2
(
−1

6π
2 + 2 log 2 + log2 2

)
−
(
2 log2 2− 4 log 2− 1

6π
2 + 4

)
+ (1− 1

2)(2− 2 log 2)2

= 4 log 2− 2− 1
6π

2 + 2 log2 2
.
= 0.08856. (E.13)

�

Example E.3. For binary trees ([5, Example A.3]), we have Φ(z) ≡ (1
2 + 1

2z)
2,

σ2 = 1/2, µ = 2 log 2− 1, ν = 1
6π

2 − 2 log2 2− 2 log 2 + 1, and S = 1
6π

2 − 2 log 2. We
conclude

γ(−1)2 = 2
(

1
6π

2 − 2 log 2
)
−
(

1
6π

2 − 2 log2 2− 2 log 2 + 1
)

+ (1− 2)(2 log 2− 1)2

= −2 + 1
6π

2 + 2 log 2− 2 log2 2
.
= 0.07032. (E.14)

�

Example E.4. For full binary trees ([5, Example A.4]), we have Φ(z) ≡ 1
2(1 + z2),

σ2 = 1, µ = 1
2π − 1, ν = 1− 1

2(1− log 2)π, and S = 2G− 1
2π, where

G :=
∞∑
n=0

(−1)n

(2n+ 1)2

.
= 0.91596559417721901505460351493238411077414937428167

(E.15)
is Catalan’s constant. We conclude

γ(−1)2 = 2
(
2G− 1

2π
)
−
[
1− 1

2(1− log 2)π
]

+ (1− 1)
(

1
2π − 1

)2
= 4G− 1

2(1 + log 2)π − 1
.
= 0.004273. (E.16)

�
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Examples E.3 and E.4 can be generalized at the expense of rather complicated
expressions.

Example E.5. For m-ary trees, we have Φ(z) ≡ (m−1
m + 1

mz)
m, σ2 = m−1

m , µ =

(m− 1)[−m log m−1
m − 1],

ν = µ(−2) =
1

2

∫ 1

0

[
m log

(
m− 1

m
+

1

m
η

)
− log η

]2

dη

= (m− 1)

[
m− 1 +

(
m2

2
log

m

m− 1
+m2 −m

)
log

m− 1

m

−mLi2

(
− 1

m− 1

)]
(E.17)

[from (6.3) and with the help of Mathematica], and

S = m(m− 1)

[
−Li2

(
− 1

m− 1

)
+ log

m− 1

m

]
. (E.18)

From (E.2) we conclude

γ(−1)2 = m(m− 1)

[
−1− Li2

(
− 1

m− 1

)
+ (m− 1)`m −

m

2
`2m

]
, (E.19)

where we have abbreviated log m
m−1 as `m. It is easily checked that (as must be the

case) (E.19) reduces to (E.14) when m = 2 and (E.19) converges to the value 1/12
of (E.12) in Example E.1 as m→∞. �

Example E.6. For full m-ary trees, we have Φ(z) ≡ m−1
m + 1

mz
m and σ2 = m− 1.

With the help of Mathematica (and rather easily verified by hand) we can compute µ
in terms of the hypergeometric function 2F1:

µ = 1− m

m2 − 1
2F1(1, 1 +m−1; 2 +m−1;−(m− 1)−1), (E.20)

or equivalently in terms of the Lerch transcendent function, usually denoted by Φ
(but we use Ψ to avoid notational conflict):

µ = Ψ(−(m− 1)−1, 1,m−1)−m+ 1, (E.21)

where

Ψ(z, r, a) :=
∞∑
n=0

zn

(n+ a)r
. (E.22)

Mathematica is unable to compute ν = µ(−2) when presented with the form (6.3):

ν =
1

2

∫ 1

0

[
log

(
m− 1

m
+

1

m
ηm
)
− log η

]2

dη, (E.23)

but when a change of variables from η to x = ηm is made, yielding

ν =
1

2m

∫ 1

0

[
log

(
m− 1

m
+

1

m
x

)
− 1

m
log x

]2

x−(m−1)/m dx, (E.24)

Mathematica gives a complicated expression; we omit that expression here.
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The expression Mathematica gives for S is not too complicated in terms of the
functions 2F1 or Ψ. We have

S =
1

m
Ψ
(
−(m− 1)−1, 2,m−1

)
−Ψ

(
−(m− 1)−1, 1,m−1

)
. (E.25)

Despite the complicated expressions for generalm, high-precision numerical results
for any particular value of m are easy to obtain. For example, if m = 3, then σ2 = 2,

µ = Ψ(−1
2 , 1,

1
3)− 2

.
= 0.70493277558252901544207714518773601710489130776015, (E.26)

ν
.
= 0.67423685107705512174520220134817841815252800297577, (E.27)

S = 1
3Ψ
(
−1

2 , 2,
1
3

)
−Ψ

(
−1

2 , 1,
1
3

)
.
= 0.21371145926485383336608124534180063460550286916818, (E.28)

γ2 .
= 0.00165117649789665303023160997264937410161618428615. (E.29)

�

E.2. Computation of γ2(−k) for general offspring distribution, with exam-
ples for k = 2. One might hope that γ2 could be computed in closed form for the
four examples in Examples E.1–E.4 (and [5, Appendix A]) for other small positive
integer values of −α, but even for α = −2 we find it necessary to resort to numerical
integration in three of the four cases.

We begin with a general treatment for α = −2 and will discuss larger integer
values of −α later in this subsection. The analogue of (E.3) is now

S =

∞∑
n=1

n−2qn EF ◦(Tn)

=

∫ 1

0
u−1

∫ u

0
t−1M(t) dt du

=

∫ 1

0
t−1(− log t)M(t) dt

=

∫ 1

0
(− log t)

y′(t)

y(t)
· [B(t)� y(t)] dt, (E.30)

using (D.17) at the last equality, and the analogue of (E.4) is

B(z)� y(z) + µy(z) =

∞∑
n=1

n−2qnz
n

=

∫ z

0
u−1

∫ u

0
t−1y(t) dt du

=

∫ z

0
t−1y(t)(log z − log t) dt

= (log z)

∫ z

0
t−1y(t) dt−

∫ z

0
t−1(log t)y(t) dt. (E.31)
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Combining (E.30)–(E.31), we find this analogue of (E.6):

S =

∫ 1

0
(− log t)

y′(t)

y(t)
·
[
(log t)

∫ t

0
s−1y(s) ds−

∫ t

0
s−1(log s)y(s) ds− µy(t)

]
dt.

(E.32)
It is once again helpful to change variables and integrate by parts, as we did in

moving from (E.6) to (E.9). The result, with L(η) := logR(η), is

S = −
∫ 1

0
ηL′(η)

(
L(η)

{∫ 1

η
L(ξ)ξ−1 dξ

}
−
{∫ 1

η
[L(ξ)]2 ξ−1 dξ

})
dη

− µ
∫ 1

0
L(η) dη. (E.33)

We revisit the examples in Examples E.1–E.4, but now for α = −2. Note that
now µ = µ(−2) and ν = µ(−4); several of these values are computed in [5].

Example E.7. For labelled trees ([5, Example A.1]), with the help of Mathematica
we find, using (E.33), that S = 101/432. We have, from [5, Example A.1], µ =
µ(−2) = 5/12 and ν = µ(−4) = 1631/4320. We conclude

γ(−2)2 = 2 · 101
432 −

1631
4320 + (1− 1)( 5

12)2 = 389
4320

.
= 0.090046. (E.34)

�

Example E.8. For ordered trees ([5, Example A.2]), only the first outer integral
on η seems to require numerical integration. We find

S
.
= 0.234522. (E.35)

We have, from [5, Example A.2],

µ = 2 log2 2− 4 log 2− 1
6π

2 + 4
.
= 0.543383 (E.36)

and

ν = − 1
40π

4 +
(
−1

3 log2 2 + 2
3 log 2− 2

3

)
π2 + 2

3 log4 2

− 8
3 log3 2 + 8 log2 2− 16 log 2 + (4 log 2− 4)ζ(3) + 16

.
= 0.508810. (E.37)

We conclude
γ(−2)2 = 2S − ν + 1

2µ
2 .

= 0.107866. (E.38)

�

Example E.9. For binary trees ([5, Example A.3]), we find

S
.
= 0.205868. (E.39)

We have, using [5, Example A.3],

µ = 1
6π

2 − 2 log2 2− 2 log 2 + 1
.
= 0.297734 (E.40)

and

ν = 1 + 1
40π

4 + 1
6π

2(2 log2 2 + 2 log 2 + 1)− (4 log 2 + 2)ζ(3)

− 2
3 log4 2− 4

3 log3 2− 2 log2 2− 2 log 2
.
= 0.259105. (E.41)
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We conclude

γ(−2)2 = 2S − ν − µ2 .
= 0.063985. (E.42)

�

Example E.10. For full binary trees ([5, Example A.4]), we find

S
.
= 0.251039. (E.43)

We have, using [5, Example A.4],

µ = 1− 1
2(1− log 2)π

.
= 0.517996 (E.44)

and

ν = 1 + 1
48π

3(log 2− 1) + 1
12π(log3 2− 3 log2 2 + 6 log 2− 6) + 1

8πζ(3)
.
= 0.501666. (E.45)

We conclude

γ(−2)2 = 2S − ν − (1− 1)µ2 .
= 0.000412. (E.46)

�

Remark E.11. The same sort of general development as for α = −2 shows that γ2

can be computed using just one- and two-dimensional integration whenever α = −k
with k a positive integer. We know that only one-dimensional integration is needed
for the second and third terms on the right in (D.15), so it suffices to consider the
term S.

For example, when α = −3, the analogue of (E.3) is

S =

∞∑
n=1

n−3qn EF ◦(Tn)

=

∫ 1

0
v−1

∫ v

0
u−1

∫ u

0
t−1M(t) dt dudv

=
1

2

∫ 1

0
t−1(− log t)2M(t) dt

=
1

2

∫ 1

0
(− log t)2 y

′(t)

y(t)
· [B(t)� y(t)] dt, (E.47)

using (D.17) at the last equality, and the analogue of (E.4) is

B(z)� y(z) + µy(z) =

∞∑
n=1

n−3qnz
n

=

∫ z

0
v−1

∫ v

0
u−1

∫ u

0
t−1y(t) dtdu

=
1

2

∫ z

0
t−1y(t)

(
log

z

t

)2
dt. (E.48)
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Combining (E.47)–(E.48), we find

S ≡ S(−3) =
1

4

∫ 1

0
(− log t)2 y

′(t)

y(t)
·

[∫ t

0
s−1y(s)

(
log

t

s

)2

ds− 2µ(−3)y(t)

]
dt.

(E.49)
For general positive integer k we find

S(−k) =
1

[(k − 1)!]2

∫ 1

0
(− log t)k−1 y

′(t)

y(t)

·

[∫ t

0
s−1y(s)

(
log

t

s

)k−1

ds− (k − 1)!µ(−k)y(t)

]
dt. (E.50)

We can re-express S(−k) in terms of R as follows:

S(−k) =
1

[(k − 1)!]2

∫ 1

0
ηR(η)

[
d

dη

1

R(η)

] ∫ 1

η

{
[logR(ξ)]

[
log

R(η)

R(ξ)

]}k−1

ξ−1 dξ dη

− µ(−k)

(k − 1)!

∫ 1

0
[logR(η)]k−1 dη. (E.51)

�

Problem E.12. Can γ2 similarly be represented in terms of integrals when α < 0
is not an integer? If not, then one could resort to the following laborious process for
numerical computation of γ2. From the function y, extract coefficients qn for n 6 N ,
with N suitably large, in order to compute a suitably large number of coefficients
of the function (Bα � y)(z) appearing in (D.17). Similarly approximate the other
factor there, zy′(z)/y(z), by a high-order polynomial, and multiply to do the same
for M . Then a numerical approximation to γ2 can be obtained using (D.22):

γ(α)2 = 2(Bα �M)(1)− (B2α � y)(1) + σ−2µ(α)2. (E.52)

Problem E.13. Is there any sort of theory for comparisons of γ2(α) as real α < 0
varies [simultaneously for at least a large class of offspring distributions, in the spirit
of the observation that µ(α) is increasing in α for any offspring distribution], or, as in
Section 6, across offspring distributions (simultaneously for all α)? Both prospects
seem to us unlikely.

For varying α, the results of our examples are discouraging: While γ2(−1) >
γ2(−2) for binary trees and full binary trees, the reverse inequality holds for the other
two examples in [5, Appendix A]. For varying offspring distributions, the examples
provide a scintilla of hope: For both α = −1 and α = −2, the values of γ2 increase
from full binary to binary to labelled to ordered; but note that is not the same order
as for µ(α) in Section 6.

Even the behavior across offspring distributions of S(−1) given in the simple
expression (E.11) is not evident, because the integrand factor 2+log η is not constant
in sign.
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