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ALMOST SURE AND MOMENT CONVERGENCE FOR
TRIANGULAR POLYA URNS

SVANTE JANSON

ABSTRACT. We consider triangular Pélya urns and show under very weak condi-
tions a general strong limit theorem of the form Xpi/an: 25 X;, where X,; is
the number of balls of colour i after n draws; the constants a,; are explicit and
of the form n®log” n; the limit is a.s. positive, and may be either deterministic or
random, but is in general unknown.

The result extends to urns with subtractions under weak conditions, but a
counterexample shows that some conditions are needed.

For balanced urns we also prove moment convergence in the main results if the
replacements have the corresponding moments.

The proofs are based on studying the corresponding continuous-time urn using
martingale methods, and showing corresponding results there. In the main part
of the paper, we assume for convenience that all replacements have finite second
moments; in an appendix this is relaxed to L? for some p > 1.
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1. INTRODUCTION

A (generalized) Pélya urn contains balls of different colours. A ball is drawn at
random from the urn, and is replaced by a set of balls that depends on the colour
of the drawn balls; more generally, the replacement set may be random, with a
distribution depending on the drawn colour. We assume that the set Q of colours
is finite, and let ¢ := |Q| be the number of colours. (See e.g. [31], [38], [27] for the
history and further references.) It is often convenient to assume that Q = {1,..., ¢},
but for us it will be convenient not to assume this.

The Pélya urn process can be defined formally as follows. The composition of
the urn at time n is given by the vector X,, = (Xp;)ieq € [0,00)9, where X,,; is the
number of balls of colour i. The urn starts with a given vector Xy, and evolves
according to a discrete-time Markov process. Each colour ¢ has an activity a; = 0,
and a (generally random) replacement vector §; = (&;)jeq- At each time n+1 > 1,
the urn is updated by drawing one ball at random from the urn, with the probability
of any ball proportional to its activity. (In many cases a; = 1 for all i, so all balls
are drawn with equal probability; the reader may concentrate on this case until
Section 5.) Thus, the drawn ball has colour 7 with probability

a; Xy

W. (1.1)
j irng

If the drawn ball has colour i, it is replaced together with fi(;t) balls of colour 7,
(n)

j € Q, where the random vector Ez(n) = (fm )jeq is a copy of §; that is independent
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of everything else that has happened so far. Thus, the urn is updated to
X = X, + &M, (1.2)

Remark 1.1. Note that, as in many other papers on Pdlya urns, we do not assume
that X,,; are integers; any real numbers X,,; > 0 are allowed. In general, it is thus a
misnomer to call X,,; the “number” of balls of colour ¢; it is more precise to regard
X,; as the amount of colour 7 in the urn. Nevertheless, we will continue to use the
traditional terminology, which thus has to be interpreted liberally by the reader. A

Remark 1.2. Since the drawn ball is replaced, it is also really a misnomer to call
&, the “replacement” vector; it is really an addition vector. (The replacements are
really &;; + 0;;.) Nevertheless, we use the terminology above, which is used in many
papers. A

Remark 1.3. We allow the replacement vectors €, to be random. (Some papers
consider only the special case of deterministic &;, which is an important special case
that appears in many applications.) We may say that the urn has deterministic
(or non-random) replacements if all &; are deterministic, and otherwise random
replacements. These terms should thus be interpreted as conditioned on (the colour
of) the drawn ball. A

Remark 1.4. It is often convenient to describe the replacements by the replacement
matriz (§;5)i jeq- Note, however, that unless the replacements are deterministic, this
may be somewhat misleading, since the rows should be regarded as separate random
vectors, not necessarily defined on the same probability space; there is no need for a
joint distribution of different rows. A

Remark 1.5. In the first part of the paper we assume that the replacements &;; > 0
(Condition (A5) below), meaning that we only add balls to the urn and never remove
any. In Section 8, and also usually in later sections, we more generally allow also
that balls may be removed from the urn (assuming some hypotheses). A

Remark 1.6. We allow some activities a; to be 0; this means that balls of colour
i never are drawn. See Section 5 for an important example of this. (If all a; > 0,
we may reduce to the standard case a; = 1 by considering the urn (a;Xp;);, with
corresponding replacement vectors (a;&;;);, but we will not use this.) A

Remark 1.7. We assumed tacitly above that the denominator >}, a;Xy; in (1.1) is
> 0 for every n = 0, so that the definition makes sense. This holds, for example,
under assumptions (A1) and (A5) below. (Urns that do not satisfy this, and therefore

may stop at some finite time, have also been studied, but they will not be considered
here.) A

We are interested in asymptotic properties of X,, as n — 0.

In the present paper, we study triangular urns, i.e., Pélya urns such that, for
a suitable labelling of the colours by 1,...,¢q, we have &; = 0 when i > j. (See
also Section 2.3.) This includes the original Pélya urns studied by Markov [39],
Eggenberger and Pélya [16], and Pélya [41] (all for ¢ = 2), where the replacement
matrix is diagonal: &; = 0 when 7 # j, but also many other interesting cases. See
Section 14 for some examples.

There are many previous papers on triangular urns; we mention here only a few
that are particularly relevant to the present paper; see also the references in the
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examples in Section 14. Athreya [2] studied diagonal urns with random replace-
ments and showed a.s. convergence of the proportions of different colours, using the
embedding mthod of Athreya and Karlin [3] that is also the basis of the present
paper. Gouet [18, 19] proved (in particular) an a.s. convergence result for triangular
urns with 2 colours and deterministic replacements, assuming also that the urn is
balanced, meaning Zj &j = b for some constant b (and all a; = 1, see further Sec-
tion 10). Janson [28] studied triangular urns with 2 colours and deterministic &;,
and proved convergence in distribution (but not a.s.) of the components X, after
suitable normalizations; there are several cases, and the limits are sometimes normal
and sometimes not. This was partially extended by Aguech [1], who also studied
triangular urns with 2 colours, but allowed random replacements &; (under some hy-
potheses, see Example 14.4); moreover, he proved convergence a.s., and not just in
distribution. Bose, Dasgupta, and Maulik [12] (and [11] for ¢ = 2) studied triangular
urns with an arbitrary (finite) number of colours; they assumed that the replace-
ments are deterministic, and that the urn is balanced, and then, under some further
assumptions, showed convergence a.s. of the components X,,;, suitably normalized,
see Example 14.12.

The main purpose of the present paper is to extend these results by Gouet [18, 19],
Aguech [1], and Bose, Dasgupta, and Maulik [12], and show a.s. convergence for
triangular urns with any (finite) number of colours, allowing replacements &; that are
both random and unbalanced. Our main result is the following, using the technical
assumptions (A1)—(A5) in Section 2.1 and the notation defined in (2.7)-(2.13) in
Section 2.4 below. See also the extensions Theorems 8.4 and B.1 where the technical
assumptions are weakened (allowing urns with subtractions and reducing our moment
assumption, respectively); since the proof of the theorem is rather long and we want
to focus on the main ideas, we use first the conditions (A1)-(A5) (which suffice for
many applications), and add later the extra arguments needed for the extensions.

Theorem 1.8. Let (Xyi)ieq be a triangular Pdlya urn satisfying the conditions
(A1)—(A5) below. Then, for every colour i € Q, there exists a random variable X,
with 0 < XA, < 0 a.s. such that as n — o0:
(i) If A >0, then
% 25 X, (1.3)
nN /M ogTin

(ii) If X =0, then

Xni  as. o
nfi;/Z;o — i (1.4)

Note that the exponent +; may be both positive and negative; see the examples
in Section 14. Note also that the various exponents in (1.3) and (1.4) are explicitly
given in Section 2.4, but the limiting random variables XAZ are known only in some
special cases; in general they are unfortunately unknown.

The virtue of Theorem 1.8 is that it is very general, but as discussed in the remaks
below, more precise results are known in some special cases.

In Theorem 1.8, the main case is (i), A > 0, and the reader should focus on this
case. The case A\ = 0 is more special and of less interest for applications, but it
is included for completeness; by (2.10) and (2.7), this case occurs when &; = 0 for
every i € Q. (We might call such urns strictly triangular.)
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Another major result in the present paper (Theorem 12.5) says in particular that in
the special case of balanced triangular urns, if the replacements have finite moments,
then the a.s. limits in Theorem 1.8 hold also in LP for any p < 00, and thus moments
converge. (It is an open problem whether this extends to some class of unbalanced
triangular urns.)

Remark 1.9. Theorem 1.8 describes the first-order asymptotics of the urn. We will
see in Section 7 that the limiting random variable X, is deterministic (i.e., a constant)
in some cases, but not in general. In cases where Theorem 1.8 yields a limit ./'\A,’Z that
is deterministic (and perhaps also otherwise), it is interesting to study fluctuations
(i.e., second order terms) and try to find limits (e.g. in distribution, after a suitable
normalization) for the difference of the two sides of (1.3) or (1.4). Such results in
some cases are given in [19], [28] and [1]; see the examples in Section 14, but we will
not pursue this problem here, and leave it as an open problem. A

Remark 1.10. Convergence almost surely implies convergence in distribution. Thus,
as a corollary, (1.3) holds also with convergence in distribution. However, our proof
does not seem to provide a method to find the limit distribution, L.e. the distribution
of Xj;, except in some very simple cases. Moreover, the limits A; are (in general)
dependent.

For ¢ = 2 and deterministic &;;, limit distributions were given in [28]. (Sometimes
degenerate, sometimes not.) The results there thus describe the distribution of X
in this case, although the descriptions in some cases are complicated. Some further
examples of known limit distributions are given in some examples in Section 14. We
leave the general case as another open problem. A

The proof of Theorem 1.8 is given in Sections 3-5 below, after some preliminaries
in Section 2. The proof is based on the embedding by Athreya and Karlin [3] of
a Polya urn into a continuous-time multitype branching process (Section 2.6); we
then apply martingale methods to obtain a continuous-time version of Theorem 1.8
(Theorem 4.1); finally, this implies results for the embedded discrete-time urn. The
proof is generalized to urns with subtraction in Section 8, and to urns with a weaker
moment condition in Appendix B. Since the proofs are rather long and technical, we
prefer to first present the proof in the basic case Theorem 1.8 (which is enough for
most applications) and later discuss the modifications required for the extensions,
instead of proving the most general results immediately.

Remark 1.11. Gouet [18, 19] and Bose, Dasgupta, and Maulik [12], in special cases
(see Example 14.3 and Example 14.12), instead study X,,; directly and use martingale
metods in discrete time. It seems that this approach (also used by several authors
for non-triangular urns) works well for balanced urns, but that the embedding into
continuous time works better for unbalanced urns. A

Remark 1.12. We consider in this paper only triangular Pdélya urns. Another
important class of urns consists of the irreducible urns. In this case a.s. convergence
(under some technical conditions) was shown by Athreya and Karlin [3], see also [4,
Section V.9.3] and [27, Theorem 3.21].

It might be possible to combine the methods of the present paper and the meth-
ods for irreducible urns to obtain results on a.s. convergence for all types of Pélya
urns (under some technical conditions), see Remark 2.3, but the present paper is
long as it is and we leave this as a speculation for future research. (Note also the
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counterexamples Example 14.14 and 14.15, showing that some conditions are needed
even in the triangular case.) A

1.1. Contents. Section 2 contains preliminaries, including some definitions and no-
tation. Section 3 consists of a series of lemmas that comprise the main technical
part of our proofs. They lead to the main theorem for continuous time in Section 4,
which in turn is used to prove Theorem 1.8 in Section 5. Sections 6 (continuous
time) and 7 (discrete time) contain results on whether the limit random variable are
degenerate (i.e., constant) or not, and some related results.

Section 8 extend the previous results to urns with subtracion, where we allow
&; = —1. With some extra technical conditions, the previous results hold in this
case too, with only minor modifications of the proofs.

The following sections contain some complements. Section 9 is a short section
comparing random and non-random replacements with the same means.

Section 10 contains some general results on balanced urn, mainly as preliminaries
to the following sections.

Section 11 considers the number of times a given colour is drawn; it is shown that
the results of earlier sections extend to this case.

Section 12 contains results on convergence in L? and in LP, and closely related
results on convergence of moments in, for example, Theorem 1.8. For the main
result (discrete-time), we have to assume that urn is balanced, and we state an open
problem for more general urns.

Section 13 discusses briefly another open problem (rates of convergence).

Section 14 contains a number of examples that illustrate the results and their
limitations, and also give connections to previous literature.

Finally, Appendix A contains some simple general lemmas on absolute continuity
that we believe are known, but for which we were unable to find references. Ap-
pendix B gives proofs of LP versions of L? estimates used in the main part of the
paper; this yields both the extension of Theorem 1.8 mentioned above, and a proof
of the results in Section 12. Appendix C gives a rather technical proof of one claim
in Example 14.14.

2. SOME NOTATION AND OTHER PRELIMINARIES

We use throughout the paper the notation Q, ¢, X,, = (Xni)ieQ, @i, and §; =
(&i5)jeq introduced in the introduction.

2.1. Standing assumptions. In the rest of the paper we assume
(A0) The Pdlya urn is triangular.

(Unless we explicitly say so, for example when we discuss this property in Sec-
tion 2.3.) For the central part of the paper (Sections 2-7) we make also some
standing technical assumptions:

(A1) The initial urn Xy is non-random. Moreover, each Xy; = 0 and > a;X¢; > 0.
(The results may be extended to random X by conditioning on Xj.)

(A2) If a; = 0, then & = 0, i.e., &; = 0 for every j € Q. (This is without loss
of generality, since a; = 0 means that balls of colour i never are drawn, and
thus &; does not matter.)

(A3) For every i € Q, either Xo; > 0, or there exists j # ¢ such that P(¢;; > 0) > 0
(or both). (This too is without loss of generality, since otherwise balls of



ALMOST SURE AND MOMENT CONVERGENCE FOR TRIANGULAR POLYA URNS 7

colour ¢ can never appear, so X,; = 0 a.s. for all n, and we may remove the
colour ¢ from Q.)

(A4) Ef% < o for all 7,5 € Q.

(A5) &; >0 (as.) forall 4,5 € Q.

Note that (A5) implies that every X,; is (weakly) increasing in n. In particular,
the urn never gets empty. Combined with (A1) we see that ), a; X,; > 0 for every
n, and thus the probabilities (1.1) and the urn process are well defined. We discuss
extensions to urns not satisfying (A5) (i.e., urns with subtractions) in Section 8; see
Theorems 8.4-8.6.

Remark 2.1. The second moment condition (A4) is for technical convenience. In
fact, the results (including Theorem 1.8) hold assuming only E fj < oo for some
p > 1. However, this adds further arguments to an already long proof, so we assume
second moments in the main part of the paper and show the extension to p > 1 in
Appendix B.

It seems possible that the results could extend further by assuming only that
E¢&;jlogé&; < o, as for diagonal urns in [2] using related results for (single-type)
branching processes [4, Theorem III1.7.2]. (The results do not extend without modi-
fications to cases without this assumption, see Example 14.16.) We have not pursued

this, and leave it as an open problem. A

2.2. General notation. As usual, we ignore events of probability 0. We often write
“almost surely” or “a.s.” for emphasis, but we may also tacitly omit this.

We use “increasing” in the weak sense. Similarly, “positive function” means in the
weak sense, i.e. > 0. (However, “positive constant” always means strictly positive;
we sometimes add “strictly” for emphasis, but not always.)

We let s A t:=min{s,t} and s v ¢ := max{s, t}.

We let Z>o :={0,1,2,...} and Z; :={1,2,...}.

We use =2, L, and % to denote convergence almost surely, in probability, and
in distribution, respectively.

“Absolutely continuous” (for a probability distribution in R or R?) means with
respect to Lebesgue measure. (Except in Appendix A when a reference measure is
explicitly specified.) We may say that a random variable is absolutely continuous
when its distribution is.

We use some standard probability distributions: Exp(\) is an exponential distri-
bution with mean A > 0; we may also say with rate 1/A. I'(«,b) is a Gamma distri-
bution. (Thus Exp(A) = I'(1, A).) Be(p) is a Bernoulli distribution. NegBin(r,p) is
a negative binomial distribution. Ge(p) is a geometric distribution on {1,2,...}.

For a random variable W, we let £(WW) denotes the distribution of W, and, for
any p > 0,

W, = (E W), (2.1)

LP denotes the set of all random variables W such that ||[W{|, < .

C denotes unspecified constants that may vary from one occurrence to the next.
They may depend on the activities a; and the distributions of the replacements &,
and perhaps on other parameters clear from the context, but they never depend on

n or t.
Let

Tij = E&] (22)
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Thus the matrix (r;;); jeq is the mean replacement matrix. Note that 7;; exists and
is finite by (A4). By (A5), we have rj; > 0, and 75 = 0 < &;; = 0 a.s.

We occasionally (when we discuss two different urns at the same time) denote a
Pélya urn by U; we then (somewhat informally) mean both the urn process X,, and
its continuous-time version X(¢) defined below, and also the colour set Q and the
replacement matrix (&;).

2.3. The colour graph. (In this subsection, the urn does not have to be triangular.)
Recall that Q is the set of colours. As said in the introduction, we allow Q to be any
finite set, although it is possible to assume Q = {1,..., ¢} without loss of generality
when this is convenient.

We regard the set Q of colours as a directed graph, called the colour graph, where
for any distinct i, j € Q there is an edge @ — j if and only if P(&;; # 0) > 0. In other
words, i — j means that if a ball of colour ¢ is drawn, it is possible (with positive
probability) that some balls of colour j are added. Note that by (A2), i — j entails
a; > 0, so balls of colour ¢ may (and will) actually be drawn; furthermore, by (A5),

i—j <= r;;>0and i #j. (2.3)

We say, again for two distinct colours i, j € Q, that i is an ancestor of j, and j a
descendant of i, if there exists a directed path in Q from i to j; we denote this by
1 < j. In other words, ¢ < j means that if we start the urn with only a ball of colour
1, then it is possible that balls of colour j are added at some later time.

If i € Q, let P; := {j € Q:j — i}, the set of colours different from i whose
drawings may cause addition of balls of colour i. We say that the colour ¢ is minimal
if P, = . We denote the set of minimal colours by Quin. Note that (A3) can be
formulated as: Xg; > 0 for every i € Qmuin.

We say that the urn is t¢riangular, if there exists a (re)labelling of the colours
by 1,...,q that makes the matrix (&) jeq triangular a.s. (Assuming (A5), this is
equivalent to the mean replacement matrix (r;;); jeq being triangular, cf. (2.3).) In
other words, the urn is triangular if there exists a total ordering < of the colours
such that

i>j = & =0 as. (2.4)
Using the definitions above to rewrite (2.4), we see that the urn is triangular if
and only there exists a total ordering < such that, for i, j € Q,
1] = 1<]. (2.5)
Furthermore, this is equivalent to
i<j] = i<]. (2.6)
Proposition 2.2. The following are equivalent.

(i) The urn is triangular.
(ii) The colour graph is acyclic.
(iii) The relation < on Q is a partial order.

Proof. (i) implies (ii) and (iii) as a consequence of (2.5) and (2.6).

(ii) <= (iii) is easily seen.

Finally, any partial order can be extended to a total order. Thus, if (iii) holds,
we may extend < to a total order <, which means that (2.6) holds. U
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Note that if the urn is triangular, a colour ¢ is minimal if and only if it is minimal
in the partial order <.

Remark 2.3. We may also note that a Pélya urn is irreducible if and only if its colour
graph is strongly connected. Given any Pdlya urn, we may decompose its colour
graph into its strongly connected components, which are linked by the remaining
edges in an acyclic way. Hence the urn can be regarded as an acyclic directed network
of irreducible urns. This suggests, as mentioned in Remark 1.12, that the methods
in the present paper perhaps might be combined with methods for irreducible urns
to obtain results for general urns. A

2.4. More notation. Let, for i € Q,
)\i = QT = CLzEgu = 0. (27)

In the continuous-time version introduced below, A; is the rate of additions to colour
1 by drawings of the same colour. Since colours also may be added by drawings of
another colour, we define further

A r=max{);:j <} = 0. (2.8)

In other words, A} is the largest A; for a colour j such that there exists a path
(possibly of length 0) in Q from j to ¢. Such a path may contain several colours k
with the same, maximal, Ag, and we denote the largest number of them in a single
path by 1 + k;; i.e.,

ki i=max{r: Jy <ig < - <dgpr S with Ny, ==X\, = AT} >0, (2.9)
Define further
X = max{\; i€ Q} =0, (2.10)
7= max{r; 1 i € Q and A\* = A}
— max{r : Fig < iz < - <igp1 With Ay == A, = A} = 0. (2.11)
If A =0 (ie., if \; = 0 for every i € Q), let further
Ro =1+ max{k; : i € Q with a; > 0} > 1. (2.12)
If\> 0, define also
Vi = ki — RAN, ieQ. (2.13)

2.5. Stochastic processes. All our continuous-time stochastic processes are de-
fined on [0, 00) and are assumed to be cadlag (right-continuous with left limits).
We consider martingales without explicitly specifying the filtration; this will al-
ways be the natural filtration (F)¢>0, where F is generated by “everything that has
happened up to time t”. If T is a stopping time, then Fr denotes the corresponding
o-field generated by all events up to time 7.
Given a stochastic process W = (W (t))¢=0, we define its maximal process by
W*(t) := sup |[W(s)], 0<t< . (2.14)

<s<t
(We consider only s < o0, also when ¢ = 00.) We further define
AW (t) := W(t) — W(t—), 0<t<o, (2.15)
where W (t—) is the left limit at ¢, with W (0—) := 0.
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If W is a process with locally bounded variation, we may define its quadratic
variation by

W, W)= Y [AW(s)]?,  0<t<om, (2.16)

0<s<t

(summing over s < oo if £ = o0), noting that the sum always really is countable.
(We have no need for the definition for general semimartingales, see e.g. [32, p. 519
and Theorem 26.6] or [42, Section I1.6].) Recall [42, Corollary 3 to Theorem 11.6.27,
p. 73] that if M is a local martingale and E [M, M]; < oo for some ¢t < o0, then

E|M(t)]* = E[M, M];, (2.17)

and as a consequence, if E[M, M], < o, then M is an L?>-bounded martingale and
thus M (o0) := limy_,o M (t) exists a.s., and (2.17) holds for all ¢ < co.

Recall also Doob’s inequality [32, Proposition 7.16] which as a special case yields,
combined with (2.17),

EM*(t)> < CE|M(t)|* = CE[M, M];, (2.18)
provided E[M, M]; < . (Here C' = 4, but we will not use this.)

2.6. Continuous-time urn. We will use the standard method of embedding the
discrete-time urn in a continuous-time process, due to Athreya and Karlin [3], see also
[4, §V.9], and after them used in many papers. We thus define the continuous-time
urn as a vector valued Markov process X(t) = ((X;(t))ieq with given initial value
X(0) := Xy such that, for each i € Q, “a ball of colour ¢ is drawn” with intensity
a; X;(t); when a ball of colour i is drawn, we add to X(¢) a copy of &, (independent
of the history). In the classical case (e.g. [3]) when each X;(t) is integer valued, X(t)
is a multitype continuous-time Markov branching process; in general (allowing any
real X;(t) = 0), X(¢) is a (vector-valued) continuous-time continuous-state branching
process (abbreviated CB process) as defined by Jifina [30], see also e.g. Li [37]. (The
process X(t) is of jump-type, as in [30, Section 3].) Note that (A4) implies E;; < o0
for all 4,5 € Q, which is a well-known sufficient condition for non-explosions; i.e.,
there exists such a process X(t) with X(t) finite for all ¢ € [0, o).

Since a;X;(0) > 0 for some 7 by (A1), and X;(¢) is increasing by (A5), there will

a.s. be infinitely many draws in the urn. We let T}, be the nth time that a ball is
drawn, with T := 0. Then the discrete-time urn X,, in Section 1 can be realized as

X, = X(T},). (2.19)

We assume (2.19) throughout the paper.

Since X(t) does not explode, there is a.s. only a finite number of draws up to any
finite time ¢, and thus fn 2% o as n — . Note that we denote the discrete-time
urn by X,, = (X,;); and the continuous-time urn by X(t) = (X;(t));.

Of course, the continuous-time urn can also be studied for its own sake, see for
example [13].

3. ANALYSIS OF ONE COLOUR

In this section, we study one fixed colour i € Q in the continuous-time urn.

Recall that X;(t) is the number (amount) of balls of colour i at time ¢ in the
continuous-time urn. There are several possible sources of these balls: some may be
there from the beginning, some may be added when a ball of some other colour j is
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drawn (with j — ¢ and thus j < ), and in both cases these balls of colour ¢ may
later be drawn and produce further generations of balls of colour i (provided A; > 0).

We begin by considering, in the following two subsections, two simpler special
cases. We will then in the final subsection, rather easily, treat the general case by
combining these special cases.

We first state some simple general results; these are more or less known, see e.g.
[27, Lemma 9.3] for a related result, but for convenience we give full proofs.

Fix a colour j. Let 0 < 171 < 15 < ... be the times that a ball of colour j is
drawn, and let N(t) := ‘{k Ty < t}‘ denote the corresponding counting process;
i.e.,, N(t) is the number of draws of colour j up to time t. These draws occur with
intensity a;X;(t), which means that

N(t) := N(t) — aj Lt X;(s)ds, t =0, (3.1)

is a local martingale. In fact, N (t) is a martingale, which we verify by the following
simple lemma. Recall the notation (2.14).

Lemma 3.1. Suppose that E X;(t) < o for some t € [0,0). Then,
EN(t) < oo, (3.2)
EN*(t) = E sup |N(s)| < oo. (3.3)
s<t

In particular, if EX;(t) < oo for every t < oo, then the local martingale N(t) is a
martingale.

Proof. By the definition of local martingale, there exists an increasing sequence of
stopping times 7,,, m = 1, such that 7,, /" 00 a.s. as m — 00, and N(t A 73,,) is a
martingale for each m. In particular, since N(0) = 0,

tATm tATm

Xj(s)ds = a; E f X;(s)ds. (3.4)

EN(t A ) =EN(tATm)+ajEJ
0

0

Since N(t) and X;(t) are increasing positive functions of ¢, we may use monotone
convergence and let m — o0 to obtain

EN(t) = o, E Lt X;(s)ds < 0 E [tX;(1)] < . (3.5)
The monotonicity of N(t) further implies
N*(t) < N(t) + a ﬂ X,(s)ds < N(t) + aytX;(t), (3.6)
and thus (3.3) follows by (3.5).

The final statement follows since a local martingale with integrable maximal func-
tion is a martingale. O

Lemma 3.2. Suppose that E X;(t) < oo for some t € [0, 0).

(i) Let f be a positive or bounded measurable function on [0,t]. Then

EZ1{Tk<t}ka ff )AN(s) = a; E jf . (3.7)
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(ii) Let also (i)Y be a sequence of identically distributed random variables with
finite mean Em such that ng is independent of T. Then

E S 1 e F(TL)me = a]EmEf £(5)X;(s) ds. (3.8)
k=1

Proof. Step 1. The left and middle terms in (3.7) are the same, since SO s)dN(s) =
Yire1 Lin.<i f(Tk) by the definition of N.

Step 2. Suppose that f(s) = 1{;<s<p}, the indicator function of an interval (a,b] €
[0,¢]. Then, by (3.1),

Jf )dN (s —a]ff ds—ff )dN(s) = N(b) — N(a), (3.9)
and E[N(b) — N(a)] = 0 by Lemma 3.1; hence (3.7) holds for such f.

Step 3. The monotone class theorem [21, Theorem 1.2.3] now shows that (3.7) holds
for the indicator function f(s) = 1,4y of any Borel set A € [0,].

Step 4. By linearity, (3.7) holds for any positive simple function f. Then, by mono-
tone convergence, (3.7) holds for any positive measurable function, and by linearity
again for any bounded measurable function. This proves (i).

Step 5. In (ii), we may decompose 7y into its positive and negative parts; thus it
suffices to consider 7 = 0. Then the sum in (3.8) is well-defined, and

o0 o0
E Z Yyn<ey f(Tk)n Z [Lir<tyf (Ti)mw| = Em Z |11, <y f(T1)], (3.10)
and (3.8) follows from (3.7). O

3.1. A colour not influenced by others. In this subsection, we assume that
&ii = 0 a.s. for all colours j # i. Equivalently, j 4> i for j € Q, i.e., P; = J; in
other words, ¢ is a minimal colour. This means that X;(¢) is affected only by draws
of the same colour ¢, and we may thus ignore all other colours and regard X;(t) as a
continuous-time urn with a single colour. In other words, X;(¢) is a one-dimensional
CB process, starting at some given X;(0) and adding copies of &; with intensity
a; X;(t). We write X;(0) = zp. Note that our assumption (A3) means xy > 0, but
for completeness we allow also the trivial case g = 0 in the present subsection. (In
this subsection, we really use only the assumptions (A1), (A4), and (A5), and only
for the colour i.) Note also that A} = \; by (2.8).

We will only need a few simple facts about CB processes; see further e.g. [30; 36;
20; 9; 37] where many more results are given.

Recall that A\; = a;ry. If A; = 0, then there are no additions at all, and X;(t) =
Xi(0) = ¢ is constant.

It is easy to see that since ry; < oo, the CB process X;(t) is well defined and non-
explosive (i.e., finite for all ¢), for any given z¢g = 0. Moreover [20], [9, Proposition
2.2,

E X;(t) = eMilag. (3.11)
This implies by conditioning and the Markov property that [4, Theorem III.7.1]
e 'X;(t) is a martingale. (3.12)
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The following result too well known, but we include a proof for completeness, and
since we discuss modifications of it later. See e.g. [4, Theorem V.8.2] and [27, Lemma
9.5] for a vector-valued extension.

Lemma 3.3. Suppose that &j; = 0 a.s. for all j # i. Then e 'X;(t) is an L>-
bounded martingale, and thus

e MEXG (1) 25 (3.13)
for some random variable X;. Furthermore, with zo = X;(0),
Var &; = xo IE{“, (3.15)
where we interpret % as 0. Hence
Var[e_)‘itXi(t)] < Var X; < Cuy, (3.16)
2
E ‘Sup e’)‘itXi(t)‘ < CEX2 < Clao + 22). (3.17)
=0

Furthermore, if xqg > 0, then 0 < X; < 00 a.s.

Proof. The case A\; = 0 is trivial, with X; = 9. The same holds if xyp = 0. We may
thus assume A; > 0 and zg > 0.

We argue as in [27, Section 9]. As above (now taking j =i),let 0 <11 < T <.
be the times that a ball of colour i is drawn, and let N(t) := ’{z T; < t}’ denote the
corresponding counting process- Furthermore, let 7y := AX;(T;) be the number of
balls of colour ¢ added at the k-th draw. Thus 11,79, ... is a sequence of independent
copies of &;;.

Let M(t) := e **X;(t). Then M is a martingale by (3.12), and its quadratic
variation is by (2.16) given by

[M,M]; = Z |IAM (s)|? = 22 + Z T A X (T3))? = 22 + Z —2\iTey,

0<s<t T <t Ti<t
(3.18)
Hence, it follows from Lemma 3.2(ii) that
t
E[M,M]; = 23 + a; E[¢Z] f e PN X (s) ds. (3.19)
0
Hence, writing 3 := E£2, (3.11) yields
t A
E[M,M]; = x% + azﬂxoj e Mt ds = x% + xo%ﬂ(l — e_’\it). (3.20)
0 i

This shows by (2.17) that M is an L?-bounded martingale; thus (3.13) holds for
some X; = M(o0). Clearly &X; = 0. We have E M (w0) = E My = xo, which yields
(3.14). Furthermore, (3.15) holds by (2.17) and (3.20) again, together with (3.14);
this yields also (3.16). Doob’s inequality (2.18) yields (3.17).

Finally, the distribution of X; depends on zg; thus let us denote X; by X;(xo). The

CB property implies that if z,y > 0, then Xj(z +y) = Xl(a:) + X!(y), where X/(y) is
a copy of X;(y) independent of X;(z). Let p(z) := P(X;(x) = 0) € [0,1]. It follows
that for any x,y > 0,

p(z +y) = p(z)p(y), (3.21)
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and thus there exists ¢ € [0, 00] such that
P(X;(z) =0) = p(x) = e, x> 0. (3.22)
We must have ¢ > 0, since otherwise &; = 0 a.s. for any o, which contradicts (3.14).
The Markov property and (3.22) yield, for any ¢ € [0, ),
P(X; =0 Xi(t)) = e, (3.23)
Thus, taking the expectation,
P(X; = 0) = Ee~N), (3.24)

It is clear that if xg > 0 and A; > 0, so a; > 0 and E&; > 0, then there is a.s.
an infinite number of draws, and the (standard) law of large numbers shows that
a.s.

Xi(t) = oo. Consequently, letting ¢ — o0 in (3.23) yields, by dominated conver-
gence,

P(X; = 0) = 0. (3.25)
O

By (3.15), the limit A; is degenerate only in the trivial cases when xzy = 0 or
a; = 0. We note that except in these cases, the limit has an absolutely continuous
distribution.

Lemma 3.4. In Lemma 3.3, suppose further that A; > 0 and xqg > 0. Then the
distribution of X; is absolutely continuous.

Proof. Let T} be the first time that a ball of colour i is drawn; then T € Exp(1/(a;zo)).
The distribution of the balls added at 7} is independent of 77, and thus X;(77) is
independent of 77. It follows by the strong Markov property that the stochastic
process Y (t) := X;(11 +t), t > 0, is independent of 77. By (3.13), we have as
t — o0,

e MY () = MTe MO Xy +4) 25 Y = NN (3.26)
and it follows that ) is independent of T7. Consequently,
X, = e Ny, (3.27)

where the two factors on the right-hand side are independent. The result follows
from (3.27) since e~ has an absolutely continuous distribution and ) > 0 a.s.
(because X; > 0 a.s. by Lemma 3.3). O

3.2. A colour only produced by one other colour. We continue to consider a
fixed colour i. In this subsection we assume that |P;| = 1; thus there is exactly one
colour j € Q such that j — i. We assume also that X;(0) = 0, so there are initially
no balls of colour 7. Recall that the assumption j — 4 means r;; > 0, and thus
implicitly a; > 0.

Since the colour graph is acyclic, there is no feedback from colour ¢ to colour j;
thus we may regard the entire process X;(t), t € [0, ), as known, and consider only
its effect on X;(¢).

We may regard X;(t) as a CB process with immigration. Let again 0 < 77 <
T < ... be the times that a ball of colour j is drawn, and let n1,7,... be the
corresponding number (amount) of balls of colour i that are added. In case there
is only a finite number K of times that a ball of colour j is drawn, we define for
completeness T, = oo for kK > K, and pick 7 with the correct distribution and
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independent of everything else. We regard each 7 as an immigrant coming at T}.
(Some 1 may be 0; this is no problem.) We can separate the descendants of each
of these immigrants, and write

o0

Xi(t) = D) Yi(t—Th) = > LpenYalt — Ti) (3.28)
k:Ti <t k=1

where each Yj(t), conditioned on 7, is a copy of the single-colour CB process in
Section 3.1 with Y;(0) = ng. Furthermore, conditionally on (7y)g, the processes
Y (t) are independent. Recall that the additions 7,72,... are i.i.d. copies of ;i;
in particular, they have expectations En, = 7j. The times T}, are stopping times;
moreover, the process Y}, is independent of T}, and the o-field Fr, .

The following lemma contains much of the technical parts of our argument. It
makes an assumption on the growth of X;(¢) that later will be justified by an induc-
tion argument.

We define, for m € Q,

X (t) =t " me Mt X, (1), 0<t< oo, (3.29)
X5 = sup{(t + 1) "me X, (1)} (3.30)
t=0

We use powers of ¢ in (3.29) and of ¢t + 1 in (3.30) for technical convenience below
(and we therefore use a notation with ** instead of *); the difference is not important
since we are mainly interested in limits as ¢ — 0.

Lemma 3.5. Let i € Q. Suppose that there is exactly one colour j € Q such that
Jj — i, and that X;(0) = 0. Suppose further that

X;(t) 25 X, ast— o, (3.31)
for some random variable X; = 0, and
X5, < oo (3.32)
Then
Xi(t) 2 X, ast— oo, (3.33)
for some X; = 0 and
| X7, < 0. (3.34)

Furthermore, a.s., if X; >0, then X; > 0.

Moreover, if A\; < )\;‘, and thus X} = )\;‘, then

FLEX A< AR
*_ ). ’ ’
we (TR 39
Proof. Using (3.28), and recalling Y% (0) = 7, we make the decomposition
o0
e MX(t) = ) Lpene M (e MY (E - T) — Y3(0)) (3.36)
k=1
0
+ Z 1{Tk<t}6’_)\iTk (M — 7j:) (3.37)

k=1
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» t
+ ’l“ji(Z l{Tkgt}G_)\iTk —J e %a; X (s) ds) (3.38)
k=1 0
t
+ rjiajf e M5 X ;(s)ds (3.39)
0
=: /1 (t) + Zg(t) + TjiZ;),(t) + CLjT’jiZ4(t), (340)

say. We consider the four processes Z;(t) in (3.40) separately (initially, at least).
Moreover, recalling (2.8) and (2.9), we consider sometimes separately the three cases:
(i) A\ > )\;-‘: then Af = \; and x; = 0.
(i) N = )\3‘.‘: then A\ = \;, and k; = k; + 1.
(ii) A; < AJ: then A\f =AY, and k; = ;.
We define, in analogy with (3.29)—(3.30) (but note the different exponents \; —\¥),
for £ =1,2,3,4,

Zo(t) i= t 52D 7, (1), (3.41)
78 = igg{(t + 1) ReQe A Z,(8)] ). (3.42)
Then (3.40) yields

Xi(t) = Zy(t) + Zo(t) + 15 Z3(t) + ajrjiZa(t), (3.43)
X < ZF5 4+ 23 + CZ3 + CZF*. (3.44)

We will prove, for £ = 1,...,4 and some Zy,
Zo(t) 25 2, ast — o, (3.45)
1Z5* )12 < o0, (3.46)

and then (3.33)-(3.34) follow from (3.43)—(3.44).
We treat Z;(t),..., Z4(t) in (3.39) in reverse order, partly because Z4(t) will turn
out to be the main term (sometimes at least).

Step 1: Zy. By (3.39) and (3.30),
t
0< Z4(t) < X]**J (s + 1)“]‘6(/\;‘—)\1‘)5 ds

0
CX¥* = Ot + 1) X, Ai > A%,
<{(t+ 1)”J’“X;‘;* = (t+ DX, A=A (3.47)
Ot + 1) A Ai < AL

It follows that in all three cases (i)—(iii), Z’f* < C’)N(J** In particular, (3.32) implies

1Z3*|, < . (3.48)

For (3.45) we treat the three cases (i)—(iii) separately, in each case using (3.41)
and (3.29)—(3.30). First, in case (i), we let t — o0 in (3.39) and (3.47) and conclude
that a.s.

~ w ~
Zy(t) = Zy(t) = Zy(0) := f e M5 X (s)ds < CX;* < oo, (3.49)
0
Hence
Z4(t) 25 24 = Zy(0). (3.50)
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Note that if X; > 0, then X;(¢) > 0 for large ¢, and thus Z, = Z4(c0) > 0 by (3.49).
In case (ii), we have for ¢ > 1, using the change of variables s = xt,

t
Zy(t) =t Zy(t) = t“a‘lf 5" X;(s) ds
0

~

1 1
— t*“jfl J S“J‘Xj(s) ds + f xanj(.Tt) dx
1

0 Jt
1
— 0+ f X dr = (kj + 1)1 = kA, (3.51)
0
by (3.31) and dominated convergence, which applies since (3.29)—(3.30) show that
Supgs1 Xj(s) < 2WXT* < o0 as.
In case (iii), similarly, now with s =t — u,

~

t
Zy(t) = t“je(’\i)‘?)tfo s”je()‘ff)‘i)sz(S) ds

t J— K4 ~
:f (t tu) Tem T A (- w) du

*J MU du = (XF - M) LA, (3.52)
using dominated convergence again, justified by, for t > 1,
t—u\ i t—u+ 1\A o ~
(%)Kjxj(t —w) < (%)“Xj* < 29X < o0, (3.53)

We have thus shown (3.45) and (3.46) for ¢ = 4 in all cases, with Z; > 0 when
X; > 0. Furthermore, in cases (ii) and (iii), we have

-1y S Zk
2, = {“i & Ai = A (3.54)

(/\;< — )\Z‘)_l.)(j, N < )\;k

Step 2: Zs, first part. We have, recalling (3.1),

t
Z(t) = f =N AN (s), (3.55)
0
which is a local martingale since N (t) is; in fact it is a martingale since
t
ZE(t) < N(t) + a]f e N X(s) ds < N(1) + X, (1), (3.56)
0

and thus E Z3(t) < o by Lemma 3.1, noting that the assumption (3.32) implies
E X;(t) < oo for all t > 0. Since Z3(t) has locally bounded variation and jumps only
at the times Ty, with AZ3(T;) = e~ Tk, its quadratic variation is

Q0

t
[Z3, Z3); Z Ly <pe” 2T = f e NS AN (s). (3.57)
0

The draws T}, occur with rate a;X;(t), and it follows by (3.57) and Lemma 3.2 that,
recalling (3.30),
t
E|Z5(t)|? = E[Z3, Z3]s = a; E f e P X(s) ds
0
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¢
< aj IEXJ’-“*J (s + 1)7i e =225 g5, (3.58)

0
The rest of the argument will be the same for Z5 and Zi, so we first consider them.

Step 8: Zs, first part. Each term in the sum (3.37) is a martingale, since T} is a
stopping time, and 7, —r;; has mean 0 and is independent of the o-field Fr,. Hence,
the sum Zs(t) is at least a local martingale (since stopping at any T} yields a finite
sum and thus a martingale). Since Z(t) jumps only at the times T}, and is constant
in between, its quadratic variation is given by

o0
[Z2, Zo): = Z Lim<nye” Nk (g — r50)° (3.59)
k=1

Hence, again using the independence between 7 and Ty,

o0
E[Zs, Z2): = 2 E [1{Tk<t}€_2’\iT’“] E [(ms —15:)?]
k=1

o
= Var[n | E Z 1{Tk<t}e_2>‘iT’“. (3.60)
k=1

We recognize the final sum from (3.57), and conclude
E[Zs, Zs); = CE [Zs3, Z3):. (3.61)

Step 4: Z1, first part. We write the sum in (3.36) as Z1(¢) = > 1, Z{k) (t), with
ZW (1) = Loy e M (N TV (E - Ty) — Yi(0)). (3.62)

It is easily seen that each Z}k) (t) is a martingale, since T} is a stopping time and

e NitY},(¢) — Y3 (0) is a martingale starting at 0, which furthermore is independent of
Fr,. Hence, for every finite m > 1, the finite sum
m
< k
ANEIOEYWARI) (3.63)
k=1

is a martingale, and thus Z1(t A T},) = ZFm] (t AT)y,) is a martingale. Consequently,

Z1 is a local martingale. Furthermore, conditioned on all T} and 7, the processes
ka) (t) are independent and thus a.s. they jump at different times. (Note that
ka)(O) = 0.) Hence, by (2.16),
a0
(21, Z1)e = D27, Z(M), (3.64)
k=1
and thus, using (3.62) and (2.17) again together with (3.16),

k k
E[[27, 2%, | (T, )]

8

E[[Z1, Z1]e | (Thy )] =

b
Il
—

I
8

1{Tk<t}€_2/\iTk Var[e_)‘i(t_Tk)Yk(t — Tk) ’ Tk, Uk]

b
Il
—

Lz <ppe M COny. (3.65)

/A
s

x>
Il
—
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This yields, by taking the expectation,

e}
E[Z1,Z1]: < CE ) Ly <pe N, (3.66)
k=1

This is the same sum as in (3.57), and we conclude

E[Z:, Z:); < CE[Zs, Z3);. (3.67)

Step 5: Z1,Z5,Z3, final part. Let ¢ € {1,2,3}. In all three cases, Z,(t) is a local
martingale such that, by (3.61), (3.67), and (3.58), for ¢ € [0, %0),

t
E[Zs, Z4): < CE[Z3, Z3); < CIEX;*J (s + 1)Fi e =225 g, (3.68)
0

In particular, (3.68) shows that E [Zy, Zy]; < oo for every ¢ < co, and thus Z(¢) is a
square integrable martingale, and E | Z,(t)|> = E[Z, Z¢]+-
We now consider another partition into three separate cases for )\;‘-‘ and \;.
(i) A} < 2X\.  Then we can let t — o0 in (3.68) and obtain E[Z;, Zy]oo < 0.
Consequently, Z,(t) is an L?-bounded martingale, and thus

Zo(t) 22 Zy(o0) < oo, as t — oo, (3.69)

and Z}(o0) = sup,sq | Ze(t)| € L?. Furthermore (as always), Af > \;, and thus (3.42)
implies Z;* < Z(0); consequently, ||Z;*|]2 < .

We consider two subcases, recalling the cases discussed at the beginning of the
proof:

(i'a) Case (i), A\; > A*. Then A} = \; and r; = 0; hence (3.41) yields Zy(t) = Z(t)

and thus (3.69) yields Zy(t) — Z; := Zy(0) a.s.
(i'b) Case (ii) or (ili), \i < A}. Then Af > X; or x; > 1 and thus (3.41) and

(3.69) yield Zy(t) — Z; := 0 a.s.
(i) A7 = 2X; and A} > 0. Let, for n > 1,

ZI(n) = sup (t+1) "X Z,(1)). (3.70)

n—1<t<n
It follows from Doob’s inequality (2.18) and (3.68) that, with C' := C’E)Z']’-“*,
E Zg(n)Q < On 220 AN Z}(n)?

n~ 2 2NN E [ Z), Z)

Q

<

n

— o, ok C(ZF_o)\.

< On 2rig2(i—A] )nf (s + 1)R36(AJ 223 45
0

< én—Qﬁi eQ(Ai—)\j)nnHj +1€()\;‘—2)\i)n

We have always \f > )\;‘, and thus, in the present case, )\;‘-‘ —2)\F < —)\3‘-‘ < 0. Hence
(3.71) yields

o0 a0
E Y Zi(n)? = > EZ(n)? <. (3.72)
n=1 n=1
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Consequently, a.s. Zg(n) — 0 as n — o0, which by (3.41) and (3.70) means Zy(t) — 0
as t — 0. Moreover, (3.42) implies

o0
~ 2 ~
(Ze*)" < ). Z}(n)?, (3.73)
n=1
and thus (3.72) implies also HZE‘*HQ < 0.

(iii") A7 = A; = 0. In this case we have A} = 0 and x; = ; + 1. Let, for n > 1,
ZEn) =  sup e Z(4) = sup TN Z(8). (3.74)
2n71<t<2n 2n71$t$2n

Similarly to (3.71), it follows from Doob’s inequality and (3.68) that
2n

E Z}(n)? < G220 +1n f (s +1)"% ds < O2~ (0D, (3.75)
0
Hence,
Q0 - 0 N
E Y Zi(n)?*= ) EZi(n)? <, (3.76)
n=1 n=1

and the rest of the argument is as in the preceding case, now using
0
(Zi) < 2;()* + ) Zi(n)? (3.77)
n=1

and noting that IEEZ;(l)2 < o0 by (2.18) and (3.68).
We have shown that (3.45) and (3.46) hold for ¢ < 3 in all cases, with Z;, = 0
except in the case (i).

Step 6: Conclusion. We have shown that (3.45)—(3.46) hold for every ¢; consequently,
(3.33)-(3.34) hold by (3.43)(3.44).

Moreover, in cases (ii) and (iii), Zy = 0 for £ = 1,2, 3, and thus &; = a;r;j; Z4; this
yields (3.35) by (3.54), which in particular shows that X; > 0 when X; > 0 in these
cases.

It remains to show A; > 0 when X; > 0 in the case (i), i.e., when A; > A¥. In this
case A} = \; and k; = 0, and thus by (3.29) and (3.28),

a0
)N(z@) = 67)‘itXi(t) = Z eiAitl{Tkgt}Yk(t - Tk). (378)

k=1
Moreover, if X; > 0, then liminf; ,, X;(t) > 0 and thus a.s. there is an infinite
number of draws of colour j, and thus all T} are finite. Let K be the (random)

smallest &k such that n, > 0; such k exist a.s. since En, = r;; > 0 by assumption.
Then (3.78) implies

Xi(t) = e MR 1o e TR Y (t — Ty), (3.79)

which a.s. has a strictly positive limit by conditioning on K and applying Lemma 3.3
to Y. We have already shown that the limit &; in (3.33) exists a.s., and (3.79) then
shows X; > 0 a.s. O

If A\; < A}, then A&; is determined by A}, see (3.35). On the contrary, if A; > A7,
then &; is not determined by X, as shown in the following lemma.
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Lemma 3.6. If \; > /\;-‘ in Lemma 3.5, then the distribution of X; conditioned on
X; is non-degenerate. In fact, then the conditional distribution L(X; | X)) is a.s.
absolutely continuous.

Proof. Since A; > A}, we have (3.78). Condition on the entire process (X;(?))i=0
and on all Ty and 7n; then the terms in the sum in (3.78) are independent, and, as
t — o0, each term converges a.s. by Lemma 3.3 to a limit that by Lemma 3.4 has
an absolutely continuous distribution when 7, > 0. Since a.s. n; > 0 for infinitely
many k, it follows that the limit is a.s. (conditionally) absolutely continuous. Since
(X;(t)): determines A, this implies (by Lemma A.1) that the distribution a.s. is
absolutely continuous also if we condition only on X;. ([l

3.3. The general case for a single colour. We have in the preceding subsections
considered two special cases. We consider now a single colour 7 in a general triangular
urn. We continue to use the notations (3.29)—(3.30). Recall also that P; := {j € Q :

Jj— i}

Lemma 3.7. Let i € Q, and assume that for every j € P;, we have

X;(t) 25X ast — o, (3.80)
for some random variable X; = 0, and
1 X5, < oo (3.81)
Then
Xit) 25 5 ast— o, (3.82)
for some X; = 0 and
X7, < . (3.83)

Furthermore, a.s., if X; >0 for every j € P;, then X; > 0.

Proof. If P; = (J, we are in the situation of Lemma 3.3. Moreover, in this case
X;(0) > 0 by our standing assumption (A3). Consequently, in this case the result
follows from Lemma 3.3. (Note that A\ = A; and x; = 0 by (2.8) and (2.9).)

In general, we separate the balls of colour i according to their original reason
for existing. Formally, we split the colour 7 and replace it by several “subcolours”
(or shades); we define one subcolour labelled i, and an additional subcolour i; for
each j € P;. These subcolours have the same replacement vector &; as i, with the
modification that new balls of colour i always get the same subcolour as the drawn
ball. Also, balls of colour 7 that are added when a ball of some other colour j is
drawn get the subcolour i;. Furthermore, all balls of colour 7 at time 0 get subcolour
1p. In other words, ig is used for descendants of the balls with colour 7 in the urn at
the beginning, and i; are used for balls of colour ¢ that eventually descend from a
ball of colour j. Note that 79 is minimal, while P;; = {j}.

We thus have

Xi(t) = Xip(t) + . X, (1) (3.84)

JeP;
Moreover, in the modified urn with subcolours instead of colour 4, the subcolour g
is of the type in Section 3.1 (possibly with 2y = 0), and each subcolour i; (j € P;) is
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of the type in Section 3.2. Hence, Lemmas 3.3 and 3.5 apply, using our assumptions
(3.80)—(3.81). It follows from (2.8) that
A=A, (3.85)
)\:; = )\i \Y% )\;?, j € Pi. (3.86)

In particular, for every j € P; U {0}, we have )\;"j < AF. Furthermore, if P; # ¢, then
Ar = Ai vmax{A] : j € P;} = max{\] : j€P;}. (3.87)

Moreover, (2.9) yields k;, = 0, and implies also that if A;"j = A, then r;; < ;.
Hence, for every j € P; u {0}, and for all large ¢ (at least),

*
-

e N <t Me (3.88)

Consequently, it follows from (3.84) and the definition (3.29) that, at least for large
2

Xi(t) < Xio(8) + Y X, (b), (3.89)
JEP;

and furthermore, using also (3.13) and (3.33),

X)) =5 = YL XL e - (3.90)
jeP;u{0} !

This shows (3.82).

—\¥
Similarly, (¢ + 1) rie= Mt < Ot + 1) e 5t for every j € P; u {0} and every
t > 0, and thus (3.84) and (3.30) imply

X <CXpr+0 ), X (3.91)
JeP;
Hence, (3.83) follows from (3.17) and (3.34).
Finally, assume &; > 0 for every j € P;. If P; = ¢J, then, as remarked above,
X; > 0 a.s. by (A3) and Lemma 3.3. On the other hand, if P; # ¢, then X;, > 0 for

every j € P; by Lemma 3.5. By (3.87) and (2.9), there exists some j € P; such that
()\’Tj’K/ij) = (A}, ki), and thus (3.90) implies

a.s., which completes the proof. O

Remark 3.8. If \; > )\;‘»‘ for every j € P;, then A;“J_ =\ = A and k;; = 0 = x; for
every j € P; U {0}, and thus (3.90) yields

X, = Z X, (3.93)
jEPiU{O}

On the other hand, suppose that A\; < )\;-‘ for some j € P;. Then either \¥ > \; =
Afys or Aj = Af = A7 for some j € P;, and in the latter case x; > 1+ Kk; > £, = 0.

Hence, in both cases, (A, ki,) # (Af, /i), and thus the sum in (3.90) is really only
over (some) j € P;. A
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4. THE MAIN THEOREM FOR CONTINUOUS TIME

Theorem 4.1. Let (X;(t))icq be a continuous-time triangular Pdlya urn satisfying
the conditions (A1)—(Ab). Then, for every colour i€ Q,

trie MUY (8 S X ast— o, (4.1)
for some random variable X; with X; > 0 a.s.

Proof. We may choose a total order < of the colours such that (2.5) holds. Taking
the colours in this order, we see by Lemma 3.7 and induction that (3.82) and (3.83)
hold for every i € Q, with &; > 0 a.s. Recalling (3.29), we see that (3.82) is the same
as (4.1). O

The limits A; are strictly positive. We will see in Theorem 6.4 that they are
non-degenerate when A\’ > 0; however, in general some of them will be linear com-
binations of others. We discuss dependencies between the limits in Section 6.

5. PROOF OF THE MAIN THEOREM FOR DISCRETE TIME

Proof of Theorem 1.8. We modify the urn by adding a new colour, 0 say, to Q; let
Q7" := Q u {0} be the new set of colours. All activities a; and replacements &;; with
i,j € Q remain unchanged. Balls of colour 0 have activity ag := 0, and thus they
are never drawn; in accordance with (A2) we define &y; := 0 for every j € Q7. We
further let &g := 1 for every i € Q with a; > 0. For i € Q with a; = 0 we let &g := 0,
again in accordance with (A2). We let Xo9 = Xo(0) := 0, so there are initially no
balls of colour 0. Note that the extended urn too satisfies (A1)-(A5).

Since balls of colour 0 never are drawn, we may ignore them and recover the
original urn. In other words, the new urn will be the original urn with “dummy
balls” of colour 0 added. We may assume that the old and new urn are coupled in
this way, which means that for i € Q, the number of balls of colour ¢ at any time is
the same in both urns, so we may unambiguously use the notations X,,; and X;(t)
for both urns. Moreover, there are initially no balls of colour 0, but we add exactly
1 ball of colour 0 every time a ball is drawn. Hence, in the discrete-time version, the
number of dummy balls at time n equals n; thus X,9 = n. In the continuous-time
model, Xy(t) equals the number of draws up to time ¢ , and in particular, cf. (2.19),

Xo(Ty) = Xpo = n. (5.1)

The new urn is obviously also triangular, with ¢ — 0 for every i € Q with a; > 0.

We have \g = 0. Since every \; = 0, and we have i — 0 when )\; > 0 (and thus
a; > 0 by (A2)), it follows from (2.8) and (2.10) that

Ay = max{\; : j€Q} = A. (5.2)
If A > 0, then is further easily seen from (2.9) and (2.11) that
Ko = max{k; : i € Q and A\¥ = \} = &. (5.3)

If A = 0, which means that A; = 0 for every 4, we have by (2.9) and (2.12) instead
mozmax{n:ﬂil <ig <+ <igr1 =0in Q*}
=max{/-i:5|i1 <19 < -+ < i, with a;, > 0 in Q}
= 1+max{/<cj :j € Q with a; >O}
= Ko. (5.4)
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We apply Theorem 4.1 to the new urn. In particular, taking i = 0 in (4.1) yields,
using (5.1) and (5.2)—(5.4) and recalling that T,, — o a.s.,

f{’ioe_ﬁ”n = f{””e_;\f”Xo(fn) 25 X, as n — . (5.5)

Recall that 0 < Xy < o0 a.s.

Case 1: X > 0. Consider first the case A > 0; then ko = & by (5.3). It follows from
(5.5) that a.s., as n — o,

logn — M, — Rlog T, — log Xo (5.6)

which yields, since fn — 0,

logn  ~
L=AANENSWY 5.7
7 (5.7)
and thus
log logn — log T), — log \. (5.8)
Using (5.8) in (5.6) yields, a.s.,
~ 1 ~
T, = i(logn—ﬁloglogn—&-Elog)\—logXo +0o(1)). (5.9)

Now let i € Q. Then (5.9) yields, as n — 0, a.s.,
FrichTn X"‘”””“WXXO_A?/%V/X(log )RR (5.10)
Consequently, taking t = T, in (4.1) yields, as n — o0, using the notation (2.13),

/A log” n /A (log n)mfﬁ)\j/)\ {

with
Xy o= AR AN Ay R M A (5.12)
This shows (1.3).

Case 2: X = 0. 1In the case A = 0, we have instead ko = Rg by (5.4). Moreover,
(5.5) now yields that as n — o0, a.s.,

T, ~ Xy Fop1/Ro (5.13)
and thus (4.1) yields

- as po._ pri/Ro p
S = SE 5 B xR (5.14)
This shows (1.4), and completes the proof of Theorem 1.8. O

The limits XAZ are all strictly positive. We return to the question whether they are
degenerate in Section 7.
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Remark 5.1. Suppose that A > 0, so that (5.11) holds. As a sanity check, we note
that (5.11) and (5.12) imply, recalling (2.10) and (2.11), that if we define

s i={ieQ: N =\ and ; = k}, (5.15)

which is nonempty, then

n

(5.16)

Xni ﬁ) .5('\1 ZXi/XQ ifiGQ*,
0 otherwise.

Hence, the total number of balls grows linearly, as should be expected; moreover,
the distribution of colours in the urn is asymptotically concentrated on Q.

Note also that (3.90) for the dummy colour 0 yields, recalling (5.2)—(5.3) and using
(3.35),

a; a—
Xo= > Xo, = ). Ykaj =27 4 (5.17)
JEQx JeQs 7 JEQx

By (5.16) and (5.17), we have for the total activity in the urn

1 a.s. 1 N
— Z aiXm —> — Z CLiXi =\ (5.18)
n €Q XO 1€Qx

A

Remark 5.2. If we instead suppose \ = 0, which implies A\; = A} = 0 for every 4,
then (5.14) similarly shows that if we now define

Qx :={i: ki = Ro}, (5.19)

then (5.16) still holds. Note that it is quite possible that Q4 is empty; this happens
precisely when kg > K, which by (5.4) happens when some i with x; = K has activity
a; > 0. (Such a colour cannot have any descendants, since all colours have the same
)\;f = 0; hence we must have §; = 0 a.s., which means that such colours will be drawn,
but nothing happens to the urn at these draws.) In this case the total number of
balls is a.s. o(n), and the colour distribution is asymptotically concentrated on the
colours 7 such that x; = kK = kg — 1.

On the other hand, if Q. # &, which means that kg = R, and thus by (5.4) a; =0
for every ¢ with x; = K, let Qu— := {j : K5 = K — 1}. Then (3.90) and (3.35) yield,
since j — 0 if and only if a; > 0, and then ko, = r; + 1,

Xy = Xy — Yoy = 5t a; X, (5.20)
jEPo;Q* ’ jeé R jeé m
AN

6. DEPENDENCIES BETWEEN THE LIMITS

The limits &; in Theorem 4.1 are non-degenerate except in extreme cases, as shown
below, but there are frequently linear dependencies between them. To explore this,
we introduce more terminology.

We say that a colour ¢ is a leader if \; < A; for every j < 4, and a follower
otherwise. (In particular, a minimal colour i is a leader.) We have, recalling (2.8),

i is a leader < (j%i:>)\j</\i> = (j—»z’:>/\;‘<)\i>, (6.1)
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i is a follower <= (Hj <4 with A\; > )\i) — (Hj — i with A} > )\i). (6.2)
By (2.8)—(2.9),
iis a leader <= A\ = \; and k; = 0. (6.3)

If 7 is a follower, let A; be the set of ancestors of 7 that have maximal A;, i.e.,

Aj = Af, and such that furthermore there is a path from j to ¢ with the maximum

number «; + 1 of colours £ with Ay = A}. (Recall (2.8) and (2.9).) Thus

A; = {j-<i25|i1 =7 <2< <41 =< with A\, =--- :)‘in+1 =)\:¢} (64)
Note that A; is non-empty for every follower i. Moreover, it is easily seen from
(6.1)—(6.2) and (6.4) that every j € A; is a leader. We may say that ¢ follows the
leaders in A;; note that a follower may follow several leaders. For completeness, we
define A; := {i} when i is a leader. Note that, by (6.3) and (6.4),

Aj = A=A for every j € A,. (6.5)

We show first that the variables X; are determined by the ones for leaders 3.

Lemma 6.1. If i€ Q, then X; is a linear combination
k’EAi

with strictly positive coefficients c;y,.

Proof. Note first that (6.6) is trivial when ¢ is a leader, with ¢;; = 1. We may thus
suppose that 7 is a follower.

By induction on the colour i, we may assume that the formula (6.6) holds for
every colour that is an ancestor of ¢, and in particular for every j € P;.

By Remark 3.8, we only have to consider j € P; in (3.90). Let

Pii={jePi: (\] ki) = (N ki), (6.7)
so that the sum in (3.90) really is over j € P,. By (6.3), since we now assume that
i is a follower, either A\ > X; or k; > 0 (or both). Hence, if j € P}, then either
A= AF > \jor Ky, = kg > 0; since Af = \; v A¥, it follows in both cases (using

j J 14 J
(2.9) in the latter) that A7 = A¥ > A; and thus by (3.35)
Xz‘ = C;ij (68)
for some constant c;j > 0. Moreover, we have )\;‘ = )\;-‘ VA= )\;“j = A and it follows

from (6.7) and (2.9) that

J

Ki = Ki; = Kj + 1{/\i=>\;k}. (69)

If j € P} is a leader, so \j = A¥ = Af and x; = 0 by (6.3), it follows from (6.4) and
(6.9) that j € A;. Similarly, if j € P} is a follower, then it follows from (6.4) and
(6.9) that if k € A;, then a chain from & to j of the (maximal) type in (6.4) can be
extended to a chain from k to i of the same type, and thus k € A;; consequently, if
J € P! is a follower, then A; < A;. The result (6.6), with some ¢;; > 0, now follows
by (3.90), (6.8), and induction.

Finally, if k € A;, let i1 = k,...,ix,4+1 = i be as in (6.4), choose a path in Q
from k to i that contains all iy, and let j be the last colour in this path before 1.
Then it follows from (6.4) that k € A;, and thus by induction c¢;; > 0, which implies
Cik = C;'jCjk > 0. O



ALMOST SURE AND MOMENT CONVERGENCE FOR TRIANGULAR POLYA URNS 27

Motivated by (6.6), we turn to considering X; for leaders i. We first consider a
trivial exceptional case.

Lemma 6.2. Let i be a colour with \; = 0. Then i is a leader if and only if i
is minimal, i.e., there is no colour j with j — i. In this case X; = X;(0) is a
deterministic positive constant.

Proof. We have already remarked that a minimal colour is a leader. Conversely,
if i is a leader with A\; = 0, then (6.1) shows that j — 4 is impossible; hence i
is minimal. In this case, no balls of colour i are added by draws of balls of other
colours. Furthermore, since A; = 0, also no balls of colour 7 are added by draws of
colour . Consequently, X;(t) = X;(0) for all ¢ > 0, and (3.80) holds trivially with
Xi(t) = X;(t) and X; = X;(0). 0

We next show that except for the case in Lemma 6.2, the distribution of X; for a
leader ¢ is absolutely continuous, and thus non-degenerate.

Lemma 6.3. (i) Leti be a leader with \; > 0, and let E be a set of colours that
contains neither © nor any descendant of i, i.e., if j € E then 7 * i. Then the
conditional distribution L(X; | X}, j € E) is a.s. absolutely continuous. In particular,
the distribution of X; is absolutely continuous.

(ii) More generally, let L be a (non-empty) set of leaders with \; > 0 for every
1 € L, and suppose that L is an anti-chain in Q, i.e., i X j when i,j € L. Let further
E be a set of colours such that if j € E, then j } i for every i € L. Then the joint
conditional distribution L((X;)ieL | Xj,7 € E) is a.s. absolutely continuous. (This is
a distribution in RIY.)

Proof. Tt suffices to consider (ii). The conclusion (conditional absolute continuity)
is preserved if we reduce E to a smaller set, see Lemma A.1 and Remark A.2. Thus
we may assume that E is maximal, i.e.,

E={jeQ:j*%iViell (6.10)

Note that, if i € L and j < 7, then we cannot have j > k for any k € L, since this would

imply k < ¢, contradicting the assumption that L is an antichain. Consequently, by
(6.10), if i e L and j < 4, then j € E.

We argue as in the proof of Lemma 3.6, and condition on the entire processes

(X;(t))e=0, j € E, and also on the times of all draws of a color j € E, and on all

replacement vectors 55-”) (n=1,j€E).

Let i € L. If j € Pi, so j — ¢, then A} < \; =
a leader. We use again the decomposition (3.84), and note that each e_’\itX,-j (t)
(j € P;) can be written as a sum as in (3.78) with (conditionally) independent terms,
and it follows as in the proof of Lemma 3.6 that each A&, has (conditionally) an
absolutely continuous distribution. Furthermore, &j, is independent of conditioning
on colours j € E, and if X;(0) > 0, then its distribution too is absolutely continuous
by Lemma 3.4 (since we assume \; > 0). Moreover (still conditionally), all A;; and
X, (i €L, j € P;) are independent.

Since ¢ is a leader, Remark 3.8 shows that (3.93) holds. We have shown that
(conditionally) the terms in the sum in (3.93) are independent, and all are absolutely
continuous except X;, when X;(0) = 0. Thus our assumption (A3) implies that
the sum contains at least one absolutely continuous summand, and hence A& is
(conditionally) absolutely continuous.

A by the assumption that ¢ is
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Moreover, this argument shows that &; for different ¢ € L are (conditionally)
independent, and since each has an absolutely continuous distribution, their joint
distribution is (conditionally) absolutely continuous.

Finally, Lemma A.1 (again with Remark A.2) shows that the same holds if we
instead condition on &, j € E. O

Theorem 6.4. Let L be a set of leaders such that \; > 0 for every ¢ € L. Then the
joint distribution L'((Xi)ieL) is absolutely continuous.

Proof. Order the elements of the set {A; :i€ L} as Ay < -+ < A Let

Le:={ielL: X\ 2)\(@)}, 1<é<nr, (6.11)
1

L=, O<t<r (6.12)
k:=1

(Thus, L<o = &&.) Let £ € {1,...,r}. If i,j € Ly, then (6.1) shows that j « ¢, and
thus Ly is an antichain. Furthermore, if i € Ly and j € L¢y—1, then )\;‘ =\ < Aj, and
thus i £ j. Consequently, Lemma 6.3(ii) shows that the conditional distribution of
(Xi)ieL, given (Xj)jeL., , is a.s. absolutely continuous.

It now follows from Lemma A.3 by induction that the distribution of (&;)eL_,

is absolutely continuous for ¢ = 1,...,r. Taking ¢ = r yields the result, since
L, =L. O

Theorem 6.5. Let i € Q be any colour.
(i) If \f =0, then X; is a deterministic positive constant.
(i) If \¥ > 0, then X; has an absolutely continuous distribution.

Proof. (i): Every k € A; is a leader with Ay = A¥ = 0. Thus Lemma 6.2 shows that
X}, is deterministic for k& € A;. Consequently, (6.6) shows that X; too is deterministic.

(ii): Every k € A; is a leader with A\, = A¥ > 0. Thus Theorem 6.4 shows that the
joint distribution of (Xj)kea, is absolutely continuous. It follows from (6.6) that the
distribution of X; is absolutely continuous. (See Lemma A.4.) O

Corollary 6.6. If \} > 0, then the coefficients c;; in Lemma 6.1 are uniquely
determined.

Proof. Suppose, on the contrary, that (6.6) holds a.s. for two different sets of co-
efficients (c;;)r and (c})r. Let by := ¢ — ¢} Then Dken, ke = 0 as., and
thus (Xk)kea, a.s. lies in the certain hyperplane orthogonal to (by). However, this
contradicts Theorem 6.5 which says that the distribution of (Xj)kea, is absolutely
continuous. (See also Lemma A.4.) This contradiction proves the claim. O

The coefficients ¢;; in (6.6) can be found by the recursive procedure in the proof
of Lemma 6.1. We proceed to show that they also can be found as eigenvectors of
suitable submatrices of the weighted mean replacement matrix (a;7;;); jeq- In the
sequel, we let c;; be the coefficient given by the inductive proof of Lemma 6.1; this
determines c¢; uniquely for k£ € A; also when A} = 0. We further define ¢, := 0 if
k¢A;.

Let v be a leader, and let

Dy = {i: A = A, (6.13)
D} :={ieD,: k; = K}, k=0,1,.... (6.14)
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(The sets D% are empty from some k on; we only consider x with Df # . Note
also that D, = D, if v/ is another leader with \,, = \,.) Note that if ¢;, > 0, then
v e A;, and thus ¢ € D,.

Let i € Dy, and suppose first that A; < A¥ = \,. Then it follows from Remark 3.8
that in (3.90), we only have to sum over j € P;. Moreover, if j € P; and )\;"j =\,
then )\;‘ = )\;;"j = A} and x;; = Kj. Hence, in (3.90) we only have to sum over
jePinDy. Since jeP; «— j—i < rj; >0andj +#iby (2.3), it follows
from (3.90) and (3.35) that

WiT s
X= > Xy = }:‘ A*{j;izg. (6.15)
jeDENP; jeDuE\{i}

Consequently, the coefficient ¢;,, in (6.6) is given by

a;iri;
Civ = Z ﬁcj’y- (616)
JeDp\{e}r 7 !

Since j € D implies AT = A,, (6.16) yields

()\V - /\i)ciy = 2 ;T 5iCju, (617)
jeDp\{i}
for every ¢ € DJ with A\; < A,

On the other hand, suppose that ¢ € D5 with A; = A\¥ = A\,. If j € D,\{i} and
rj; > 0, then )\;-‘ = A, = A and j — 4, and thus x; > k; + 1, since a maximal chain
in the definition (2.9) of k; can be extended by i. Hence, if j € D§\{i}, then rj; = 0.
It follows that (6.17) holds trivially for ¢ € D with A\; = A¥.

Consequently, (6.17) holds for every i € D%, and thus, recalling \; = a;7i;,

Z ajrjicj,, = ()\l, — )\i)ci,, + a;173;Cipy = )\VCZ‘V, 1€ Dﬁ (618)
jeDg
We summarize, and elaborate, this as a lemma. We say that i € Q is a subleader
if A\; = A¥ but ¢ is not a leader; recalling (6.3) we thus have

i is a subleader <= M/ = \; and k; > 1. (6.19)

Lemma 6.7. For any leader v, and any k = 0 such that D} # &, we have (6.18),
and thus (ciy)iepr is a left eigenvector of the triangular matriz (a;ri;); jeps for its
largest eigenvalue Ay .

For k = 0, the value ¢;,, for a leader i € Dg is determined by c;,, = 0;y, (i.e., 1 when
i = v and 0 otherwise), and these values for the leaders determine the eigenvector
(Civ)ieDs uniquely.

For k = 1, the value c;,, for a subleader i € DI is determined recursively from the
values cj,, for j € D=1 by

QT
E 7" J
Cipy = e Cj,j, (6.20)
jeby !

and these values for the subleaders determine the eigenvector (Ci,,)ieDg uniquely.

Proof. We have shown that (6.18) holds, and thus (c;,)iepy is a left eigenvector.
Since the matrix Ay := (a;ri;)ijepy is triangular, its eigenvalues are its diagonal
elements a;r;; = \j, j € Df. The definition (2.9) of x; implies that if D # &, then

there exists ¢ € D with \; = A\¥, i.e. a leader (if kK = 0) or a subleader (if K > 1).
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Since A\; < Af = A, for every i € D}, it follows that A} is the largest eigenvalue, and
that its multiplicity equals the number of leaders or subleaders in D%.

Let L, be the set of leaders or subleaders in DJ, and consider the projection
II,. : RP» — RY* mapping (%i)iepy — (2i)ieL,.. Let Vi be the left eigenspace of the
matrix A, for its largest eigenvalue A,. The recursion in the proof of Lemma 6.1
and the calculations (6.15)—(6.17) show, more generally, that any vector (z;);e,. can
be extended to a vector (z;)ieps that belongs to V. In other words, the projection
II,. maps V, onto RY. These spaces have the same dimension ILx|, and thus II
V.. — R is a bijection. Consequently, an eigenvector is determined by its values
for leaders or subleaders.

It is trivial that ¢;, = 9;, for a leader 3.

For k > 1, let ¢ be a subleader in D, so \; = A. Since x; = £ > 0, it follows from
Remark 3.8 that \; = /\;‘ for some j € P;, and furthermore that x; +1 < &; for every
such j. Since then also A? = A7 = AF and k;; = &; + 1, it follows that in (3.90) we
only have to sum over j € D¥~!, which together with (3.35) yields (6.20). O

Remark 6.8. It is well known that the eigenvalues and eigenvectors of the weighted
mean replacement matrix (a;r;;); jeq are important for the asymptotics of Pélya urns
in general; see for example [4, Section V.9.3] and [27] for irreducible urns. Lemma 6.7,
where we consider eigenvectors of certain submatrices, is inspired by a special case
n [12], see Example 14.12. A

7. DEGENERATE LIMITS IN DISCRETE TIME
Consider now the limits X; in Theorem 1.8 for the discrete-time urn.

Theorem 7.1. Let i€ Q.
(i) If A} =0, then X isa positive constant.
(i) If 0 < Xf < A, then X; has an absolutely continuous distribution.

(ili) If Af = A > 0, then X, is either constant or has an absolutely continuous
distribution; both alternatives are possible.

Proof. Consider the urn with an added dummy colour 0 as in Section 5.

(i): In this case, Theorem 6.5 shows that &; is a positive constant. If A > 0, then
(5.12) shows that X = A™%X; is a constant. If A = 0, then (5.2) and Theorem 6.5
show that also Xy is a positive constant; thus (5.14) shows that X; is a constant.

(ii): By (5.2), we have \§ = A > 0. By Lemma 6.1, X; is a linear combination
(6.6) of Ay for leaders k with A\ = A}, and Ap is a similar linear combination,
now for leaders k with A} = \j = X. The two sets of leaders are disjoint, and
thus Theorem 6.4 implies, using Lemma A.4, that the distribution of (X, Xy) is
absolutely continuous in R2. Tt is then easily seen from (5.12) that the distribution
of )?Z is absolutely continuous.

(iii): In this case, Lemma 6.1 shows that both &; and A} are linear combinations
(6.6) of X, for leaders k with A} = . If the two vectors of coefficients of these
linear combinations are proportional, then X; and A are proportional; since now
(5.12) shows that X =X, /Xy for some constant ¢, it follows that X is constant. On
the other hand, if the vectors of coefficients are not proportional, then Lemma A.4
shows that the distribution of (&;, Xp) is absolutely continuous in R?, and as in (ii),
it follows easily from (5.12) that the distribution of X; is absolutely continuous. [
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An example where \} = X and XAZ is absolutely continuous is given by the classical

Pélya urn, see Example 14.1. Many examples with degenerate X; are provided by
the following theorem; see also the examples in Section 14.

Theorem 7.2. Suppose that there is only one leader v with )\, = . (This is
equivalent to A, = X\ and that i = v for every colour i with \; = X\.) Then X; is
deterministic for every ¢ with \f = \.

Proof. If A = 0, this follows from Theorem 7.1(1).

Suppose now 2> 0, and consider the urn with an added dummy colour 0 as in
Section 5. Then A\§ = A by (5.2). Furthermore, A\, = A > 0 and thus a, > 0; hence
v — 0 and consequently v is still the only leader k& with A\ = X In particular,
Ap = {r}. Lemma 6.1 shows that X; = ¢;, X, for every i € Q with \} = X, and also
that Xp = co,X,. Hence, the result follows from (5.12). O

Even when the limits AA,Q are not deterministic, there are generally linear depen-
dencies between them just as for A;. In fact, in the main case A > 0, we have the
following analogue of Lemmas 6.1 and 6.7.

Lemma 7.3. If A > 0, then for every i e Q

X; = Z Cit X, (7.1)
k‘EAi
where
Eik = X_”"'cik > 0. (7.2)

Moreover, Lemma 6.7 holds also for ¢;., with the only difference that (6.20) is re-
placed by

R @it
Ciy = Z Ji}\\ﬂcj'l,. (73)

jeDﬁ_1 k
Proof. The expansion (7.1)—(7.2) follows from (6.6) and (5.12), since k € A; implies
& = Af and K = 0. The final claim follows by (7.2) and Lemma 6.7. O

We leave the corresponding result for the less interesting case X = 0 to the reader.

8. URNS WITH SUBTRACTIONS

We have so far assumed (A5): &; > 0 for all 4,5 € Q. In many applications, there
are urns with subtractions, where we allow &;; < 0. In the present paper, we are only
interested in cases where the urn allows an infinite number of drawings according to
the rules in Section 1; in other words we want (1.1) to make sense as probabilities
for all n, and thus we require that the urn is such that X,; > 0 for all n, and also
2. @iXni # 0. Such urns are often called tenable. (See e.g. [38] for a discussion
and examples.) A standard way to ensure that X,,; > 0 without assuming &; > 0
is to assume that Xo; and every §;; always is an integer, so that X,; is an integer,
and that §; > —1 while ;; > 0 for j # i. Typically, this is done for all i. (Thus
X, € Z;O; we may then regard the urn process as drawings without replacement
followed by adding &;; + d;; = 0 balls of each colour j.) However, we will be more
flexible and allow a combination with this assumption for some colours ¢, and &;; > 0
(as in earlier sections) for the others. We therefore assume:



32 SVANTE JANSON

(A5’) For each colour i € Q, we have either (or both)

(a) &; =0 as. for all j €Q, or

(b) &i € Zxo u {—1} a.s. and &j; € Zxq a.s. for all j # 4, and X;(0) € Zxo.
Note that (A5) is (A5)(a) for every i € Q. Note also that (A5’) implies &;; > 0 a.s.
for all 7,j € Q with ¢ # j. We let

Q ={ieQ:P(& <0)>0}={ieQ:P(& =—1) >0} (8.1)

denote the set of colours where (A5')(b) but not (A5')(a) applies. Note that (A2)
implies that a; > 0 for every i € Q™.

Remark 8.1. More generally, we may assume that, for a given i, &; may take some
negative value —b, provided it does not take any other negative value, and X;(0)
and all &j; (j € Q) a.s. are multiples of b. This case is easily reduced to the case
b=11n (AY') by dividing all X,,;, X;(t), and &;; by b and multiplying the activity a;
by b. (See Example 14.8 for an example where we, however, use a slightly different
alternative.) For convenience, and thus without real loss of generality, we will assume
(A5"), where the only allowed negative replacement is —1. A

Remark 8.2. If i € Q7 N Quin, then X;(¢) is not influenced by the other colours, and
(A5")(b) implies that X;(¢) is integer-valued and a classical continuous-time Markov
branching process of the type studied in e.g. [4, Chapter III]. (As noted above, we
have a; > 0 by (A2).) Recall that [4, Section II1.7] in the subcritical and critical
cases \; < 0, this process a.s. dies out, i.e., X;(t) = 0 for all sufficiently large ¢, while
in the supercritical case A\; > 0, the process survives for ever with positive probability
(assuming E &;; log&;; < o0, as we do); this probability is strictly less than 1, since
the process always may die out when P(§; = —1) > 0. A

We continue to use the definitions above, in particular (2.7)—(2.13). Note that we
now may have r; < 0, and thus \; < 0; we may also have \; = r; = 0 without
§ii =0 a.s.

We will see that the results in the previous sections are valid with minor changes
also if we replace (A5) by (A5’), at least under some further technical assumptions
(A6)—(A8) given below. However, in order to get more general results, these will be
assumed only when needed. Hence, we assume throughout this section (Al)—(A4)
and (A5'), with the following further assumptions added explicitly when needed.

(A6) > icqaiXi(t) >0 as. forall t > 0.
(A7) If i € Q7, then X} > 0.
(A8) If i € Q is a minimal colour, then §; > 0 a.s. (i.e., i ¢ Q7).

In other words, (A7) says that if i € Q, then either \; > 0 or there exists j € Q
with j < ¢ and A\; > 0 (or both). In particular, if ¢ is a minimal colour, then either
Ai>0or&; =0 as.

Note that (A8) implies that X;(¢f) > X;(0) when ¢ is minimal; since (A1)—(A3)
imply that there exists a minimal ¢ with a; > 0 and X;(0) > 0, (A8) together with
(A1)—(A3) imply (A6).

8.1. Some motivation for (A6)—(A8). The assumption (A5') implies that the
continuous-time urn X(t) = (X;(t));eq is well-defined for ¢ € [0, 0), with X;(¢) = 0
for all i € Q. However, the urn might possibly reach a state where X;(¢t) = 0 for all i
with a; > 0, and thus ), a;X;(t) = 0; such a state is absorbing and no more draws
will be made, and then the total number of draws is finite and the discrete-time
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urn is not well defined for all n. For results on the discrete-time urn, we therefore
further assume (A6). Since ), a;X;(t) is constant between the jumps, (A6) implies
that waiting times fnﬂ — fn are finite a.s., and thus there is a.s. an infinite number
of draws; hence T}, < oo for every n, and the discrete-time urn (X,,){ is well defined
by (2.19).

Next, we note that a colour ¢ with A} < 0 will die out:

Lemma 8.3. If A} <0, then a.s. X;(t) =0 for all large t, and thus X,; = 0 for all
large n.

Proof. Since every j — i has )\;-‘ < Af < 0, we can use induction and assume that
the statement holds for every j — i. Then there exists a.s. a (random) time 7" such
that no colour j with j — i exists for times ¢ > T. Hence, for t > T', X;(t) evolves
as a single colour urn with only colour i; we have A; < A < 0, and thus, as in
Remark 8.2, this process is a subcritical Markov branching process, which dies out
a.s. ([

Hence, if A} < 0, we can wait until colour 7 and all its ancestors have disappeared,
and we may then regard the urn as restarted at that time; then we have an urn with
fewer colours. Consequently, we may without loss of generality assume AJ > 0 for
every colour ¢. Note that it follows from the definition (2.8) that

Aj = 0 for every colour i <= \; > 0 for every minimal colour j. (8.2)

Moreover, also the case A} = 0 may be problematic when 7 € Q~, and we will
actually make a stronger assumption than (8.2). There are two reasons.

First, suppose that ¢ € Q™ is a minimal colour (and thus A\ = X;). Then, as
said in Remark 8.2, X;(¢) is a Markov branching process which dies out also in the
critical case \; = A\ = 0, so as above we may in this case wait until colour ¢ has
disappeared and consider an urn with fewer colours.

Secondly, and more importantly, if i € Q™ is not minimal and A} = 0, there are
examples where (after normalization) X;(¢) converges in distribution but not a.s.,
and similarly for X,,;; see Examples 14.14 and 14.15. (In Example 14.15, X,,; does
not even converge in distribution.)

We therefore exclude these cases and assume (A7). Note that if i ¢ Q~, then
Af = A = 0. Hence, (A7) implies that A} > 0 for every 4, and thus both conditions
n (8.2) hold. (So we do not have to assume this explicitly.)

Even with these assumptions, one complication remains. If i € Q™ is a minimal
colour, then, as noted in Remark 8.2, X;(¢) is a branching process, and even in the
supercritical case A; > 0, it dies out with positive probability. We will accept this
complication, but note that it may be eliminated by the additional assumption (A8),
which we only assume when needed.

8.2. Main results for urns with subtractions. With the assumptions above, our
main theorems for discrete and continuous time still hold:

Theorem 8.4. Let (X;(t))icq be a discrete-time triangular Pdlya urn satisfying the
conditions (A1)—~(A4), (A5), and (AT7)~(A8). Then the conclusions of Theorem 1.8
hold.

We do not explicitly assume (A6) in Theorem 8.4, but it is implicit since it follows
from (A8) and the other assumptions, as noted above.
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Without (A8), we get a more complicated partial result (where X is as in Sec-
tion 5); it is particularly useful in cases where Xy > 0 a.s. for some other reason, for
example by Lemma 10.9 below in the balanced case. (See Example 14.8.)

Theorem 8.5. Let (X;(t))icq be a discrete-time triangular Pdlya urn satisfying the
conditions (A1)—(A4), (A5), and (A6)—~(AT). Then the conclusions of Theorem 1.8
hold a.s. on the event {Xy > 0} (which has positive probability), except that X =0
is possible, with 0 < P(X; = 0| Xy > 0) < 1.

Theorem 8.6. Let (X;(t))ieq be a continuous-time triangular Pdlya urn satisfying
the conditions (A1)-(A4), (AY), and (AT7). Then the conclusions of Theorem 4.1
hold, except that X; = 0 is possible, with 0 < P(X; = 0| Xy > 0) < 1; moreover, we
have P(X; > 0Vie Q) > 0.

If furthermore (A8) holds, then the all conclusions of Theorem 4.1 hold.

Remark 8.7. In Theorems 8.5 and 8.6, if the limit XAZ = 0 or A; = 0, then the
result (1.3), (1.4) or (4.1) does not give the correct growth of X,,; or X;(¢). In such
cases, it might be possible to find more precise results using our methods on suitable
subsets of the colours; it seems that this can be done very generally, at least on a
case-by-case basis. We give one example in Example 14.13 but do not attempt to
state any general theorem. A

Remark 8.8. Also the results in Section 6-7 still hold (with the same proofs) under
the assumptions (A1)—(A4), (A5'), and (A7)—(A8), as the reader might verify.

If we do not assume (A8) and assume only (A1)—(A4), (A5'), and (A6)—(AT), then
the results on absolute continuity do not hold as stated, since typically the limits
may be 0 with positive probability. (We conjecture that these results might hold
conditioned on the variables being non-zero, but we have not pursued this.) The
remaining results in Section 6-7 still hold. A

Note that (A5) implies (A5'), (A7), and (A8) (with Q~ = &), and thus (A1)—(A5)
imply also (A6); hence these theorems (strictly) extend Theorems 1.8 and 4.1.

We prove Theorems 8.4-8.6 in the remainder of this section. As in Section 3, we
first study a single colour, and as there we split the discussion into several subsections.

First note that we used that X;(t) is increasing in Lemma 3.1 and its proof. This
is no longer necessarily true, but we may replace X;(t) by X M (t) with no further
consequences. Hence, Lemmas 3.1 and 3.2 hold with the assumption modified to
E X7 (t) < o0.
8.3. A colour not influenced by others. Consider the situation in Section 3.1,
where £j; = 0 for j # i, i.e.,i € Qmin. If i € Q, then X;(¢) is, as noted in Remark 8.2,
a Markov branching process.

Lemma 3.3 extends to this case, with some modifications.

Lemma 8.9. Suppose that (A1)—(A4) and (A5') hold and that i € Quin-

(a) If 1¢ Q™ (i.e., & =0 a.s.), then Lemma 3.3 still holds.
(b) If i € Q~, then Lemma 3.3 holds with the following modifications:
(i) If \i > 0, the only difference is that X; = 0 is possible with positive probabil-
ity. If xo >0, then 0 < P(X; =0) < 1.
(i1) If A; =0, then X;(t) is a martingale with

X;(t) 2> X =0, ast — oo, (8.3)
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E [Xi(t)] = 2o, (8.4)

Var| X;(t)] = Caot, 8.5

E ( sup Xi(t)) < Cx? + Crou, for every u < oo. (8.6)
0<t<u

Furthermore, for every 6 > 0,

E (sup{e % X;(t)})” < 0. (8.7)
t=0
(iii) If A <O, then
X;(t) 25 X =0, as t — oo, (8.8)
Var[X;(t)] < Cxge
E( sup X; ))2 Cuxl. (8.10)

0<t<oo

Proof. (a): We thus assume (A5) = (A5’)(a) for the colour i, and then the proof
of Lemma 3.3 still holds. (Recall that for simplicity we had (A1)—(Ab5) as standing
assumptions in Section 3, including (A5) for all colours; however, as remarked before
Lemma 3.3, this is needed only for the colour 7 in that subsection, and in particular
for Lemma 3.3 and its proof.)

(b): Now assume (A5’)(b). By (A2), we also have a; > 0.

We argue as in the proof of Lemma 3.3, with the following differences. Note that
xo is assumed to be an integer, and the case xzg = 0 is trivial; we thus may assume
xo = 1. Tt is still true that M(t) := e **X,(t) is a martingale, and (3.20) holds if
Ai # 0.

Now, however, as said in Remark 8.2, with positive probability, X;(¢) = 0 for all
large ¢; moreover, in the critical and subcritical cases (ii) and (iii), this happens a.s.

We study the three cases separately:

(i): The proof of Lemma 3.3 still holds, except for the final part yielding (3.25).

By Remark 8.2, with positive probability X;(¢) dies out and thus &X; = 0. More-
over, by (3.14), EX; = 29 > 0. Consequently, 0 < P(X; =0) <1

(ii): By Remark 8.2, a.s. X;(t) = 0 for all large ¢, which gives (8.3).

For \; = 0, (3.12) says that X;(t) = M(¢) is a martingale, which implies (8.4).
Furthermore, (3.20) in this case yields

E X;(t)> = EM(t)> = E[M, M]; = 22 + a;Bxot, (8.11)

which gives (8.5) and, together with Doob’s inequality, (8.6). To prove (8.7), we
note that (8.6) implies

0

o0
—0t —20n —20n
sup{e " X;( ) < su Xi( ) O(n+1) < oo.
<t>%)){ Z:l n<t<£z)+1 Z )
(8.12)

(iii): As for (ii), Remark 8.2 shows that a.s. X;(t) = 0 for all large ¢, and thus
(8.8) holds. Since A; < 0, we obtain from (3.20)

EM(t)? = E[M, M]; < 22 + Czge it (8.13)

and thus
Var| X;(t)] = et Var[ M (t)] < Czoeit, (8.14)
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showing (8.9). Furthermore, (8.13) and Doob’s inequality yield, for any m > 1,
E[ sup X;(t)?] < eritm=1) E[ sup M@®)?] < CePMmE [M (m)?]

m—1<t<m m—1<t<m
< Cetimgl, (8.15)
Since A; < 0, the sum over all m > 1 is < Cx3, which implies (8.10). O

Remark 8.10. In fact, it follows from [4, Theorem III1.7.2] (using (A4)) that if
i € Qmin N Q7, then X; = 0 occurs a.s. exactly when X;(¢t) = 0 for large ¢ so that
the branching process dies out in finite time. Thus, P(X; = 0) equals the probability
that the continuous-time branching process X;(t) dies out. Considering only the
times that a ball of colour ¢ is drawn, we obtain an embedded random walk with
ii.d. increments distributed as &;;; thus P(&; = 0) also equals the probability that
this random walk hits 0. (It is easy to see that this also equals the probability of
extinction for a Galton—Watson process with offspring distribution 1 + &;; started
with z¢ individuals.) A

8.4. A colour only produced by one other colour. Consider the situation in
Section 3.2, where there is a single colour j such that j — 1.

We used that X;(¢) is increasing in (3.56); this is no longer necessarily true, but
we may replace X;(t) by X7 (t) there with no further consequences.

Lemma 3.5 holds with the following minor modifications. We assume )\;‘ = 0,
since otherwise j eventually becomes extinct by Lemma 8.3, and after that X;(t)
evolves as in Lemma 8.9. (We are not really interested in this case, as discussed
earlier.) Note that we also exclude the case A} = AT = 0. (For good reasons, see
Examples 14.14 and 14.15).

Lemma 8.11. Suppose that (A1)—(A4) and (A5') hold. Letie€ Q, and suppose that
there is exactly one colour j € Q such that j — i, and that X;(0) = 0. Suppose also
that one of the following holds:

(a) i¢ Q™ (ie, & =0 as.), and A7 > 0.

(b) ie Q, Af >0, and A\F = 0.
Then Lemma 3.5 still holds, i.e., if (3.31)—(3.32) hold, then we have the conclusions
(3.33)(3.35) and X; >0 — X; >0 a.s.

Proof. (a): Recall again that we had (A1l)-(A5) as standing assumptions in Sec-
tion 3, including (A5) for all colours; however, it is easily verified that the proof of
Lemma 3.5 does not use this for other colours than i, except in (3.56), where we now
replace Xj(t) by X7 (t) as discussed above, and to see that A¥ > 0. Hence, in the
present setting where we assume (A1)—(A4) and (A5’), and also explicitly assume
A7 =0, if & = 0 a.s., then the proof of Lemma 3.5 still holds.

(b): We now assume (A5')(b) for i. Most of the proof of Lemma 3.5 remains the
same. The main difference in the proof comes in Steps 4-5, where we used Lemma 3.3
in (3.65), but now instead use Lemma 8.9(b). We consider three cases:

(1) A; > 0: Then (3.65) still holds by Lemma 8.9, and thus all estimates in Steps
4-5 hold.
(2) \; = 0: Then (3.65) is replaced by, using (8.5),

o0
E[[Z1, Z1)e | (Thome)¥] = D Lmoeny Var[Yi(t — Ti) | Ty mi]
P
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0¢]
= Z L, <y C(t — Tie) - (8.16)
k=1
Thus
e ¢]
E[Z1,Z1]: = CE ) Ly, <yy(t — Ti) < CtEN(2). (8.17)
k=1

Using Lemma 3.2 (or Lemma 3.1), it follows that (3.68) for ¢ = 1 is replaced
by (with A\; = 0)

t t

E[Zi, %] < CtE f X;(s)ds < CE)Z';‘*tJ (s+1)9eP2054s (8.18)
0 0

with an extra factor t. We assume 0 < A} = \; v )\3‘-‘ and \; = 0, and thus

Af > 0 = A, so we are in Case (ii') of Step 5; (3.71) now holds with an

insignificant extra factor n and thus (3.72)—(3.73) still hold and the conclusions

of Step 5 remain the same.

(3) Ai < 0: Then we obtain instead of (3.65), now using (8.9),

0

E [[Zlv Zl]t ‘ (Tkank)]_w] < Z 1{Tk<t}6_2)\iTkCe_Ai(t_Tk)’l’]k
k=1

—Ait—X\i T},

(n}
8

Lin.<tye M- (8.19)

k=1

Thus, by Lemma 3.2(ii),
w t
E[Z1,Z1]: < CE Z 1{Tk$t}e*)"'t*)‘iT’“nk = Ce ™M E f e X;(s)ds.  (8.20)
k=1 0

It follows that (3.68) for £ = 1 is replaced by

t
E[Z1, Z1]; < CEX;‘*e_)‘itf (s + 1)" P —2)s g, (8.21)
0
However, for ¢t < 1, (8.21) is trivially equivalent to (3.68), and for ¢t > 1, (8.21)
implies, using A7 — A; = —A; > 0,

E[Z1, 2]y < CEXF(t + 1)%e 22!
t
< C’EX;‘*f (s + 1)ri e =225 g, (8.22)
t—1
Hence (3.68) holds for all ¢ < 3 also in the present setting. By our assumption
Af = Ai v AT > 0 we have A} > 0, so we are again in Case (ii") of Step 5;
(3.71)—(3.73) still hold and the conclusions of Step 5 remain the same.
In all cases, the conclusions (3.33)—(3.35) of Step 6 follow as for Lemma 3.5.
Finally, as for Lemma 3.5, if A; < A}, then (3.35) shows that X; >0 = A; > 0.
If A; > AT and X > 0, then we use again (3.78), where still a.s. all T); are finite. Let
Y = limy_ o e*)‘itYk(t). In contrast to Lemma 3.5, ), = 0 is now possible also if
Nk > 0, but 0 < P(Y, = 0) < 1 by Lemma 8.9. We now let K be the smallest k such
that ), > 0, and conclude as in Section 3 that X; > 0. O
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Remark 8.12. In Lemma 8.11(b) we have excluded the case A\; = A} = 0, since
then A\¥ = 0. In this case we are in Case (iii’) of Step 5 of the proof of Lemma 3.5.

As mentioned above, there is now an extra factor ¢ in (3.68), and therefore we obtain
instead of (3.75)

E Z}(n)? < C27%m. (8.23)

Hence, if furthermore x; > 1, then (3.76) still holds, and the rest of the proof of
Lemma 3.5 applies. Consequently, Lemma 8.11(b) holds also in the case \; = /\;-< =0
and k; > 1.

Example 14.14 gives an example with \; = )\;-‘ = 0 = k; where the conclusion of
Lemma 8.11 does not hold. For simplicity we have in Lemma 8.11(b) excluded all
cases with A; = A7 = 0 (and thus A} = 0).

Similarly, Example 14.15 gives an example with A; < 0 = )\;‘ = k; where the
conclusion of Lemma 8.11 does not hold. We have excluded all cases with \; < )\; =
0; it seems likely that Lemma 8.11(b) might hold also in this case if k; > 1, but we
have not investigated this further. JAN

We need also a coarse estimate in the case excluded in Lemma 8.11(b).

Lemma 8.13. Suppose that (A1)—(A4) and (A5') hold and that i € Q is such that
P(&; = —1) > 0. Assume that there is exactly one colour j € Q such that j — i, and
that X;(0) = 0. Assume also that \f = A7 = 0.

Assume further that (3.31)—(3.32) hold. Then, for every ¢ > 0,

e X, (1) 250, (8.24)
and
Hsup{e_‘%Xi(t)}H < 0. (8.25)
=0 2

Proof. We have \; < A = 0 and, by (A2), a; > 0. Thus r;; = X\;j/a; < 0. Fur-
thermore, &; > —1 a.s., and thus r; = E§; = —1. Choose p € (0,1) such that
O<ry+2p< (5/CLZ

Modify the urn by increasing &;; to fv” = &;;+2(, where ¢ € Be(p) is independent of
&ii; all other &y and initial conditions X (0) remain the same. We denote quantities
for the new urn by adding ~. The modification does not affect any ancestors of i;
thus )Z'j (t) = X;(t) and X; = A7 = 0. On the other hand, by our choice of p,

No=a;E&i = ai(E&i + 2EC) = a;(ri; + 2p) € (0,6). (8.26)

Consequently, X;" = Xl v X;‘ = Xl > 0 and thus Lemma 8.11(b) applies to the modified
urn. (The other conditions of Lemma 8.11(b) obviously hold.)

The modification adds extra balls of colour ¢, and these may get descendants of
colour ¢ and they may disappear again, but we may separate these extra balls of
colour ¢ from the original ones, and thus couple the two versions such that Xl(t) >
X;(t) for all ¢ = 1. Consequently, noting that X:‘ — X and ¥; = 0, Lemma 8.11
yields, from (3.33)—(3.34) and (3.29)—(3.30),

X ~

lim sup e_j\itXi(t) < lim e MX (1) = X <0 as., (8.27)

t—o0 t—0
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and
Hsup{e_j\itXi(t)}H < Hsup{e_j\it)\fi(t)}u < 0. (8.28)
=0 2 =0 2
The results follow, since X; < & by (8.26). O

8.5. The general case for a single colour.

Lemma 8.14. Suppose that (A1)—(A4), (A5), and (A7) hold. Then Lemma 8.7
still holds, except for the last sentence.
The last sentence remains valid if i ¢ Q~, and also if i ¢ Qumin. (In particular, it

is valid if (A8) holds.) In the remaining case, when i € Q™ and is minimal, then
0<P(X; >0) < 1.

Proof. Recall that the assumption (A7) implies that AT > 0 for every j € Q.

We follow the proof of Lemma 3.7 and split the colour 7 into subcolours ig and %;,
j € P; (also if i is minimal so P; = ¢¥); then (3.84) holds, and also (3.85)—(3.89) and
(3.91).

If i ¢ Q, then the proof is exactly as for Lemma 3.7, now using Lemmas 8.9(a)
and 8.11(a) instead of Lemmas 3.3 and 3.5.

Assume thus in the sequel of the proof that instead i € Q. (Thus, (A5)(b)
holds.) Then by (A7), we have A} > 0. However, it is possible that \;; = \; < 0 or
that /\;"j = A; v A} = 0 for some j € P;.

For i, we now apply Lemma 8.9(b). If A\; > 0, then Lemma 8.9(b)(i) shows that
X, can be treated as before in (3.89) and (3.91). If A\; < 0, we replace, as we may,
X, (t) by et X, (t) in the estimate (3.89), cf. (3.84) and (3.29). By (8.3) and (8.8),
this term contributes 0 to the limit (3.82). Similarly, in (3.91) we replace )Nfz";* by
supt>0{e*/\ftXiO (t)}, which gives a finite contribution to (3.83) by (8.7) and (8.10).

Similarly, for each i; (j € P;), we now apply Lemma 8.11(b) if )‘2; > 0; otherwise,
ie, if \; <0 and A} = 0, we apply Lemma 8.13 (with § := A > 0). In the latter
case we replace Xij (t) by e_)‘ftXij (t) in the estimate (3.89) and use (8.24), and we
replace )N(Z";* by suptzo{e_’\;ktXij (t)} in (3.91) and use (8.25).

This proves, in all cases, that (3.82) and (3.83) hold. Moreover, for each j € P;u{0}
such that we apply Lemma 8.9(b)(ii),(iii) or Lemma 8.13 to i;, the contribution to
the limit (3.82) is 0, and so is the contribution to the right-hand side of (3.90) since
in these cases Af, <0 < AF by (3.85)—(3.86). Hence, (3.90) still holds.

It remains to consider the final sentence in Lemma 3.7. First, if P; # ¢, then it
follows as in the proof of Lemma 3.7 that if X; > 0 for every j € P;, then &; > 0. In
the remaining case, ¢ is minimal. Note that then X;(0) > 0 by (A3). If ¢ is minimal
and 7 ¢ Q7, then a.s. X; > 0 by Lemma 3.3. On the other hand, if ¢ is minimal and
i€ Q7, then Lemma 8.9(b)(i) shows that P(X; = 0) € (0,1). O

8.6. Proofs of Theorems 8.4—8.6.

Proof of Theorem 8.6. As in Section 4, now using Lemma 8.14; we use again induc-
tion on the colour ¢ and conclude that (3.82) and (3.83) hold for every i € Q, although
now A&; = 0 is possible.

The processes X;(t) for i € Quin are independent, and thus so are their limits X;.
Each is strictly positive with positive probability, by Lemma 8.9 or 8.14, and thus
there is a positive probability that X; > 0 for every minimal i. Moreover, if (AS)



40 SVANTE JANSON

holds, then this probability is 1. Finally, it follows by Lemma 8.14 by induction on
the colour ¢ that a.s. if X; > 0 for every minimal ¢, then X; > 0 for every i. O

Proof of Theorems 8.4 and 8.5. As in Section 5, now using Theorem 8.6 and consid-
ering only the event {Xy > 0}. Note that Theorem 8.6, applied to the extended urn,
shows that with positive probability Xy > 0 and &; > 0 for all ¢ € Q; furthermore,
in Theorem 8.4, where we assume (A8), this holds a.s.

Note also that since we assume (A6), we have a.s. T, < oo for every n, and thus
the discrete-time process X,, is well-defined. O

9. RANDOM VS NON-RANDOM REPLACEMENTS

Consider a Pélya urn ¢ with a random replacement matrix (&;;); jeq. For simplic-
ity we study only the case when all {;; > 0, and we thus assume (A1)—(A5). Consider
also another urn U’ with the same colours Q, the same initial vector Xy, and the
same activities a;, but non-random replacements r;; = E&;;. We thus replace the
replacement matrix by its mean, and we may call &’ the mean urn corresponding
to U. Both urns have the same r;;, and thus the same colour graph, A\;, A\¥, x;, 3\,
R and ;, see (2.3) and (2.7)—(2.13). The new urn U’ also satisfies (A1)—(A5), and
Theorems 1.8 and 4.1 show that we have the same qualitative asymptotic behaviour
for both urns, with the same normalization factors. However, the limits )?Z and A
are in general not the same for the two urns ¢ and U’, and thus the asymptotic
distributions may be be different; see Example 14.5.

We note that the constants ¢;; in Section 6 by Lemma 6.7 are the same for the
two urns. This yields one simple case. (We assume A > 0 for simplicity, and leave a

study of the case A = 0 to the reader.)

Theorem 9.1. Assume A > 0. If i is a colour such that XAZ is deterministic for one
of the two urns, then X; is the same constant for both urns.

Proof. By Theorem 7.1, there are two cases: either A} =0, or A} = .

If A} =0, then (6.5) and Lemma 6.2 show that for every j € A;, X; = X;(0) is a
constant, the same for both urns. Hence, Lemmas 6.1 shows, since the constants c;j,
are the same for both urns, that A} is the same constant for both urns. Consequently,
(5.12) shows that X; = A~ X; is the same constant for both urns.

Assume now A} = X If we add dummy balls to both urns as in Section 5, then,
by Lemma 6.1 and (5.2), for any of the urns, both &; and X are linear combinations
Yjes CijXj and X ;cojXj, where J is the set of leaders with A} = X. The joint
distribution of (X;)c; is absolutely continuous by Theorem 6.4, and since (5.12)
yields XAZ =\ X;/ Xy, it follows that if é’a is deterministic in one of the two urns,
then the vectors (¢;j)jes and (coj)jes are proportional. Since these vectors are the

same for both urns, it follows that then X; is the same constant in both urns. ([l

10. BALANCED URNS

Many papers on Pélya urns assume that urn is balanced (as defined below); while
this is quite restrictive, it is partly justified by the fact that Pélya urns that appear
in applications often are balanced. We have not needed this assumption in the
preceding sections, but it will be used for some results in the following sections (in
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particular Section 12). The present section contains the definition and some simple
results for later use.

In the standard case when all activities a; = 1, a Pdélya urn is said to be balanced if
we add the same total number of balls at each draw; in other words, if the replacement
matrix (&;;)ijeq satisfies 3 &;; = b as., for some b € R and every i € Q. In
general, with possibly different activities a;, it is not the total number of balls but
their total activity that is important, and we make the following general definition.
(Definition 10.1 and Lemma 10.2 — Remark 10.6 below apply to all Pdlya urns,
triangular or not.)

Definition 10.1. A Pélya urn is balanced if there exists a constant b € R (called
the balance) such that for every i € Q with a; > 0, we have

Z ajgij =0 a.s. (101)
JeQ

With a := (a;)jeq, the vector of activities, (10.1) may be written a-&; = b for all
1 with a; > 0.

Suppose that the urn is balanced as in Definition 10.1. It follows from (1.2) (since
colours ¢ with a; = 0 will never be drawn) that a.s.

a-X, = Z a; Xn; = a-Xg + nb. (10.2)
JEQ
Hence, the denominator in (1.1) is deterministic. This has been used in several
ways in many papers by different authors. (In particular, it makes it possible to
use martingale methods for the discrete-time urn, similar to the continuous-time
arguments in the present paper; see Remark 1.11 and e.g. [12].) Here we note some
simple consequences.

Note first that if the balance b < 0, then (10.2) shows that the activity a - X,
becomes negative for large n; this is clearly impossible and shows that the discrete-
time urn process must stop and cannot be continued for ever. In the present paper,
we are not interested in this case, so we must have b > 0, and we thus assume this in
the sequel (whether it is said explicitly or not). In this case, there are no problems.

Lemma 10.2. A balanced urn with balance b = 0 which satisfies (Al) and (A5) or
(more generally) (A5 is well-defined for all discrete or continuous times, and thus
satisfies (AG).

Proof. By (10.2), we have, for every n, a.s. a-X,, = a- Xy > 0. Hence the discrete-
time process X,, is well-defined, and also a - X(¢) > 0 for every t. O

We assume (A1) and (A5) or (A5’) below; thus (A6) holds.

Remark 10.3. The case b = 0 is trivial. First, if (A5) holds, so there are no
subtractions, then the only possibility is &;; = 0 a.s. for all 4,7 € Q; in other words,
we draw from the urn but nothing happens. If we allow subtractions as in (A5)(b),
there may be a few initial draws that wipe out some colours, but nothing more will
happen; furthermore, such urns violate (A7). A

oe]

o1 and

Lemma 10.4. If a Pdlya urn is balanced, then the random processes (Xy,)
(T)2_, are independent.
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Proof. Let n = 0. Stop the continuous-time process X(t) at T n, i.e., at the nth draw.
Conditionally on everything that has happened so far, the Waltmg time Tn+1 T,
until the next draw is an exponential random variable with rate »}; a; X;, which by
(10.2) is the constant a - Xy + nb. Hence, Tn+1 T is independent of X,,, and thus
also of the colour of the drawn ball, say i, and of X,,411 — X,, = 51(.”), recall (1.2).
Consequently, the processes (ZA” n)n and (X)), evolve independently. O

Lemma 10.5. If a Pdlya urn is balanced, then the distribution of the random se-
quence (T )y depends only on the balance b and the initial activity a - X.

Proof. As in the proof of Lemma 10.4, T, bl — Tn is exponential distributed with rate
a - Xp + nb, and these waiting times are independent. [l

Remark 10.6. The distribution of (7, n)ee_y is thus the same as for the single-colour
urn with initial value z¢ := a - X,, activity a; = 1, and replacement matrix (b). For
b > 0, this is the more or less trivial case ¢ = 1 of Example 14.1, and it is well known
that (bﬁ,,)cfC are the jump times of a Yule process started with z(/b individuals. A

In the remaining part of the section we consider, as in the rest of the paper,
triangular urns.

Lemma 10.7. Consider a triangular balanced uwrn with balance b = 0, and suppose
that the urn satisfies (Al)—(A4). Then A = b. Furthermore, if b > 0, then k = 0.

Proof. Let Q" := {i € Q: a; > 0}. Then Q" # & by (A1). There are three possibilities
for a colour i € Q:
(i) If i ¢ Q/, then a; = 0 and thus \; = 0.
(i) If i € Q" and ¢ is maximal in Q" for the order <, i.e., i + j for every j € Q',
then &; = 0 a.s. when j € Q'\{i}, and a; = 0 for every j ¢ Q’; hence a;&;; =0
a.s. for all colours j # i. Consequently, (10.1) yields

aiii = Z aj&j =b (10.3)

JeQ

a.s., and thus, taking the expectation,
)\i = Q;Ty; = azEﬁm =b. (10.4)

(iii) If 7 € Q' is not maximal in Q', then there exists j € Q" with i« — j and thus
ri; > 0. Taking expectations in (10.1) yields

N = a;ri; =b— Z a;Ti; < b— a;ri; < b. (105)
J#i

It follows that A := max; \; = b. Furthermore, if b > 0, then the maximum is
attained precisely in Case (ii), i.e., for ¢ that are maximal in Q'. It follows that for
every such i we have \; < b for all j € P;, and thus x; = 0. Hence, kK = 0. ]

Remark 10.8. The proof shows also that if a balanced triangular urn has b > 0
and all activites a; = 1, then &; = r;; = \; = b a.s. for every 7 that is maximal in Q’,
but E&; = ri; = A; < b for all other colours +. A

For urns with subtractions as in Section 8, there are further simplifications when
the urn is balanced.
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Lemma 10.9. Consider a triangular balanced urn with balance b = 0, and sup-
pose that the urn satisfies (A1)—(A4), (A5'), and (AT). Then, with notation as in
Section 5, Xy > 0 a.s.

Proof. The case b = 0 is trivial by Remark 10.3, so we may assume b > 0.

For convenience, denote the urn by &/. Lemma 10.5 and Remark 10.6 show that
T, are (jointly) distributed as for the one-colour urn U; with replacement matrix (b),
activity a = 1, and the same initial total activity. Hence we may couple the urns
such that they have the same fn. (Or we may simply define the content of U; as
being the total activity in the urn ¢.) The urn U; obviously satisfies (A1)—(A5), and
thus (5.5) applies to it, with Xy > 0 a.s. Moreover, (5.5) applies also to the original
urn U by the same argument in Section 5 (as in the proof of Theorems 8.4 and 8.5
in Section 8.6); note that the two urns & and U; have the same A =band ko = 0 by
Lemma 10.7 and (5.3). Consequently, the two urns U and U; have the same Xy. O

In fact, in Lemma 10.9, X has a Gamma distribution by the proof and (14.2).

11. THE DRAWN COLOURS

We have so far studied X,, and X(¢), the numbers of balls of each colour in the
urn. It is also of interest to study the number of times each colour is drawn. (See
Examples 14.7-14.9 for an application.) For i € Q, we denote the number of times
that a ball of colour 7 is drawn up to time n in the discrete-time urn by N,;, and
the number of times up to time ¢ in the continuous-time urn by N;(t); thus

Npi = Ni(T,)),  i€Q, n>0. (11.1)

We state first a continuous-time and then a discrete-time result; both are similar

to the results for X(¢) and X, earlier, but note that exponents change when A} = 0.
(Proofs are given later in this section.)

Theorem 11.1. Let (X;(t))ieq be a continuous-time triangular Pdlya urn satisfying
either (A1)—(A5), or (more generally) (A1)—(A4), (A5, and (A7). Let i € Q.
(i) If X} > 0, then, as t — o0,

R AN () 255 N = %X (11.2)
7
(ii) If Af =0, then, as t — o0,
FRING () 25 N = ﬁ‘:ﬁ -, (11.3)
1

Furthermore, if (A5) or (A8) holds, then N > 0 a.s.

Theorem 11.2. Let (X;(t))ieq be a discrete-time triangular Pdlya urn and suppose
that it satisfies (A1)—(Ab). Alternatively, suppose that the urn satisfies (Al)—(A4),
(A5), and (A6)—(A7), and also either satisfies (A8) or is balanced. Let i€ Q.

(i) If \f > 0, then as n — o,

Np;i a.s. (7 a; =
— SN = A 11.4
/A log¥i oA (1-4)
(i) If \f =0 and X >0, then as n — oo,
7Nni1 ﬂ, Ai = 7(% ,\.)a‘. (115)
log™*tn (ki +1)A
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(iii) If AF = A =0, then as n — o,

Npi a.s. {7 a;
= N =

n(ri+1)/Ro )i + 1
Furthermore, if (A5) or (A8) holds, then N; > 0 a.s.

Remark 11.3. If we assume only (A1)—(A4), (A5’), and (A6)—(A7) in Theorem 11.2,
then the results hold on the event {Xy > 0}, by the same proof and Theorem 8.5. A

Xy R0 x, (11.6)

We can also state the results as the following simple a.s. limit results for the
ratios Np;/Xp; and N;(t)/X;(t); in particular, if A¥ > 0 (the main case), these ratios
converge a.s. to a positive constant.

Theorem 11.4. Let (X;(t))ieq be a discrete-time triangular Pdlya urn and suppose
that it satisfies (A1)—(A5) or (more generally) (A1)—(A4), (A5), and (AT)—(AS).
Let i € Q.

(i) If X} > 0, then
Npi .. Ni(t)  a;
X, tll>n010 i) - * a.s. (11.7)

(2
(i) If \f =0, then, ast — o0,

lim
n—0o0

N; (t) a.s. a;

— . 11.8
tXi(t) ki +1 ( )
(iii) If A* = 0 and A > 0, then, as n — 0,
Nm‘ a.s. %
os, % (11.9)
Xpilogn (ki +1)A
(iv) If X} =0 and X =0, then, as n — o,
N s. i -1/
as, @i p-l/ko, (11.10)

RN
X,int/ko ki + 1 0

Note that the limit in all cases is a strictly positive constant, in case (iv) by
Theorem 6.5 (and Remark 8.8).

Proof of Theorem 11.1. We use (as in the proof of the corresponding result in [27])
dummy balls similarly to the proof in Section 5, but now we use one dummy ball for
each colour.

It suffices to consider one colour at a time, so we fix 7 € Q; we assume a; > 0 since
otherwise N,; = N;(t) = 0 a.s. and the results are trivial. Denote the urn by U. We
consider one new colour, which we denote by ¢, and let Q* := Q U {¢} be the new
set of colours. Balls of colour ¢ have activity a, := 0 and are thus never drawn, and
we let §,; :=0 for all j € QT; we further let &, := 1 and &, := 0 for every j # i, and
we start with X, := 0.

Consequently, the new urn, which we denote by U™, differs from the old one U
only in that one additional ball of colour ¢ is added each time a ball of colour i is
drawn. We may thus assume that the two urns are coupled such that they have the
same X;(t) for all j € Q and ¢t > 0, and then

N;(t) = X, (t) and Npi = X, (11.11)
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The new urn U™ is also triangular and satisfies (A1)—(A5), or (A1)—(A4), (A5'), and
(A7), if U does. In Ut we have A\, = 0 and, using (2.8) and (2.9),

AF = \F, (11.12)
Ki, )\;k > 0,
K, = {E' IRV (11.13)

(i): By Theorem 4.1 or Theorem 8.6 applied to the new urn U™, we have (4.1) for
the colour ¢, and thus, using (11.11) and (11.12)—(11.13),
e AN (1) =t e NEX (1) 255 (11.14)
Furthermore, Lemma 3.5 or Lemma 8.11(a) applies to « € QT (with ¢ replaced by ¢
and j by i), and thus (3.35) yields, since A\, = 0 < A¥,
;T a;

X, = X, = — A&
LT T

Hence, (11.2) follows, with N; := X,.

(ii): Similar, now with x, = k; + 1 by (11.13), and using the second alternative in
(3.35) which gives

(11.15)

;T a;
=X = Y = X;. 11.1
M L K/L 7 K/Z + 1 (2 ( 6)

The final sentence follows from Theorems 4.1 and 8.6, which yield X, > 0 a.s. O

Proof of Theorem 11.2. We add a dummy colour ¢ as in the proof of Theorem 11.1,
and note that if the original urn U satisfies (A8) or is balanced, then the same
holds for the new urn U*. (Note that dummy colours with activity 0 are ignored in
Definition 10.1.)

By Theorem 1.8, Theorem 8.4, or Theorem 8.5 toge’t\:her with Lemma 10.9, the
conclusions of Theorem 1.8 hold for U™, except that X, = 0 is possible unless we
have (A5') or (A8). (However, our assumptions yield Xy > 0 a.s. in all cases.)

We argue similarly to the proof of Theorem 11.1, now using (1.3) or (1.4) for the
dummy colour ¢ in U™, together with (11.11) and (11.12)—(11.13). This yields a.s.
convergence to Nj := &, in (11.4), (11.5), or (11.6) (depending on A} and 3\), note
that A > A¥, that (2.13) yields v, = ; in (i) and v, = kK, = k; + 1 in (ii), and that
(2.12) shows that R is the same for U™ as for U.

Finally, the formulas for A; follow from (11.15)—(11.16) and (5.12) or (5.14). O

Alternatively, we may prove Theorem 11.2 from Theorem 11.1 by adding a dummy
colur 0 as in Section 5. In any case, the proof is really based on adding two dummy
colours 0 and ¢ to the continuous-time urn.

Proof of Theorem 11.4. The results for the continuous-time urn in (i) and (ii) follow
by comparing the results of Theorem 11.1 with the limits for X;(¢) in Theorem 4.1
or Theorem 8.6, recalling that X; > 0 a.s. as stated in Theorem 4.1. The result for
Nyi/Xpi in (i) then follows by (11.1) and (2.19). Similarly, (11.9) and (11.10) follow
from (11.8) and (5.9) or (5.13). (Alternatively, the results for N,;/X,; follow by
comparing the results in Theorem 11.2 and Theorem 1.8.) g

Remark 11.5. In Theorem 11.4, if we assume only (A1)—(A4), (A5'), and (A7)

A

but not (A8), then the conclusions hold on the event {X; > 0} for N;(t) and on
{Xz > O,XO > 0} for Nm A
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12. MOMENT CONVERGENCE

We have so far considered convergence a.s., which as always implies convergence
in distribution. We consider in this section whether we also have convergence of
moments, or equivalently convergence in LP; recall the general fact that for a sequence
of positive random variables converging a.s. (as we have here), convergence of the
pth moment is equivalent to convergence in LP, for any (real) p > 0, see e.g. [21,
Theorem 5.5.2].

Unlike earlier sections, there seems to be an important difference between the
discrete-time and continuous-time cases.

For a continuous-time urn, we will see below (Theorem 12.2) that we always have
convergence in L? in Theorems 4.1 and 8.6; hence the mean and variance converge in
these results. This extends to convergence in L? for any p > 2, and thus convergence
of any moment, assuming a corresponding moment condition for the replacements
&j (Theorem 12.3).

The situation for discrete-time urns is more complicated. We will only consider
balanced urns, and then prove L?-convergence, and thus convergence of mean and
variance; we also extend this to LP and higher moments under the corresponding
moment condition for the replacements &;; (Theorem 12.5). It seems likely that this
result extends to a wider class of triangular urns. However, it does not hold for all
triangular urns. Example 14.2 gives a simple example where the a.s. limit does not
have a finite mean, and thus we cannot have even L'-convergence in Theorem 1.8.

Remark 12.1. The counterexample in Example 14.2 is rather special (a diagonal
urn); [28, Theorem 1.6] shows that for a class of more typical unbalanced triangular
urns, the a.s. limit in Theorem 1.8 has moments of all orders. This does not prove
moment convergence, but we see no reason against it, and we conjecture that for these
urns, and many others, we have convergence in LP for all p > 0 (Problem 12.6). A

LP-convergence or moment convergence (usually as part of a proof of convergence
in distribution by the method of moments) have been proved earlier by different
methods for some discrete-time Polya urns, as far as we know all of them bal-
anced. This includes balanced triangular urns with ¢ = 2 or 3 and deterministic
integer-valued replacements by Flajolet, Dumas and Puyhaubert [17], [43] (see Ex-
amples 14.3 and 14.11), and, for L? only, more general balanced triangular urns with
deterministic replacements by Bose, Dasgupta, and Maulik [12] (Example 14.12).
Further examples where moment convergence has been shown earlier are discussed
in Examples 14.6, 14.7, 14.8, and 14.10.

12.1. Continuous-time urns.

Theorem 12.2. In Theorems 4.1 and 8.6, the limit (4.1) holds also in L?. In
particular, mean and variance converge.

Proof. Let i € Q. The proofs of Theorems 4.1 and 8.6 show that (3.83) holds. Thus,
by the definitions (3.29)—(3.30),

sup| X (t)|* < |20 X P e LY. (12.1)
t>1
Hence, the collection {|X;(t)|? : ¢ > 1} is uniformly integrable, and consequently

the a.s. convergence X;(t) — X; implies convergence in L? [21, Theorems 5.4.4 and
5.5.2]. O
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Theorem 12.2 extends to L? for all p > 2 as follows. The proof is based on the
arguments in Section 3 combined with the Burkholder-Davis—Gundy inequalities
which enable us to replace L? estimates by LP estimates. The details are quite long,
however, so we postpone them to Appendix B.

Theorem 12.3. Let p > 2. In Theorems 4.1 and 8.6, assume also &; € LP for all
i,j € Q. Then, for every i€ Q, the limit (4.1) holds also in LP. Moreover, X* € LP.

Remark 12.4. In Appendix B, we further show that Theorem 12.3 holds for any
p > 1, also without the L? condition (A4). The proofs below then show that the
same holds for all LP results in this section. A

12.2. Balanced discrete-time urns.

Theorem 12.5. Consider a balanced triangular urn statisfying (A1)-(A5) or (Al)-
(A4), (A5'), and (AT7).
(i) In Theorems 1.8 and 8.4-8.5, the limit (1.3) or (1.4) holds also in L?. In
particular, mean and variance converge.
(ii) Moreover, if p =2 and &;; € LP for alli,j € Q, then, for every i € Q, the limit
(1.3) or (1.4) holds also in LP. Hence all moments of order < p converge.

As said above, this has been shown earlier in some special cases and examples, in
particular [17], [43] (¢ = 2,3), and [12] (p = 2); see also the examples in Section 14.

Proof. Part (i) is a special case of (ii), so we show only the latter.

Note first that (A6) holds by Lemma 10.2, and that Lemma 10.7 shows that Xy > 0
a.s.; thus the conclusion (1.3) or (1.4) of Theorem 1.8 holds by Theorem 1.8 or 8.5.
(Or Theorem 8.4 when it is applicable.)

Let ¢ > 0 be so small that P(Xy > ¢) > % Our assumptions imply (as in the proof
of Theorems 8.4 and 8.5) that (5.5) holds, by the proof in Section 5. This implies,
by our choice of ¢,

P(f’;“oe*”nn > c) > % (12.2)
for all large n. By decreasing ¢ (or just by ignoring some small n in the sequel), we
may assume that (12.2) holds for all n > 1. Let &, denote the event

En = {fn_”oe_j‘f"n > c}, (12.3)

so that (12.2) reads P(€,) > 1.

Let 7 € Q. By Theorem 12.3, )Z'Z** € LP. Hence, by (2.19) and (3.30),

P -~ P
Xni X; (T, ~
= | = f(;?) —| < (Xf*)PelLl (12.4)
(1+T,)" erTn (1+T,)"eNTn

Consequently, the sequence Y, is uniformly integrable. It follows from this and
(12.2) that the sequence of conditioned random variables (Y, | £,) also is uniformly
integrable. We consider two cases:

Case 1: X > 0. In this case, Lemma 10.7 shows, using (5.3) and (2.13), that

ko = k = 0 and v; = k;. Hence, the event &, means e Mnp > ¢, and thus T, <
tn := A"!(logn + C). Consequently, on the event &, we have (for n > 2)

p p

3 3 T
n /A login n /A loghin thieitn

p

Ty 1= <CY, (12.5)
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and thus the uniform integrability of (Y, | £,) implies uniform integrability of (Z,, |
En). However, by Lemma 10.4 and (12.3), X,,; is independent of the event &,; hence,

so is Z, and thus (Z, | &) d Z,. Consequently, the sequence Z, is uniformly
integrable.

In other words, the left-hand side of (1.3) is uniformly pth power integrable.
Hence, the a.s. convergence in (1.3) implies convergence also in LP.

Case 2: A = 0. This is similar. In this case, (12.3) means T, < Cn'/%. We now

define

p
Xni

n’fi/l‘A‘iO

Zy = (12.6)

~

and note again that Z,, is independent of &,. Since 0 < A} < A = 0 we have \} = 0,
and Ko = ko by (5.4); hence (12.6) and (12.4) show that on &,, we have Z,, < CY,,.

Consequently, we have again Z, 2 (Zn | &n) < (CY, | &), and it follows that Z,, is
uniformly integrable. Hence the a.s. convergence (1.4) holds also in LP. O

As said above, Example 14.2 shows that Theorem 12.5 does not extend to all
triangular urns. However, it seems likely that it extends to many unbalanced urns;
we leave this as an open problem.

Problem 12.6. Find more general conditions (including also some unbalanced urns)
for convergence in L? or LP in Theorems 1.8 and 8.4.

12.3. Moments for drawn colours. The results above on convergence in L?, and
thus convergence of mean and variance, apply to the number of drawn balls with a
given colour, N,; and N;(t), since as shown in the proofs in Section 11, they can be
regarded as X, and X, (t) for an extended urn with a dummy colour + added. Hence
we obtain:

Theorem 12.7. In Theorem 11.1, the a.s. limit (11.2) or (11.3) holds also in L?.
Moreover, if p = 2 and &; € LP Vi, j € Q, then the limit holds also in LP.

Proof. By Theorem 12.2 or 12.3 applied to X, (). O

Theorem 12.8. In Theorem 11.2, if the urn is balanced, then the a.s. limit (11.4),
(11.5), or (11.6) holds also in L. Moreover, if p = 2 and &;; € LP Vi,j € Q, then
the limit holds also in LP.

Proof. By Theorem 12.5 applied to X,,,. O

13. RATES OF CONVERGENCE?

For classical Pélya urns (Example 14.1), the rate of convergence for convergence in
distribution in (14.4) or (14.5) has been studied, for several different metrics; see [29]
and the references there. As noted in [29, Remark 1.4], the rate of a.s. convergence
is slower, and is the same as in the law of large numbers for i.i.d. Bernoulli variables,
which is given by the law of iterated logarithm.

For other triangular urns, we are not aware of any similar results on rates of
convergence; however, [17] gives upper bounds for the rate of convergence of moments
and in a local limit theorem, for some balanced triangular urns with deterministic
replacements. (Irreducible, and thus non-triangular, balanced urns with ¢ = 2 and
deterministic replacements are studied in [34].)
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Problem 13.1. Study rates of convergence in e.g. (1.3) and (4.1), both for the a.s.
convergence and for convergence in distribution.

Note that this problem is closely related to the problem studying fluctuations from
the limit, mentioned in Remark 1.9.

14. EXAMPLES

We consider several examples, many of which have been treated earlier from dif-
ferent perspectives. The purpose is to illustrate both the theorems above and (some
of) their relations to earlier literature. We generally label the colours by 1,...,q,
and then assume &;; = 0 when 7 < j. We assume that the initial composition Xj is
deterministic. We write for convenience z; := X;0 = X;(0) and x := (z;)] = Xo. We
denote the total number of balls in the urn after n draws by |X,,| := >7_; X,

When ¢ = 2 we sometimes also call the colours white and black (in this order;
thus a black draw may add only black balls: “there is no escape from a black hole”).
We then may write W,, := X1, By 1= Xpo, W(t) := X1(t), B(t) := Xa(t), wp :=
xIr1 = XlO, bo =T = Xgo.

We usually describe the urns using the replacement matrix (ﬁij)?’ =1 where the
rows are the replacement vectors. (See Remark 1.4.)

In all our examples, all activities a; = 1. Thus

Example 14.1. The classical Pdlya urn has balls of ¢ colours; when a ball is drawn
it is replaced together with a fixed number b > 0 balls of the same colour. Hence,
the replacement matrix is deterministic and diagonal, with entries b on the diagonal.
This urn is obviously balanced, and we have \; = A\¥ = b and x; = 0 for every colour
i

This urn model was studied (for ¢ = 2) already by Markov [39], Eggenberger
and Pdlya [16] and Pdlya [41]. See also e.g. Johnson and Kotz [31, Chapter 4] and
Mahmoud [38].

For this urn (as for any diagonal urn), in the continuous-time version, the dif-
ferent colours evolve independently, and each colour is version of the Yule process.
More precisely, X;(t)/b is a Yule process started with x;/b individuals, where each
individual gets children at rate b; thus X;(¢/b)/b is a Yule process with the standard
rate 1. (This is a classical branching process if z;/b is an integer, and in general a

CB process.) It is well-known that in this case e X;(t)/b 4, I'(z;/b,1) and thus

e P X (t) 25 X e D(x/b, b); (14.2)
furthermore, X7, ..., &, are independent, since the processes X;(t) are independent.

This is an example of Theorem 4.1. Moreover, (5.11)-(5.12), or (5.16) where now
Q« = Q, show together with (5.17) that

Xz'n a.s. Xz
=X =b=—. 14.3
n ! ;1-=1 Xj ( )
It follows that the vector of proportions converges:
X, as 12 1,5 ~ (X1,..., &)
= X = (A, Ay = =77 14.4
|Xn| b b< 1 ) q) ?:1 X] ) ( )
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where, as a consequence of (14.2), the limit vector b= X has a Dirichlet distribution
with parameter x/b. In particular, each marginal converges a.s. to a Beta distributed
variable:

Xni 5 T; T
2SI ~ B(E )y ). 14.5
- 39 e

These results are all well known; the limit (14.5) with convergence in distribution
was shown for ¢ = 2 already in [39] and [41], and for general ¢ in [10] (in a special
case) and [2]; see also [31, Section 6.3.3] and [38]. Furthermore, a.s. convergence has

been shown by a number of methods, for example in [10] and [2]. A

Example 14.2. A diagonal Pdlya urn has &;; = 0 for ¢ # j; in other words, all added
balls have the same colour as the drawn ball. This is a generalization of the classical
Pélya urn in Example 14.1, but now the diagonal elements &; can be random, and
they may have different distributions. A.s. convergence for this urn has been shown,
under weak technical conditions, by Athreya [2]; see also Aguech [1, Theorem 4].

Consider for simplicity the case when the replacements are deterministic, and
assume to avoid trivialities that r; = &; > 0 for every i € Q.

As in Example 14.1, in the continuous-time urn, the colours evolve as independent
Yule processes, now with possibly different rates \; = &;. Hence, generalizing (14.2),

67)‘itXi(t) 25 Xie T(xi/ iy Ni), (14.6)
with all A; independent.

Consider thefimplest case: ¢ = 2, and assume \; = « and Ay = ¢ with a > § > 0.
Then A = X\ij, A =a, ki =Rk = =0 (i = 1,2). It follows from (5.11)-(5.12) and
(5.17) (or directly from (14.6)) that

X
Xl
Note that if X ~ I'(a,b), then its moments (for arbitrary real r) are given by

00X, 2% Xy = o/ (14.7)

E4T — {bTI‘(a +7r)/T(a) <0, —a<r< w0, (14.8)

o0, < —a.

In particular, since X; and X5 are independent, it follows from (14.6)—(14.8) that for
r >0,

EX] <0 «= B

< < ri/a<zi/a <= 1 <131/0. (14.9)
Consequently, XAQ does not have finite moments of all orders. In particular, we
cannot always have (finite) moment convergence in (14.7). Taking, for example,
a=2,0=1,and 1 = 9 = 1 we see that not even the mean E/f’g is finite; hence
we cannot have convergence in L' or L? in Theorem 1.8.

As far as we know, it is an open problem to find asymptotics of moments E X/,
for general r > 0 in this (simple) example. A

Example 14.3. Consider a two-colour urn with a deterministic replacement matrix

(g 2) . (14.10)

(We have chosen a notation agreeing with [28], although colours are taken in different
order there and thus the matrices are written differently.) This urn (and special cases



ALMOST SURE AND MOMENT CONVERGENCE FOR TRIANGULAR POLYA URNS 51

of it) have been studied in many papers; in particular, [28] gives a detailed study of
limits in distribution. The balanced case o = § 4+ v with integers «,~,d is studied
by very different methods (generating functions) in [43] and [17]. A.s. convergence
has been shown in special cases in [18; 19; 11; 12] (v = 0 + 7), and [1] (o = 9).

Suppose that § > 0, v > 0, wg = 1 > 0, and by = x5 > 0; suppose also either
a >0, or a = —1 together with v € Z, and x3 € Z>o. Then the urn satisfies (A1)-
(A5) if @« = 0, and (A1)-(A4), (A5'), and (A7)-(A8) for all o. Hence, Theorems 1.8
and 4.1 apply if @ = 0, and Theorems 8.4 and 8.6 apply for any «; consequently, the
conclusions of Theorems 1.8 and 4.1 hold for all cases.

We have A\; = § and A\ = a. Furthermore, since v > 0, we have 1 — 2. (Thus 1
is the only minimal colour.) Hence, A} := 4§, A5 := a v ¢ and thus N = Ay =a v 6;
furthermore k1 = 0 while ko = 1 when o = § and k9 = 0 otherwise. We consider
several cases.

Case 1, a < 6: R
Then A = A5 = A = § > 0; furthermore, k1 = k2 = 0 = K, and (2.13) yields

v1 = 72 = 0. Consequently, Theorem 1.8(i) or Theorem 8.4 yields
Xni a.s.

X, i=12. (14.11)
n

Furthermore, 1 is the only leader, and thus Theorem 7.2 shows that /'?1 and /'?2 are
constants. To find them, we can use Lemma 6.7. By Lemma 6.1 (simplifying the
notation), X; = ¢; X1, where obviously ¢; = 1, and Lemma 6.7 gives the eigenvalue
equation

(c1,¢2) (8 l) = d(c1, c2), (14.12)

i.e., v+ acy = dcg, with the solution co = v/(d — «). In other words,

g
Xy = A1, 14.13
2T 5ot ( )
This follows also directly from Lemma 3.5 and (3.35).
If we add a dummy colour 0 as in Section 5, then (5.17) and (14.13) yield

1y 46—
Xo= 61X+ A) = g%xy (14.14)

Hence, by (5.12),

) Xl 5((5—0&)
Xf=—=—"= 14.15
! Xo ’)’—F(S—Ol, ( )

s X2 5’}’
o= 5= —". 14.16
2 Xo Y+ —« ( )

Consequently, as n — o0 we have

Xn1l as. o 5(5_04)

=0 14.17
n RN QP ( )
X2 nsy 00 (14.18)

n Y+ —«
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This is in agreement with [28, Theorem 1.3(i)-(iii) and Lemma 1.2], which give the
asymptotic distribution of the difference X,; — nXAZ divided by the correct normal-
ization factor, which implies (and is much more precise than) convergence in proba-
bility in (14.17)-(14.18). (The normalization factor is n'/? for a < §/2, (nlogn)/?
for a = §/2 and n®/ for §/2 < a < . Moreover, the distribution is asymptotically
normal for o < /2, but not for §/2 < a < §. See [28] for details.)

Case 2, a = §: R
Then \f = A5 = X\ = § > 0; furthermore, k1 = 0 and k2 = 1 = &, and thus (2.13)

yields 71 = —1 and 72 = 0. Consequently, Theorem 1.8(i) yields
an

as ¥ 14.1
n/logn b (14.19)
Xn a.s. >
2 2% % (14.20)
n

Furthermore also in this case, 1 is the only leader, and thus Theorem 7.2 shows
that X1 and Xg are constants. However, unlike Case 1, A2 = A5 and thus 2 is now
a subleader. Again, Lemma 6.1 shows that Xy = 02/1’1, where (6 20) in Lemma 6.7
immediately yields

airi2

cy = c1="1. (14.21)
K2
Furthermore, (5.15) now yields Q. = {2}, and thus (5.17) yields
Xo =214 =614, (14.22)
Consequently, recalling (5.12), the limits in (14.19)—(14.20) are
P <HPY < B
Pyt et 00 07 14.23
1 X() XQ Cs ~ ) ( )
~ Xo
Xy =—=0. 14.24
2= % (14.24)

This is in agreement with the result on the asymptotic distribution in [28, Theorem
1.3(iv) and Lemma 1.2], which implies convergence in probability in (14.19)—(14.20).
Case 8, a > §:
Then 0 < A} = § < A5 = a = \; furthermore, k1 = k2 = 0 = K, and thus
7 = 2 = 0. Consequently, Theorem 1.8(i) yields (see also [1])
an

a.s.
e A (14.25)
A2 as, B (14.26)
n

In this case, both colours 1 and 2 are leaders; hence Theorem 6.4 shows that X; and
Xs are absolutely continuous, also jointly. Furthermore, Theorem 7.1(ii) shows that

X, is absolutely continuous, while Theorem 7.2 shows that X, is deterministic. We
have again Q, = {2}, which by (5.17) now yields

Xo =21 =a 1A, (14.27)
Hence, (5.12) yields

(14.28)
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Xy=2 = (14.29)

However, the formula (14.28) for X, does not seem to be of much use to find the
distribution of X;. This distribution was found by other methods in [28, Theorem
1.3(v)], which yields convergence in distribution of X,,1/n%?; the a.s. convergence in
(14.25) is a stronger result, and the distribution of X, is thus the limit distribution
found in [28]. This limit distribution is characterized in [28], but no simple form
is known in general; it is shown in [28, Theorem 1.6] that X has moments of all
orders, and a complicated integral formula is given for these moments. Except in
the balanced case below, it is, as far as we know, an open problem whether moments
converge in (14.25) (to these limits) or not.

Case 4, = 6 + :

The balanced case of the two-colour urn studied here is « = § 4+ ; by our assump-
tion v > 0, this is a special case of Case 3, and thus (14.25)—(14.29) hold. In this
special case, 2?1 can be characterized by its moments, for which there is a simple
formula, see (for integers a7, d,r) [43, Theorem 2.9], [17, Proposition 17|, and (for
the general case) [28, Theorem 1.7]:

. F((ml + xg)/a)F(x1/5 +7)
F(ml/é)F((xl +x0 + 7“5)/&) ’

EX] =0 r> 0. (14.30)
It follows that the moment generating function Ee!* is finite for all real ¢, and
thus the moments (14.30) (even for integer ) determine the distribution. Moreover,
Theorem 12.5 shows that all moments converge in (14.25) (to the limits (14.30)); this
was earlier shown in [17; 43] in the case that the replacements d,~, a are integers.

If we further assume zo = 0, so we start only with white balls, then XAl has a
density function that can be expressed using the density function of a Mittag-Leffler
distribution with parameter ¢/a, or a d/a-stable distribution, see [28, Theorem 1.8]
and [17, Proposition 16].

The continuous-time processes W (t) and B(t) are studied by [13], which includes
our Theorem 4.1 for this balanced urn. JAN

Example 14.4. Generalizing Example 14.3, consider a general triangular two-colour
urn U with random replacement matrix

§11 12
( ) 522> . (14.31)
Such urns have been studied by Aguech [1], who proved (among other results) the
existence of a.s. limits under some assumptions (including our (A5), E&s = E &1,
and an unnecessary independence assumption). We extend this result as follows.
Assume &11, €12, €20 € L2 (Condition (A4)), and let 6 := E&yq, v := E&po, a :=
E &9, so that (g Zx) is the mean replacement matrix. Suppose that (A5') holds,
that &1 > 0 a.s., and that, as in Example 14.3, 6 > 0, v > 0, wo = 21 > 0, and
bp = o = 0. Then the urn satisfies (A1)—(A5) if &9 > 0 a.s., and (Al)-(A4),
(A5"), and (A7)—(A8) in any case. Hence, Theorems 8.4 and 8.6 apply, and thus the
conclusions of Theorems 1.8 and 4.1 hold for all .
As in Section 9, we let U’ denote the mean urn with replacement matrix (g g),
this urn is of the type in Example 14.3. As discussed in Section 9, all parameters

iy AT, X, ... are the same for I/ and U’, and thus all results are qualitatively the same
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for the two urns. Hence, all results in Example 14.3 hold for the urn ¢/ with random
replacements too, except any assertions on the precise distributions of the limits
(including the moment formula (14.30), which as shown in Example 14.5 below is
not valid in general for random replacements). Note, however, that by Theorem 9.1,
in all cases in Example 14.3 with a deterministic limit 2?1 for the mean urn, we have
the same limit for the urn U. JAN

Example 14.5. Consider a two-colour urn U/ with the random replacement matrix

(g 1 I f) , (14.32)

where £ € Be(p) for some p € (0,1). In other words, if we draw a white ball, we add
another ball that is white with probability p, and otherwise black; if we draw a black
ball we always add another black ball. (As usual, we also always return the drawn
ball.) Note that this urn is balanced, in spite of replacements being random.

This urn appears in several applications, see Examples 14.6 and 14.10 for two of
them.

This urn is a special case of Example 14.4, and a.s. convergence for the urn follows
from Theorem 1.8. Moment convergence follows from Theorem 12.5.

The mean replacement matrix is

(rij) 1 = <g ! Ip> : (14.33)

By Section 9, the asymptotic behaviour of the urn U is qualitatively the same as
for the mean urn U’ with the replacement matrix (14.33), which is an instance of
Example 14.3, more precisely the balanced Case 4. In particular, since (14.29) shows
that X, = a = 1 is constant for the mean urn U’ , the same holds for the original urn
U by Theorem 9.1.

We may also relate the urn U to the mean urn ¢’ in another, more direct, way.
Conditioned on the contents (X1, X,2) of the urn at time n, the probability that
the next added ball is white is, letting { be the colour of the drawn ball,

X
P(C=1] Xu1, Xna)  p+P(C =2 X1, Xp2) -0 = ﬁ. (14.34)
Hence, if we define
Ynl = anl, (1435)
Yoo i= (1 = p)Xn1 + Xno, (14.36)

and note that Y, + Yae = Xp1 + Xyo, we see from (14.34) that we may regard
the added ball in U as the drawn ball in an urn with composition Y,, = (Y1, Yn2).
Adding a white ball to (X1, X,2) (i.e., increasing X,; by 1) means by (14.35)-
(14.36) adding (p,1 —p) to (Yn1, Yn2), while adding a black ball to (X1, X,,2) means
adding (0,1) to (Y1, Y,2). Consequently, the stochastic process (Yy,)n>0 describes
a Pélya urn with the replacement matrix (? lzp), which is the same as (14.33)
for the mean urn U’ above. Note, however, that the initial conditions now are, by

(14.35)—(14.36),
yi=pr1, Y= (1—pz1+ 22 (14.37)
By Example 14.3, we have
Yor/nP 255 Py (14.38)
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where the limit by (14.30) has moments, recalling (14.37),
N r r r r
Ey{ _ pr (yl + y2> (yl/p + ’l”) _ pr (.’131 + .%'2) (.%'1 + T) . (1439)
Ly /p) Ty +y2 +rp)  ° D(x) D21 + 22 +7p)

Hence, by (14.35), we have in the urn ¢/ with replacements (14.32)
X1 /nP 25 X, (14.40)

with .)?1 = p_leil, and thus

D(xy +zo) T(z1 + 1)
[(z1)T(z1 + 22+ 1p)’

EX =p "EY] = r = 0. (14.41)

By comparing (14.40) with (14.30) for the mean urn, we see that the means E X,
are the same for the two urns, while for the second moment, (14.41) and (14.30)
yield, for the urn ¢/ and its mean urn U’, respectively,

F(J}l + xQ)
[(x1 + 22 + 2p)’

F(.Z‘l + xg)

E A2 = + .
1=z p)l“(a:1+x2+2p)

E??f =zi(r1 +1)

(14.42)

The variance is thus larger for the urn & with random replacement. (Perhaps not
surprisingly.) This shows that an urn and its mean urn in general have different
asymptotic distributions, although the qualitative behaviour is the same as shown
in Section 9. A

Example 14.6. One example where the urn in Example 14.5 with replacement
matrix (14.32) appears is that it describes the size of the root cluster for bond
percolation (with parameter p) on the random recursive tree (with vertices in the
root cluster coloured white and all other vertices black, and the initial vector (1,0)).
(See the argument in the generalization Example 14.7 below. The root cluster is
studied by other methods in [6], [35], [5], [14].) In this case we obtain (14.40) where
(14.41) yields
5, L(r+1)

E AT = Tt ) r=0, (14.43)
which means that /’?1 has a Mittag-Leffler distribution; this was proved by Baur and
Bertoin [6] (using other methods). A

Example 14.7. Baur [5] and Desmarais, Holmgren, and Wagner [14] considered
(among other things) the root cluster in bond percolation on a preferential attach-
ment tree, generalizing Example 14.6. The tree is defined as follows, for a real
parameter o. Construct the rooted tree 7T, with n vertices recursively, starting with
71 being just the root and adding vertices one by one; each new vertex is attached to
a parent v chosen among existing vertices with probability proportional to ad(v) +1,
where d(v) is the current outdegree of v. We also perform bond percolation, and
let each edge by active with probability p € (0, 1), independently of all other edges.
(Note that both active and passive edges are counted in the outdegree.) A vertex is
active if it is connected to the root by a path of active edges. Let Z,, be the number
of active vertices in 7,.

The case a = 0 gives the random recursive tree in Example 14.6. We consider
here the case o = 0 (as assumed in [5]), and study the modifications for o« < 0 in
the following example.
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We model this process by an urn with two colours, where each vertex v contributes
ad(v) + 1 balls, which are white if the urn is active and black otherwise. To find the
parent of the next vertex corresponds to drawing a ball from the urn; if the ball is
white then the parent is active and the new vertex becomes active with probability
p (and otherwise passive); if the ball is black then the parent is passive and the new
vertex always becomes passive. Since the outdegree of the parent increases by 1, we
add « balls of the same colour as the drawn ball, plus one ball for the new vertex
which is white if the new vertex is active, i.e., with probability p if the drawn ball is
white, and otherwise black. Hence, the urn is a Pélya urn with random replacement

matrix
a+& 1-¢
< 0 o+ 1) , (14.44)

where £ € Be(p). We start with 1 active vertex, and thus the urn starts with a single
white ball, i.e., x = (1,0).

If @« = 0 (the random recursive tree), we get again (14.32), as discussed in Exam-
ple 14.6. In general, unlike Example 14.6, the number of active vertices Z, is not
directly reflected by the contents of the urn. However, if NV,,; is the number of drawn
white balls, then this is the number of vertices that get an active parent; hence N,
is the total outdegree of the active vertices, and therefore the number of white balls
in the urn is

Wy = Xn1 = aNpy + Zn. (14.45)

The replacement matrix (14.44) shows that the urn is of the type in Example 14.4;
furthermore, it is balanced with balance a + 1. We have A\ = \; = E{p = a+p

and \ = Ao = a + 1; further k1 = ko = 0. Theorem 1.8 yields

Xn1 a.s.

Moreover, Theorem 11.4 yields
an a.s. 1 1

as, 1 , 14.47
X1 )\T a+p ( )
and thus (14.45) yields
Zn _Xm—oNw as @ P (14.48)
an an a+p a+p
Hence, (14.46) yields
Zn a.s. . b 5
platp)/(a+1) — Z = o _,_th (14.49)

where the limit is in (0,00) a.s. The limits (14.46) and (14.49) hold also in L" for
any r < o0 by Theorems 12.5 and 12.8; hence all moments converge.

This complements Baur [5, Proposition 4.1], who shows L2-convergence in (14.49)
and gives the first two moments of the limit (by different but related methods), and
Desmarais, Holmgren, and Wagner [14] who prove convergence of all moments in
(14.49) and give a recursion for the moments of the limit. (The distribution of the
limit is not known explicitly.) A
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Example 14.8. In Example 14.7, we assumed « > 0. However, the results extend
easily to the case a < 0. (This case was included in [14].) In this case, as is well
known, we must have @ = —1/d with d > 1 an integer; the random tree 7, then
is a random d-ary recursive tree [15, Section 1.3.3]. (The case d = 1 is trivial, and
we assume d > 2.) In this case the replacements (14.44) do not satisfy (A5’), since
a + & may take the non-integer negative value —1/d. This is can be remedied as in
Remark 8.1 by multiplying the number of white balls by d and adjusting the activity
a1, but in the present case we find it simpler to multiply the number of balls of both
colours by d and keep the activities a; = 1. This gives the replacement matrix

dé —1 d—de
=) 050

with the initial state x = (d,0). In (14.45), we have to replace X1 by X,1/d, which
yields

an + an

We have \f = A\ =E&;1 = dp — 1, so (A7) requires dp > 1. (In fact, it is easily
seen that if dp < 1, then Z,, = Z,, < oo [14].) Assuming dp > 1, this urn satisfies
(A1)-(A4), (A5'), and (A6)—(AT). It does not satisfy (A8), but Lemma 10.9 shows
that Xp > 0 a.s., and thus we obtain by Theorem 8.5 the a.s. limit (14.49) again
(with X replaced by X} /d); this can be written

Zy = (14.51)

Zn a.s. . p v
O R Pl (14.52)

Moment convergence, earlier shown by [14], follows from Theorems 12.5 and 12.8. A

Example 14.9. In Example 14.7, we studied the number Z,, of vertices in the
preferential attachment tree 7, such that the path to the root contains only active
vertices. More generally, let Z7(1k:) be the number of vertices such that this path
contains exactly k& > 0 passive edges. For fixed k, this can be treated similarly, with
an urn with ¢ = k + 2 colours 1,...,q, where vertices with j passive edges on the
path to the root are represented by colour max(j + 1,¢). For example, for ¢ = 3,
this leads to an urn with replacement matrix

a+é 1-¢ 0
0 a+€& 1-¢, (14.53)
0 0 a+1

where £ € Be(p) as above. (It does not matter whether we write this with the same
¢ on both rows or not; recall Remark 1.4.) For a general ¢ > 2 we have &; = a + &
and 41 =1 —&for 1 <i<q—1, &, =a+1, and all other &; = 0. The urn is
balanced with balance b = o + 1. We assume for simplicity a > 0; the case @ < 0
can be treated as in Example 14.8.

Wefind A\y = --- = A-1 = a+pand Ay = a+1,and thus \f = --- = \7_; = a+p,

3\=)\;‘=a+1,nizi—lfor1<z’<q—1,and/<cq=0. We have in analogy with

(14.45), Z}zk) = Xy k41 — Ny 41 for B < ¢ — 2. Theorem 1.8 applies and shows
together with Theorem 11.4 as in Example 14.7, an a.s. limit. Since ki1 = k, we
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now get
z 25, z(k) = BY (14.54)
nla+p)/(a+1) logk n s +p kel '

Furthermore, we obtain from (7.3) and induction, since 7,41 = E (1 —¢&) = 1 —p for
every 1 < q — 1,

2 _ L (1=p\" S0 (14.55)
KB \a+1 ’ ‘

where Z() equals Z in (14.49). Consequently, the numbers ng) for different k are
asymptotically proportional. A

Example 14.10. Another example where the urn in Example 14.5 with replacement
matrix (14.32) appears is for elephant random walks with delays. In a standard
elephant random walk (ERW), the elephant takes steps Y,, € {+1}; after an initial
step Y7, the elephant (which remembers the entire walk) chooses one of the preceding
steps, uniformly at random, and then randomly either (with probability p) repeats
it, or (with probability ¢) takes a step in the opposite direction. (Here ¢ = 1—p.) As
noted by Baur and Bertoin [7] (to which we refer for details and further references),
this may be modelled by a (non-triangular) Pélya urn, with one white ball for each
step +1 and one black ball for each step —1 taken so far; the replacement matrix is

folgf> (14.56)

with £ € Be(p). Hence results for the ERW follows from known results for irreducible
Pélya urns [7]. (We have nothing to add here.)

In the elephant random walk with delays [33; 23; 22], the elephant has a third
possibility: with probability r it makes a step 0 (i.e., stays put), regardless of the
remembered step. (Now p+ ¢+ r = 1; we assume p, ¢, > 0.) This can be modelled
by a 3-colour urn, with colours representing steps +1, —1, and 0, and replacement
matrix

G G G
G G G, (14.57)
0O 0 1

where ((1, (2, (3) is a random vector with exactly one component 1 and the others 0,
and (P[¢; = 1])?_; = (p,q,7). This Pélya urn is neither triangular nor irreducible,
but it may be regarded as a combination of two such urns (cf. Remark 2.3) as
follows. Let as before Y;, € {£1,0} be the nth step, and let Z, := |Y,| € {0,1};
Z, thus just records whether the elephant moves or stays put. (The process Z, is
called Bernoulli elephant random walk in [25]; it has also been studied in [8] and,
for somewhat different reasons, in [26].) As noted by [7, V.C], the process (Z,,) can
be modelled by a Pdlya urn with ¢ = 2 and one white ball for each step +1 and one
black ball for each step 0 so far; the replacement matrix is

CB@ %). (14.58)

This is the urn in Example 14.5 with £ = 1— (3 € Be(1 —r). The number of non-zero
steps up to time n is W, the number of white balls in the urn. By conditioning
on Z; := |Y1|, we may assume that Z; is deterministic. Moreover, the case Z; = 0
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is trivial, with Y,, = Z, = 0 for all n > 1; hence we may assume Z; = 1, and
thus the urn starts with 1 white ball. ([22; 24] use a different initial condition with
Z1 ~ Be(1 —r).) Then the urn is the same as in Example 14.6, and Theorem 1.8
yields

Wy /n'™" — X, (14.59)

as shown by other methods in [22, Theorem 3.1]; furthermore, [8, Lemma 2.1] and
[24, Theorem 5.1] show that (14.43) holds (with p replaced by 1 —r and r by s,
say), and thus X; has a Mittag-Leffler distribution (as we saw in Example 14.6).
Moreover, [8] and [25] show that moment convergence holds in (14.59); this also
follows from Theorem 12.5.

Conditioned on the number W,,, the position of the elephant is the same as for
a standard ERW with W,, steps, and thus the limit results in [8] and [24] for the
ERW with delays may easily be obtained by combining (14.59) and the results for
the standard ERW obtained by [7] from the urn (14.56); we leave the details to the
reader. JAN

Example 14.11. The triangular urn with ¢ = 3 and balanced deterministic replace-
ments (with all entries integers > 0)

a f o—a—p
06 o-96 (14.60)
0 0 o

was studied by Puyhaubert [43, Section 2.5] and Flajolet, Dumas and Puyhaubert
[17, Section 10]; the results include convergence in distribution (after normalization),
and, in some cases, convergence of all moments with explicit formulas for moments
of the limits.

In particular, they show (in our notation and correcting several typos) that if
a >0 >0and g >0, then

Xpo/n®” 45 X, (14.61)

where the limit has moments
~ T T
a—108) D(x1/a)T((|x] + ra)/o)

In this case, we have 0 > a+ > a > § and thus \] = A5 = A\; = a, Ay = 0,
A=X=X=0,k=4k =0, =0 (i =1,2,3). Hence, Theorem 1.8 yields
(14.61) with the stronger convergence a.s. Moreover, the leaders are 1 and 3, and
Lemma 7.3 yields Xy = ¢21 X1, where Lemma 7.3 and (6.18) show that (1,¢2;) is a
left eigenvector of (‘3 fg ), with eigenvalue a. Consequently, ¢z = 3/(a — §) and

Xy = ai_éfl. (14.63)
Furthermore, as noted in [17], we may in this urn be partially colour-blind and merge
colours 2 and 3; then (X1, Xn2 + Xp3) is a 2-colour urn with replacement matrix
(8‘ ";a); hence the moments IEXA{ are given by (14.30), where now a and ¢ are
replaced by o and «, and x1 + x9 is replaced by |x| = z1 + x2 + z3, i.e.,

5o D(xl/o)T(@/a+ 1)
! T(z1/a)0((|x] +ra)/o)’

= 0. (14.64)
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Thus, (14.62) follows by (14.63).
Similarly, in the case & = § > 0 and § > 0, [43] and [17] show (again correcting
several typos)

X2/ (™7 logn) -5 X, (14.65)
where the limit has moments

o (aBY T(wi/a+rT(xl/o)
B = < - ) T (a1 /)T (x| + ra)/o)’

In this case \f = A5 = A\ = Ay = o, k1 = 0 and k2 = 1, and as above \ = Af =
A3 = 0 and kK = k3 = 0. Hence, Theorem 1.8 yields (14.65) with convergence a.s.
Moreover, Lemma 7.3 and (7.3) yield

(14.66)

Xy =2, (14.67)

which yields (14.66) by (14.64).
[17] and [43] further prove moment convergence in (14.61) and (14.65), which also
follows from Theorem 12.5.
Note that [17] and [43] assume the replacements to be integers, while we obtain
the results above also for non-integer replacements.
A.s. convergence in (14.61) and (14.65) follows also from [12], see Example 14.12.
A

Example 14.12. Bose, Dasgupta, and Maulik [12] study a rather general class
of balanced triangular urns with deterministic &;; thus &; = r;;. They show a.s.
convergence of X,,; suitably normalized, as in our Theorem 1.8.

We introduce some of the notation from [12]. The colours are {1,...,q} (where
they write ¢ = K + 1), and the replacement matrix is triangular, so (2.4)—(2.6) hold
with the natural order <. The diagonal entries r;; = \;; are denoted r;, and the
positions of the weak maxima in the sequence ri,...,7r, are denoted i1,...,%741.
Thus 7, < 7, < ... <1y, and 73 < Ti; when i; < k < ij41. Since the urn is
balanced, Lemma 10.7 and Remark 10.8 show that r, = A\; = \is a maximum, and
thus ij41 = ¢. Clearly, iy = 1. The jth block of colours is {i;,...,7j41 — 1}. (In
[12], the replacements are normalized by A\, = \ = 1, which can be assumed without
loss of generality. It is also assumed that initially there is 1 ball in the urn, i.e.,
2. i = 1; this seems to be a mistake since one cannot in general normalize both to
1 simultaneously.)

[12] says that the colours are arranged in increasing order if for every k € (i;,4541)
(with 1 < j < J), there exists m € [i;, k) such that r,,; > 0. Using our terminology,
this is easily seen to be equivalent to: If k € (i;,%;41), then k is a descendant of ;.
[12, Proposition 2.1] shows that in every balanced triangular urn, the colours can be
rearranged in increasing order. [Sketch of proof: Construct the blocks in backwards
order. In each step find a colour i (to be labelled ;) with A\; maximal among the
remaining colours; let the next block consist of ¢ and all its remaining descendants.
Order this block in a suitable way, with 4 first, and place it before the previously
constructed blocks. Repeat with the remaining colours.]

The main result of [12] further assumes [12, (2.2)], which says that for every
J =1,...,J, there exists m € [ij,ij11) such that 7, , > 0. In our terminology,
and assuming (as in [12]) that the colours are in natural order, this is equivalent
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to ij41 > ;. It follows that the assumptions in [12] (i.e., increasing order and

their (2.2)) imply that ¢;,...,7741 are precisely the colours ¢ with A} = \;, i.e. our
leaders and subleaders (see (6.3) and (6.19)), and that the leaders v have distinct A\¥.
Moreover, for each leader v = i;, the subleaders in D, (see (6.13)) are ij41,...,%j4¢

where ¢ = £; > 0 is the largest integer with A;, , = A;;; these subleaders form a
chain in the partial order <, and thus x;, , =k for £ = 0,...,£. The set D} is an
interval [ij,i;41) from a (sub)leader to the next.

The a.s. convergence in the main result [12, Theorem 3.1] now follows from The-
orem 1.8, Lemma 6.7, and Theorem 7.1. Moreover, [12, Remark 3.3] says that it is
clear from their proof that a.s. convergence holds also without their assumptions of
increasing order and their (2.2); [12] thus essentially states our Theorem 1.8 for the
case of a balanced urn with deterministic replacements.

Furthermore, [12] also shows convergence in L?, which is extended to LP for any
p by our Theorem 12.5. A

Example 14.13. Consider an urn with ¢ = 4 and replacement matrix

am — 1 0 n2 0

0 Bm—1 nm2 0O
X St (14.68)
0 0 0 9

where a, 3,7, d are positive integers and 71,72 € Be(1/2) are independent. We have
A = a/2—1, Ay = ,8/2—1, A3 =, and Ay = §. Suppose that Ay = Ay > Ay > A3 > 0,
and start with Xy = (1,1,0,1).
This urn satisfies (A1)—(A4), (A5’), and (A6)—(A7), but not (A8). We have A=
T =X =X = A, A5 = Ao, and k; = 0 Vi. Theorem 8.6 shows that (4.1) holds for
all colours i, with

e MNEXG (1) 25 A, (14.69)

Furthermore, &y > 0 a.s., as is seen by considering only balls of colour 4; hence, by
(5.17), Xop = A" HX + Xy) = A1 > 0 as.

Furthermore, 3 is a follower of the leader 1, and Lemma 6.1 with Remark 8.8
yields X3 = ¢X for some ¢ > 0. (In fact, ¢ = 1/2(\; — A3), by the same argument as
for (14.13).) Note also that X} and X5 are independent.

It is obvious that colours 1 and 2 both may die out in a few draws, and that if
they do, they may or may not first generate a ball of colour 3. If they do not die
out, then a.s. &7 > 0 and X5 > 0 respectively, see Remark 8.10.

Consequently, the following cases can appear, all with positive probabilities:

(i) X1 > 0 and then X3 > 0 and thus X3(t) grows at rate e*5? = ¢Mt. Similarly,
by Theorem 8.5 and (5.12), Xps/n =% X5 > 0.
(ii) X} = 0 but Xy > 0; then X3 = 0, but by considering the urn with colour 2, 3,
and 4 only (after 1 has died out), it follows that e ™2 X3(t) =% X} := /Xy > 0
for some ¢ > 0, and thus X3(t) grows at rate e*2!; similarly X,,3/n*>/*1 2%
X5 > 0.
(iii) X} = Xy = 0 and both X;(¢) and X»(t) die out, but at least one of them first
gets a ball of colour 3 as offspring. Then, by considering only balls of colour 3
and 4 (when the others have died out), e=*3 X3(¢) 2> XJ > 0, and thus X3(2)

Azt i )\3//\1 a.s. Sy
n .
grows at rate e*3'; similarly X,3/n — X5 >0
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(iv) X1 = X3 = 0, and both X;(¢) and X2(t) die out without producing an offspring
of colour 3. Then, X3(t) = 0 for all ¢ and thus X3,, = 0 for all n.

This example shows that in a case when X; = 0 with positive probability, it may
still be possible to find precise limit results, but different limit results may hold in
different subcases. It seems that this can be done very generally on a case by case
basis, but as said in Remark 8.7 we do not attempt any general statement. A

Example 14.14. An interesting counterexample is given by the replacement matrix

(8 i}) , (14.70)

where {99 = +1 denotes a random variable with P(§22 = 1) = P({22 = —1) = % In
words: when we draw a white ball, it is replaced together with a black ball; when we
draw a black ball, we toss a coin and then (with probability % each) either remove
the ball or replace it together with another black ball. R

We have 199 = Ego = 0, and thus A\; = Ao = 0 = A} =\ = A\, k1 = 0,
ke = 1, k = 1, kg = 2. Note that this example is excluded from Theorems 8.4-8.6
since (A7) does not hold. (However, (A1)-(A4), (A5), and (A6) hold, provided
x1 > 0 and 5 € Z>(.) We will see that, in fact, we do not have a.s. convergence of
Bn/n'? = X,a/nY? and B(t)/t = X5(t)/t as (1.4) and (4.1) would give; however,
these converge in distribution.

Consider first a continuous time urn with only black balls. This is a branching
process where balls live an Exp(1) time and then randomly either die or are split
into two. Let Y(¢) denote such an urn with black balls, starting with Y'(0) = 1, and
denote its probability generating function by (for |z| < 1, say)

gi(z) = E2Y0. (14.71)

Then the Kolmogorov backward equation [32, Theorem 12.22] yields, for ¢ > 0,

0 1 1 9
agt(z) = 5(1 +g1(2)?) — gi(z) = 5(1 —gi(2)) (14.72)
with go(z) = 2z, which has the solution
1 t\! t(l—2)+22 ¢ 2 257
=1- — = = . . 14.
9:(2) (1—z+2> t(l—2) +2 i12 112 [ (14.73)

Consequently, Y (¢) has a modified geometric distribution: P(Y (¢t) = 0) = ¢,(0) =
7 and the conditional distribution (Y (¢) | Y (¢) > 0) is Ge(t%). In particular,
P(Y(t) = 0) — 1 as t — 0; since 0 is an absorbing state, it follows that a.s. Y (¢) =0
for sufficiently large ¢; in other words, Y (¢) dies out. (This follows also since Y(t)
is a time-changed simple random walk, absorbed at 0.) A simple calculation yields
EY(t) = 1 and VarY(¢) = t, in accordance with (8.4)—(8.5) and (8.11). Note that
(Y (@) | Y(t) > 0) 4, Exp(%) as t — 00. Roughly speaking, for large ¢, Y(¢) is
non-zero with probability ~ 2/t, and if it is, it is of order t.

Now consider the two-colour urn above, and assume that we start with Xy = (1,0),
i.e., 1 white ball. The number of white balls is constant for this urn, and thus
W(t) = 1 for all ¢ in the continuous-time urn. This means that white balls are
drawn according to a Poisson process E with constant rate 1. If the times they are
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drawn are (T)7°, then we have
B(t) = > Yi(t—Ty), (14.74)
Ty<t

where Y}, are independent copies of the one-colour process Y (t), independent also of
(Tx)?. Consequently, for z € [0, 1] say, we have

E (zB(t) |E) = H Gi-1,(2) = exp( Z loggt_Tk(z))

Ty <t Tp<t

= exp (Jt log gt—(2) dE(u)) . (14.75)

0
Hence, by a standard formula for Poisson processes [32, Lemma 12.2],

E 20 = exp (Lt log g1—u(2) dE(u)) = exp (Jt (9s(z) = 1) ds)

0
brol s\~1 1 ¢ 1
- (= 3) ) —eo(2(lee(7= + 5) —tea(7=)))
exp( L(lz+2) § xp & 172+2 o8 1—-2
2
t -2 Lo \2
- (1 T - z)) - (Li) . (14.76)
2 1-— mz
Consequently, B(t) has a negative binomial distribution NegBin (2, t%) In partic-
ular,
EB(t) =t, (14.77)
which also follows directly from (14.74).
It follows from (14.76) that as ¢t — oo, for any s > 0,
t -2 -2
Ee B0/t — (1 +50- e—s/t)) - (1 + %) (14.78)
and thus B(t)/t converges in distribution to a Gamma distribution:
1B L 1(2,3),  ast— . (14.79)

However, we will see that B(t)/t does not converge a.s., which shows that Theo-
rem 8.6 does not extend to this example.

To see this, we extend (14.79) to process convergence. We claim that as ¢ — o0,
we have

' B(tz) -5 B(z) := 1BESQ(z)  in D[0, ), (14.80)

where BESQ*(z) denotes a squared 4-dimensional Bessel process [44, Chapter XI].
Recall that

4
BESQ*(z) = [W(z)* = ) Wi(z)?, (14.81)

i=1
where Wi (z), ..., Wy(x) are independent standard Brownian motions (Wiener pro-
cesses), and W(z) := (Wi(z),...,Wu(z)) thus is a 4-dimensional Brownian mo-

tion. Hence, 1BESQ*(z) ~ I'(2,z/2), in accordance with (14.79). Furthermore, a.s.
BESQ*(x) > 0 for every z > 0.

The proof of (14.80) is somewhat technical and is given in Appendix C, where we
also extend the result to other initial values (wyg, by), see Theorem C.1.
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Suppose now that B(t)/t 2> Z for some random variable Z; then Z ~ I'(2, 3) by
(14.79). Moreover, for every r > 0, we would have

t~H(B(rt) —rB(t)) = r(BS:) - Bit)) 25 (2 -2)=0. (14.82)

However, the process convergence in (14.80) implies finite dimension convergence,
and in particular

Y(B(rt) - rB(t)) - %(BESQ“(T) — /BESQ'(1)). (14.83)

Hence, (14.82) would imply BESQ*(r) = rBESQ*(1) a.s., for every r > 0, which
obviously is false (even for a single r # 1). This contradiction proves the claim that
B(t)/t does not converge a.s. Hence, the convergence in (14.79) holds in distribution
but not a.s.

We use (14.80) to derive corresponding results for the discrete-time urn. Let, as
above, T, be the nth time that a ball is drawn, and let N(¢) be the total number of
draws up to time ¢; thus N (fn) = n. Since all balls are drawn with intensity 1,

t ¢
N(t) = N(t) - J (W(s) + B(s)) ds = N(t) — t —f B(s) ds (14.84)
0 0
is a local martingale with N (0) = 0, and it follows as in the proof of Lemma 3.1
(now using (14.77)) that N(t) is a martingale. In particular EN(t) = 0, and thus
by (14.84) and (14.77)

EN(t)=t+E LtB(s) ds=t+ fot}EB(s) ds =t +t2/2. (14.85)
Furthermore, all jumps are +1 and thus the quadratic variation is by (2.16)
[N,N]y= >} AN(s) = N(t). (14.86)
O<s<t
Consequently, by Doob’s inequality (2.18) and (14.85),
EN*({t)? < CE[N,N]; = CEN(t) = Ct + Ct>. (14.87)

In particular, N*(t)/t2 - 0 as t — o0, which together with (14.84) implies that

tx

N(tz)/t* — J t71B(ty) dy = t 2N (tz) — t2f B(s)ds = t 2N (tz) + t 'z -0
0 0
(14.88)
in D[0, o), and consequently (14.80) implies

N(tz)/2 -5 V(x J B(y) dy, (14.89)

in D[0,00), jointly with (14.80). Note that V(x) is a continuous stochastic process
which strictly increases from V(0) = 0 to o0. Deﬁne T by

V(r) = 1; (14.90)

thus 7 is random with 0 < 7 < o0 a.s. It follows easily from (14.89) (we omit the
details) that, jointly with (14.80),

Tn/v/n -2 7 (14.91)
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and as a consequence

By//n = B(Tn)/v/n == B(7). (14.92)

This proves convergence in distribution of B,,//n. The limit B(7) is determined by
(14.80), (14.89), and (14.90); unfortunately we do not know any simpler description
of the limit distribution, and we leave it as an open problem to find one.

For the discrete-time urn, we thus have convergence in distribution of Bn/nl/ 2,
(The exponent 1/2 equals ky/Kg, just as in Theorem 1.8(ii) although we cannot
apply that theorem ) However we do not have convergence a.s. in (14.92). In fact,
if B, /n'/? 25 Z for some Z, then for every x>0,ast— o0,

B(xt)? N(zt) as. 5
N(zt) N(:(vt)) =2 (14.93)
while the joint convergence of (14.80) and (14.89) implies
B(xt)? _ (B(m))? a4 Bx)? (14.94)
N (xt) t N(xt) V(x)
in D(0,0), i.e., in D[a b] for every 0 < a < b < 0. Consequently, (14.93) would
imply that a.s. B(z)2/V(z) = Z2 for every > 0, and thus a.s.

f By V(z) = 272B(z)?, x>0, (14.95)

But this impossible, for example because (14.95) would imply that B(z), and thus
BESQ*(x), is differentiable (and, moreover, linear). This contradiction shows that
By, /+/n does not converge a.s. A

Example 14.15. A counterexample somewhat similar to Example 14.14 is given by
the replacement matrix

0 1

(O _1> . (14.96)

In words: when we draw a white ball, it is replaced together with a black ball; when
we draw a black ball, we discard it.

We have A\ = 0 and Ay = —1, and thus A} = A5 = 0. Note that this example
too is excluded from Theorem 8.6 since (A7) does not hold. (However, again (Al)-
(A4), (A%'), and (A6) hold, provided 21 > 0 and x9 € Zxp.) We will see that, as in
Example 14.14, B(t) converges in distribution but not a.s.

Suppose that the urn starts with a single white ball, i.e., Xg = (1,0). Then, for the
continuous-time urn, W (t) = 1 for all ¢, and thus white balls are drawn according to
a Poisson process with constant rate 1. At each draw in this Poisson process, we add
a black ball. Black balls live an exponential time with mean 1, and then disappear.
Consequently, B(t), the number of black balls, is a birth-death process where the
birth rate is constant 1 and the death rate equals the number of particles. (Thus
pur = 1 and \; = k in the standard notation.)

Let T} be the time of the kth white draw, and Lj the life-length of the black ball
that then is added. Then the pairs (T}, L) form a Poisson process in ]R?|r with rate
e Ydxdy. The number of black balls at time t is

o0 00]

B(t) = 2 L <y in,>t-13) = Z L((Ty,Ly)eDe} (14.97)
k=1 k=1
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where Dy := {(z,y) e R?: 0 < x < t,y >t — x}. Consequently, B(t) has a Poisson
distribution Po(u(t)), where

t (o t
p(t) = f e Vdxdy = J f e Vdydr = f e tdr =1—e". (14.98)
Dt 0 t—x 0

As t — oo, we thus have convergence in distribution B(t) 4, Po(1). Obviously,
we cannot have convergence a.s., since B(t) jumps +1 at every T, and T — o as
k — oo.

By, does not converge in distribution as n — oo for a simple parity reason: since
B, changes by +1 at each draw, we have B,, = n (mod 2). However, B,, is a Markov
chain (since W, is constant), it is irreducible, and it is easily seen that the expected
time to return to O is finite; hence the Markov chain B, is positive recurrent. The
period is 2, and and it follows that the two subsequences Bs, and Bs,1 converge in
distribution to some limits, say Eeven and éodd. The mixture (with equal weights)
of éeven and fj’odd has a stationary distribution for the Markov chain, and it is easily
found that the limit distributions are given by

~ k+1

P(Beven = k) = k! e_ll{k is even}» (14.99)
= k+1 _
P(Boaa = k) = ~7=¢ Lk is adaj- (14.100)

These can be described as Po(1) rounded up to nearest even or odd integer, respec-
tively.
Obviously, we do not have convergence a.s., even for these subsequences. A

Example 14.16. Consider a diagonal urn with ¢ = 2 and replacement matrix

(5(1)1 522) as in [2]; cf. the deterministic case in Example 14.2. Assume that &1, &2 €

Zso a.s., that E&1 = E&y = 1, and that E£2, < oo but E&jplogé; = o0, so
that (A4) does not hold. (We may simply take &9 = 1 a.s.) Then the stochastic
processes Xi(t) and Xs(t) are independent Markov branching processes, and [4,
Theorem II1.7.2] shows that, as t — o0,

e ' X1 (t) 25 0. (14.101)

Hence, (4.1) holds with X7 = 0 a.s., while Theorem 4.1 (applied to colour 2 only),
or [4, Theorem III.7.2] again, shows that (4.1) holds also for ¢ = 2 with X» > 0 a.s.
It follows that Xi(t)/X2(t) =% 0 as t — oo, and thus X,1/Xn2 ~2 0 as n — 0. It
follows easily that (1.3) holds, which in this case is Xp;/n =5 X;, with X; = 0 and
/1/;2 = 1; we thus have A} = XAl = 0, in contrast to Theorems 1.8 and 4.1.

This shows that the main results in the present paper do not hold without assum-
ing at least E&;;log&;; < c0. We have for convenience assumed the stronger second
moment condition (A4), but as said in Remark 2.1, we conjecture that it can be
weakened. A

Acknowledgement. I thank Allan Gut for help with references.

APPENDIX A. ABSOLUTE CONTINUITY AND CONDITIONING

In this appendix we state three general lemmas on absolute continuity of distri-
butions and conditioning. We find them intuitively almost obvious, but only almost,
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and since we do not know any references, we provide complete proofs. For two mea-
sures 1 and A\ on the same space, we let ;1 <« A denote that u is absolutely continuous
with respect to A, i.e., that A(B) =0 = u(B) = 0.

We recall some further standard definitions:

A measure space (X, X)) is a Borel space if it is (or is isomorphic to) a Borel set
in a complete separable metric space with its Borel o-field, see [32, Appendix Al].
This includes, for example, R, R", and the function space D|[0, o0); moreover, any
finite or countable product of Borel spaces is a Borel space.

If (X,X) and (9),)) are two measurable spaces, then a probability kernel from
X to Q) is a mapping pu : X x Y — [0,1] such that B — u(x, B) is a probability
measure on (2),)) for every fixed z € X, and furthermore x — pu(x, B) is measurable
on (X, X) for every fixed B € Y, see [32, p. 20].

If X and Y are random variables with values in measurable spaces (X, X) and
(9),)), respectively, then a regular conditional distribution of X, given Y, is a prob-
ability kernel p from ) to X such that for any fixed B € X,

wY,B)=P[XeB|Y] a.s., (A1)

see [32, p. 106-107]. It follows that for any measurable f : X — [0, ],

BLCO V)= [ f@ntvds) s (A2)

Similarly [32, (7) on p. 108], for any measurable f : X x } — [0, ],
BS(X.Y) = E | f(@Y)u(¥.do). (A.3)
x

If (X, X) is a Borel space, then a such a regular conditional distribution u exists,
and the probability measure pu(y,-) is £(Y)-a.e. unique (in the standard sense that
two different such kernels are equal for £(Y)-a.e. y € )) [32, Theorem 6.3].

Lemma A.1. Let XY, Z be random variables taking values in Borel spaces (X, X),
(9,Y), (3, 2), respectively, and suppose that Z = @o(Y') for some measurable function
©:9 — 3. Let A be a measure on X, and suppose that the reqular conditional distri-
bution u(y,-) of X given Y is absolutely continuous with respect to \ for L(Y)-a.e.
y € Q). Then the reqular conditional distribution u'(z,-) of X given Z is absolutely
continuous with respect to \ for L(Z)-a.e. z € 3.

Remark A.2. Although Lemma A.1 is stated for conditionings on single random
variables Y and Z, it holds also for conditionings on finite or countably infinite
sequences of random variables (taking values in possibly different Borel spaces), since
such sequences can be regarded as a single variable in a suitable product space. A

Proof. If B < X is any set with A(B) = 0, then u(Y, B) = 0 a.s., and thus, by (A.1),

W (Z,B) = E[15(X) | Z] = E[E[15(X) | Y]| Z] = E[u(Y, B) | Z] = 0 oo

However, this is for a fixed B, while the conclusion of the lemma is that a.s. (A.4)
holds simultaneously for every A-null set B < X. There is in general an uncountable
number of A-null sets B < X, and we do not see how to use the argument in (A.4)
to prove the result.
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Instead, we argue as follows. First, by if necessary changing u(y,-) on a £(Y")-null
set of y, we may assume that

w(y, ) < A for every y € 9. (A.5)

Let v(z,-) be the regular conditional distribution of Y given Z. Then, for any
Be X, as., using (A.1) and (A.2),

PIXeB| 2] =E[1p(X)| 2] = E[E[1p(X) | Y]| 2] = E[u(Y, B) | Z]
- j@ uly, B)(Z, dy). (A.6)

This shows that (a version of) the regular conditional distribution y is given by the
composition of the kernels v and p defined by

W (2, B) = LJ v(z.dy)u(y, B),  BeX; (A7)

note that this composition is a probability kernel, see e.g. the more general [32,
Lemma 1.41(iii)].

Now, if A(B) = 0, then (A.5) shows that u(y, B) = 0 for every y, and hence (A.7)
yields p/(z, B) = 0 for every z € 3. Consequently, u/(z,-) « X for every z € 3. O

Lemma A.3. Let X andY be random variables taking values in Borel spaces (X, X)
and (2),Y), respectively. Let A and X' be o-finite measures on X and %), respectively.
Suppose that L(Y) « X and that the regular conditional distribution u(y,-) of X
given Y satisfies u(y,-) < X for L(Y)-a.e. y €Y. Then the distribution of (X,Y) in
X x Q) is absolutely continuous with respect to A x X.

Proof. By if necessary changing pu(y,-) on a £(Y)-null set of y € ), we may assume
that (A.5) holds.

Let Bc X x 9 with Ax M (B) =0. Forye®), let B, := {x € X: (x,y) € B}. Let
A:={ye?: A(By) > 0}. By Fubini’s theorem,

0= A N(B) = [ 1aly) @V = [ MB)XG)  (A8)
xx9 2
and thus A(By) = 0 for N-a.e. y, i.e., N'(A) = 0. Since £(Y) « X, this implies

P(Y e A) =0. (A.9)
Furthermore, by (A.3),

P[(X,Y)e Bl =E15(X,Y) =E L 15(2,Y)u(Y,dz) = E L 15, (2)u(Y, dz)

— Eu(Y, By). (A.10)

If Y ¢ A, then A(By) = 0, and thus u(y, By) = 0 for every y by (A.5); in particular
w(Y, By) = 0. By (A.9), this shows that u(Y, By) = 0 a.s., and thus (A.10) yields
P[(X,Y) e B] = 0. O

For easy reference, we state also an elementary result on absolute continuity in
R?, as in the main part of the paper this tacitly means with respect to Lebesgue
measure.

Lemma A.4. Let T : R™ — R™ be a linear operator, where 1 < m <n. If X is a
random vector in R™ with an absolutely continuous distribution, and T is onto, then
the distribution of T'(X) in R™ is absolutely continuous.
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Proof. By changes of bases, we may assume that 7" is the projection to the first m
coordinates. Let Ag denote the Lebesgue measure in R?. If A < R™ with A, (4) = 0,
then

P(T(X)e A) =P(Xe AxR"™) =0, (A.11)
=0.

since A\, (A x R™"™™) O

APPENDIX B. LP THEORY

The proofs in this paper frequently use martingales and L? theory, in particular
the identity (2.17). In this appendix, we extend the results to LP estimates for
any p > 1 by combining the arguments in Section 3 with the Burkholder-Davis—
Gundy inequalities (see e.g. [32, Theorem 26.12]), which say that if p > 1, then there
exist constants ¢ = ¢(p) and C' = C(p) such that for every (continuous-time) local
martingale M (t)

cE[M,MP? <EM*(t)» < CE[M,M"? ~ 0<t<o. (B.1)

(All constants in this appendix may depend on the exponent p.) We will mainly use
the second inequality.

This extension to LP leads to two major results. Using the case p > 2, we will
obtain a proof of Theorem 12.3 (and therefore Theorem 12.5) showing convergence
in LP and thus moment convergence under natural conditions. Moreover, using the
case 1 < p < 2, we show that, as said in Remark 2.1, our main results hold also if
we weaken the L? condition (A4) to LP for some p > 1. More precisely, we will show
the following.

Theorem B.1. Theorems 1.8 and 4.1, and their extensions Theorems 8.4-8.6, all
hold also if (A4) is replaced by the weaker

(A4p) E|&;P < oo for alli,j e Q and some p > 1.

Also other results in this paper, for example the results on the drawn colours in
Section 11, hold if (A4) is replaced by (A4p), provided we replace any L2-norms by
LP norms || ||p; see also Remark 12.4 for the results on moments in Section 12. We
leave the details to the reader.

We will basically follow the arguments in the main part of the paper, replacing
L? estimates by LP estimates, but sometimes the details of the arguments will differ.
Moreover, we have chosen to first focus on obtaining the LP estimates, leading to the
proof of Theorem 12.3 (partly because this seems to be of greater interest for applica-
tions); we then return to the arguments yielding a.s. convergence and Theorem B.1.
As before, we argue in several steps.

B.1. A single colour not influenced by others. We begin with a colour ¢ that is
not influenced by any other (i.e., i € Quin), and prove an LP-version of Lemmas 3.3
and 8.9.

Lemma B.2. Assume (A1)—(A3), (A5') (or (A5)), and (Adp) for some p > 1. Let

1 € Qmin, and assume
either 1¢ Q™ (i.e., & =0 a.s.) or X\ >0. (B.2)
Then
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(i) The martingale e~ X;(t) is LP-bounded, and thus the a.s. limit (3.13) holds
for some limit X;, and
X = Sup{e_)‘itXi(t)} e LP. (B.3)
t=0

(ii) Let (Ty)S be the times a ball of colour i is drawn, and let ny be the number of
balls of colouri that are added at time Ty,. Let0 < q < p, andlet f : R — R be a
function such that E |f(&;)|? < 00. Finally, let p > 0 be such that (LAq)p > ;.
Then (with a.s. convergent sum)

i e Mk f () € LY. (B.4)
k=1

The statement in (i) that the martingale is LP-bounded, is (since we have p > 1)
by Doob’s inequality equivalent to (B.3), but we state both for emphasis. Moreover,
the statements are equivalent to X; := lim;_, e*)‘itXi(t) € LP. Note also that the
definition of )?,L** in (B.3) agrees with (3.30) since k; = 0 and A\ = A\; when ¢ € Quin.
Similarly, (B.2) is equivalent to (A7) for 4, but for later use we prefer the form (B.2).

Proof. If A; < 0, then by (B.2) we have i ¢ Q™ and thus &; > 0 a.s.; consequently

&i = 0 a.s. and X;(t) is constant so the results are trivial (with an empty sum in
(B.4)). We thus assume \; > 0.

Step 1: (ii) for ¢ = 1. Since 7 4 &; and is independent of Ty, we have by
Lemma 3.2(ii), letting t — oo,

E Y e M| ()] = ai B |f ()] joo e M EX;(s)ds, (B.5)
k=1 0

which is finite by (3.11) and the assumption p > \;.
Step 2: (ii) for ¢ < 1. We have

(Z e_liTk‘f(nk)Dq < Z e_‘luTkV(nk)‘q € Ll’ (B.6)
k=1 k=1

by Step 1 applied to |f|? and qpu.

Step 3: If (i) holds for some p > 1, then (ii) holds for all ¢ < p. We have already
proved the case ¢ < 1, so we may assume ¢ > 1. In particular, E|f(&;)| < o.
Furthermore, by induction (on [logs ¢|), we may assume that (ii) holds if ¢ is replaced

by q/2.
We consider first two special cases, and then the general one.
(i) E f(&:) = 0. In this case,
o6}

M(t) = 2 1{Tk<t}€_Mka(77k) (B.7)
k=1

is a local martingale with M (0) = 0, since each Ty is a stopping time and f(n)

has mean 0 and is independent of Fr,. (Cf. Z3 in the proof of Lemma 3.5.) The
quadratic variation is by (2.16) (cf. (3.59))

o0
[M, M]: = Z 1{Tk<t}€72“ka(77k)2~ (B.8)
k=1
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We have f(&;)? € L9/?, so by the induction hypothesis, we have [M, M]., € L9?. (If
q/2 < 1, note that (¢/2)2u = qu > p > A;.) Consequently, (B.1) shows that M is an
Li-bounded martingale, which yields (B.4).

(ii) f = ¢ is a constant. It suffices to consider the case ¢ = 1. We now define

0 t

M(t) := Z I{Tkgt}e_“T’“ —f e %a; X;(s) ds (B.9)
k=1 0

and note that M (t) is a local martingale (Cf. Z3 in the proof of Lemma 3.5 and
(3.55).) The quadratic variation is (cf. (3.57))

0
[M, M]; = Z Ligy <gpe” 2. (B.10)
k=1

Hence, in this case too, the induction hypothesis yields [M, M]., € L%?, and thus,
(B.1) shows that M(t) is an L?-bounded martingale. Furthermore,

0¢] Q0
Z e Mk — M(o0) + f e "a; X;(s)ds. (B.11)
k=1 0

By assumption, (i) holds, and thus )N(Z** € LP < L% by (B.3). Furthermore, since
w> )\iv

Q0 Q0
J e M X;(s)ds < f eTHsHTXS XHE qg — (1 — \)TIX e L, (B.12)
0 0

This and (B.11) show that Y, e #Tk € L9, which is (B.4) in this case.

(iii) General f. We use the decomposition f(z) = (f(z) — E f(&i)) + E f(&:) and
the two preceding cases.

Step 4: (i) holds for all p > 1. By induction (on [log, p|), we may for p > 2 assume
that (i) holds if p is replaced by p/2.

As in the proof of Lemma 3.3, we let M(t) := e~ 'X;(t), so that M(t) is a
martingale with quadratic variation (3.18):

e0]
[M, M]; = X;(0)* + ) Ly e Tonp. (B.13)

k=1
If 1 <p <2, weapply (ii) with ¢ = p/2 < 1; this case holds by Step 1 or Step 2. If
p > 2, we apply (ii) with ¢ = p/2 and p replaced by p/2 > 1; this case holds by the
induction hypothesis and Step 3. In both cases, we take f(z) = 2 and note that
E|f(&:)|? = E|&i|P < 0. Hence, taking p := 2);, (B.4) shows that [M, M), € LP/2.
Consequently, (B.1) shows that M is an LP-bounded martingale and that (B.3) holds.
This completes the proof. ([l

We will also need a quantitative version of Lemma B.2(i).
Lemma B.3. Under the assumptions of Lemma B.2, we have

Hi;g‘e_)‘itXi(t) ‘ Hp < O[X;(0)], (B.14)

where C' does not depend on X;(0).
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Proof. It ought to be straightforward to keep track of the norms of all quantities in
the proof of Lemma B.2, but it seems simpler to argue as follows. First, if X;(0) = m
is an integer, then the process X;(t) can be seen as the sum of m independent and

identially distributed processes Xl-(k) (t), k =1,...,m, each started with XZ-(k) 0)=1
(but otherwise the same as X;(¢)). Hence,

Sup‘e_’\itXi(t)’ < Z Sup‘e_AitXi(k)(t)‘, (B.15)
=0 o =0
and (B.14) follows by (B.3) and Minkowski’s inequality.

If X;(0) is not an integer, let X/(¢) be an independent copy of X;(t) started with
X/(0) = [X;(0)] — X;(0). Then X;(t) + X/(t) is a copy of the same process started
with [X;(0)]. Since 0 < X;(t) < X;(t) + X/(t), the result follows from the special
case just treated. O

B.2. A colour only produced by one other colour. Consider now the situation
in Lemmas 3.5 and 8.11, with two colours i and j such that P; = {j}, and also
X;(0) = 0. We fix such ¢ and j throughout this subsection. (We may repeat the
assumptions for emphasis.)

As in Section 3.2, let 0 < T} < 15 < ... be the times that a ball of colour j is
drawn, and let F7, be the corresponding o-fields.

Recall the notation (3.30). Define also, for u € R,

Kj, B< )\;ka
H*(M) =R+l op= >‘;<a (B16)
0, p> AT

Note that, by (2.9), k; = k*(\;). (We are mainly interested in the case p = \;, but
we use induction to prove Lemma B.5 below, and we will then need more general y.)

Lemma B.4. Let p € R and define

t
V(t) := J e " X;(s)ds. (B.17)
0
Then
V= sup{(t + 1)~ Wem Ny ()} < X (B.18)

t=0

Proof. By (3.30) we have, considering the three cases in (B.16) separately,

t
V(t) < L(s + 1) e TR Qs < OXFE(E 4 1) Wt (B.19)
and (B.18) follows. O

Lemma B.5. Assume (A1)—(A3), (A5) (or (A5)), and (Adp) for some p > 1.
Suppose that i,j € Q are such that P; = {j} and X;(0) = 0, and suppose also that

X e LP. (B.20)

Let (Ck)T be a sequence of random variables with the same distribution such that
is independent of Fr,. Let p e R be such that

{uzo, ifig¢Q,

B.21
,uv)\;‘-‘>0, ifieQ, ( )
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and let
e ¢]
Z(t) = Y Lpeye " (B.22)
k=1
If1 <qg<pand E|(|? < o0, then
7 = sup{(t + 1) We= N0t Z() e L9, (B.23)
t=0

Proof. The proof is similar to Step 5 in the proof of Lemma 3.5 (which essentially is
the case ¢ = 2 of the present lemma), now using (B.1).
By induction (on [logs ¢|), we may for ¢ > 2 assume that the lemma holds for ¢/2.

Case 1: E(; = 0. In this case, Z(t) is a local martingale, for the same reason as
M (t) in (B.7). Its quadratic variation is, by (2.16) again,

0

[Z,Z]¢ = Z 1{Tk<t}€_2ﬂTk’Ck|2- (B.24)
k=1

We consider two subcases.

(i) 1 < ¢ <2. By (B.1), together with (B.24) and the independence of (} and T,
we have, since ¢/2 < 1,

= q/2
EZ*(t)" < CE[2, 2]} = CE (Y] Lircne ™ (GiP)
k=1

o0
< CE ) Ligoapye TGl (B.25)
k=1
Hence, Lemma 3.2(ii) and (3.30) yield

t t

e X (s)ds < CEX}* f (s +1)eX M ds.  (B.26)

E Z*(t)? < Ca; E f
0

0
In the sequel, we allow constants C' to depend on || X ¥l (which is finite by assump-
tion); hence we may absorb E X** into C in (B.26).

We consider three subsubcases:
(i)(a) A} < gu. In this case, we may take t = o0 in (B.26) and obtain Z*(o0) € L.
The result (B.23) follows since Z** < Z*(c0).
(i)(b) A7 = qu and A} > 0. Define, similarly to (3.70),

Zt(n) = sup_ (t+ 1) W= W= z4)| < O We=OT=mn Z% () (B.27)

n—1<t<n

By (B.26), we thus have
EZf(n)? < Cn =15 (W) =4 —pn fn(s + 1) eWF—ams g
0
< Cn1+nj—qn*(p,)e(—q(kj—u)-i-)\;‘—qu)n _ Cn1+ﬁj—qn*(p,)e—(q—l)>\j<n‘ (B28)

We have (g — 1)A} > 0, and thus (B.28) implies

o0
E(Z*)?<E Y Z'(n)! < o, (B.29)

n=1
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which shows (B.23).

(i)(c) A} = qu and A¥ < 0. Then also p < 0, and thus v A¥ < 0. By (B.21), we
must have i ¢ Q” and p = 0, and then also Y = 0. Hence, r(u) = 5 +1 by (B.16).
We define, similarly to (3.74),

ZHn) = sup Wz = sup Y Z(1). (B.30)
2n_1<t<2” 2n—1<t<2n
Similarly to (B.28), it follows from (B.26) that
2Tl
E ZH(n)? < 02‘1<“j+1>"f (s + 1) ds < 20D+ n < co=(a=ln (B 31)
0

Hence, (B.23) follows by
o0
E(Z*)!<EZ*(1)1+E ) Z{n)? < o, (B.32)
n=1

since E Z*(1)? < 0 by (B.26).

(ii) ¢ > 2. By (B.1), together with (B.24) and the induction hypothesis (for g/2
and 2y, using E |¢?7? < o)

E Z*(t)? < CE[Z, Z]7* < O((t + 1) 2w Nf—20+1y02, (B.33)
Again, we consider three subsubcases:

(ii)(a) A¥ <2u. Then x*(2u) = 0 by (B.16), and thus we may let ¢ — oo in (B.33)
and obtain E Z*(0)? < oo, which yields (B.23) since ARES Z*(0).
(ii)(b) A7 = 2p and A7 > 0. Define again ZT(n) by (B.27). Then, by (B.33),
EZ'(n)? < Cn =95 (1) +§5% (2) o (=N =)+ § (A =2u))n
< O t5* )+ 5R%(2u) = 3ATn (B.34)
Hence, we have again (B.29), and thus (B.23).
1)(c) A = 2u and A> < 0. gain, by (B.21), we must have ¢ ~and p =0, an
ii)(c) \¥ > 2 and A* < 0. Again, by (B.21 have i ¢ Q~ and 1 = 0, and

then also A\¥ = 0. Hence, k*(u) = £*(2u) = x; + 1. Define again Z(n) by (B.30).
Then, by (B.33),

E ZH(n)? < 2t D)+35% 2 — co=3(si+hn, (B.35)
Consequently, (B.32) holds, and thus (B.23).
Case 2: (. = c is a constant. We may assume ¢ = 1.
Let V(t) be as in (B.17) and define
© t
M(t) = Z(t) — V() = 3 Ly cppe T — ajfo e X (s)ds.  (B.36)
k=1

Then M (t) is a local martingale by the same argument as for (B.9) (i.e., as for Z3
in the proof of Lemma 3.5), and its quadratic variation is (cf. (3.57))

e}
[M, M]; = ) Lip, e 2T, (B.37)
k=1
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This is the same as in (B.24), except for the factor |(x|? there (or the same if we
choose ( = £1). Consequently, the argument in Case 1 yields

M = sup{(t + 1) Wem N0 ()|} e Lo, (B.38)
t=0

Furthermore, (B.18) and the assumption (B.20) yield V** € LP < L4. Consequently,
(B.23) follows by (B.36).

Case 3: General (. The result follows from Cases 1 and 2 by the decomposition
G =k —EG) +EG. O

Lemma B.6. Assume (A1)-(A3), (A5) (or (A5)), and
Suppose that i,j € Q are such that P; = {j} and X;(0) =
(B.2) holds. If X;* e LP, then X;* € LP.

(Adp) for some p > 1.
0, and suppose also that

Proof. We use again the decomposition (3.28), where we recall that Yj(¢) denote
copies of the one-colour process in Section 3.1, and that the process Y (t) is inde-
pendent of Fr,. Let

Ck := sup{e 'Y (1)}. (B.39)

t=0

Then (3.28) implies

0
eikitXi(t) = Z 1{Tk<t}€7/\iTk -eiAi(tiTk)Yk(t — Tk>
k=1

<Y Lypape MG = Z(1). (B.40)

8

Ees
I

1

Let nr = Yi(0), and recall that ny 4 & € LP. Then, conditioning on 7y,
Lemma B.3 applies to Yy (t) and shows that

E (G [ ) < Clml? < Clne + 1)P. (B.41)
Consequently, using (A4p),
EC? < CE (g + 1)P = E (& + 1) < . (B.42)

We apply Lemma B.5 to the sum Z(t) in (B.40), taking ¢ = p and pu = \;. Note
that then (B.21) holds: if i ¢ Q™ then &; > 0 a.s., and thus u = \; = 0; if i € Q~ then
= A; > 0 by our assumption (B.2). Hence, (B.23) holds. Furthermore, x*(u) = k;

and (/\;< — )+ = (AF — \;), as is easily verified by considering the three cases in

(B.16) (and after (3.40)) separately. Hence, (3.30), (B.40), and (B.23) yield
X = sup{(t + 1) e~ WA =Nt (1)) < 2% e IP. (B.43)

t=0

O

B.3. The general case for a single colour. We now consider any colour i € Q.

Lemma B.7. Assume (A1)—(A3), either ((A5') and (A7)) or (A5), and (Adp) for
some p > 1. Let i € Q, and assume that for every j € P;, we have )ij** e LP. Then
)N(l-** eLP.
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Proof. Since (A5) implies (A5’) and (A7), these hold in any case. We consider two
cases.

Case 1: (B.2) holds, i.e. i ¢ Q~ or \; > 0. As in the proof of Lemmas 3.7 and 8.14,
we split the colour i into subcolours i and ij, j € P;. We then use Lemma B.2(i)
for ig and Lemma B.6 for every i;, and the result follows by (3.91).

Case 2: i € Q7 and \; < 0. Then (A7) yields A > 0. Hence A¥ > \;, and since
A = Ai vV maxjep, )\;‘, we have P; # &§ and

Aj = max \j. (B.44)
JeP;

Consider a modification &; of &; such that &; > &; a.s., and \; := a; E&; € (0, AF).
(For example, let &; := &; v € where € € {+1} is independent of &; and P(§ = 1) €
(0,1] is chosen suitably.) Modify the urn by replacing &; by &;; this does not affect
any colour j < ; in particular X;(¢) and all draws of colour j remain the same for
every j € P;, but at each draw of colour 7 we may add more balls of colour 7; hence,
letting X;(¢) denote the number of balls of colour i in the modified urn, we have,
using an obvious coupling of the two urns,

Xi(t) = X,(t), t=0. (B.45)

The modified urn satisfies all our conditions in the present lemma, and since \; > 0,

~ ek
the already proven Case 1 shows that (with obvious notation) X; € LP. Further-

(2
more, \; < Af, and thus (B.44) implies

Af = A vmax Af = A v Af = AF (B.46)

U jeP, 7
Similarly, using (2.9), we have &; = ;. Consequently, the exponents in (3.30) are

the same for X;(t) and X,(t), and thus (B.45) implies

o~ k%

X < (B.47)

Z‘ .
o~ k%
Since, as just shown, X, e LP, this completes the proof. ([l

B.4. L? bounds and convergence.

Lemma B.8. Assume (A1)~(A3), either ((A5') and (AT7)) or (A5), and (Adp) for
some p > 1. Then )Z'Z** € LP for every i€ Q.

Proof. By Lemma B.7 and induction on the colour %. ([l

Proof of Theorem 12.3. By Lemma B.8, X ;‘* € LP; hence it follows, exactly as for

the case p = 2 in Theorem 12.2; that the collection {|)Z'Z(t)|p : ¢t = 1} is uniformly
integrable, and thus the convergence (4.1) holds also in LP. O

Once we have proved Theorem B.1, the proof of Theorem 12.3 applies to any
p > 1, as claimed in Remark 12.4.
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B.5. A.s. convergence. We now turn Theorem B.1, i.e., that our a.s. convergence
results hold also if (A4) is replaced by (A4p). We may assume 1 < p < 2, since for
p = 2 the assumption (A4p) implies (A4), and the results are already proven.

We begin by extending Lemma 8.9 to 1 < p < 2, complementing Lemmas B.2 and
B.3 for the case excluded there when (B.2) does not hold.

Lemma B.9. Assume (A1)—(A3), (A5), and (Adp) for somep € (1,2]. Leti € Quin
and assume A\; < 0. Let xy := X;(0).

(i) If \; =0, then X;(t) is a martingale with

X;(t) 25 &, =0, as t — oo, (B.48)
E X} ()P < Cah + Cuot, for every t < oo. (B.49)
Furthermore, for every § > 0,

E (iglg{e*&Xi(t)})p < . (B.50)

(ii) If \; <0, then, with M(t) := e N X;(t),
X;(t) 25 &, =0, ast — oo, (B.51)
E X;(t)P < Cxhetit, (B.52)
E M*(t)P < CabheP-DAit, (B.53)

Proof. In both cases, X;(t) is a (sub)critical continuous-time branching process and
therefore a.s. dies out, see Remark 8.2, which gives (B.48) and (B.51).
Recall from (3.12) that M(t) := e ! X;(t) is a martingale (this does not require
(A4), only E&; < o0), and hence, or by (3.11),
E X;(t) = M EM(t) = eN'M(0) = zpetit. (B.54)

It follows from (3.18) that

a0
(M, M < af+ 3 Lypcne PNl (B.55)
k=1
and hence, using Lemma 3.2(ii) and (B.54),

t t
E[M, M]f/2 <ah+ C’J e PMIRE X, (s)ds = xh + O.%of e~P~DANsds (B.56)
0 0

If A; =0, this yields (B.49) by (B.1); then (B.50) follows as in (8.12).
If \; <0, then (B.56) and (B.1) yield, recalling that z¢ is an integer,

EM*(t)P < Cab + Cxge” P~V < Cghe(P=Dit (B.57)

and thus
E X;(t)P = ePN'E M*(t)P < Cxhelit, (B.58)
showing (B.53) and (B.52). O

Proof of Theorem B.1. As said above, we may assume 1 < p < 2. It suffices to prove
the continuous-time versions Theorem 4.1 and 8.6; then the proofs of Theorems 1.8,
8.4, and 8.5 are as before.

By Lemma B.8, we have )N(l-** € LP for every ¢ € Q, but it remains to show that

~

Xi(t) converges. We follow the proof of Theorem 4.1 (and Theorem 8.6) step by step
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in the claims below which extend the limit statements in the lemmas in Section 3
and Section 8 (recall that LP versions of the L? estimates there already are given);
we omit some details. Assumptions on || X 7*||2 are replaced by X #*[p (and hold in
our case by Lemma B.8). We assume in the sequel (A1)—(A3), (A5) (or (A5)), and
(Adp) for some p € (1,2]. (But not (A7) unless said so.)

Note first that (3.11) (3.12) still hold. (In fact, they require only the first moment

(i) In Lemmas 3.3 and 8.9, the convergence X; := e~ X;(t) 2 X; still holds. We
still have X; > 0 a.s. when i ¢ Q~, and P(X; > 0) > 0 when ifi € Q~ and \; > 0.

Proof. The convergence )Z'Z(t) 2% X; for some limit X; € LP is shown in Lemma B.2
or B.9. Furthermore, if i ¢ Q~, then the argument in the proof of Lemma 3.3 shows
that X; > 0 a.s.; otherwise, if A\; > 0, then EX; = X;(0) > 0 and thus at least
P(X; > 0) > 0. O

(ii) In Lemmas 3.5 and 8.11, the convergence X;(t) ~2 X; still holds; furthermore,
X;j>0 = X; >0 as.

Proof. We argue as in the proof of Lemmas 3.5 and 8.11, using again the decom-
positions (3.40) and (3.43). For Z4(t), the argument in (3.49)—(3.54) holds without
changes. Also for Z3(t) the argument in the proof of Lemma 3.5 still holds, since
the L? estimate (3.58) remains valid.

The remaining terms Z;(t) and Za(t) are still local martingales. For Z5(t) we have
by the definition (3.59), (B.1), Lemma 3.2(ii), and (3.30)

o0
E Zi(t)’ < CE[Z, 2]} < CE D gy PR g — 1l
k=1

t
=CE L e PN X(s) ds
t

< C’E}Z’;*f (s + 1)"i e —PA)s g, (B.59)
0
We now argue as in Step 5 of the proof of Lemma 3.5, using (B.59) instead of (3.68)
and LP instead of L?; we replace 2 by p in all exponents, and the cases (i') and (ii’)
are replaced by A7 < pA; and (A} = pA; and AF > 0). We obtain as before that
Eg(t) 2% Zy as t — oo, where the limit Z; = 0 except in case (i).
For Z;(t) we use (3.64) and both directions of (B.1) to obtain

E|Z{(t)P < CE[Z1, Z1])* < CE Z ZOP2 < oR 2 1ZB% ). (B.60)
k=1

The definition (3.62) yields

k:)*

1217 ()P = Lyspy e PNVt — Th) P, (B.61)

where the martingale Y;(t) := e 2V, (¢) — Y;(0) is independent of T}, and Yj () is
a copy of the one-colour process in Section 3.1 and Lemma B.9. Thus (B.60) and
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Lemma 3.2(ii) yield

o0
E|ZE )P < CE Y. Lyngye PTYE(t)P
k=1

=CE [171* t)P]E Lt e PAis X () ds. (B.62)

We separate three cases, as in the proof of Lemma 8.11:

(1) i ¢ Q or A\; > 0: This is condition (B.2); thus Lemma B.3 applies to Y%(¢)
conditionally on 7y, which gives

E [V ()P | ] < Clmel?, (B.63)
and consequently
E [V ()] < C. (B.64)

Thus (B.62) yields the same estimate (B.59) as for Z3(t), and the argument
(¢

after (B.59) applies to Z; too and yields Z;(t) 2 2Z; for some 2, with Z; = 0
except in case (i).
(2) i e Q" and A\; = 0: (As in the proof of Lemma 8.11, the assumptions then

yield AT = Af > 0.) In this case, Yi(t) = Yi(t) — Y(0) where Y (t) is a copy of
Xi(t) in Lemma B.9. Thus, (B.49) yields, recalling that now 7 is an integer,

fort > 1,
E [V ()P | ] < Cpt, (B.65)
and consequently
E [V (t)?] < Ct. (B.66)

This and (B.62) yield, still for ¢ > 1
1 t

E|Z: ()P < CtE f PN X (s) ds < CHE X f (5 + 1) X —PAs g
0 0

< Rt =Pt (B.67)

This differs from (B.59) by an extra factor ¢, but the argument after (B 59) (in
this case modifications of (3.70)—(3.73)) still works and yields Z; (t) = 0.

(3) Ai < 0: (The assumptions yield A7 = A¥ > 0 in this case too.) In this case, we
condition on T}, and 7 and then use (B.61) and (B.53), yielding

E[|Z8* @) | Toomi] = Lpsmye PN E[IVE(E = TP | T, mi]
Cl{t>Tk}€ D sznpe—(p )X (t—Ty)
= Clysqye Ml (PmDNlyD, (B.68)

Hence, (B.60), Lemma 3.2(ii), and (3.30) yield

0
E|Z (1) < 2 E[|Z8* @) | Ty mi]

< Ce_(p_l)kitE Z l{tZTk}e_AZTkT]Z
k=1

= Ce —(p— I)AtEf f)\sX()d
0
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t
< Ce~ (PNt IE)N(]** J (s + 1)“fe(’\;<_Ai)s ds
0

< C(t+ 1)eX =Pt (B.69)

With Zg(n) defined in (3.70), we again modify (3.71) using pth powers, now
using (B.69) instead of (3.68), and it follows similarly to (3.72) that

00]
E Y Z](n) <. (B.70)
n=1

> a.s.
Hence, 77 — 0.

Finally, in all cases, it follows from (3.43) that X;(t) *> X;. Furthermore, we
have X; > 0 = A&} > 0 a.s. by the argument in Step 6 of Lemma 3.5, if necessary
modified as in the proof of Lemma 8.11. O

(iii) In Lemma 8.13, e~ X;(t) 225 0 still holds.
Proof. The same as for Lemma 8.13. O

(iv) In Lemmas 3.7 and 8.1/, X; &5 x; still holds, and so do the claims on X; > 0.

Proof. The same as for Lemmas 3.7 and 8.14, using the claims above. Note that the
assumptions now include (AT). O

To complete the proof of Theorem B.1, we now obtain by induction from (iv)
above that for every ¢ € Q we have X, > X as t — 00, i.e., (4.1). This proves
that Theorems 4.1 and 8.6 hold with (A4) replaced by (A4p), which as said above
completes the proof. O

ApPENDIX C. PROOF OF (14.80)

In this appendix we prove (14.80) in Example 14.14, using results from Markov
process theory.

Suppose, more generally, that the Pélya urn in Example 14.14 starts with wy =
a > 0 white balls and by > 0 black balls. Thus W(t) = « for all £ > 0. (We do
not have to assume that « is an integer, although we must have by € Z~, since we
allow subtractions.) The stochastic process B(t) is a time-homogeneous pure-jump
Markov process on Zx=g with jumps

+1 with intensity o+ 1B(t), (1)
—1 with intensity 3 B(¢). '
We define for any real £ > 0 the scaled process
By(t) := 7' B(¢t). (C.2)
It follows from (C.1) that E’g is a pure-jump Markov process with jumps
+1/¢ with intensity ¢(a + $B({t)) = ol + %Eg(t), (C.3)
—1/¢ with intensity %é((i). '
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In other words, the generator A, of the Markov process ég is given by, see e.g. [32,
Theorem 19.23],

2

Aef(z) = al(f(z+ 1) = f(z)) + x%(f(:z Y+ fla—h) —2f(z)). (C4)

Since B(t) takes its values in Zsg, By(t) is a Markov process on the state space
(Y7o = {0,£7%,2¢71,...}. For technical reasons, we extend it to a pure-jump
Markov process on [0,00) by defining the intensities to be as in (C.3) whenever
By(t) = €71 otherwise, if By(t) = b < 1/¢, we jump +1/¢ with intensity o/ and
+b with intensities %b each. (This makes no difference if we start with an integer
number of black balls.) The generator of the extended process is

2

Auf(w) = 6l + 07) = @) + 25 (7 + hew) + 1@~ hew) — 26(2), (CH)

where hy, 1= NS
Let C?[0,00) be the space of all continuous functions f on [0,c0) that have two

continuous derivatives in (0, 0) with f” and f” extending continuously to [0, ). Let
further

C:={fe C?[0,00) : f(z), f'(x), f'(x) = O(e™*%) for some ¢ > 0}. (C.6)
It follows from (C.5) and Taylor’s formula that if f € C, then as ¢ — oo,
Acf () = Af (@) = af (@) + 51" (@) (C.7)

uniformly in x € [0, 00), and thus in the space C[0, ). Note that 4.4 = 2:6;—; +4a%
is the generator of the squared Bessel process BESQ? with dimension & := 4a, see
[44, p. 443 and Proposition VII.(1.7)]; hence A is the generator of BESQ*®(t/4) 4
1BESQ™(t) [44, Proposition XL(1.6)]; It is well known that BESQ**(t) is a Feller
process on [0,00) [44, p. 442], and it is easily verified directly that each Ay also is
a Feller process on [0,00). The transition probabilities ¢f(z,y) of BESQ® are given
explicitly in [44, XI.(1.4)], and a simple calculation using [40, (10.29.4)] shows that

) 15 5
%Qt (z,y) = %(th(%y) — G (%?J))a (C.8)
and hence
? 5 L 544 542 5
30 (@ y) = 75 (6 (@, y) =247 (@, y) + ¢ (@,y)). (C.9)

Since BESQ? is a Feller process for every § > 0, the transition operator T f(x) :=
Sqf(:n, y) f(y) dy maps Cp[0, o0) into itself for every ¢ > 0, and it follows from (C.8)—
(C.9) that T maps Cy[0, o0) into C2[0,0); moreover, using also again the explicit
form of ¢f in [44, XI.(1.4)], it is easy to see that T; maps C into itself. Hence, it
follows from [32, Proposition 19.9] that C is a core for the generator 4.4, and thus
also for A. Consequently, (C.7) and [32, Theorem 19.25] show the following.

Theorem C.1. Let the Pélya urn in Fxample 14.14 start with wy = a > 0 white
balls and by = 0 black balls. Then, as £ — o0, we have

B = Bu(t) - iBESQm(t) in D[0,0). (C.10)
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The squared Bessel process BESQ*® in (C.10) is the standard one starting at 0.
More generally, if we start the urn with o white balls and 3¢ + o(¢) black balls, then
the same proof shows that (C.10) holds with the initial value 1BESQ**(0) = 8.
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