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Abstract. We consider a well known model of random directed acyclic graphs of
order n, obtained by recursively adding vertices, where each new vertex has a fixed
outdegree d ě 2 and the endpoints of the d edges from it are chosen uniformly at
random among previously existing vertices.

Our main results concern the number Xpnq of vertices that are descendants of n.
We show that Xpnq{npd´1q{d converges in distribution; the limit distribution is, up to
a constant factor, given by the dth root of a Gamma distributed variable. Γpd{pd´1qq.
When d “ 2, the limit distribution can also be described as a chi distribution χp4q.
We also show convergence of moments, and find thus the asymptotics of the mean
and higher moments.

1. Introduction

A dag is a directed acyclic (multi)graph, and a d-dag is a dag where one or several
vertices are roots with outdegree 0, and all other vertices have outdegrees d. (Here, d
is a positive integer; we assume below d ě 2.)

We consider, as many before us, the random d-dag Dn on n vertices constructed
recursively by starting with a single root 1, and then adding vertices 2, 3, . . . , n one
by one, giving each new vertex, k say, d outgoing edges with endpoints uniformly and
independently chosen at random among the already existing vertices t1, . . . , k ´ 1u.
(We thus allow multiple edges, so Dn is a directed multigraph.) Two minor variations
that will be discussed in Section 10 are that we may start with any number m ě 1 of
roots, and that we may select the d parents of a new node without replacement, thus
not allowing multiple edges. (In the latter case, we have to start with ě d roots.)

Note that for d “ 1, the model becomes the well known random recursive tree;
the properties in this case are quite different from the case d ě 2, and we assume
throughout the paper d ě 2. In fact, to concentrate on the essential features, in the
bulk of the paper we consider the most important case d “ 2; the minor differences in
the case d ą 2 are briefly treated in Section 8.

The random d-dag has been studied as a model for a random circuit where each
gate has d inputs chosen at random [10; 19; 1; 18; 6; 16]. (In this case it seems more
natural to reverse all edges, and regard a d-dag as a graph with indegrees 0 or d. In
the present paper, we direct the edges towards the root(s) as above.) The model has
also been studied in connection with constraint satisfaction [13, Exercise 7.2.2.3–371].
Among results shown earlier for random d-dags, we mention results on vertex degrees
and leaves [9; 18; 15; 16; 14], and on lengths of paths and depth [10; 19; 1; 8; 6].

In the present paper, we study the following problem, as far as we know first con-
sidered by Knuth [13, Exercises 7.2.2.3–371 and 372]: How many descendants does
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vertex n have? In other words, how many vertices can be reached by a directed path
from vertex n? In the random circuit interpretation, this is the number of gates (and
inputs) that are used in the calculation of an output.

We state our main results in the next subsection, and prove them in Sections 2–8.
Along the way, we prove some results on the structure of the subgraph of descendants
which may be of independent interest. Some further results are given in Section 9. As
said above, we discuss two variations of the model in Section 10.

Remark 1.1. We emphasise that we in this paper exclusively consider random dags
constructed by uniform attachment. Another popular model that has been studied
by many authors (often as an undirected graph) is preferential attachment, see e.g. [3]
and [5]. A different model of non-uniform attachment is studied in [6]. 4

Problem 1.2. Find results for preferential attachment random dags corresponding to
the results above!
Do the same for the model in [6]!

1.1. Main result. We introduce some notation; for further (mainly standard) nota-
tion, see Section 1.2. We let d ě 2 be fixed and consider asymptotics as nÑ8.

Let Dn be the random d-dag defined above, let pDn be the subdigraph of Dn con-
sisting of all vertices and edges that can be reached by a directed path from vertex

n (including vertex n itself), and let Xpnq :“ | pDn|, the number of descendants of n.

We thus want to find the asymptotic behaviour of the random variable Xpnq and its

expectation EXpnq as nÑ8. Note that pDn also is a d-dag, and has 1 root; thus the

number of edges in pDn is dpXpnq´ 1q, and hence our results also yield the asymptotics
of the number of edges.

Our main result in the case d “ 2 is the following theorem, proved in two parts in
Sections 6 and 7.

Let χ4 denote a random variable with the χp4q distribution. Recall that this means
that χ4 has the distribution of |η| where η is a standard normal random vector in R4,
and that thus (or by (1.7) and a change of variables) χ4 has density function

fχ4pxq “
1

2
x3e´x

2{2, x ą 0. (1.1)

Theorem 1.3. Let d “ 2. Then, as nÑ8,

Xpnq{
?
n

d
ÝÑ

π

2
?

2
χ4 (1.2)

with convergence of all moments. Hence, for every fixed r ą 0,

E pXpnqqr „
´π

2

¯r
Γ
´r

2
` 2

¯

nr{2 (1.3)

and, in particular,

EXpnq „
3π3{2

8

?
n. (1.4)

More generally, for any fixed d ě 2, we prove in Section 8 the following:

Theorem 1.4. Let d ě 2. Then, as nÑ8,

Xpnq{npd´1q{d
d
ÝÑ

πpd´ 1q1{d

d sinpπ{dq
γ1{d, (1.5)
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with convergence of all moments, where γ P Γ
`

d
d´1

˘

. Hence, for every fixed r ą 0,

E
`

Xpnq
˘r
„

˜

pd´ 1q1{dπ

d sinpπ{dq

¸r
Γ
`

d
d´1 `

r
d

˘

Γ
`

d
d´1

˘ nrpd´1q{d (1.6)

We note that the convergence in (1.2) and (1.5) does not hold a.s.; see Remark 9.6.
We will see in Section 10 that the same results hold for the variations with m ě 1

roots (as long as m is fixed or does not grow too fast) and without multiple edges (i.e.,
drawing without replacement).

Example 1.5. Knuth [13, Answer 7.2.2.3–371(b)] considers the version with d “ 2,
m ě 2 roots, and drawing without replacement (i.e., no multiple edges); for this version

he provides recursion formulas that yield the exact value of EXpnq (there denoted

Cm,n). For example, for m “ 2 and n “ 100, his formulas yield EXpnq .“ 20.79 while
the asymptotic value (1.4) is

.
“ 20.88, with an error of less than 0.5%. 4

1.2. Notation. The random d-dag Dn, its subdigraph pDn, and the number Xpnq of
descendants of n are defined above. The outdegree d is fixed and not shown in the
notation. As said above we usually assume d “ 2; in particular this is the case in the
proof in Sections 2–7, while we consider general d ě 2 in Section 8.

We say that the vertices and edges of pDn are red. Thus Xpnq :“ | pDn| is the number
of red vertices in Dn. (For any digraph D, we let |D| denote its number of vertices.)

Essentially all random variables below depend on n. We may denote the dependency
on n by a supersript pnq for clarity (in particular in limit statements), but we often omit
this. We sometimes in the proofs tacitly assume that n is large enough. Unspecified
limits are as nÑ8.

We will in the proofs consider three different phases of the dag Dn, see Sections 3–

5. We will then use fixed integers n1 “ n
pnq
1 and n2 “ n

pnq
2 ; these can be chosen

rather arbitrarily with n1{nÑ 0 slowly and n2{
?
nÑ8 slowly, see the beginnings of

Sections 3 and 4.

We use
p
ÝÑ,

d
ÝÑ,

L1

ÝÑ, for convergence in probability, distribution and L1, respec-

tively, and
d
“ for equality in distribution.

As usual, a.s. (almost surely) means with probability 1, while w.h.p. (with high
probability) means with probability tending to 1 as nÑ8.

We recall some classical probability distributions. The Gamma distribution Γps, aq,
where s ą 0 and a ą 0, has density

Γpsq´1a´sxs´1e´x{a, x ą 0. (1.7)

We write Γpsq “ Γps, 1q. (There should be no risk of confusion with the Gamma
function.) In particular, Γp1q “ Expp1q, the standard exponential distribution. If
γ P Γps, aq, then (1.7) implies

E γr “ ar
Γps` rq

Γpsq
, r ě 0. (1.8)

The chi-square distribution χ2prq “ Γpr{2, 2q, and the chi-distribution χprq is the
distribution of

?
ξ where ξ P χ2prq. (This shows that when d “ 2, the limits in (1.2)

and (1.5) agree.)
We use ’increasing’ and ’positive’ in the weak sense.
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Remark 1.6. For simplicity, and to avoid unnecessary distraction, we often state
results with convergence in probability, also when the proof yields the stronger con-
vergence in L1. (For example, this applies to all three results in Section 4.) Actually,
in many (all?) cases, convergence in probability can be improved to convergence in Lp

for any p ă 8, as a consequence of the estimates in Section 7. 4

Remark 1.7. The construction of the random dag Dn naturally constructs Dn for all
n ě 1 together. In other words, it yields a coupling of Dn for all n ě 1. However, in
the proofs below we will not use this coupling; instead we regard Dn as constructed
separately for each n, which allows us to use a different coupling in the proof. 4

2. Basic analysis

For simplicity, we assume d “ 2 from now on until the proof of Theorem 1.3 is
completed at the end of Section 7. The modifications for general d are discussed in
Section 8.

2.1. A stochastic recursion. We consider in the sequel only the red subgraph pDn of
Dn, which we recall consists of the descendants of n and and all edges between them.

In the definition in Section 1 of the dag Dn, we start with vertex 1 and add vertices
in increasing order. In our analysis, we will instead start at vertex n and go backwards

to 1. The red dag pDn then may be generated by the following procedure.

(1) Start by declaring vertex n to be red, and all others black. Let k :“ n.
(2) If vertex k is red, then create two new edges from that vertex, with endpoints

that are randomly drawn from 1, . . . , k ´ 1, and declare these endpoints red.
If k is black, delete k (and do nothing else).

(3) If k “ 2 then STOP; otherwise let k :“ k ´ 1 and REPEAT from (2).

Let Yk be the number of edges in pDn that start in tk`1, . . . , nu and end in t1, . . . , ku.
In other words, Yk is the number of edges that cross the gap between k ` 1 and k.
Furthermore, let Zk be the number of these edges that end in k. We here consider
integers k with 0 ď k ď n´1, and have the boundary conditions Yn´1 “ 2 and Y0 “ 0;
also Z1 “ Y1 and Z0 “ 0.

Let also, for 1 ď k ď n´ 1,

Jk :“ 1tZk ě 1u, (2.1)

the indicator that at least one edge ends at k, which equals the indicator that k is red,
and thus can be reached from n.

We will study the random dag pDn by travelling from vertex n backwards to the
root; we thus consider the sequence Yn´1, . . . , Y1, Y0 in reverse order. In the procedure
above, there are Zk edges that end at k, and 2Jk edges that start there; hence, for
2 ď k ď n´ 1,

Yk´1 “ Yk ´ Zk ` 2Jk “ Yk ´ Zk ` 2 ¨ 1tZk ě 1u. (2.2)

In our analysis, we modify the procedure above by not revealing the endpoint of the
edges until needed. This means that when coming to a vertex k P t1, . . . , n ´ 1u, we
have a list of Yk edges where we know only the start but not the end (except that the
end should be in t1, . . . , ku). We then randomly select a subset by throwing a coin with
success probability 1{k for each of the Yk edges; these edges end at k and are removed
from the list, and thus Zk is the number of them. This determines also Jk by (2.1),
and if Jk “ 1, we add two new edges starting at k to our list. It is evident that this
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gives the same distribution of random edges as the original algorithm above. (It is here
important that the two edges from a given vertex are chosen with replacement, so that
we can treat the Yk edges passing over the gap between k ` 1 and k as independent.
Note that the endpoints of these edges are uniformly distributed on t1, . . . , ku.)

It follows from the modified procedure that Yn´1, . . . , Y1 is a Markov chain. More
precisely, let Fk be the σ-field generated by our coin tosses at vertices n´ 1, . . . , k` 1,
and note that these coin tosses determine Yk (and also Yn´1, . . . , Yk`1). Then, for
1 ď k ď n´ 1, conditioned on Fk, Zk has a binomial distribution

Zk P BinpYk, 1{kq. (2.3)

Thus (2.2) and (2.3) give a stochastic recursion of Markov type for Yk.
Note that Fk Ă Fk´1, so F1, . . . ,Fn´1 form a decreasing sequence of σ-fields, i.e.,

a revcerse filtration. We therefore may change sign of the indices and consider, for
example, Y´j and F´j for j P t´pn ´ 1q, . . . ,´1u so that we have a filtration of the
standard type.

The recursion (2.2)–(2.3) yields, for 2 ď k ď n´ 1,

E
`

Yk´1 | Fk
˘

“ Yk ´ E
`

Zk | Fk
˘

` 2P
`

Zk ě 1 | Fk
˘

“ Yk ´
1
kYk ` 2

`

1´ p1´ 1
k q
Yk
˘

. (2.4)

We obtain also, by Markov’s inequality,

E
`

Yk´1 | Fk
˘

ď Yk ´ E
`

Zk | Fk
˘

` 2E
`

Zk | Fk
˘

“ Yk `
1
kYk “

k`1
k Yk. (2.5)

2.2. A reverse supermartingale and some estimates. We define, for 0 ď k ď
n´ 1,

Wk :“ pk ` 1qYk, (2.6)

and find from (2.5)

E
`

Wk´1 | Fk
˘

“ kE
`

Yk´1 | Fk
˘

ď pk ` 1qYk “Wk. (2.7)

This shows that W´j , ´pn´ 1q ď j ď 0, is a supermartingale for the filtration pF´jq;
in other words, W0, . . . ,Wn´1 is a reverse supermartingale. We have the initial value

Wn´1 “ nYn´1 “ 2n. (2.8)

We thus have the Doob decomposition

Wk “Mk ´Ak, 0 ď k ď n´ 1, (2.9)

where

Mk :“ 2n`
n´1
ÿ

i“k`1

`

Wi´1 ´ E pWi´1 | Fiq
˘

(2.10)

is a reverse martingale: E
`

Mk´1 | Fk
˘

“Mk, and

Ak :“
n´1
ÿ

i“k`1

`

Wi ´ E pWi´1 | Fiq
˘

(2.11)

is positive and reverse increasing: (2.7) yields

0 “ An´1 ď . . . ď A1 ď A0. (2.12)

In particular, Wk ďMk and

EWk ď EMk “Mn´1 “ 2n, 0 ď k ď n´ 1. (2.13)
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We note also from (2.4) the exact formula

E
`

Wk´1 | Fk
˘

“ kE
`

Yk´1 | Fk
˘

“ pk ´ 1qYk ` 2k
`

1´ p1´ 1
k q
Yk
˘

(2.14)

and thus

Ak´1 ´Ak “Wk ´ E
`

Wk´1 | Fk
˘

“ 2Yk ´ 2k
`

1´ p1´ 1
k q
Yk
˘

“ 2k
“

p1´ 1
k q
Yk ´ 1` Yk

k

‰

. (2.15)

Furthermore, (2.2) and (2.3) also yield (rather crudely, but we do not need the exact
formula, nor optimal constants), for 1 ď k ď n´ 1,

Var
`

Yk´1 | Fk
˘

“ Var
`

Zk ´ 2 ¨ 1tZk ě 1u | Fk
˘

ď 2 Var
`

Zk | Fk
˘

` 2 Var
`

2 ¨ 1tZk ě 1u | Fk
˘

“ 2Yk
1
k

`

1´ 1
k

˘

` 8PpZk ě 1 | Fkq
`

1´ PpZk ě 1 | Fkq
˘

ď 2Yk
1
k ` 8PpZk ě 1 | Fkq ď 2Yk

1
k ` 8E pZk | Fkq

ď 10
k Yk (2.16)

and thus

Var
`

Wk´1 | Fk
˘

“ k2 Var
`

Yk´1 | Fk
˘

ď 10kYk ď 10Wk. (2.17)

Hence, (2.10) yields, using the (reverse) martingale property, (2.17), and (2.13), for
0 ď k ď n´ 1,

VarMk “ E
`

Mk ´ 2n
˘2
“

n´1
ÿ

i“k`1

E Var
`

Wi´1 | Fi
˘

ď 10
n´1
ÿ

i“k`1

EWi

ď 10pn´ 1´ kq ¨ 2n ď 20n2. (2.18)

Consequently, since Wk ďMk by (2.9),

EW 2
k ď EM2

k “ VarMk ` pEMkq
2 ď 20n2 ` p2nq2 “ 24n2. (2.19)

We extend this to a maximal inequality.

Lemma 2.1. We have

E max
n´1ěkě0

W 2
k ď E max

n´1ěkě0
M2
k ď 96n2. (2.20)

Proof. By Doob’s inequality [11, Theorem 10.9.4] for the reverse martingale Mk and
(2.19),

E max
n1ěkě0

M2
k ď 4EM2

0 ď 96n2. (2.21)

The result follows, recalling again Wk ďMk. �

We show some further estimates used later.

Lemma 2.2. For 1 ď k ď n´ 1,

PpZk ě 1q ď
2n

k2
, (2.22)

PpZk ě 2q ď
24n2

k4
. (2.23)
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Proof. By Markov’s inequality, (2.3), and (2.6), we have

P
`

Zk ě 1 | Fk
˘

ď E
`

Zk | Fk
˘

“
Yk
k
ď
Wk

k2
(2.24)

and

P
`

Zk ě 2 | Fk
˘

ď E
ˆˆ

Zk
2

˙

ˇ

ˇ

ˇ
Fk

˙

“

ˆ

Yk
2

˙

1

k2
ď
Y 2
k

k2
ď
W 2
k

k4
. (2.25)

The results (2.22)–(2.23) follow by taking expectations, using (2.13) and (2.19). �

Lemma 2.3. For 1 ď k ď n´ 1,

Ak´1 ´Ak ď
W 2
k

k3
, (2.26)

EAk ď 12
n2

k2
. (2.27)

Proof. By (2.15) and Taylor’s formula (or the Bonferroni inequalities),

Ak´1 ´Ak “ 2k
´

`

1´
1

k

˘Yk
´ 1`

Yk
k

¯

ď 2k

ˆ

Yk
2

˙

1

k2
ď
Y 2
k

k
ď
W 2
k

k3
, (2.28)

which is (2.26). As a consequence,

Ak ď
n´1
ÿ

i“k`1

W 2
i

i3
(2.29)

and thus, by (2.19),

EAk ď
n´1
ÿ

i“k`1

EW 2
i

i3
ď 24n2

8
ÿ

i“k`1

1

i3
ď 12

n2

k2
. (2.30)

�

3. Phase I: a Yule process

In this section we consider the first part of the evolution of the red dag pDn, and con-

sider the variables Yn´1, ..., Yn1 , where (for definiteness) we let n1 :“ n
pnq
1 :“ tn{ log nu.

(We might choose n1 “ n
pnq
1 as any (deterministic) sequence of integers such that

n1{n Ñ 0 slowly; in particular, any such sequence with n1 ě n{ log n will also do.
We leave it to the reader to see precisely how small n1 can be.) We will show that
the variables Yn´1, ..., Yn1 can be approximated (as nÑ8) by a time-changed Yule
process.

Recall that the Yule process is a continuous-time branching process, where each
particle lives a lifetime that has an exponential Expp1q distribution, and then the
particle splits into two new particles. (All lifetimes are independent.) Let Yt be the
number of particles at time t. The standard version, which we denote by Y 1t, starts
with one particle at time 0, but we start with Y0 “ 2; thus the process Yt can be seen
as the sum of two independent copies of the standard Yule process Y 1t.

It is well known, see e.g. [2, Section III.5], that for the standard Yule process, the
number of particles at time t has the geometric distribution Gepe´tq with mean et and

Pp|Y 1t| “ kq “ e´t
`

1´ e´t
˘k´1

, k ě 1. (3.1)
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Moreover, Y 1t{et
a.s.
ÝÑ ξ̂ as tÑ8, where (e.g. as a consequence of (3.1)) ξ̂ P Expp1q.

Hence, Yt has a shifted negative binomial distribution NegBinp2, e´tq ` 2 with

Pp|Yt| “ kq “ pk ´ 1qe´2t
`

1´ e´t
˘k´2

, k ě 2. (3.2)

In particular, for all t ě 0 we have

EYt “ 2EY 1t “ 2et, (3.3)

and, as tÑ8,

e´tYt
a.s.
ÝÑ ξ :“ ξ̂1 ` ξ̂2 P Γp2q, (3.4)

with ξ̂1, ξ̂2 P Expp1q independent, so that their sum has a Gamma distribution.
We may also regard the Yule process Y as an infinite tree (the Yule tree), with one

vertex γ0 :“ 0 (the root), and one vertex γi at each time a particle splits (a.s. these
times are distinct, and we may number them in increasing order); each particle is then
represented by an edge from its time of birth to its time of death. Note that Yt, the
number of living particles, equals the number of edges alive at time t, and that the
number of particles that have died before (or at) t is Yt ´ 2.

We now change time by the mapping t ÞÑ e´t; thus the vertices in the Yule tree are
mapped to the points e´γi P p0, 1s. The root is now at 1, and edges go from a larger
label to a smaller. If a particle is born at one of these times x “ e´γi , and its lifetime
in the original Yule process is τ P Expp1q, then it lives there from γi to γi`τ , and after

the time change it is represented by an edge from x “ e´γi to e´pγi`τq “ xe´τ “ xU ,
where U :“ e´τ P Up0, 1q has a uniform distribution. Going backwards in time, we
thus begin with two particles (edges) starting at 1. Each edge starting at a point x
has endpoints xU 1x and xU2x , where U 1x, U

2
x P Up0, 1q, and all these uniform random

variables are independent. As before, we start two new edges at each endpoint. We let
pY denote this (infinite) random tree with vertices in p0, 1s, and let pYx be the number
of particles (edges) alive at time x.

We may now compare the time-changed Yule tree to the red dag pDn constructed
above, scaled to r0, 1s. An edge from a vertex k ends at a vertex uniformly distributed
on t1, . . . , k ´ 1u, which we may construct as tpk ´ 1qU u ` 1, where U P Up0, 1q. We
thus start with one point at n, and add again two edges from it and from the endpoint
of every edge (except at 1), where now an edge started at j ` 1 goes to tjU u` 1 with
U P Up0, 1q. However, if two or more edges have the same endpoint, we still only start
two new edges there.

A point in pDn that is m generations away from the root, thus has label

X “ t¨ ¨ ¨ tpn´ 1qUν1u ¨ ¨ ¨Uνmu` 1, (3.5)

for the some Uν1 , . . . , Uνm P r0, 1s (from the construction of the edges), and then

nUν1 ¨ ¨ ¨Uνm ` 1 ě X ě nUν1 ¨ ¨ ¨Uνm ´m. (3.6)

Let pD1n denote the random red dag pDn with all labels divided by n; thus the vertices

are now points in p0, 1s. We then see that pD1n coincides with the time-changed Yule
tree up to small errors. More precisely, we couple the two by first constructing the

Yule tree Y, and its time-changed version pY, and then making a perturbation of pY
by replacing each label Uν1 ¨ ¨ ¨Uνm by X{n with X as in (3.5). This gives a dag that

coincides (in distribution) with pD1n until the first time that two edges in pD1n have the
same endpoint.
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Theorem 3.1. We may w.h.p. couple the random dag pD1n and the time-changed Yule

tree pY, such that considering only vertices with labels in rn1{n, 1s, and edges with the
starting point in this set, there is a bijection between these sets of vertices in the two
models which displaces each label by at most log2 n{n, and a corresponding bijection
between the edges (preserving the incidence relations).

Proof. We have pYx “ Y´ log x for every x P p0, 1s, and thus by (3.3)

E pYx “ EY´ log x “ 2e´ log x “ 2{x. (3.7)

The number of vertices with labels in rx, 1s is pYx ´ 1, and taking x “ n1{n „ 1{ log n,
we thus have Opplog nq vertices; in particular w.h.p. less than log2 n vertices. Conse-
quently, w.h.p., the number of generations from the root to any point in rn1{n, 1s is at
most log2 n, and then the bound (3.6) shows that all vertex displacements are at most
plog nq2{n.

Furthermore, it follows from (3.7) that the expected number of vertices in pY that
are within plog nq2{n from n1{n is

E
`

pYn1{n´plognq2{n ´
pYn1{n`plognq2{n

˘

“
2

n1{n´ plog nq2{n
´

2

n1{n` plog nq2{n

„
4plog nq2{n

pn1{nq2
“ O

ˆ

log4 n

n

˙

“ op1q, (3.8)

and thus w.h.p. no vertex is pushed across the boundary n1{n by the displacements in
the coupling.

Finally, it follows from Lemma 2.2 that the probability that two edges in the dag
pDn have the same endpoint k for some k ě n1 is at most

n´1
ÿ

k“n1

PpZk ě 2q ď 24n2
8
ÿ

k“n1

k´4 “ O
`

n2{n31
˘

“ op1q. (3.9)

Consequently, w.h.p. the coupling above between pY and pDn yields a bijection for
vertices in rn1{n, ns and their edges. �

We define a random variable that will play an important role later: let

Ξ “ Ξpnq :“
Wn1

n
. (3.10)

Lemma 3.2. As nÑ8,

Ξpnq “
W
pnq
n1

n
d
ÝÑ ξ P Γp2q. (3.11)

Proof. We use the coupling in Theorem 3.1 for each n, recalling Remark 1.7. Then,
w.h.p.,

pYn1{n`plognq2{n ď Y pnqn1
ď pYn1{n´plognq2{n (3.12)

and thus ∣∣Y pnqn1
´ pYn1{n

∣∣ ď pYn1{n´plognq2{n ´
pYn1{n`plognq2{n. (3.13)

In particular, (3.8) implies ∣∣Y pnqn1
´ pYn1{n

∣∣ p
ÝÑ 0. (3.14)
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Moreover, (3.4) implies

x pYx “ xY´ log x
a.s.
ÝÑ ξ as xÑ 0, (3.15)

with ξ P Γp2q. Consequently, by (3.14) and (3.15),
n1
n
Y pnqn1

“
n1
n

`

Y pnqn1
´ pYn1{n

˘

`
n1
n

pYn1{n
p
ÝÑ ξ. (3.16)

Hence, recalling (2.6),

W
pnq
n1

n
“
n1 ` 1

n1
¨
n1
n
Y pnqn1

p
ÝÑ ξ. (3.17)

The convergence in probability in (3.16)–(3.17) depends on the coupling used above,
but it follows that convergence in distribution holds also without it, which completes
the proof. �

4. Phase II: a boring flat part

Let n2 “ n
pnq
2 be any sequence of integers with

?
n ! n2 ď n1. We will show that

in the range n1 ě k ě n2, the variable Wk essentially does not change, so it is equal
to a random constant. We begin with two lemmas valid for larger ranges.

Lemma 4.1. As nÑ8,

max
n´1ěkěn2

∣∣∣∣Akn
∣∣∣∣ “ An2

n

p
ÝÑ 0. (4.1)

Proof. By Lemma 2.3,

E
An2

n
ď 12

n

n22
“ op1q, (4.2)

which shows (4.1), recalling (2.12). �

Lemma 4.2. As nÑ8,

max
n1ěkě0

∣∣∣∣Mk

n
´ Ξpnq

∣∣∣∣ p
ÝÑ 0. (4.3)

Proof. By Doob’s inequality for the reverse martingale Mk and using (2.10), (2.17)
and (2.13) as in (2.18) (cf. the proof of Lemma 2.1),

E max
n1ěkě0

|Mk ´Mn1 |
2 ď 4E |M0 ´Mn1 |

2 “ 4
n1
ÿ

i“1

E Var
`

Wi´1 | Fi
˘

ď 40
n1
ÿ

i“1

EWi ď 80nn1 “ opn2q. (4.4)

We have, using (3.10) and Wn1 “Mn1 ´An1 ,

max
n1ěkě0

∣∣∣∣Mk

n
´ Ξ

∣∣∣∣ ď max
n1ěkě0

∣∣∣∣Mk

n
´
Mn1

n

∣∣∣∣` ∣∣∣∣An1

n

∣∣∣∣ p
ÝÑ 0, (4.5)

where the convergence follows by (4.4) and Lemma 4.1. �

Theorem 4.3. As nÑ8,

max
n1ěkěn2

∣∣∣∣Wk

n
´ Ξpnq

∣∣∣∣ p
ÝÑ 0. (4.6)
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Proof. We have, for any k, ∣∣∣∣Wk

n
´ Ξ

∣∣∣∣ ď ∣∣∣∣Mk

n
´ Ξ

∣∣∣∣` ∣∣∣∣Akn
∣∣∣∣ (4.7)

and thus the result follows from Lemmas 4.1 and 4.2. �

5. Phase III: deterministic decay from a random level

We extend the processes Wk, Mk and Ak to real arguments t P r0, n ´ 1s by linear
interpolation. Since the extended version At is piecewise linear, it is differentiable
everywhere except at integer points, where we (arbitrarily) take the left derivative.

Lemma 5.1. Let δ ą 0. Then

E

«

sup
δ
?
nďtďn´1

∣∣∣∣ d

dt
At

∣∣∣∣
ff

ď
96

δ3
n1{2. (5.1)

Proof. Let k :“ rts, so k ´ 1 ă t ď k. Then, by (2.26),

0 ď ´
d

dt
At “ Ak´1 ´Ak ď

W 2
k

k3
ď
W 2
k

t3
. (5.2)

The result (5.1) follows by Lemma 2.1. �

We rescale and define

pA
pnq
t :“ n´1A

pnq

t
?
n
, t ě 0. (5.3)

Recall also that Cra, bs is the (Banach) space of continuous functions on ra, bs.

Lemma 5.2. Let 0 ă δ ă b ă 8. Then the stochastic processes pA
pnq
t , n ě 1, are tight

in Crδ, bs.

Proof. We have, temporarily writing Aptq :“ A
pnq
t ,

d

dt
pA
pnq
t “ n´1{2A1pt

?
nq. (5.4)

Hence, Lemma 5.1 yields

E
„

sup
δďtďb

∣∣∣∣ d

dt
pA
pnq
t

∣∣∣∣ “ E

«

n´1{2 sup
δ
?
nďtďb

?
n

∣∣∣∣ d

dt
At

∣∣∣∣
ff

ď
96

δ3
, (5.5)

and thus the supremum in the left-hand side forms a tight family of random variables
as n varies.

Moreover, for a fixed t P rδ, bs we have by Lemma 2.3

E pA
pnq
t “ n´1 EApnq

t
?
n
ď n´1 ¨ 12

n2

tt
?
nu2

“ 12p1` op1qqt´2 “ Op1q, (5.6)

and thus also the family pA
pnq
t is tight. The result follows, see [4, Theorem 8.2]. �

Theorem 5.3. We have

sup
0ďtďb

∣∣∣n´1W pnq

t
?
n
´ t2 log

`

1` Ξpnq{t2
˘

∣∣∣ p
ÝÑ 0, (5.7)

for every fixed b ą 0.
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Remark 5.4. We may note that (5.7) means convergence, in probability, in the space
Cr0,8q with its standard topology (uniform convergence on compact sets). Equiva-

lently, we may consider the step functions n´1W
pnq

tt
?
nu

and convergence in Dr0,8q. 4

Proof. We divide the proof into several steps.

Step 1: A subsequence. By Lemma 5.2 and Prohorov’s theorem [4, Theorem 6.1], for
every compact interval rδ, bs Ă p0,8q we can find a subsequence pnνq such that, along
the subsequence,

pA
pnq
t

d
ÝÑ Aδ,bptq in Crδ, bs (5.8)

for some continuous random function Aδ,bptq on rδ, bs. Furthermore, it suffices to
consider a countable set of such intervals, for example I :“ trm´1,ms, m ě 2u, and by
considering convergence in the product space

ś

rδ,bsPI Crδ, bs we can find a subsequence

such that (5.8) holds jointly for all compact intervals rδ, bs P I; by adding a factor R2,
we may also assume that this holds jointly with (3.11) and (4.3). We consider until
the last step of the proof only this subsequence.

Step 2: A coupling. By the Skorohod coupling theorem [12, Theorem 4.30], we may
couple Dn for different n such that the convergence in (5.8) holds a.s. for every rδ, bs P
I, and also (3.11) and (4.3) hold a.s. Since convergence in Crδ, bs means uniform

convergence, this means that a.s. pA
pnq
t Ñ Aδ,bptq uniformly on rδ, bs for each rδ, bs P I.

It is evident that a.s. the different limits Aδ,bptq have to agree whenever intervals
overlap, and thus there exists a continuous random function Aptq defined on p0,8q
such that a.s.

pA
pnq
t Ñ Aptq (5.9)

uniformly on each compact interval rδ, bs Ă p0,8q. (In other words, pA
pnq
t

a.s.
ÝÑ Aptq in

the space Cp0,8q.) Clearly, Aptq ě 0. Furthermore, we now a.s. have

Ξpnq Ñ ξ P Γp2q, (5.10)

sup
0ďtďn1

∣∣n´1M pnq
t ´ Ξpnq

∣∣Ñ 0. (5.11)

It follows from (5.9)–(5.11) that a.s.,

n´1W
pnq

t
?
n
“ n´1M

pnq

t
?
n
´ n´1A

pnq

t
?
n
“ n´1M

pnq

t
?
n
´ pA

pnq
t Ñ ξ ´Aptq, (5.12)

uniformly on each compact interval in p0,8q.

Step 3: Identifying the limit. Since the limit in (5.12) is continuous, (5.12) and (2.6)
yield, again a.s. uniformly on each compact interval in p0,8q,

Y
pnq

rt
?
ns

rt
?
ns
“

W
pnq

rt
?
ns

pt2 ` op1qqn
Ñ Bptq :“ t´2

`

ξ ´Aptq
˘

. (5.13)

By (5.4) and (2.15), with k :“ rt
?
ns,

d

dt
pA
pnq
t “ n´1{2

`

Ak ´Ak´1
˘

“ ´n´1{2 ¨ 2k
´´

1´
1

k

¯Yk
´ 1`

Yk
k

¯

, (5.14)

and thus (5.13) implies that a.s., uniformly on each compact interval in p0,8q,

d

dt
pA
pnq
t Ñ ´2t

`

e´Bptq ´ 1` Bptq
˘

. (5.15)
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It follows from (5.9) and (5.15) that a.s., if 0 ă t1 ă t2 ă 8,

Apt2q ´Apt1q “ lim
nÑ8

`

pA
pnq
t2
´ pA

pnq
t1

˘

“

ż t2

t1

´

´2t
`

e´Bptq ´ 1` Bptq
˘

¯

dt. (5.16)

Consequently, a.s. the random function Aptq is continuously differentiable on p0,8q,
with derivative

A1ptq “ ´2t
`

e´Bptq ´ 1` Bptq
˘

, 0 ă t ă 8. (5.17)

This and the definition of Bptq in (5.13) yield a differential equation for Aptq, which
we solve as follows. First, let

Cptq :“ t2Bptq “ ξ ´Aptq. (5.18)

Then

2tBptq ` t2B1ptq “ C1ptq “ ´A1ptq “ 2t
`

e´Bptq ´ 1` Bptq
˘

(5.19)

and thus

B1ptq “ 2

t

`

e´Bptq ´ 1
˘

(5.20)

which can be written as

eBptq dBptq
eBptq ´ 1

“ ´
2 dt

t
(5.21)

with the solution, for some c P R,

log
`

eBptq ´ 1
˘

“ c´ 2 log t (5.22)

and thus, with C :“ ec ą 0,

Bptq “ log
`

1` C{t2
˘

, t ą 0. (5.23)

Note that the constants c and C may be random.
We have shown that (5.23) holds a.s., for some random C, and (5.13) then yields

Aptq “ ξ ´ t2Bptq “ ξ ´ t2 log
`

1` C{t2
˘

, t ą 0. (5.24)

It follows that a.s.

Aptq Ñ ξ ´ C as tÑ8. (5.25)

On the other hand, for every fixed t ą 0, as in (5.6),

E pA
pnq
t ď 12

n

tt
?
nu2

Ñ
12

t2
, (5.26)

which by (5.9) and Fatou’s lemma implies

EAptq ď 12

t2
, t ą 0. (5.27)

In particular, Aptq p
ÝÑ 0 as tÑ8, which together with (5.25) yields C “ ξ.

We thus have shown that (5.9), (5.12) and (5.13) a.s. hold uniformly on each compact
interval in p0,8q, with

Aptq “ ξ ´ t2 log
`

1` ξ{t2
˘

. (5.28)

Step 4: Convergence on r0,8q. We extend the results just shown from p0,8q to r0,8q
as follows. First, note that Aptq in (5.28) extends to a continuous function on r0,8q,
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with Ap0q “ ξ. We have A
pnq
0 ď M

pnq
0 by (2.9), and n´1M

pnq
0 Ñ ξ a.s. by (5.10) and

(5.11). Hence, a.s.,

lim sup
nÑ8

n´1A
pnq
0 ď lim sup

nÑ8
n´1M

pnq
0 “ ξ “ Ap0q. (5.29)

On the other hand, for every t ą 0, A
pnq

t
?
n
ď A

pnq
0 and thus by (5.9), a.s.

lim inf
nÑ8

n´1A
pnq
0 ě lim inf

nÑ8
n´1A

pnq

t
?
n
“ Aptq. (5.30)

Letting tŒ 0 yields Aptq Õ Ap0q and thus

lim inf
nÑ8

n´1A
pnq
0 ě Ap0q. (5.31)

Consequently, a.s., pA
pnq
t Ñ Aptq for t “ 0 too. We thus have (5.9) a.s. for each fixed

t ě 0. Since pA
pnq
t and Aptq are decreasing in t, and Aptq is continuous, this implies

uniform convergence on each compact interval r0, bs Ă r0,8q. It follows from (5.10)–
(5.11) that (5.12) also holds a.s. on each compact interval in r0,8q, i.e., in Cr0,8q.
This means, by (5.28), a.s. uniformly on each compact interval,

n´1W
pnq

t
?
n
Ñ t2 log

`

1` ξ{t2
˘

. (5.32)

By (5.10) and the fact that d
dx logp1` xq ď 1, (5.32) yields also

n´1W
pnq

t
?
n
´ t2 log

`

1` Ξpnq{t2
˘

Ñ 0, (5.33)

a.s. uniformly on each compact interval in r0,8q.

Step 5: Uncoupling. The a.s. convergence in (5.33) depends on the chosen coupling of
Dn for different n, but this yields (5.33) with convergence in probability in general,
i.e., (5.7).

Step 6: Conclusion. We have so far proved (5.7) only for a subsequence, but the same
proof shows that every subsequence has a subsubsequence such that (5.7) holds, which
as is well known implies that (5.7) holds for the full sequence, see e.g. [11, Section
5.7]. �

6. The number of descendants

Recall that the random variable X “ Xpnq is the number of descendants of n, i.e.
red vertices, and thus, counting the root n separately,

X “ 1`
n´1
ÿ

k“1

Jk. (6.1)

We make a Doob decomposition similar to (2.9); in this case it takes the form, since
Jk is Fk´1-measurable,

X “ 1` L0 `B0, (6.2)

where

Lk :“
n´1
ÿ

i“k`1

`

Ji ´ E pJi | Fiq
˘

(6.3)
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so that pLkq
n´1
0 is a reverse martingale with Ln´1 “ 0: E pLk´1 | Fkq “ Lk, and, using

(2.1) and (2.3),

Bk :“
n´1
ÿ

i“k`1

E pJi | Fiq “
n´1
ÿ

i“k`1

PpZi ě 1 | Fiq “
n´1
ÿ

i“k`1

`

1´ p1´ 1
i q
Yi
˘

(6.4)

is positive and increasing backwards:

0 “ Bn´1 ď . . . ď B1 ď B0. (6.5)

By (6.4) and Lemma 2.2, for every k ď n´ 1,

EBk “
n´1
ÿ

i“k`1

E Ji “
n´1
ÿ

i“k`1

P
`

Zi ě 1
˘

ď

8
ÿ

i“k`1

2n

i2
ď

2n

k
. (6.6)

This is too coarse for small k; however, since 0 ď Ji ď 1 for every i, we also have
B0 ´B` ď ` for every ` ď n´ 1. Hence, (6.6) implies

EB0 ď EBr
?
ns ` r

?
ns ď 4

?
n. (6.7)

Since pJi | Fiq is a Bernoulli variable, Var
`

Ji | Fi
˘

ď E
`

Ji | Fi
˘

, and thus the
(reverse) martingale property of pLkq yields

EL2
0 “

n´1
ÿ

i“1

E
“

Var
`

Ji | Fi
˘‰

ď

n´1
ÿ

i“1

E
“

E
`

Ji | Fi
˘‰

“

n´1
ÿ

i“1

E Ji “ EB0 ď 4
?
n. (6.8)

In particular, L0{
?
n

p
ÝÑ 0, which will show that L0 is negligible in (6.2).

Lemma 6.1. As nÑ8, ∣∣∣∣Xpnq?
n
´
π

2

a

Ξpnq
∣∣∣∣ p
ÝÑ 0. (6.9)

Thus,

Xpnq
?
n

d
ÝÑ

π

2

a

ξ, (6.10)

with ξ P Γp2q.

Proof. For convenience, we use the Skorohod coupling theorem as in the proof of
Theorem 5.3; we may thus assume that all a.s. convergence results in the proof of
Theorem 5.3 hold. (We may for simplicity consider the same subsequence as in the
proof of Theorem 5.3, and then draw the conclusion for the full sequence as there;
alternatively, we may argue that now when Theorem 5.3 is proved, we may consider
the full sequence when we apply the Skorohod coupling theorem.) In particular, (5.13)
and (5.28) (or (5.32)) yield

Y
pnq

rt
?
ns

rt
?
ns
“

W
pnq

rt
?
ns

pt2 ` op1qqn
Ñ Bptq “ log

`

1` ξ{t2
˘

(6.11)

a.s. uniformly on each compact interval in p0,8q.
We extend Bk to real arguments by linear interpolation and define also, similarly to

(5.3) but with a different scaling,

pB
pnq
t :“ n´1{2B

pnq

t
?
n
. (6.12)
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Then, with k :“ rt
?
ns,

d

dt
pB
pnq
t “ ´E

`

Jk | Fk
˘

“

´

1´
1

k

¯Yk
´ 1 (6.13)

and thus it follows from (6.11) that, uniformly on each compact interval in p0,8q,

d

dt
pB
pnq
t Ñ e´Bptq ´ 1 “

1

1` ξ{t2
´ 1 “ ´

ξ

ξ ` t2
. (6.14)

Consequently, if 0 ă t1 ă t2 ă 8, a.s.

pB
pnq
t1
´ pB

pnq
t2
“ ´

ż t2

t1

d

dt
pB
pnq
t dtÑ

ż t2

t1

ξ

ξ ` t2
dt “

a

ξ
´

arctan
t2
?
ξ
´ arctan

t1
?
ξ

¯

.

(6.15)

Since (6.13) implies
∣∣ d
dt
pB
pnq
t

∣∣ ď 1, we have∣∣ pBpnq0 ´ pB
pnq
t1

∣∣ ď t1. (6.16)

Furthermore, (6.6) implies, for t2 ě 1,

E pB
pnq
t2
“ n´1{2 EBt2?n ď

2
?
n

tt2
?
nu
ď

4

t2
. (6.17)

Thus, letting t1 Ñ 0 and t2 Ñ8, we have pB
pnq
0 ´ p pB

pnq
t1
´ pB

pnq
t2
q

p
ÝÑ 0, uniformly in n,

and it follows from (6.15) by standard arguments that

pB
pnq
0

p
ÝÑ

ż 8

0

ξ

ξ ` t2
dt “

π

2

a

ξ. (6.18)

Recall from (6.12) that B0 “
?
n pB

pnq
0 . The results (6.9)–(6.10) now follow from (6.18)

by (6.2), (6.8), and (5.10). �

Proof of Theorem 1.3, first part. The limit in distribution (1.2) follows immediately
from (6.10), using the well known facts that χ2

4 P χ2p4q and thus 1
2χ

2
4 P Γp2q, see

Section 1.2, and consequently
a

ξ
d
“ 2´1{2χ4. (6.19)

�

7. Higher moments

In this section we prove some inequalities for higher moments. We do not care about
exact constants, and we use the convention that cp stands for constants that may (and
will) depend on the parameter p, but not on n; the value of cp may change from one
occurrence to another.

We consider first the reverse martingale Mk. We define the maximal function

M˚ :“ max
n´1ěkě0

Mk, (7.1)

the martingale differences, for n´ 1 ě k ě 1, recalling (2.10), (2.6) and (2.2),

∆Mk :“Mk´1 ´Mk “Wk´1 ´ E
`

Wk´1 | Fk
˘

“ k
`

Yk´1 ´ E
`

Yk´1 | Fk
˘˘

“ ´k
`

Zk ´ E
`

Zk | Fk
˘˘

` 2k
`

Jk ´ E
`

Jk | Fk
˘˘

, (7.2)
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and the conditional square function

spMq :“

˜

n´1
ÿ

i“1

E
`

p∆Miq
2 | Fi

˘

¸1{2

. (7.3)

We use one of Burkholder’s martingale inequalities [7, Theorem 21.1], [11, Corollary
10.9.1] on the martingale Mk ´Mn´1 “Mk ´ 2n, which yields

E pM˚qp ď cpp2nq
p ` cp E

`

max
k
|Mk ´ 2n|

˘p

ď cpn
p ` cp E spMqp ` cp E

`

max
k
|∆Mk|

˘p

ď cpn
p ` cp E spMqp ` cp

n´1
ÿ

k“1

E |∆Mk|
p. (7.4)

(This is valid for any p ą 0, although we only use p ě 2.)

Lemma 7.1. For every p ą 0,

E pM˚qp ď cpn
p. (7.5)

Proof. By Lyapunov’s inequality, it suffices to prove (7.5) for p “ 2j , j ě 1 integer.
We use induction on j. The base case p “ 2 is proved in Lemma 2.1. In the rest of the
proof, we thus assume p ě 4 and that (7.5) holds for the exponent p{2 (or smaller).
We use (7.4), and it remains to estimate the two last terms on its right-hand side.

First, by (7.2) and (2.17),

E
`

p∆Miq
2 | Fi

˘

“ Var
`

Wk´1 | Fk
˘

ď 10Wk ď 10Mk ď 10M˚. (7.6)

Hence, (7.3) yields

spMq ď
?

10nM˚ (7.7)

and the induction hypothesis yields

E spMqp ď cpn
p{2 E

`

M˚
˘p{2

ď cpn
p. (7.8)

Next, we recall the well known moment estimate for the binomial distribution

E |ζ ´ E ζ|p ď cppNqq
p{2 ` cpNq, ζ P BinpN, qq. (7.9)

(Coincidentally, this can be shown by the Burkholder inequality used in (7.4), writing
the binomial variable ζ ´ E ζ as a sum of N independent centred Bernoulli variables.)
Hence, recalling the conditional distribution (2.3), we have

E
`
∣∣Zk ´ E pZk | Fkq

∣∣p | Fk˘ ď cppYk{kq
p{2 ` cppYk{kq ď cppWk{k

2qp{2 ` cppWk{k
2q

ď cppM
˚{k2qp{2 ` cpM

˚{k2 (7.10)

and thus

E
∣∣Zk ´ E pZk | Fkq

∣∣p ď cpk
´p E pM˚qp{2 ` cpk

´2 EM˚. (7.11)

Consequently, by the induction hypothesis,

kp E
∣∣Zk ´ E pZk | Fkq

∣∣p ď cpn
p{2 ` cpk

p´2n ď cpn
p´1. (7.12)

Similarly, since Jk has a conditional Bernoulli distribution, and using (2.24),

E
`∣∣Jk ´ E pJk | Fkq

∣∣p | Fk˘ ď cp E
`

|Jk|p | Fk
˘

“ cp E
`

Jk | Fk
˘

ď cpWk{k
2 ď cpMk{k

2 ď cpM
˚{k2 (7.13)
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and thus, using again (2.20),

kp E
∣∣Jk ´ E pJk | Fkq

∣∣p ď cpk
p´2 EM˚ ď cpk

p´2n ď cpn
p´1. (7.14)

Hence, (7.2), (7.12) and (7.14) yield

E |∆Mk|
p ď cpk

p E
∣∣Zk ´ E pZk | Fkq

∣∣p ` cpkp E ∣∣Jk ´ E pJk | Fkq
∣∣p ď cpn

p´1. (7.15)

The induction step is shown by (7.4), (7.8) and (7.15), which completes the proof. �

We proceed to our main objective, the number X of vertices in pDn.

Lemma 7.2. For every p ą 0,

E pXpnqqp ď cpn
p{2. (7.16)

Proof. We use the decomposition (6.2) and argue similary as in the proof of Lemma 7.1.
First, by (6.4), cf. (6.6)–(6.7),

Bk ď
n´1
ÿ

i“k`1

Yi
i
ď

n´1
ÿ

i“k`1

Wi

i2
ďM˚

8
ÿ

i“k`1

1

i2
ď
M˚

k
(7.17)

and thus

B0 ď Br
?
ns ` r

?
ns ď n´1{2M˚ ` 2n1{2. (7.18)

Hence, by Lemma 7.1, for every p ą 0,

EBp
0 ď cpn

´p{2 E pM˚qp ` cpn
p{2 ď cpn

p{2. (7.19)

Next, the conditional square function of the reverse martingale Lk is given by, see
(6.3) and (6.4) and recall again that pJi | Fiq is a Bernoulli variable,

spLq2 “
n´1
ÿ

i“1

Var
`

Ji | Fi
˘

ď

n´1
ÿ

i“1

E
`

Ji | Fi
˘

“ B0. (7.20)

Consequently, using (7.19), for every p ą 0,

E spLqp ď EBp{2
0 ď cpn

p{4. (7.21)

Furthermore,

∆Lk :“ Lk´1 ´ Lk “ Jk ´ E
`

Jk | Fk
˘

(7.22)

and thus |∆Lk| ď 1. Consequently, the conditional Burkholder inequality in (7.4)
yields

E |L0|
p ď cp E spLqp ` cp E

`

max
k
|∆Lk|

˘p
ď cpn

p{4. (7.23)

The result (7.16) now follows from (6.2), (7.19) and (7.23). �

Proof of Theorem 1.3, conclusion. Lemma 7.2 shows that E |Xpnq{
?
n|p “ Op1q for

every fixed p ą 0. By a standard argument, see e.g. [11, Theorems 5.4.2 and 5.5.9],

this implies uniform integrability of the sequence |Xpnq{
?
n|p for every p ą 0 and thus

convergence of all moments in (6.10). (Recall that convergence in distribution was
proved in Section 6.)

Finally, (1.3)–(1.4) now follow from the formula

Eχr4 “ 2r{2Γ
´r

2
` 2

¯

, (7.24)

which is a simple consequence of (1.1), or of (6.19) and (1.8). This completes the
proof. �
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8. Higher degree d

We have so far considered the random 2-dag, with outdegree d “ 2. The arguments
and results above extend to any constant d ě 2 with minor modifications which we
sketch here, omitting straightforward details. We let d ě 2 be fixed, and let c and
cp denote constants that may depend on d (and p); these may change value from one
occurrence to the next. Note that the case d “ 2 treated above is included as a special
case below.

We define Yk, Zk, Jk, and Fk as in Section 2; thus Yn´1 “ d, (2.1) and (2.3) still
hold, but (2.2) is replaced by

Yk´1 “ Yk ´ Zk ` dJk. (8.1)

Then, instead of (2.4)–(2.5),

E
`

Yk´1 | Fk
˘

“ Yk ´ E
`

Zk | Fk
˘

` dP
`

Zk ě 1 | Fk
˘

“ Yk ´
1
kYk ` d

`

1´ p1´ 1
k q
Yk
˘

(8.2)

and

E
`

Yk´1 | Fk
˘

ď Yk ´
1

k
Yk `

d

k
Yk “

k ` d´ 1

k
Yk. (8.3)

We now define, letting m` :“ mpm` 1q ¨ ¨ ¨ pm` `´ 1q denote the rising factorial,

Wk :“ pk ` 1qd´1Yk “ pk ` 1q ¨ ¨ ¨ pk ` d´ 1qYk. (8.4)

Then, (8.3) yields

E
`

Wk´1 | Fk
˘

ďWk, (8.5)

and thus again Wk is a reverse supermartingale, with a Doob decomposition (2.9)
where now

Mn´1 “Wn´1 “ dnd´1 “ O
`

nd´1
˘

. (8.6)

We still have (2.16), up to the numerical constants (which depend on d), while we now
have

Var
`

Wk´1 | Fk
˘

“ O
`

k2d´3Yk
˘

“ O
`

kd´2Wk

˘

(8.7)

and

EW 2
k ď EM2

k ď E pM˚q2 “ O
`

n2d´2
˘

. (8.8)

Lemmas 2.2–2.3 take the form

PpZk ě 1q ď c
nd´1

kd
, (8.9)

PpZk ě 2q ď c
n2d´2

k2d
, (8.10)

Ak´1 ´Ak ď c
W 2
k

kd`1
, (8.11)

EAk ď c
n2d´2

kd
. (8.12)

The moment estimates in Section 7 extend too. We find spMq ď c
?
nd´1M˚ and

obtain by induction, for every p ą 0,

E pM˚qp ď cpn
ppd´1q. (8.13)
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Instead of (7.17)–(7.19) and (7.23) we obtain

Bk ďM˚{kd´1, (8.14)

B0 ď Brnpd´1q{ds ` rnpd´1q{ds ď n´pd´1q
2{dM˚ ` 2npd´1q{d, (8.15)

EBp
0 ď cpn

ppd´1q{d, (8.16)

E |L0|
p ď cpn

ppd´1q{p2dq, (8.17)

and thus (6.2) yields

E
`

Xpnq
˘p
ď cpn

ppd´1q{d. (8.18)

We may couple the initial phase of the dag with a branching process as in Section 3;
however, now the each particle splits into d new particles. The corresponding standard
process Y 1t starting with one particle has probability generating function, see e.g. [2,
Remark III.5.1],

E sY
1
t “ se´t

“

1´
`

1´ e´pd´1qt
˘

sd´1
‰´1{pd´1q

, (8.19)

which means that pY 1t´1q{pd´1q has a negative binomial distribution NegBin
`

1
d´1 , e

´pd´1qt
˘

.
Since our version Yt starts with d particles as t “ 0, and thus Yt is the sum of d inde-
pendent copies of Y 1t, it follows that pYt ´ dq{pd ´ 1q P NegBin

`

d
d´1 , e

´pd´1qt
˘

. It also
follows that

EYt “ dEY 1t “ d` pd´ 1qE NegBin
´ d

d´ 1
, e´pd´1qt

¯

“ d` pd´ 1q
d

d´ 1

`

epd´1qt ´ 1
˘

“ depd´1qt (8.20)

and thus, after the same time change as before,

E pYx “ EY´ log x “ d{xd´1, 0 ă x ď 1. (8.21)

Moreover, also from (8.19), as tÑ8,

e´pd´1qtY 1t
a.s.
ÝÑ Γ

´ 1

d´ 1
, d´ 1

¯

(8.22)

and thus, with x “ e´t Ñ 0,

e´pd´1qtYt “ xd´1 pYx
a.s.
ÝÑ Γ

´ d

d´ 1
, d´ 1

¯

. (8.23)

We may choose n1 :“ tn{ log nu as in Section 3, and then Theorem 3.1 holds, except

that log2 n{n is replced by logd n{n. Furthermore, we now have

Ξpnq :“
W
pnq
n1

nd´1
d
ÝÑ ξ P Γ

´ d

d´ 1
, d´ 1

¯

. (8.24)

In Section 4, we now choose n2 " npd´1q{d, and we have

max
n1ěkě0

∣∣∣∣ Mk

nd´1
´ Ξpnq

∣∣∣∣ p
ÝÑ 0, (8.25)

max
n1ěkěn2

∣∣∣∣ Wk

nd´1
´ Ξpnq

∣∣∣∣ p
ÝÑ 0. (8.26)

In Section 5, we define

pA
pnq
t :“ n´pd´1qA

pnq

tnpd´1q{d , t ě 0. (8.27)
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Then tightness holds as in Lemma 5.2, and we can argue as in the proof of Theorem 5.3
using a suitable subsequence and a suitable coupling. Then (5.9) holds a.s. uniformly
on compact intervals, and (5.13) becomes

Y
pnq

rtnpd´1q{ds

rtnpd´1q{ds
“

W
pnq

rtnpd´1q{ds

ptd ` op1qqnd´1
Ñ Bptq :“ t´d

`

ξ ´Aptq
˘

. (8.28)

This leads by the arguments above to

d

dt
pA
pnq
t Ñ ´dtd´1

`

e´Bptq ´ 1` Bptq
˘

, (8.29)

uniformly on compact intervals in p0,8q, and then to the differential equation (instead
of (5.17))

A1ptq “ ´dtd´1
`

e´Bptq ´ 1` Bptq
˘

, 0 ă t ă 8, (8.30)

with the solution

Bptq “ log
`

1` C{td
˘

, t ą 0, (8.31)

where again we find C “ ξ a.s., and consequently

Aptq “ ξ ´ td log
`

1` ξ{td
˘

. (8.32)

Finally, we extend the convergence to r0,8q as above, and reach the conclusion that
(generalizing Theorem 5.3)

sup
0ďtďb

∣∣∣n´dW pnq

tnpd´1q{d ´ t
d log

`

1` Ξpnq{td
˘

∣∣∣ p
ÝÑ 0, (8.33)

for every fixed b ą 0.
In Section 6, we replace (6.11) by

Y
pnq

rtnpd´1q{ds

rtnpd´1q{ds
“

W
pnq

rtnpd´1q{ds

ptd ` op1qqnd´1
Ñ Bptq “ log

`

1` ξ{td
˘

(8.34)

and define

pB
pnq
t :“ n´pd´1q{dB

pnq

tnpd´1q{d . (8.35)

This leads to

n´pd´1q{dB
pnq
0

p
ÝÑ

ż 8

0

ξ

ξ ` td
dt “ ξ1{d

ż 8

0

1

1` xd
dx “

π

d sinpπ{dq
ξ1{d, (8.36)

where the integral is evaluated by a substitution yielding a Beta integral [17, 5.12.3,
together with 5.12.1 and 5.5.3]:

ż 8

0

1

1` xd
dx “

1

d

ż 8

0

y
1
d
´1

1` y
dy “

1

d
B
´1

d
,
d´ 1

d

¯

“
1

d
Γ
´1

d

¯

Γ
´d´ 1

d

¯

“
π

d sinpπ{dq
. (8.37)

Proof of Theorem 1.4. The limit in distribution (1.5) follows from (6.2), (8.17) and
(8.36), recalling (8.24) and writing ξ “ pd´1qγ. Moment convergence then follows from
the bounds (8.16) and (8.17) as in the case d “ 2. Finally, the moment convergence
and (1.8) yield (1.6). �



22 SVANTE JANSON

9. Further results

We give here some further results on the structure of the random dag pDn. Again,
we consider for simplicity only the case d “ 2, and leave the straightforward extensions
to larger d to the reader.

9.1. Density of descendants. The proof of Theorem 1.3 shows that most vertices

in pDn are in the range O
`?
n
˘

. More preciesely, let 0 ď a ď b ď 8, and let

X
pnq
a,b :“

∣∣ pDn X pa
?
n, b
?
ns
∣∣, (9.1)

the number of descendants of n (red vertices) in the interval pa
?
n, b
?
ns. (Thus,

Xpnq “ X
pnq
0,8.) Then, Lemma 6.1 can be extended:

Lemma 9.1. If 0 ď a ď b ď 8 are fixed, then as nÑ8,

X
pnq
a,b
?
n
´

ż b

a

Ξpnq

Ξpnq ` t2
dt

L1

ÝÑ 0 (9.2)

and thus

E
ˆ

X
pnq
a,b
?
n

ˇ

ˇ

ˇ

ˇ

Ξpnq
˙

´

ż b

a

Ξpnq

Ξpnq ` t2
dt

L1

ÝÑ 0 (9.3)

and, unconditionally,

EXpnqa,b
?
n

Ñ

ż b

a
pptqdt, (9.4)

where

pptq :“ E
ξ

ξ ` t2
“

ż 8

0

x2

x` t2
e´x dx. (9.5)

Proof. If 0 ă a ď b ă 8, let ka :“ ta
?
nu and kb :“ tb

?
nu. Then (6.3)–(6.4) show

that, provided n is so large that b
?
n ă n,

X
pnq
a,b “

kb
ÿ

k“ka`1

Jk “ Bka ´Bkb ` Lka ´ Lkb . (9.6)

Convergence in probability in (9.2) then follows from (6.12) and (6.15) together with
(6.8) (and, for example, Doob’s inequality), and as always (5.10). If a “ 0 or b “ 8,
this result follows similarly using also (6.16)–(6.17) as in the proof of Lemma 6.1.

Thus, (9.2) holds in probability. This implies convergence also in L1, since uniform

integrability holds because X
pnq
a,b {

?
n ď Xpnq{

?
n and, recalling (3.10),

ż b

a

Ξpnq

Ξpnq ` t2
dt ď

ż 8

0

Ξpnq

Ξpnq ` t2
dt “

π

2

a

Ξpnq ď
π

2

c

M˚

n
(9.7)

and these are uniformly integrable by Lemmas 7.2 and Lemma 7.1.
Next, (9.3) follows from (9.2) by taking the conditional expectation, and (9.4) follows

by taking the unconditional expectation, using (3.11) and Fubini’s theorem, and again
the uniform integrability of (9.7). The final equality in (9.4) follows since ξ P Γp2q has
density function xe´x by (1.7). �
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Remark 9.2. The function pptq can be expressed using the exponential integral E1pxq,
see [17, 6.2.1-2 and 6.7.1]:

pptq “

ż 8

0

´

x´ t2 `
t4

x` t2

¯

e´x dx “ 1´ t2 ` t4et
2
E1pt

2q. (9.8)

4

Informally, Lemma 9.1 says that, asymptotically, the density of descendants of n
around any k ă n is Ξ{pΞ ` k2{nq conditioned on Ξ, and ppk{

?
nq unconditionally.

Another aspect of this is the following theorem, where we consider a single vertex k.

Theorem 9.3. Conditioned on Ξpnq, the probability that vertex k is a descendant of n

(i.e., belongs to pDn) is

P
`

J
pnq
k “ 1 | Ξpnq

˘

“
Ξpnq

Ξpnq ` k2{n
` opp1q, (9.9)

uniformly in k ď n1. Hence, the unconditional probability is, with pptq given by (9.5),

P
`

J
pnq
k “ 1

˘

“ E
ξ

ξ ` k2{n
` op1q “ p

`

k{
?
n
˘

` op1q, (9.10)

uniformly in k ď n1.

Proof. Recall that Jk “ 1tk P pDnu is a Bernoulli variable; hence PpJk “ 1q “ E Jk,
and this holds also conditionally.

Consider first k P rδ
?
n, b
?
ns for some fixed 0 ă δ ă b ă 8, and let t :“ k{

?
n P

rδ, bs. Using again the simplifying assumptions in the proof of Theorem 5.3, we see
from (6.13)–(6.14) and (5.10) that

max
kPrδ

?
n,b
?
ns

∣∣∣E pJk | Fkq ´ Ξpnq

Ξpnq ` k2{n

∣∣∣ p
ÝÑ 0. (9.11)

Hence, by dominated convergence (the max is bounded by 1),

E max
kPrδ

?
n,b
?
ns

∣∣∣E pJk | Fkq ´ Ξpnq

Ξpnq ` k2{n

∣∣∣Ñ 0. (9.12)

Thus, by taking the conditional expectation with respect to Ξpnq, assuming that n is
so large that b

?
n ď n1 and thus E pJk | Ξpnqq “ E

“

E pJk | Fkq | Ξpnq
‰

,

max
kPrδ

?
n,b
?
ns

∣∣∣E pJk | Ξpnqq ´
Ξpnq

Ξpnq ` k2{n

∣∣∣
ď max

kPrδ
?
n,b
?
ns
E
´∣∣∣E pJk | Fkq ´ Ξpnq

Ξpnq ` k2{n

∣∣∣ ˇˇˇ Ξpnq
¯

ď E
´

max
kPrδ

?
n,b
?
ns

∣∣∣E pJk | Fkq ´ Ξpnq

Ξpnq ` k2{n

∣∣∣ ˇˇˇ Ξpnq
¯

L1

ÝÑ 0, (9.13)

Furthermore, if n1 ě k ą ` ě 1, then when the evolution comes to k, we have Yk red
edges, and each of them ends at k with probability 1{k. We have the same probability
for each of these edges to end at ` instead, and since the endpoints are independent,
we see that conditioned on Fk, Z` is stochastically larger than Zk. (Larger, since there
may also be red edges ending at ` that start at k or later.) Hence,

E pJ` | Fkq “ PpZ` ě 1 | Fkq ě PpZk ě 1 | Fkq “ E pJk | Fkq (9.14)
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and thus E pJ` | Ξpnqq ě E pJk | Ξpnqq. In other words, E pJk | Ξpnqq is decreasing

in k P r1, n1s. The same obviously holds for Ξpnq{pΞpnq ` k2{nq. Consequently, with
kb :“ tb

?
nu,

max
kPrb

?
n,n1s

∣∣∣E pJk | Ξpnqq ´
Ξpnq

Ξpnq ` k2{n

∣∣∣
ď max

kPrb
?
n,n1s

´

E pJk | Ξpnqq `
Ξpnq

Ξpnq ` k2{n

¯

ď

∣∣∣E pJkb | Ξpnqq ´
Ξpnq

Ξpnq ` k2b {n

∣∣∣` 2
Ξpnq

Ξpnq ` k2b {n
. (9.15)

Hence, using (9.13),

lim sup
nÑ8

E max
kPrb

?
n,n1s

∣∣∣E pJk | Ξpnqq ´
Ξpnq

Ξpnq ` k2{n

∣∣∣
ď 2 lim sup

nÑ8
E

Ξpnq

Ξpnq ` k2b {n
“ 2E

ξ

ξ ` b2
, (9.16)

which can be made arbitrarily small by choosing b large (by dominated convergence).
Similarly, with kδ :“ rδ

?
ns,

max
kPr1,δ

?
ns

∣∣∣E pJk | Ξpnqq ´
Ξpnq

Ξpnq ` k2{n

∣∣∣
ď max

kPr1,δ
?
ns

ˆ

´

1´ E pJk | Ξpnqq
¯

`

´

1´
Ξpnq

Ξpnq ` k2{n

¯

˙

ď

∣∣∣E pJkδ | Ξpnqq ´
Ξpnq

Ξpnq ` k2δ{n

∣∣∣` 2
´

1´
Ξpnq

Ξpnq ` k2b {n

¯

(9.17)

and thus

lim sup
nÑ8

E max
kPr1,δ

?
ns

∣∣∣E pJk | Ξpnqq ´
Ξpnq

Ξpnq ` k2{n

∣∣∣
ď 2 lim sup

nÑ8
E

k2δ{n

Ξpnq ` k2δ{n
“ 2E

δ2

ξ ` δ2
, (9.18)

which can be made arbitrarily small by choosing δ small.
It follows from (9.13), (9.16) and (9.18) that

max
kPr1,n1s

∣∣∣E pJk | Ξpnqq ´
Ξpnq

Ξpnq ` k2{n

∣∣∣ L1

ÝÑ 0, (9.19)

which is a more precise version of (9.9)
Finally, (5.10) implies

sup
tą0

∣∣∣∣∣ Ξpnq

Ξpnq ` t2
´

ξ

ξ ` t2

∣∣∣∣∣ “ sup
tą0

t2|Ξpnq ´ ξ|
pΞpnq ` t2qpξ ` t2q

ď
|Ξpnq ´ ξ|

ξ
a.s.
ÝÑ 0, (9.20)

and thus, by dominated convergence,

sup
tą0

∣∣∣∣∣E Ξpnq

Ξpnq ` t2
´ E

ξ

ξ ` t2

∣∣∣∣∣ ď E sup
tą0

∣∣∣∣∣ Ξpnq

Ξpnq ` t2
´

ξ

ξ ` t2

∣∣∣∣∣Ñ 0, (9.21)

Hence, taking the expectation in (9.19) yields (9.10). �
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9.2. Different n yield asymptotically independent results. As noted in Re-
mark 1.7, the construction naturally constructs the dags Dn for all n together. Using
this coupling, we may consider the joint distribution of, for example, Xpnq and Xpn`1q.
Somewhat surprisingly, Xpnq and Xpn`1q are asymptotically independent:

Theorem 9.4. As nÑ8,
`

Xpnq{
?
n,Xpn`1q{

?
n` 1

˘ d
ÝÑ

`

ζ, ζ 1
˘

, (9.22)

where ζ and ζ 1 are independent copies of the limit pπ{
?

8qχ4 in (1.2).

Proof. Consider the evolutions of the red dags pDn and pDn`1 together, starting at n
and n` 1 and going down, as always; these evolutions are independent until they first
have a common vertex. The probability that k is the first common vertex is thus at

most the probability that two independent versions of pDn and pDn`1 both contain k,
which by (2.22) is

#

P
`

Z
pnq
k ě 1

˘

P
`

Z
pn`1q
k ě 1

˘

ď
4npn`1q

k4
ď cn

2

k4
, k ă n,

P
`

Z
pn`1q
n ě 1

˘

ď
2pn`1q
n2 , k “ n.

(9.23)

Consequently, the probability that pDn and pDn`1 meet before n
pnq
1 is

ď

n´1
ÿ

k“n1

c
n2

k4
`
c

n
ď c

n2

n31
`
c

n
“ op1q. (9.24)

Consequently, w.h.p. pDn and pDn`1 are independent until n1; more formally, we may

couple the pair
`

pDn, pDn`1

˘

with a pair
`

pD1n,
pD1n`1

˘

of independent copies of them such

that the two pairs w.h.p. coincide until n
pnq
1 . In particular, this and the definition (3.10)

show that the pair pΞpnq,Ξpn`1qq can be coupled with a pair of independent copies of

them (defined in the same way from pD1n and pD1n`1) such that the two pairs coincide
w.h.p. Consequently, Lemma 3.2 implies that

`

Ξpnq,Ξpn`1q
˘ d
ÝÑ

`

ξ, ξ1
˘

, (9.25)

where ξ, ξ1 P Γp2q are independent. The result then follows by (6.9). �

This result may seem surprising, since we have seen that most vertices k in pDn

and pDn`1 have k of the order
?
n, and that in this range, the density of vertices is

high, which means that pDn and pDn`1 necessarily have a large number of common

vertices. Since the pDn and pDn`1 have the same descendants of any common vertex, it

follows that the graphs pDn and pDn`1 are strongly dependent. Nevertheless, the proof

above shows that pDn and pDn`1 are essentially independent in the first phase, which
determines Ξpnq and Ξpn`1q. Almost all vertices that contribute to Xpnq and Xpn`1q are
in the later dense phase, where there is strong dependence, but this does not prevent
the asymptotic independence of Xpnq and Xpn`1q because in this phase, there are so
many vertices and edges that the evolution is governed by a law of large numbers and
is essentially deterministic; hence the strong dependence here does not matter.

Remark 9.5. We considered above Xpnq and Xpn`1q only to be concrete. The result
extends to Xpn

1
νq and Xpn

2
νq for any two sequences n1ν and n2ν that tend to infinity, with

n1ν ă n2ν . (This follows by the same proof, where we treat the cases pn2νq1 ď n1ν and
pn2νq1 ą n1ν separately in the first part.)
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Furthermore, the theorem extends to any finite number of such sequences. 4

Remark 9.6. Theorem 9.4 shows that the sequence Xpnq{
?
n does not converge a.s.;

in contrast, the theorem (with Remark 9.5) implies that this sequence a.s. oscillates
wildly. 4

It seems interesting to understand the relations between pDpnq and pDpn`1q further.
For example, consider the number of common vertices

Υpnq :“
∣∣ pDpnq X pDpn`1q

∣∣. (9.26)

We have Υpnq ď min
`

Xpnq, Xpn`1q
˘

, and thus Theorem 9.4 implies (since uniform

integrability of min
`

Xpnq, Xpn`1q
˘

{
?
n follows from Lemma 7.2, or indeed from Theo-

rem 1.3)

lim sup
nÑ8

E
`

Υpnq{
?
n
˘

ď E
“

min
`

ζ, ζ 1
˘‰

“

ż 8

0
Ppζ ą xq2 dx “

27π3{2

64
?

2
. (9.27)

(We omit the final, straightforward calculation.) On the other hand, it follows easily
from the results in Section 9.1 that

lim inf
nÑ8

E
`

Υpnq{
?
n
˘

ą 0. (9.28)

Problem 9.7. What is the asymptotics of the number of common vertices Υpnq :“∣∣ pDpnq X pDpn`1q
∣∣? (I.e., the vertices that are descendants of both n and n` 1.)

We conjecture that E
`

Υpnq{
?
n
˘

Ñ υ for some constant υ ą 0. Show this! What is υ?

What is the asymptotic distribution of Υpnq{
?
n? (Assuming that it exists.)

10. Some variations

We consider here the two variations mentioned in the introduction, and show that
the same results hold for them too.

10.1. Several roots. We may start with any given number m ě 1 roots, and then
add n ´m vertices with outdegree d recursively as above. (We assume 1 ď m ď n.)

Denote the resulting random d-dag by Dn,m, and let pDn,m be the subgraph consisting
of all vertices and edges that can be reached from n.

Note that Dn,m can be obtained from Dn by simply removing all edges between
the roots, i.e., all edges within r1,ms. Consequently, Dn,m and Dn have the same
descendants in the interval pm,ns, and it follows that

| pDn| ´m ă | pDn,m| ď | pDn|. (10.1)

Theorem 10.1. If the process starts with m “ o
`

npd´1q{d
˘

roots, and we thus define

Xpnq :“ | pDn,m|, then the results in Theorems 1.3 and 1.4 still hold.

Proof. An immediate consequence of (10.1). �

We may also obtain results for larger m. For simplicity we consider only the case
d “ 2. Define, for µ ą 0 and x ą 0,

ψµpxq :“

ż 8

0

x

x`maxtt, µu2
dt “

ż 8

µ

x

x` t2
dt`

µx

x` µ2

“
?
x arctan

?
x

µ
`

µx

x` µ2
. (10.2)
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Theorem 10.2. Let d “ 2. Suppose that m “ mn Ñ8 such that m{
?
nÑ µ P p0,8q.

Then

| pDn,m|
?
n

d
ÝÑ ψµ

`

ξ
˘

, (10.3)

with convergence of all moments, where ξ P Γp2q. Moreover,

| pDn,m|
?
n

´ ψµ
`

Ξpnq
˘ p
ÝÑ 0. (10.4)

Proof. The number of non-roots in pDn,m is, using the notation (9.1),∣∣ pDn,m X pm,ns
∣∣ “ ∣∣ pDn X pm,ns

∣∣ “ X
pnq

m{
?
n,8

, (10.5)

and thus it follows from Lemma 9.1 that

| pDn,m X pm,ns|
?
n

´

ż 8

µ

Ξpnq

Ξpnq ` t2
dt

L1

ÝÑ 0. (10.6)

Let Rn,m :“
∣∣ pDn X r1,ms

∣∣ be the number of roots that are descendants of n. When
the procedure in Section 2 reaches m, there are Ym edges left. Each of these selects
an endpoint in t1, . . . ,mu at random, uniformly and independently, and Rn,m is the
number of vertices in t1, . . . ,mu that are selected at least once. (This is a classical
occupancy problem, often described as throwing Ym balls into m cells.)

Conditioned on Fm, each vertex k ď m thus has the same probability E Jk “
1´ p1´ 1

mq
Ym of becoming red. The covariances can easily be calculated, but we note

instead that if we also condition on Jk “ 0, this increases the probability that J` “ 1
for every ` ‰ k; thus Cov

`

Jk, J` | Fm
˘

ď 0, and

Var
`

Rn,m | Fm
˘

“

m
ÿ

k,`“1

Cov
`

Jk, J` | Fm
˘

ď

m
ÿ

k“1

Var
`

Jk | Fm
˘

“ mVar
`

Jm | Fm
˘

ď mE
`

Jm | Fm
˘

ď mE
`

Zm | Fm
˘

“ m
Ym
m
“ Ym. (10.7)

Hence, recalling (2.6) and (2.13),

E
ˆ

Rn,m ´ E pRn,m | Fmq
?
n

˙2

“
E rVar

`

Rn,m | Fm
˘

s

n
ď

EYm
n

ď
EWm

mn
ď

2

m
Ñ 0.

(10.8)

Consequently,

Rn,m ´ E pRn,m | Fmq
?
n

p
ÝÑ 0. (10.9)

Furthermore, by symmetry and (9.11),

E
`

Rn,m | Fm
˘

“ mE
`

Jm | Fm
˘

“ m
Ξpnq

Ξpnq `m2{n
` oppmq, (10.10)

where oppmq is a (random) quantity such that oppmq{m
p
ÝÑ 0. It follows from (10.9)

and (10.10) that

Rn,m
?
n
´ µ

Ξpnq

Ξpnq ` µ2
p
ÝÑ 0. (10.11)
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We obtain (10.4) by summing (10.6) and (10.11), and this implies (10.3) by (3.11).
Finally, moment convergence follows, since every power is uniformly integrable by

| pDn,m| ď Xpnq and Lemma 7.2. �

It is possible to obtain results also for the case m{
?
nÑ8 by our methods, but we

leave this case to the reader.

10.2. Drawing without replacement. Consider now the case when the endpoints
of the d edges from a vertex k are selected by drawing without replacement; in other
words, the endpoints form a uniformly random subset of t1, . . . , k´1u with d elements.
(We start with m ě d roots.) Thus there are no multiple edges and Dn is a simple
multigraph.

The analysis in Section 2 is based on the independence of the endpoints of different
edges; this is no longer true since edges from the same vertex now are dependent.
However, a minor variation of the arguments allows us to reach the same conclusions.
For simplicity, we consider again the case d “ 2, and leave the straightforward gen-
eralization to higher d to the reader. We use the same notations as above, with the
additions below.

Say that the two edges starting together from a red vertex are twins. We thus now
do not allow two twins to have the same endpoint.

Consider the Yk red edges that cross the gap between k ` 1 and k. Some of these
come in pairs of twins, while others are single (because their twin has already found
an endpoint). Let Yk,1 be the number of single edges, and Yk,2 the number of pairs of
twins among these edges. Thus

Yk “ Yk,1 ` 2Yk,2. (10.12)

Similarly, let Zk,1 be the number of single edges that end at k, and let Zk,2 be the
number of edges that end in k and still having a living twin (that will later find an
endpoint ` ă k). Thus

Zk “ Zk,1 ` Zk,2. (10.13)

We still have (2.2), but also the more detailed recursion

Yk´1,1 “ Yk,1 ´ Zk,1 ` Zk,2, (10.14)

Yk´1,2 “ Yk,2 ´ Zk,2 ` Jk “ Yk,2 ´ Zk,2 ` 1tZk,1 ` Zk,2 ě 1u. (10.15)

Each of the Yk,1 single edges ends at k with probability 1{k, and each of the Yk,2 pairs
of twins has one edge ending at k (and thus leaving one single edge) with probability
2{k. Hence, conditioned on Fk, we now have

Zk,1 P BinpYk,1, 1{kq, (10.16)

Zk,2 P BinpYk,2, 2{kq, (10.17)

with Zk,1 and Zk,2 (conditionally) independent.
Taking conditional expectations yields, instead of (2.4),

E
`

Yk´1,1 | Fk
˘

“ Yk,1 ´
1

k
Yk,1 `

2

k
Yk,2, (10.18)

E
`

Yk´1,2 | Fk
˘

“ Yk,2 ´
2

k
Yk,2 ` P

`

Zk ě 1 | Fk
˘

. (10.19)
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Thus, using (10.12),

E
`

Yk´1 | Fk
˘

“ Yk ´
1

k
Yk ` 2P

`

Zk ě 1 | Fk
˘

“ Yk ´
1

k
Yk ` 2

´

1´
´

1´
1

k

¯Yk,1
´

1´
2

k

¯Yk,2
¯

(10.20)

and also, exactly as in (2.5),

E
`

Yk´1 | Fk
˘

“ Yk ´
1

k
Yk ` 2P

`

Zk ě 1
˘

ď
k ´ 1

k
Yk ` 2EZk “

k ` 1

k
Yk. (10.21)

Thus Wk is still a reverse supermartingale, Mk is a revese martingale, and Ak is reverse
increasing; (2.6)–(2.13) hold without any changes. The exact formulas in (2.14) and
(2.15) are replaced by

E
`

Wk´1 | Fk
˘

“ pk ´ 1qYk ` 2k
´

1´
´

1´
1

k

¯Yk,1
´

1´
2

k

¯Yk,2
¯

(10.22)

and thus

Ak´1 ´Ak “Wk ´ E
`

Wk´1 | Fk
˘

“ 2k
´´

1´
1

k

¯Yk,1
´

1´
2

k

¯Yk,2
´ 1`

Yk
k

¯

. (10.23)

The rest of Section 2 holds with minor changes: the numerical constants in inequalities
may change (perhaps including cases where we had constant 1), we estimate (condi-
tional) variances of Zk,1 and Zk,2 separately in (2.16), the exact formula in (2.28) is
modified as above, and the equality in (2.25) is modified; we omit the details.

In Section 3, we note that for the version studied in the previous sections, the
probability that two twins starting at k have the same endpoint is 1{pk ´ 1q. Hence,
the expected number of such collisions among twins starting at k ě n1 is (with Jn :“ 1),
using (2.22),

n
ÿ

k“n1

PpJk “ 1q
1

k ´ 1
ď

1

n´ 1
`

n´1
ÿ

k“n1

2n

k2pk ´ 1q
ď

1

n´ 1
`

3n

n21
“ op1q. (10.24)

Thus, w.h.p. there are no such collisions, which means that we may couple the versions
using drawing with and without replacement such that they w.h.p. coincide on the
interval rn1, ns. Consequently, Theorem 3.1 giving a coupling with the Yule process
holds also for drawing without replacement.

The results in Sections 3–7 now hold as before, with some numerical constants
changed and a few minor changes. The most important is that (5.14) now, by (10.23),
becomes

d

dt
pA
pnq
t “ ´n´1{2 ¨ 2k

´´

1´
1

k

¯Yk,1
´

1´
2

k

¯Yk,2
´ 1`

Yk
k

¯

, (10.25)

but it is easily seen that this together with (5.13) still yields (5.15), since

log

ˆ

´

1´
1

k

¯Yk,1
´

1´
2

k

¯Yk,2
˙

“ ´Yk,1 ¨
1

k
´ Yk,2 ¨

2

k
`O

´

Yk ¨
1

k2

¯

“ ´
Yk
k
` op1q. (10.26)

There is a similar modification in (6.13), but again the conclusion (6.14) holds by
(10.26). In Section 7, we argue as in (7.10) for Zk,1 and Zk,2 separately.

Hence, Theorem 1.3 holds also for drawing without replacement. (And so does
Theorem 1.4, by similar arguments.)



30 SVANTE JANSON

Acknowledgement

I thank Donald Knuth and Philippe Jacquet for drawing my attention to this prob-
lem.

References

[1] Sunil Arya, Mordecai J Golin & Kurt Mehlhorn. On the expected depth of random
circuits. Combin. Probab. Comput. 8 (1999), no. 3, 209–227.

[2] Krishna B. Athreya & Peter E. Ney. Branching Processes. Springer-Verlag, Berlin,
1972.
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