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Abstract. We consider triangular Pólya urns and show under very weak condi-

tions a general strong limit theorem of the form Xni{ani
a.s.
ÝÑ Xi, where Xni is

the number of balls of colour i after n draws; the constants ani are explicit and
of the form nα logγ n; the limit is a.s. positive, and may be either deterministic or
random, but is in general unknown.

The result extends to urns with subtractions under weak conditions, but a
counterexample shows that some conditions are needed.

For balanced urns we also prove moment convergence in the main results if the
replacements have the corresponding moments.

The proofs are based on studying the corresponding continuous-time urn using
martingale methods, and showing corresponding results there. In the main part
of the paper, we assume for convenience that all replacements have finite second
moments; in an appendix this is relaxed to Lp for some p ą 1.
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1. Introduction

A (generalized) Pólya urn contains balls of different colours. A ball is drawn at
random from the urn, and is replaced by a set of balls that depends on the colour
of the drawn balls; more generally, the replacement set may be random, with a
distribution depending on the drawn colour. We assume that the set Q of colours
is finite, and let q :“ |Q| be the number of colours. (See e.g. [31], [38], [27] for the
history and further references.) It is often convenient to assume that Q “ t1, . . . , qu,
but for us it will be convenient not to assume this.

The Pólya urn process can be defined formally as follows. The composition of
the urn at time n is given by the vector Xn “ pXniqiPQ P r0,8qq, where Xni is the
number of balls of colour i. The urn starts with a given vector X0, and evolves
according to a discrete-time Markov process. Each colour i has an activity ai ě 0,
and a (generally random) replacement vector ξi “ pξijqjPQ. At each time n ` 1 ě 1,
the urn is updated by drawing one ball at random from the urn, with the probability
of any ball proportional to its activity. (In many cases ai “ 1 for all i, so all balls
are drawn with equal probability; the reader may concentrate on this case until
Section 5.) Thus, the drawn ball has colour i with probability

aiXni
ř

j ajXnj
. (1.1)

If the drawn ball has colour i, it is replaced together with ξ
pnq

ij balls of colour j,

j P Q, where the random vector ξ
pnq

i “ pξ
pnq

ij qjPQ is a copy of ξi that is independent
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of everything else that has happened so far. Thus, the urn is updated to

Xn`1 “ Xn ` ξ
pnq

i . (1.2)

Remark 1.1. Note that, as in many other papers on Pólya urns, we do not assume
that Xni are integers; any real numbers Xni ě 0 are allowed. In general, it is thus a
misnomer to call Xni the “number” of balls of colour i; it is more precise to regard
Xni as the amount of colour i in the urn. Nevertheless, we will continue to use the
traditional terminology, which thus has to be interpreted liberally by the reader. △

Remark 1.2. Since the drawn ball is replaced, it is also really a misnomer to call
ξi the “replacement” vector; it is really an addition vector. (The replacements are
really ξij ` δij .) Nevertheless, we use the terminology above, which is used in many
papers. △

Remark 1.3. We allow the replacement vectors ξi to be random. (Some papers
consider only the special case of deterministic ξi, which is an important special case
that appears in many applications.) We may say that the urn has deterministic
(or non-random) replacements if all ξij are deterministic, and otherwise random
replacements. These terms should thus be interpreted as conditioned on (the colour
of) the drawn ball. △

Remark 1.4. It is often convenient to describe the replacements by the replacement
matrix pξijqi,jPQ. Note, however, that unless the replacements are deterministic, this
may be somewhat misleading, since the rows should be regarded as separate random
vectors, not necessarily defined on the same probability space; there is no need for a
joint distribution of different rows. △

Remark 1.5. In the first part of the paper we assume that the replacements ξij ě 0
(Condition (A5) below), meaning that we only add balls to the urn and never remove
any. In Section 8, and also usually in later sections, we more generally allow also
that balls may be removed from the urn (assuming some hypotheses). △

Remark 1.6. We allow some activities ai to be 0; this means that balls of colour
i never are drawn. See Section 5 for an important example of this. (If all ai ą 0,
we may reduce to the standard case ai “ 1 by considering the urn paiXniqi, with
corresponding replacement vectors pajξijqj , but we will not use this.) △

Remark 1.7. We assumed tacitly above that the denominator
ř

j ajXnj in (1.1) is
ą 0 for every n ě 0, so that the definition makes sense. This holds, for example,
under assumptions (A1) and (A5) below. (Urns that do not satisfy this, and therefore
may stop at some finite time, have also been studied, but they will not be considered
here.) △

We are interested in asymptotic properties of Xn as n Ñ 8.
In the present paper, we study triangular urns, i.e., Pólya urns such that, for

a suitable labelling of the colours by 1, . . . , q, we have ξij “ 0 when i ą j. (See
also Section 2.3.) This includes the original Pólya urns studied by Markov [39],
Eggenberger and Pólya [16], and Pólya [41] (all for q “ 2), where the replacement
matrix is diagonal : ξij “ 0 when i ‰ j, but also many other interesting cases. See
Section 14 for some examples.

There are many previous papers on triangular urns; we mention here only a few
that are particularly relevant to the present paper; see also the references in the



4 SVANTE JANSON

examples in Section 14. Athreya [2] studied diagonal urns with random replace-
ments and showed a.s. convergence of the proportions of different colours, using the
embedding mthod of Athreya and Karlin [3] that is also the basis of the present
paper. Gouet [18, 19] proved (in particular) an a.s. convergence result for triangular
urns with 2 colours and deterministic replacements, assuming also that the urn is
balanced, meaning

ř

j ξij “ b for some constant b (and all ai “ 1, see further Sec-

tion 10). Janson [28] studied triangular urns with 2 colours and deterministic ξi,
and proved convergence in distribution (but not a.s.) of the components Xni after
suitable normalizations; there are several cases, and the limits are sometimes normal
and sometimes not. This was partially extended by Aguech [1], who also studied
triangular urns with 2 colours, but allowed random replacements ξi (under some hy-
potheses, see Example 14.4); moreover, he proved convergence a.s., and not just in
distribution. Bose, Dasgupta, and Maulik [12] (and [11] for q “ 2) studied triangular
urns with an arbitrary (finite) number of colours; they assumed that the replace-
ments are deterministic, and that the urn is balanced, and then, under some further
assumptions, showed convergence a.s. of the components Xni, suitably normalized,
see Example 14.12.

The main purpose of the present paper is to extend these results by Gouet [18, 19],
Aguech [1], and Bose, Dasgupta, and Maulik [12], and show a.s. convergence for
triangular urns with any (finite) number of colours, allowing replacements ξi that are
both random and unbalanced. Our main result is the following, using the technical
assumptions (A1)–(A5) in Section 2.1 and the notation defined in (2.7)–(2.13) in
Section 2.4 below. See also the extensions Theorems 8.4 and B.1 where the technical
assumptions are weakened (allowing urns with subtractions and reducing our moment
assumption, respectively); since the proof of the theorem is rather long and we want
to focus on the main ideas, we use first the conditions (A1)–(A5) (which suffice for
many applications), and add later the extra arguments needed for the extensions.

Theorem 1.8. Let pXniqiPQ be a triangular Pólya urn satisfying the conditions

(A1)–(A5) below. Then, for every colour i P Q, there exists a random variable pXi

with 0 ă pXi ă 8 a.s. such that as n Ñ 8:

(i) If pλ ą 0, then

Xni

nλ˚
i {pλ logγi n

a.s.
ÝÑ pXi. (1.3)

(ii) If pλ “ 0, then

Xni

nκi{pκ0

a.s.
ÝÑ pXi. (1.4)

Note that the exponent γi may be both positive and negative; see the examples
in Section 14. Note also that the various exponents in (1.3) and (1.4) are explicitly

given in Section 2.4, but the limiting random variables pXi are known only in some
special cases; in general they are unfortunately unknown.

The virtue of Theorem 1.8 is that it is very general, but as discussed in the remaks
below, more precise results are known in some special cases.

In Theorem 1.8, the main case is (i), pλ ą 0, and the reader should focus on this

case. The case pλ “ 0 is more special and of less interest for applications, but it
is included for completeness; by (2.10) and (2.7), this case occurs when ξii “ 0 for
every i P Q. (We might call such urns strictly triangular.)
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Another major result in the present paper (Theorem 12.5) says in particular that in
the special case of balanced triangular urns, if the replacements have finite moments,
then the a.s. limits in Theorem 1.8 hold also in Lp for any p ă 8, and thus moments
converge. (It is an open problem whether this extends to some class of unbalanced
triangular urns.)

Remark 1.9. Theorem 1.8 describes the first-order asymptotics of the urn. We will

see in Section 7 that the limiting random variable pXi is deterministic (i.e., a constant)

in some cases, but not in general. In cases where Theorem 1.8 yields a limit pXi that
is deterministic (and perhaps also otherwise), it is interesting to study fluctuations
(i.e., second order terms) and try to find limits (e.g. in distribution, after a suitable
normalization) for the difference of the two sides of (1.3) or (1.4). Such results in
some cases are given in [19], [28] and [1]; see the examples in Section 14, but we will
not pursue this problem here, and leave it as an open problem. △

Remark 1.10. Convergence almost surely implies convergence in distribution. Thus,
as a corollary, (1.3) holds also with convergence in distribution. However, our proof
does not seem to provide a method to find the limit distribution, i.e. the distribution

of pXi, except in some very simple cases. Moreover, the limits pXi are (in general)
dependent.

For q “ 2 and deterministic ξij , limit distributions were given in [28]. (Sometimes

degenerate, sometimes not.) The results there thus describe the distribution of pXi

in this case, although the descriptions in some cases are complicated. Some further
examples of known limit distributions are given in some examples in Section 14. We
leave the general case as another open problem. △

The proof of Theorem 1.8 is given in Sections 3–5 below, after some preliminaries
in Section 2. The proof is based on the embedding by Athreya and Karlin [3] of
a Pólya urn into a continuous-time multitype branching process (Section 2.6); we
then apply martingale methods to obtain a continuous-time version of Theorem 1.8
(Theorem 4.1); finally, this implies results for the embedded discrete-time urn. The
proof is generalized to urns with subtraction in Section 8, and to urns with a weaker
moment condition in Appendix B. Since the proofs are rather long and technical, we
prefer to first present the proof in the basic case Theorem 1.8 (which is enough for
most applications) and later discuss the modifications required for the extensions,
instead of proving the most general results immediately.

Remark 1.11. Gouet [18, 19] and Bose, Dasgupta, and Maulik [12], in special cases
(see Example 14.3 and Example 14.12), instead studyXni directly and use martingale
metods in discrete time. It seems that this approach (also used by several authors
for non-triangular urns) works well for balanced urns, but that the embedding into
continuous time works better for unbalanced urns. △

Remark 1.12. We consider in this paper only triangular Pólya urns. Another
important class of urns consists of the irreducible urns. In this case a.s. convergence
(under some technical conditions) was shown by Athreya and Karlin [3], see also [4,
Section V.9.3] and [27, Theorem 3.21].

It might be possible to combine the methods of the present paper and the meth-
ods for irreducible urns to obtain results on a.s. convergence for all types of Pólya
urns (under some technical conditions), see Remark 2.3, but the present paper is
long as it is and we leave this as a speculation for future research. (Note also the
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counterexamples Example 14.14 and 14.15, showing that some conditions are needed
even in the triangular case.) △

1.1. Contents. Section 2 contains preliminaries, including some definitions and no-
tation. Section 3 consists of a series of lemmas that comprise the main technical
part of our proofs. They lead to the main theorem for continuous time in Section 4,
which in turn is used to prove Theorem 1.8 in Section 5. Sections 6 (continuous
time) and 7 (discrete time) contain results on whether the limit random variable are
degenerate (i.e., constant) or not, and some related results.

Section 8 extend the previous results to urns with subtracion, where we allow
ξii “ ´1. With some extra technical conditions, the previous results hold in this
case too, with only minor modifications of the proofs.

The following sections contain some complements. Section 9 is a short section
comparing random and non-random replacements with the same means.

Section 10 contains some general results on balanced urn, mainly as preliminaries
to the following sections.

Section 11 considers the number of times a given colour is drawn; it is shown that
the results of earlier sections extend to this case.

Section 12 contains results on convergence in L2 and in Lp, and closely related
results on convergence of moments in, for example, Theorem 1.8. For the main
result (discrete-time), we have to assume that urn is balanced, and we state an open
problem for more general urns.

Section 13 discusses briefly another open problem (rates of convergence).
Section 14 contains a number of examples that illustrate the results and their

limitations, and also give connections to previous literature.
Finally, Appendix A contains some simple general lemmas on absolute continuity

that we believe are known, but for which we were unable to find references. Ap-
pendix B gives proofs of Lp versions of L2 estimates used in the main part of the
paper; this yields both the extension of Theorem 1.8 mentioned above, and a proof
of the results in Section 12. Appendix C gives a rather technical proof of one claim
in Example 14.14.

2. Some notation and other preliminaries

We use throughout the paper the notation Q, q, Xn “ pXniqiPQ, ai, and ξi “

pξijqjPQ introduced in the introduction.

2.1. Standing assumptions. In the rest of the paper we assume

(A0) The Pólya urn is triangular.

(Unless we explicitly say so, for example when we discuss this property in Sec-
tion 2.3.) For the central part of the paper (Sections 2–7) we make also some
standing technical assumptions:

(A1) The initial urn X0 is non-random. Moreover, each X0i ě 0 and
ř

aiX0i ą 0.
(The results may be extended to random X0 by conditioning on X0.)

(A2) If ai “ 0, then ξi “ 0, i.e., ξij “ 0 for every j P Q. (This is without loss
of generality, since ai “ 0 means that balls of colour i never are drawn, and
thus ξi does not matter.)

(A3) For every i P Q, either X0i ą 0, or there exists j ‰ i such that Ppξji ą 0q ą 0
(or both). (This too is without loss of generality, since otherwise balls of
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colour i can never appear, so Xni “ 0 a.s. for all n, and we may remove the
colour i from Q.)

(A4) E ξ2ij ă 8 for all i, j P Q.

(A5) ξij ě 0 (a.s.) for all i, j P Q.

Note that (A5) implies that every Xni is (weakly) increasing in n. In particular,
the urn never gets empty. Combined with (A1) we see that

ř

i aiXni ą 0 for every
n, and thus the probabilities (1.1) and the urn process are well defined. We discuss
extensions to urns not satisfying (A5) (i.e., urns with subtractions) in Section 8; see
Theorems 8.4–8.6.

Remark 2.1. The second moment condition (A4) is for technical convenience. In
fact, the results (including Theorem 1.8) hold assuming only E ξpij ă 8 for some
p ą 1. However, this adds further arguments to an already long proof, so we assume
second moments in the main part of the paper and show the extension to p ą 1 in
Appendix B.

It seems possible that the results could extend further by assuming only that
E ξij log ξij ă 8, as for diagonal urns in [2] using related results for (single-type)
branching processes [4, Theorem III.7.2]. (The results do not extend without modi-
fications to cases without this assumption, see Example 14.16.) We have not pursued
this, and leave it as an open problem. △

2.2. General notation. As usual, we ignore events of probability 0. We often write
“almost surely” or “a.s.” for emphasis, but we may also tacitly omit this.

We use “increasing” in the weak sense. Similarly, “positive function” means in the
weak sense, i.e. ě 0. (However, “positive constant” always means strictly positive;
we sometimes add “strictly” for emphasis, but not always.)

We let s ^ t :“ mints, tu and s _ t :“ maxts, tu.
We let Zě0 :“ t0, 1, 2, . . . u and Z` :“ t1, 2, . . . u.

We use
a.s.
ÝÑ,

p
ÝÑ, and

d
ÝÑ to denote convergence almost surely, in probability, and

in distribution, respectively.
“Absolutely continuous” (for a probability distribution in R or Rd) means with

respect to Lebesgue measure. (Except in Appendix A when a reference measure is
explicitly specified.) We may say that a random variable is absolutely continuous
when its distribution is.

We use some standard probability distributions: Exppλq is an exponential distri-
bution with mean λ ą 0; we may also say with rate 1{λ. Γpα, bq is a Gamma distri-
bution. (Thus Exppλq “ Γp1, λq.) Beppq is a Bernoulli distribution. NegBinpr, pq is
a negative binomial distribution. Geppq is a geometric distribution on t1, 2, . . . u.

For a random variable W , we let LpW q denotes the distribution of W , and, for
any p ą 0,

∥W∥p :“
`

E |W |p
˘1{p

. (2.1)

Lp denotes the set of all random variables W such that ∥W∥p ă 8.
C denotes unspecified constants that may vary from one occurrence to the next.

They may depend on the activities ai and the distributions of the replacements ξi,
and perhaps on other parameters clear from the context, but they never depend on
n or t.

Let

rij :“ E ξij . (2.2)
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Thus the matrix prijqi,jPQ is the mean replacement matrix. Note that rij exists and
is finite by (A4). By (A5), we have rij ě 0, and rij “ 0 ðñ ξij “ 0 a.s.

We occasionally (when we discuss two different urns at the same time) denote a
Pólya urn by U ; we then (somewhat informally) mean both the urn process Xn and
its continuous-time version Xptq defined below, and also the colour set Q and the
replacement matrix pξijq.

2.3. The colour graph. (In this subsection, the urn does not have to be triangular.)
Recall that Q is the set of colours. As said in the introduction, we allow Q to be any
finite set, although it is possible to assume Q “ t1, . . . , qu without loss of generality
when this is convenient.

We regard the set Q of colours as a directed graph, called the colour graph, where
for any distinct i, j P Q there is an edge i Ñ j if and only if Ppξij ‰ 0q ą 0. In other
words, i Ñ j means that if a ball of colour i is drawn, it is possible (with positive
probability) that some balls of colour j are added. Note that by (A2), i Ñ j entails
ai ą 0, so balls of colour i may (and will) actually be drawn; furthermore, by (A5),

i Ñ j ðñ rij ą 0 and i ‰ j. (2.3)

We say, again for two distinct colours i, j P Q, that i is an ancestor of j, and j a
descendant of i, if there exists a directed path in Q from i to j; we denote this by
i ≺ j. In other words, i ≺ j means that if we start the urn with only a ball of colour
i, then it is possible that balls of colour j are added at some later time.

If i P Q, let Pi :“ tj P Q : j Ñ iu, the set of colours different from i whose
drawings may cause addition of balls of colour i. We say that the colour i is minimal
if Pi “ H. We denote the set of minimal colours by Qmin. Note that (A3) can be
formulated as: X0i ą 0 for every i P Qmin.

We say that the urn is triangular, if there exists a (re)labelling of the colours
by 1, . . . , q that makes the matrix pξijqi,jPQ triangular a.s. (Assuming (A5), this is
equivalent to the mean replacement matrix prijqi,jPQ being triangular, cf. (2.3).) In
other words, the urn is triangular if there exists a total ordering ă of the colours
such that

i ą j ùñ ξij “ 0 a.s. (2.4)

Using the definitions above to rewrite (2.4), we see that the urn is triangular if
and only there exists a total ordering ă such that, for i, j P Q,

i Ñ j ùñ i ă j. (2.5)

Furthermore, this is equivalent to

i ≺ j ùñ i ă j. (2.6)

Proposition 2.2. The following are equivalent.

(i) The urn is triangular.
(ii) The colour graph is acyclic.
(iii) The relation ≺ on Q is a partial order.

Proof. (i) implies (ii) and (iii) as a consequence of (2.5) and (2.6).
(ii) ðñ (iii) is easily seen.
Finally, any partial order can be extended to a total order. Thus, if (iii) holds,

we may extend ≺ to a total order ă, which means that (2.6) holds. □
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Note that if the urn is triangular, a colour i is minimal if and only if it is minimal
in the partial order ≺.

Remark 2.3. Wemay also note that a Pólya urn is irreducible if and only if its colour
graph is strongly connected. Given any Pólya urn, we may decompose its colour
graph into its strongly connected components, which are linked by the remaining
edges in an acyclic way. Hence the urn can be regarded as an acyclic directed network
of irreducible urns. This suggests, as mentioned in Remark 1.12, that the methods
in the present paper perhaps might be combined with methods for irreducible urns
to obtain results for general urns. △

2.4. More notation. Let, for i P Q,

λi :“ airii “ ai E ξii ě 0. (2.7)

In the continuous-time version introduced below, λi is the rate of additions to colour
i by drawings of the same colour. Since colours also may be added by drawings of
another colour, we define further

λ˚
i :“ max

␣

λj : j ⪯ i
(

ě 0. (2.8)

In other words, λ˚
i is the largest λj for a colour j such that there exists a path

(possibly of length 0) in Q from j to i. Such a path may contain several colours k
with the same, maximal, λk, and we denote the largest number of them in a single
path by 1 ` κi; i.e.,

κi :“ max
␣

κ : Di1 ≺ i2 ≺ ¨ ¨ ¨ ≺ iκ`1 ⪯ i with λi1 “ ¨ ¨ ¨ “ λiκ`1 “ λ˚
i

(

ě 0. (2.9)

Define further

pλ :“ maxtλi : i P Qu ě 0, (2.10)

pκ :“ maxtκi : i P Q and λ˚
i “ pλu

“ max
␣

κ : Di1 ≺ i2 ≺ ¨ ¨ ¨ ≺ iκ`1 with λi1 “ ¨ ¨ ¨ “ λiκ`1 “ pλ
(

ě 0. (2.11)

If pλ “ 0 (i.e., if λi “ 0 for every i P Q), let further

pκ0 :“ 1 ` max
␣

κi : i P Q with ai ą 0
(

ě 1. (2.12)

If pλ ą 0, define also

γi :“ κi ´ pκλ˚
i {pλ, i P Q. (2.13)

2.5. Stochastic processes. All our continuous-time stochastic processes are de-
fined on r0,8q and are assumed to be càdlàg (right-continuous with left limits).

We consider martingales without explicitly specifying the filtration; this will al-
ways be the natural filtration pFtqtě0, where Ft is generated by “everything that has
happened up to time t”. If T is a stopping time, then FT denotes the corresponding
σ-field generated by all events up to time T .

Given a stochastic process W “ pW ptqqtě0, we define its maximal process by

W ˚ptq :“ sup
0ďsďt

|W psq|, 0 ď t ď 8. (2.14)

(We consider only s ă 8, also when t “ 8.) We further define

∆W ptq :“ W ptq ´ W pt´q, 0 ď t ă 8, (2.15)

where W pt´q is the left limit at t, with W p0´q :“ 0.
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If W is a process with locally bounded variation, we may define its quadratic
variation by

rW,W st :“
ÿ

0ďsďt

∣∣∆W psq
∣∣2, 0 ď t ď 8, (2.16)

(summing over s ă 8 if t “ 8), noting that the sum always really is countable.
(We have no need for the definition for general semimartingales, see e.g. [32, p. 519
and Theorem 26.6] or [42, Section II.6].) Recall [42, Corollary 3 to Theorem II.6.27,
p. 73] that if M is a local martingale and E rM,M st ă 8 for some t ă 8, then

E |Mptq|2 “ E rM,M st, (2.17)

and as a consequence, if E rM,M s8 ă 8, then M is an L2-bounded martingale and
thus Mp8q :“ limtÑ8 Mptq exists a.s., and (2.17) holds for all t ď 8.

Recall also Doob’s inequality [32, Proposition 7.16] which as a special case yields,
combined with (2.17),

EM˚ptq2 ď C E |Mptq|2 “ C E rM,M st, (2.18)

provided E rM,M st ă 8. (Here C “ 4, but we will not use this.)

2.6. Continuous-time urn. We will use the standard method of embedding the
discrete-time urn in a continuous-time process, due to Athreya and Karlin [3], see also
[4, §V.9], and after them used in many papers. We thus define the continuous-time
urn as a vector valued Markov process Xptq “ ppXiptqqiPQ with given initial value
Xp0q :“ X0 such that, for each i P Q, “a ball of colour i is drawn” with intensity
aiXiptq; when a ball of colour i is drawn, we add to Xptq a copy of ξi (independent
of the history). In the classical case (e.g. [3]) when each Xiptq is integer valued, Xptq
is a multitype continuous-time Markov branching process; in general (allowing any
realXiptq ě 0), Xptq is a (vector-valued) continuous-time continuous-state branching
process (abbreviated CB process) as defined by Jǐrina [30], see also e.g. Li [37]. (The
process Xptq is of jump-type, as in [30, Section 3].) Note that (A4) implies E ξij ă 8

for all i, j P Q, which is a well-known sufficient condition for non-explosions; i.e.,
there exists such a process Xptq with Xptq finite for all t P r0,8q.

Since aiXip0q ą 0 for some i by (A1), and Xiptq is increasing by (A5), there will

a.s. be infinitely many draws in the urn. We let pTn be the nth time that a ball is

drawn, with pT0 :“ 0. Then the discrete-time urn Xn in Section 1 can be realized as

Xn :“ Xp pTnq. (2.19)

We assume (2.19) throughout the paper.
Since Xptq does not explode, there is a.s. only a finite number of draws up to any

finite time t, and thus pTn
a.s.
ÝÑ 8 as n Ñ 8. Note that we denote the discrete-time

urn by Xn “ pXniqi and the continuous-time urn by Xptq “ pXiptqqi.
Of course, the continuous-time urn can also be studied for its own sake, see for

example [13].

3. Analysis of one colour

In this section, we study one fixed colour i P Q in the continuous-time urn.
Recall that Xiptq is the number (amount) of balls of colour i at time t in the

continuous-time urn. There are several possible sources of these balls: some may be
there from the beginning, some may be added when a ball of some other colour j is
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drawn (with j Ñ i and thus j ≺ i), and in both cases these balls of colour i may
later be drawn and produce further generations of balls of colour i (provided λi ą 0).

We begin by considering, in the following two subsections, two simpler special
cases. We will then in the final subsection, rather easily, treat the general case by
combining these special cases.

We first state some simple general results; these are more or less known, see e.g.
[27, Lemma 9.3] for a related result, but for convenience we give full proofs.

Fix a colour j. Let 0 ă T1 ă T2 ă . . . be the times that a ball of colour j is
drawn, and let Nptq :“

∣∣tk : Tk ď tu
∣∣ denote the corresponding counting process;

i.e., Nptq is the number of draws of colour j up to time t. These draws occur with
intensity ajXjptq, which means that

rNptq :“ Nptq ´ aj

ż t

0
Xjpsqds, t ě 0, (3.1)

is a local martingale. In fact, rNptq is a martingale, which we verify by the following
simple lemma. Recall the notation (2.14).

Lemma 3.1. Suppose that EXjptq ă 8 for some t P r0,8q. Then,

ENptq ă 8, (3.2)

E rN˚ptq “ E sup
sďt

| rNpsq| ă 8. (3.3)

In particular, if EXjptq ă 8 for every t ă 8, then the local martingale rNptq is a
martingale.

Proof. By the definition of local martingale, there exists an increasing sequence of

stopping times τm, m ě 1, such that τm Õ 8 a.s. as m Ñ 8, and rNpt ^ τmq is a

martingale for each m. In particular, since rNp0q “ 0,

ENpt ^ τmq “ E rNpt ^ τmq ` aj E
ż t^τm

0
Xjpsqds “ aj E

ż t^τm

0
Xjpsqds. (3.4)

Since Nptq and Xjptq are increasing positive functions of t, we may use monotone
convergence and let m Ñ 8 to obtain

ENptq “ aj E
ż t

0
Xjpsq ds ď aj E

“

tXjptq
‰

ă 8. (3.5)

The monotonicity of Nptq further implies

rN˚ptq ď Nptq ` aj

ż t

0
Xjpsqds ď Nptq ` ajtXjptq, (3.6)

and thus (3.3) follows by (3.5).
The final statement follows since a local martingale with integrable maximal func-

tion is a martingale. □

Lemma 3.2. Suppose that EXjptq ă 8 for some t P r0,8q.

(i) Let f be a positive or bounded measurable function on r0, ts. Then

E
8
ÿ

k“1

1tTkďtufpTkq “ E
ż t

0
fpsq dNpsq “ aj E

ż t

0
fpsqXjpsqds. (3.7)
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(ii) Let also pηkq8
1 be a sequence of identically distributed random variables with

finite mean E η1 such that ηk is independent of Tk. Then

E
8
ÿ

k“1

1tTkďtufpTkqηk “ aj E η1 E
ż t

0
fpsqXjpsq ds. (3.8)

Proof. Step 1. The left and middle terms in (3.7) are the same, since
şt
0 fpsq dNpsq “

ř8
k“1 1tTkďtufpTkq by the definition of N .

Step 2. Suppose that fpsq “ 1taăsďbu, the indicator function of an interval pa, bs P

r0, ts. Then, by (3.1),
ż t

0
fpsqdNpsq ´ aj

ż t

0
fpsqXjpsq ds “

ż t

0
fpsqd rNpsq “ rNpbq ´ rNpaq, (3.9)

and E r rNpbq ´ rNpaqs “ 0 by Lemma 3.1; hence (3.7) holds for such f .

Step 3. The monotone class theorem [21, Theorem 1.2.3] now shows that (3.7) holds
for the indicator function fpsq “ 1tsPAu of any Borel set A P r0, ts.

Step 4. By linearity, (3.7) holds for any positive simple function f . Then, by mono-
tone convergence, (3.7) holds for any positive measurable function, and by linearity
again for any bounded measurable function. This proves (i).

Step 5. In (ii), we may decompose ηk into its positive and negative parts; thus it
suffices to consider ηk ě 0. Then the sum in (3.8) is well-defined, and

E
8
ÿ

k“1

1tTkďtufpTkqηk “

8
ÿ

k“1

E
“

1tTkďtufpTkqηk
‰

“ E η1

8
ÿ

k“1

E
“

1tTkďtufpTkq
‰

, (3.10)

and (3.8) follows from (3.7). □

3.1. A colour not influenced by others. In this subsection, we assume that
ξji “ 0 a.s. for all colours j ‰ i. Equivalently, j ­Ñ i for j P Q, i.e., Pi “ H; in
other words, i is a minimal colour. This means that Xiptq is affected only by draws
of the same colour i, and we may thus ignore all other colours and regard Xiptq as a
continuous-time urn with a single colour. In other words, Xiptq is a one-dimensional
CB process, starting at some given Xip0q and adding copies of ξii with intensity
aiXiptq. We write Xip0q “ x0. Note that our assumption (A3) means x0 ą 0, but
for completeness we allow also the trivial case x0 “ 0 in the present subsection. (In
this subsection, we really use only the assumptions (A1), (A4), and (A5), and only
for the colour i.) Note also that λ˚

i “ λi by (2.8).
We will only need a few simple facts about CB processes; see further e.g. [30; 36;

20; 9; 37] where many more results are given.
Recall that λi “ airii. If λi “ 0, then there are no additions at all, and Xiptq “

Xip0q “ x0 is constant.
It is easy to see that since rii ă 8, the CB process Xiptq is well defined and non-

explosive (i.e., finite for all t), for any given x0 ě 0. Moreover [20], [9, Proposition
2.2],

EXiptq “ eλitx0. (3.11)

This implies by conditioning and the Markov property that [4, Theorem III.7.1]

e´λitXiptq is a martingale. (3.12)
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The following result too well known, but we include a proof for completeness, and
since we discuss modifications of it later. See e.g. [4, Theorem V.8.2] and [27, Lemma
9.5] for a vector-valued extension.

Lemma 3.3. Suppose that ξji “ 0 a.s. for all j ‰ i. Then e´λitXiptq is an L2-
bounded martingale, and thus

e´λitXiptq
a.s.
ÝÑ Xi (3.13)

for some random variable Xi. Furthermore, with x0 “ Xip0q,

EXi “ x0, (3.14)

VarXi “ x0
ai
λi

E ξ2ii, (3.15)

where we interpret 0
0 as 0. Hence

Var
“

e´λitXiptq
‰

ď VarXi ď Cx0, (3.16)

E
∣∣∣sup
tě0

e´λitXiptq
∣∣∣2 ď C EX 2

i ď Cpx0 ` x20q. (3.17)

Furthermore, if x0 ą 0, then 0 ă Xi ă 8 a.s.

Proof. The case λi “ 0 is trivial, with Xi “ x0. The same holds if x0 “ 0. We may
thus assume λi ą 0 and x0 ą 0.

We argue as in [27, Section 9]. As above (now taking j “ i), let 0 ă T1 ă T2 ă . . .
be the times that a ball of colour i is drawn, and let Nptq :“

∣∣ti : Ti ď tu
∣∣ denote the

corresponding counting process- Furthermore, let ηk :“ ∆XipTkq be the number of
balls of colour i added at the k-th draw. Thus η1, η2, . . . is a sequence of independent
copies of ξii.

Let Mptq :“ e´λitXiptq. Then M is a martingale by (3.12), and its quadratic
variation is by (2.16) given by

rM,M st “
ÿ

0ďsďt

|∆Mpsq|2 “ x20 `
ÿ

Tkďt

e´2λiTk |∆XipTkq|2 “ x20 `
ÿ

Tkďt

e´2λiTkη2k.

(3.18)

Hence, it follows from Lemma 3.2(ii) that

E rM,M st “ x20 ` ai E rξ2iis

ż t

0
e´2λis EXipsq ds. (3.19)

Hence, writing β :“ E ξ2ii, (3.11) yields

E rM,M st “ x20 ` aiβx0

ż t

0
e´λis ds “ x20 ` x0

ai
λi

β
`

1 ´ e´λit
˘

. (3.20)

This shows by (2.17) that M is an L2-bounded martingale; thus (3.13) holds for
some Xi “ Mp8q. Clearly Xi ě 0. We have EMp8q “ EM0 “ x0, which yields
(3.14). Furthermore, (3.15) holds by (2.17) and (3.20) again, together with (3.14);
this yields also (3.16). Doob’s inequality (2.18) yields (3.17).

Finally, the distribution of Xi depends on x0; thus let us denote Xi by Xipx0q. The

CB property implies that if x, y ě 0, then Xipx` yq
d
“ Xipxq `X 1

i pyq, where X 1
i pyq is

a copy of Xipyq independent of Xipxq. Let ppxq :“ P
`

Xipxq “ 0
˘

P r0, 1s. It follows
that for any x, y ě 0,

ppx ` yq “ ppxqppyq, (3.21)
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and thus there exists c P r0,8s such that

PpXipxq “ 0q “ ppxq “ e´cx, x ą 0. (3.22)

We must have c ą 0, since otherwise Xi “ 0 a.s. for any x0, which contradicts (3.14).
The Markov property and (3.22) yield, for any t P r0,8q,

P
`

Xi “ 0 | Xiptq
˘

“ e´cXiptq. (3.23)

Thus, taking the expectation,

P
`

Xi “ 0
˘

“ E e´cXiptq. (3.24)

It is clear that if x0 ą 0 and λi ą 0, so ai ą 0 and E ξii ą 0, then there is a.s.
an infinite number of draws, and the (standard) law of large numbers shows that

Xiptq
a.s.
ÝÑ 8. Consequently, letting t Ñ 8 in (3.23) yields, by dominated conver-

gence,

PpXi “ 0q “ 0. (3.25)

□

By (3.15), the limit Xi is degenerate only in the trivial cases when x0 “ 0 or
ai “ 0. We note that except in these cases, the limit has an absolutely continuous
distribution.

Lemma 3.4. In Lemma 3.3, suppose further that λi ą 0 and x0 ą 0. Then the
distribution of Xi is absolutely continuous.

Proof. Let T1 be the first time that a ball of colour i is drawn; then T1 P Expp1{paix0qq.
The distribution of the balls added at T1 is independent of T1, and thus XipT1q is
independent of T1. It follows by the strong Markov property that the stochastic
process Y ptq :“ XipT1 ` tq, t ě 0, is independent of T1. By (3.13), we have as
t Ñ 8,

e´λitY ptq “ eλiT1e´λipT1`tqXipT1 ` tq
a.s.
ÝÑ Y :“ eλiT1Xi, (3.26)

and it follows that Y is independent of T1. Consequently,

Xi “ e´λiT1Y, (3.27)

where the two factors on the right-hand side are independent. The result follows
from (3.27) since e´λiT1 has an absolutely continuous distribution and Y ą 0 a.s.
(because Xi ą 0 a.s. by Lemma 3.3). □

3.2. A colour only produced by one other colour. We continue to consider a
fixed colour i. In this subsection we assume that |Pi| “ 1; thus there is exactly one
colour j P Q such that j Ñ i. We assume also that Xip0q “ 0, so there are initially
no balls of colour i. Recall that the assumption j Ñ i means rij ą 0, and thus
implicitly aj ą 0.

Since the colour graph is acyclic, there is no feedback from colour i to colour j;
thus we may regard the entire process Xjptq, t P r0,8q, as known, and consider only
its effect on Xiptq.

We may regard Xiptq as a CB process with immigration. Let again 0 ă T1 ă

T2 ă . . . be the times that a ball of colour j is drawn, and let η1, η2, . . . be the
corresponding number (amount) of balls of colour i that are added. In case there
is only a finite number K of times that a ball of colour j is drawn, we define for
completeness Tk “ 8 for k ą K, and pick ηk with the correct distribution and
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independent of everything else. We regard each ηk as an immigrant coming at Tk.
(Some ηk may be 0; this is no problem.) We can separate the descendants of each
of these immigrants, and write

Xiptq “
ÿ

k:Tkďt

Ykpt ´ Tkq “

8
ÿ

k“1

1tTkďtuYkpt ´ Tkq (3.28)

where each Ykptq, conditioned on ηk, is a copy of the single-colour CB process in
Section 3.1 with Ykp0q “ ηk. Furthermore, conditionally on pηkqk, the processes
Ykptq are independent. Recall that the additions η1, η2, . . . are i.i.d. copies of ξji;
in particular, they have expectations E ηk “ rji. The times Tk are stopping times;
moreover, the process Yk is independent of Tk and the σ-field FTk

.
The following lemma contains much of the technical parts of our argument. It

makes an assumption on the growth of Xjptq that later will be justified by an induc-
tion argument.

We define, for m P Q,

rXmptq :“ t´κme´λ˚
mtXmptq, 0 ă t ă 8, (3.29)

rX˚˚
m :“ sup

tě0

␣

pt ` 1q´κme´λ˚
mtXmptq

(

. (3.30)

We use powers of t in (3.29) and of t ` 1 in (3.30) for technical convenience below
(and we therefore use a notation with ˚˚ instead of ˚); the difference is not important
since we are mainly interested in limits as t Ñ 8.

Lemma 3.5. Let i P Q. Suppose that there is exactly one colour j P Q such that
j Ñ i, and that Xip0q “ 0. Suppose further that

rXjptq
a.s.
ÝÑ Xj as t Ñ 8, (3.31)

for some random variable Xj ě 0, and∥∥ rX˚˚
j

∥∥
2

ă 8. (3.32)

Then

rXiptq
a.s.
ÝÑ Xi as t Ñ 8, (3.33)

for some Xi ě 0 and ∥∥ rX˚˚
i

∥∥
2

ă 8. (3.34)

Furthermore, a.s., if Xj ą 0, then Xi ą 0.
Moreover, if λi ď λ˚

j , and thus λ˚
i “ λ˚

j , then

Xi “

# ajrji
λ˚
j ´λi

Xj , λi ă λ˚
j ,

ajrji
κi

Xj , λi “ λ˚
j .

(3.35)

Proof. Using (3.28), and recalling Ykp0q “ ηk, we make the decomposition

e´λitXiptq “

8
ÿ

k“1

1tTkďtue
´λiTk

`

e´λipt´TkqYkpt ´ Tkq ´ Ykp0q
˘

(3.36)

`

8
ÿ

k“1

1tTkďtue
´λiTkpηk ´ rjiq (3.37)
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` rji

´

8
ÿ

k“1

1tTkďtue
´λiTk ´

ż t

0
e´λisajXjpsq ds

¯

(3.38)

` rjiaj

ż t

0
e´λisXjpsq ds (3.39)

“: Z1ptq ` Z2ptq ` rjiZ3ptq ` ajrjiZ4ptq, (3.40)

say. We consider the four processes Zℓptq in (3.40) separately (initially, at least).
Moreover, recalling (2.8) and (2.9), we consider sometimes separately the three cases:

(i) λi ą λ˚
j : then λ˚

i “ λi and κi “ 0.

(ii) λi “ λ˚
j : then λ˚

i “ λi, and κi “ κj ` 1.

(iii) λi ă λ˚
j : then λ˚

i “ λ˚
j , and κi “ κj .

We define, in analogy with (3.29)–(3.30) (but note the different exponents λi´λ˚
i ),

for ℓ “ 1, 2, 3, 4,

rZℓptq :“ t´κiepλi´λ˚
i qtZℓptq, (3.41)

rZ˚˚
ℓ :“ sup

tě0

␣

pt ` 1q´κiepλi´λ˚
i qt|Zℓptq|

(

. (3.42)

Then (3.40) yields

rXiptq “ rZ1ptq ` rZ2ptq ` rji rZ3ptq ` ajrji rZ4ptq, (3.43)

rX˚˚
i ď rZ˚˚

1 ` rZ˚˚
2 ` C rZ˚˚

3 ` C rZ˚˚
4 . (3.44)

We will prove, for ℓ “ 1, . . . , 4 and some Zℓ,

rZℓptq
a.s.
ÝÑ Zℓ as t Ñ 8, (3.45)

∥ rZ˚˚
ℓ ∥2 ă 8, (3.46)

and then (3.33)–(3.34) follow from (3.43)–(3.44).
We treat Z1ptq, . . . , Z4ptq in (3.39) in reverse order, partly because Z4ptq will turn

out to be the main term (sometimes at least).

Step 1: Z4. By (3.39) and (3.30),

0 ď Z4ptq ď rX˚˚
j

ż t

0
ps ` 1qκjepλ˚

j ´λiqs ds

ď

$

’

&

’

%

C rX˚˚
j “ Cpt ` 1qκi rX˚˚

j , λi ą λ˚
j ,

pt ` 1qκj`1
rX˚˚
j “ pt ` 1qκi rX˚˚

j , λi “ λ˚
j ,

Cpt ` 1qκjepλ˚
j ´λiqt

rX˚˚
j , λi ă λ˚

j .

(3.47)

It follows that in all three cases (i)–(iii), rZ˚˚
4 ď C rX˚˚

j . In particular, (3.32) implies∥∥ rZ˚˚
4

∥∥
2

ă 8. (3.48)

For (3.45) we treat the three cases (i)–(iii) separately, in each case using (3.41)
and (3.29)–(3.30). First, in case (i), we let t Ñ 8 in (3.39) and (3.47) and conclude
that a.s.

rZ4ptq “ Z4ptq Ñ Z4p8q :“

ż 8

0
e´λisXjpsqds ď C rX˚˚

j ă 8. (3.49)

Hence

rZ4ptq
a.s.
ÝÑ Z4 “ Z4p8q. (3.50)
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Note that if Xj ą 0, then Xjptq ą 0 for large t, and thus Z4 “ Z4p8q ą 0 by (3.49).
In case (ii), we have for t ě 1, using the change of variables s “ xt,

rZ4ptq “ t´κiZ4ptq “ t´κj´1

ż t

0
sκj

rXjpsq ds

“ t´κj´1

ż 1

0
sκj

rXjpsqds `

ż 1

1{t
xκj

rXjpxtq dx

Ñ 0 `

ż 1

0
xκjXj dx “ pκj ` 1q´1Xj “ κ´1

i Xj , (3.51)

by (3.31) and dominated convergence, which applies since (3.29)–(3.30) show that

supsě1
rXjpsq ď 2κj rX˚˚

j ă 8 a.s.

In case (iii), similarly, now with s “ t ´ u,

rZ4ptq “ t´κjepλi´λ˚
j qt

ż t

0
sκjepλ˚

j ´λiqs
rXjpsqds

“

ż t

0

´ t ´ u

t

¯κj

e´pλ˚
j ´λiqu

rXjpt ´ uq du

Ñ

ż 8

0
e´pλ˚

j ´λiquXj du “ pλ˚
j ´ λiq

´1Xj , (3.52)

using dominated convergence again, justified by, for t ě 1,
´ t ´ u

t

¯κj
rXjpt ´ uq ď

´ t ´ u ` 1

t

¯κj
rX˚˚
j ď 2κj

rX˚˚
j ă 8. (3.53)

We have thus shown (3.45) and (3.46) for ℓ “ 4 in all cases, with Z4 ą 0 when
Xj ą 0. Furthermore, in cases (ii) and (iii), we have

Z4 “

#

κ´1
i Xj , λi “ λ˚

j ,

pλ˚
j ´ λiq

´1Xj , λi ă λ˚
j .

(3.54)

Step 2: Z3, first part. We have, recalling (3.1),

Z3ptq “

ż t

0
e´λis d rNpsq, (3.55)

which is a local martingale since rNptq is; in fact it is a martingale since

Z˚
3 ptq ď Nptq ` aj

ż t

0
e´λisXjpsqds ď Nptq ` tXjptq, (3.56)

and thus EZ˚
3 ptq ă 8 by Lemma 3.1, noting that the assumption (3.32) implies

EXjptq ă 8 for all t ě 0. Since Z3ptq has locally bounded variation and jumps only

at the times Tk, with ∆Z3pTkq “ e´λiTk , its quadratic variation is

rZ3, Z3st “

8
ÿ

k“1

1tTkďtue
´2λiTk “

ż t

0
e´2λis dNpsq. (3.57)

The draws Tk occur with rate ajXjptq, and it follows by (3.57) and Lemma 3.2 that,
recalling (3.30),

E |Z3ptq|2 “ E rZ3, Z3st “ aj E
ż t

0
e´2λisXjpsq ds
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ď aj E rX˚˚
j

ż t

0
ps ` 1qκjepλ˚

j ´2λiqs ds. (3.58)

The rest of the argument will be the same for Z2 and Z1, so we first consider them.

Step 3: Z2, first part. Each term in the sum (3.37) is a martingale, since Tk is a
stopping time, and ηk ´rji has mean 0 and is independent of the σ-field FTk

. Hence,
the sum Z2ptq is at least a local martingale (since stopping at any Tk yields a finite
sum and thus a martingale). Since Z2ptq jumps only at the times Tk, and is constant
in between, its quadratic variation is given by

rZ2, Z2st “

8
ÿ

k“1

1tTkďtue
´2λiTkpηk ´ rjiq

2. (3.59)

Hence, again using the independence between ηk and Tk,

E rZ2, Z2st “

8
ÿ

k“1

E
“

1tTkďtue
´2λiTk

‰

E
“

pηk ´ rjiq
2
‰

“ Varrη1sE
8
ÿ

k“1

1tTkďtue
´2λiTk . (3.60)

We recognize the final sum from (3.57), and conclude

E rZ2, Z2st “ C E rZ3, Z3st. (3.61)

Step 4: Z1, first part. We write the sum in (3.36) as Z1ptq “
ř8

k“1 Z
pkq

1 ptq, with

Z
pkq

1 ptq :“ 1ttěTkue
´λiTk

`

e´λipt´TkqYkpt ´ Tkq ´ Ykp0q
˘

. (3.62)

It is easily seen that each Z
pkq

1 ptq is a martingale, since Tk is a stopping time and
e´λitYkptq ´Ykp0q is a martingale starting at 0, which furthermore is independent of
FTk

. Hence, for every finite m ě 1, the finite sum

Z
rďms

1 ptq :“
m
ÿ

k“1

Z
pkq

1 ptq (3.63)

is a martingale, and thus Z1pt^Tmq “ Z
rďms

1 pt^Tmq is a martingale. Consequently,
Z1 is a local martingale. Furthermore, conditioned on all Tk and ηk, the processes

Z
pkq

1 ptq are independent and thus a.s. they jump at different times. (Note that

Z
pkq

1 p0q “ 0.) Hence, by (2.16),

rZ1, Z1st “

8
ÿ

k“1

rZ
pkq

1 , Z
pkq

1 st (3.64)

and thus, using (3.62) and (2.17) again together with (3.16),

E
“

rZ1, Z1st | pTk, ηkq8
1

‰

“

8
ÿ

k“1

E
“

rZ
pkq

1 , Z
pkq

1 st | pTk, ηkq8
1

‰

“

8
ÿ

k“1

1tTkďtue
´2λiTk Var

“

e´λipt´TkqYkpt ´ Tkq | Tk, ηk
‰

ď

8
ÿ

k“1

1tTkďtue
´2λiTkCηk. (3.65)
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This yields, by taking the expectation,

E rZ1, Z1st ď C E
8
ÿ

k“1

1tTkďtue
´2λiTk . (3.66)

This is the same sum as in (3.57), and we conclude

E rZ1, Z1st ď C E rZ3, Z3st. (3.67)

Step 5: Z1, Z2, Z3, final part. Let ℓ P t1, 2, 3u. In all three cases, Zℓptq is a local
martingale such that, by (3.61), (3.67), and (3.58), for t P r0,8q,

E rZℓ, Zℓst ď C E rZ3, Z3st ď C E rX˚˚
j

ż t

0
ps ` 1qκjepλ˚

j ´2λiqs ds. (3.68)

In particular, (3.68) shows that E rZℓ, Zℓst ă 8 for every t ă 8, and thus Zℓptq is a
square integrable martingale, and E |Zℓptq|2 “ E rZℓ, Zℓst.

We now consider another partition into three separate cases for λ˚
j and λi.

(i1) λ˚
j ă 2λi. Then we can let t Ñ 8 in (3.68) and obtain E rZℓ, Zℓs8 ă 8.

Consequently, Zℓptq is an L2-bounded martingale, and thus

Zℓptq
a.s.
ÝÑ Zℓp8q ă 8, as t Ñ 8, (3.69)

and Z˚
ℓ p8q :“ suptě0 |Zℓptq| P L2. Furthermore (as always), λ˚

i ě λi, and thus (3.42)

implies rZ˚˚
ℓ ď Z˚

ℓ p8q; consequently, ∥ rZ˚˚
ℓ ∥2 ă 8.

We consider two subcases, recalling the cases discussed at the beginning of the
proof:

(i1a) Case (i), λi ą λ˚
j . Then λ˚

i “ λi and κi “ 0; hence (3.41) yields rZℓptq “ Zℓptq

and thus (3.69) yields rZℓptq Ñ Zℓ :“ Zℓp8q a.s.
(i1b) Case (ii) or (iii), λi ď λ˚

j . Then λ˚
i ą λi or κi ě 1 and thus (3.41) and

(3.69) yield rZℓptq Ñ Zℓ :“ 0 a.s.

(ii1) λ˚
j ě 2λi and λ˚

j ą 0. Let, for n ě 1,

rZ:

ℓ pnq :“ sup
n´1ďtďn

pt ` 1q´κiepλi´λ˚
i qt|Zℓptq|. (3.70)

It follows from Doob’s inequality (2.18) and (3.68) that, with C :“ C E rX˚˚
j ,

E rZ:

ℓ pnq2 ď Cn´2κie2pλi´λ˚
i qn EZ˚

ℓ pnq2

ď Cn´2κie2pλi´λ˚
i qn E rZℓ, Zℓsn

ď Cn´2κie2pλi´λ˚
i qn

ż n

0
ps ` 1qκjepλ˚

j ´2λiqs ds

ď Cn´2κie2pλi´λ˚
i qnnκj`1epλ˚

j ´2λiqn

“ Cnκj`1´2κiepλ˚
j ´2λ˚

i qn. (3.71)

We have always λ˚
i ě λ˚

j , and thus, in the present case, λ˚
j ´ 2λ˚

i ď ´λ˚
j ă 0. Hence

(3.71) yields

E
8
ÿ

n“1

rZ:

ℓ pnq2 “

8
ÿ

n“1

E rZ:

ℓ pnq2 ă 8. (3.72)



20 SVANTE JANSON

Consequently, a.s. rZ:

ℓ pnq Ñ 0 as n Ñ 8, which by (3.41) and (3.70) means rZℓptq Ñ 0
as t Ñ 8. Moreover, (3.42) implies

`

rZ˚˚
ℓ

˘2
ď

8
ÿ

n“1

rZ:

ℓ pnq2, (3.73)

and thus (3.72) implies also ∥ rZ˚˚
ℓ ∥2 ă 8.

(iii1) λ˚
j “ λi “ 0. In this case we have λ˚

i “ 0 and κi “ κj ` 1. Let, for n ě 1,

rZ;

ℓ pnq :“ sup
2n´1ďtď2n

t´κiepλi´λ˚
i qt|Zℓptq| “ sup

2n´1ďtď2n
t´κj´1|Zℓptq|. (3.74)

Similarly to (3.71), it follows from Doob’s inequality and (3.68) that

E rZ;

ℓ pnq2 ď C2´2pκj`1qn

ż 2n

0
ps ` 1qκj ds ď C2´pκj`1qn. (3.75)

Hence,

E
8
ÿ

n“1

rZ;

ℓ pnq2 “

8
ÿ

n“1

E rZ;

ℓ pnq2 ă 8, (3.76)

and the rest of the argument is as in the preceding case, now using

`

rZ˚˚
ℓ

˘2
ď Z˚

ℓ p1q
2

`

8
ÿ

n“1

rZ;

ℓ pnq2 (3.77)

and noting that EZ˚
ℓ p1q

2
ă 8 by (2.18) and (3.68).

We have shown that (3.45) and (3.46) hold for ℓ ď 3 in all cases, with Zℓ “ 0
except in the case (i).

Step 6: Conclusion. We have shown that (3.45)–(3.46) hold for every ℓ; consequently,
(3.33)–(3.34) hold by (3.43)–(3.44).

Moreover, in cases (ii) and (iii), Zℓ “ 0 for ℓ “ 1, 2, 3, and thus Xi “ ajrjiZ4; this
yields (3.35) by (3.54), which in particular shows that Xi ą 0 when Xj ą 0 in these
cases.

It remains to show Xi ą 0 when Xj ą 0 in the case (i), i.e., when λi ą λ˚
j . In this

case λ˚
i “ λi and κi “ 0, and thus by (3.29) and (3.28),

rXiptq “ e´λitXiptq “

8
ÿ

k“1

e´λit1tTkďtuYkpt ´ Tkq. (3.78)

Moreover, if Xj ą 0, then lim inftÑ8 Xjptq ą 0 and thus a.s. there is an infinite
number of draws of colour j, and thus all Tk are finite. Let K be the (random)
smallest k such that ηk ą 0; such k exist a.s. since E ηk “ rji ą 0 by assumption.
Then (3.78) implies

rXiptq ě e´λiTK1ttěTKue
´λipt´TKqYKpt ´ TKq, (3.79)

which a.s. has a strictly positive limit by conditioning on K and applying Lemma 3.3
to YK . We have already shown that the limit Xi in (3.33) exists a.s., and (3.79) then
shows Xi ą 0 a.s. □

If λi ď λ˚
j , then Xi is determined by Xj , see (3.35). On the contrary, if λi ą λ˚

j ,
then Xi is not determined by Xj , as shown in the following lemma.
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Lemma 3.6. If λi ą λ˚
j in Lemma 3.5, then the distribution of Xi conditioned on

Xj is non-degenerate. In fact, then the conditional distribution LpXi | Xjq is a.s.
absolutely continuous.

Proof. Since λi ą λ˚
j , we have (3.78). Condition on the entire process pXjptqqtě0

and on all Tk and ηk; then the terms in the sum in (3.78) are independent, and, as
t Ñ 8, each term converges a.s. by Lemma 3.3 to a limit that by Lemma 3.4 has
an absolutely continuous distribution when ηk ą 0. Since a.s. ηk ą 0 for infinitely
many k, it follows that the limit is a.s. (conditionally) absolutely continuous. Since
pXjptqqt determines Xj , this implies (by Lemma A.1) that the distribution a.s. is
absolutely continuous also if we condition only on Xj . □

3.3. The general case for a single colour. We have in the preceding subsections
considered two special cases. We consider now a single colour i in a general triangular
urn. We continue to use the notations (3.29)–(3.30). Recall also that Pi :“ tj P Q :
j Ñ iu.

Lemma 3.7. Let i P Q, and assume that for every j P Pi, we have

rXjptq
a.s.
ÝÑ Xj as t Ñ 8, (3.80)

for some random variable Xj ě 0, and∥∥ rX˚˚
j

∥∥
2

ă 8. (3.81)

Then

rXiptq
a.s.
ÝÑ Xi as t Ñ 8, (3.82)

for some Xi ě 0 and ∥∥ rX˚˚
i

∥∥
2

ă 8. (3.83)

Furthermore, a.s., if Xj ą 0 for every j P Pi, then Xi ą 0.

Proof. If Pi “ H, we are in the situation of Lemma 3.3. Moreover, in this case
Xip0q ą 0 by our standing assumption (A3). Consequently, in this case the result
follows from Lemma 3.3. (Note that λ˚

i “ λi and κi “ 0 by (2.8) and (2.9).)
In general, we separate the balls of colour i according to their original reason

for existing. Formally, we split the colour i and replace it by several “subcolours”
(or shades); we define one subcolour labelled i0, and an additional subcolour ij for
each j P Pi. These subcolours have the same replacement vector ξi as i, with the
modification that new balls of colour i always get the same subcolour as the drawn
ball. Also, balls of colour i that are added when a ball of some other colour j is
drawn get the subcolour ij . Furthermore, all balls of colour i at time 0 get subcolour
i0. In other words, i0 is used for descendants of the balls with colour i in the urn at
the beginning, and ij are used for balls of colour i that eventually descend from a
ball of colour j. Note that i0 is minimal, while Pij “ tju.

We thus have

Xiptq “ Xi0ptq `
ÿ

jPPi

Xij ptq. (3.84)

Moreover, in the modified urn with subcolours instead of colour i, the subcolour i0
is of the type in Section 3.1 (possibly with x0 “ 0), and each subcolour ij (j P Pi) is
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of the type in Section 3.2. Hence, Lemmas 3.3 and 3.5 apply, using our assumptions
(3.80)–(3.81). It follows from (2.8) that

λ˚
i0 “ λi, (3.85)

λ˚
ij “ λi _ λ˚

j , j P Pi. (3.86)

In particular, for every j P Pi Y t0u, we have λ˚
ij

ď λ˚
i . Furthermore, if Pi ‰ H, then

λ˚
i “ λi _ maxtλ˚

j : j P Piu “ maxtλ˚
ij : j P Piu. (3.87)

Moreover, (2.9) yields κi0 “ 0, and implies also that if λ˚
ij

“ λ˚
i , then κij ď κi.

Hence, for every j P Pi Y t0u, and for all large t (at least),

t´κie´λ˚
i t ď t´κij e

´λ˚
ij
t
. (3.88)

Consequently, it follows from (3.84) and the definition (3.29) that, at least for large
t,

rXiptq ď rXi0ptq `
ÿ

jPPi

rXij ptq, (3.89)

and furthermore, using also (3.13) and (3.33),

rXiptq
a.s.
ÝÑ Xi :“

ÿ

jPPiYt0u

Xij1tpλ˚
ij
,κij

q“pλ˚
i ,κiqu. (3.90)

This shows (3.82).

Similarly, pt ` 1q´κie´λ˚
i t ď Cpt ` 1q

´κij e
´λ˚

ij
t
for every j P Pi Y t0u and every

t ě 0, and thus (3.84) and (3.30) imply

rX˚˚
i ď C rX˚˚

i0 ` C
ÿ

jPPi

rX˚˚
ij . (3.91)

Hence, (3.83) follows from (3.17) and (3.34).
Finally, assume Xj ą 0 for every j P Pi. If Pi “ H, then, as remarked above,

Xi ą 0 a.s. by (A3) and Lemma 3.3. On the other hand, if Pi ‰ H, then Xij ą 0 for
every j P Pi by Lemma 3.5. By (3.87) and (2.9), there exists some j P Pi such that
pλ˚

ij
, κij q “ pλ˚

i , κiq, and thus (3.90) implies

Xi ě Xij ą 0 (3.92)

a.s., which completes the proof. □

Remark 3.8. If λi ą λ˚
j for every j P Pi, then λ˚

ij
“ λi “ λ˚

i and κij “ 0 “ κi for

every j P Pi Y t0u, and thus (3.90) yields

Xi “
ÿ

jPPiYt0u

Xij . (3.93)

On the other hand, suppose that λi ď λ˚
j for some j P Pi. Then either λ˚

i ą λi “

λ˚
i0
, or λi “ λ˚

i “ λ˚
j for some j P Pi, and in the latter case κi ě 1 ` κj ą κi0 “ 0.

Hence, in both cases, pλ˚
i0
, κi0q ‰ pλ˚

i , κiq, and thus the sum in (3.90) is really only
over (some) j P Pi. △
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4. The main theorem for continuous time

Theorem 4.1. Let pXiptqqiPQ be a continuous-time triangular Pólya urn satisfying
the conditions (A1)–(A5). Then, for every colour i P Q,

t´κie´λ˚
i tXiptq

a.s.
ÝÑ Xi as t Ñ 8, (4.1)

for some random variable Xi with Xi ą 0 a.s.

Proof. We may choose a total order ă of the colours such that (2.5) holds. Taking
the colours in this order, we see by Lemma 3.7 and induction that (3.82) and (3.83)
hold for every i P Q, with Xi ą 0 a.s. Recalling (3.29), we see that (3.82) is the same
as (4.1). □

The limits Xi are strictly positive. We will see in Theorem 6.4 that they are
non-degenerate when λ˚

i ą 0; however, in general some of them will be linear com-
binations of others. We discuss dependencies between the limits in Section 6.

5. Proof of the main theorem for discrete time

Proof of Theorem 1.8. We modify the urn by adding a new colour, 0 say, to Q; let
Q` :“ Q Y t0u be the new set of colours. All activities ai and replacements ξij with
i, j P Q remain unchanged. Balls of colour 0 have activity a0 :“ 0, and thus they
are never drawn; in accordance with (A2) we define ξ0j :“ 0 for every j P Q`. We
further let ξi0 :“ 1 for every i P Q with ai ą 0. For i P Q with ai “ 0 we let ξi0 :“ 0,
again in accordance with (A2). We let X00 “ X0p0q :“ 0, so there are initially no
balls of colour 0. Note that the extended urn too satisfies (A1)–(A5).

Since balls of colour 0 never are drawn, we may ignore them and recover the
original urn. In other words, the new urn will be the original urn with “dummy
balls” of colour 0 added. We may assume that the old and new urn are coupled in
this way, which means that for i P Q, the number of balls of colour i at any time is
the same in both urns, so we may unambiguously use the notations Xni and Xiptq
for both urns. Moreover, there are initially no balls of colour 0, but we add exactly
1 ball of colour 0 every time a ball is drawn. Hence, in the discrete-time version, the
number of dummy balls at time n equals n; thus Xn0 “ n. In the continuous-time
model, X0ptq equals the number of draws up to time t , and in particular, cf. (2.19),

X0p pTnq “ Xn0 “ n. (5.1)

The new urn is obviously also triangular, with i Ñ 0 for every i P Q with ai ą 0.
We have λ0 “ 0. Since every λi ě 0, and we have i Ñ 0 when λi ą 0 (and thus
ai ą 0 by (A2)), it follows from (2.8) and (2.10) that

λ˚
0 “ maxtλj : j P Qu “ pλ. (5.2)

If pλ ą 0, then is further easily seen from (2.9) and (2.11) that

κ0 “ maxtκi : i P Q and λ˚
i “ pλu “ pκ. (5.3)

If pλ “ 0, which means that λi “ 0 for every i, we have by (2.9) and (2.12) instead

κ0 “ max
␣

κ : Di1 ≺ i2 ≺ ¨ ¨ ¨ ≺ iκ`1 “ 0 in Q`
(

“ max
␣

κ : Di1 ≺ i2 ≺ ¨ ¨ ¨ ≺ iκ with aiκ ą 0 in Q
(

“ 1 ` max
␣

κj : j P Q with aj ą 0
(

“ pκ0. (5.4)
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We apply Theorem 4.1 to the new urn. In particular, taking i “ 0 in (4.1) yields,

using (5.1) and (5.2)–(5.4) and recalling that pTn Ñ 8 a.s.,

pT´κ0
n e´pλ pTnn “ pT´κ0

n e´pλ pTnX0p pTnq
a.s.
ÝÑ X0, as n Ñ 8. (5.5)

Recall that 0 ă X0 ă 8 a.s.

Case 1: pλ ą 0. Consider first the case pλ ą 0; then κ0 “ pκ by (5.3). It follows from
(5.5) that a.s., as n Ñ 8,

log n ´ pλ pTn ´ pκ log pTn Ñ logX0 (5.6)

which yields, since pTn Ñ 8,

log n

pTn

Ñ pλ, (5.7)

and thus

log log n ´ log pTn Ñ log pλ. (5.8)

Using (5.8) in (5.6) yields, a.s.,

pTn “
1

pλ

`

log n ´ pκ log logn ` pκ log pλ ´ logX0 ` op1q
˘

. (5.9)

Now let i P Q. Then (5.9) yields, as n Ñ 8, a.s.,

pT κi
n eλ

˚
i
pTn „ pλ´κi`pκλ˚

i {pλX´λ˚
i {pλ

0 nλ˚
i {pλplog nqκi´pκλ˚

i {pλ. (5.10)

Consequently, taking t “ pTn in (4.1) yields, as n Ñ 8, using the notation (2.13),

Xni

nλ˚
i {pλ logγi n

“
Xip pTnq

nλ˚
i {pλplog nqκi´pκλ˚

i {pλ

a.s.
ÝÑ pXi (5.11)

with

pXi :“ pλ´κi`pκλ˚
i {pλX´λ˚

i {pλ
0 Xi “ pλ´γiX´λ˚

i {pλ
0 Xi. (5.12)

This shows (1.3).

Case 2: pλ “ 0. In the case pλ “ 0, we have instead κ0 “ pκ0 by (5.4). Moreover,
(5.5) now yields that as n Ñ 8, a.s.,

pTn „ X´1{pκ0

0 n1{pκ0 (5.13)

and thus (4.1) yields

Xni

nκi{pκ0
“

Xip pTnq

nκi{pκ0

a.s.
ÝÑ pXi :“ X´κi{pκ0

0 Xi. (5.14)

This shows (1.4), and completes the proof of Theorem 1.8. □

The limits pXi are all strictly positive. We return to the question whether they are
degenerate in Section 7.
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Remark 5.1. Suppose that pλ ą 0, so that (5.11) holds. As a sanity check, we note
that (5.11) and (5.12) imply, recalling (2.10) and (2.11), that if we define

Q˚ :“ ti P Q : λ˚
i “ pλ and κi “ pκu, (5.15)

which is nonempty, then

Xni

n
a.s.
ÝÑ

#

pXi “ Xi{X0 if i P Q˚,

0 otherwise.
(5.16)

Hence, the total number of balls grows linearly, as should be expected; moreover,
the distribution of colours in the urn is asymptotically concentrated on Q˚.

Note also that (3.90) for the dummy colour 0 yields, recalling (5.2)–(5.3) and using
(3.35),

X0 “
ÿ

jPQ˚

X0j “
ÿ

jPQ˚

aj
λ˚
j

Xj “ pλ´1
ÿ

jPQ˚

ajXj . (5.17)

By (5.16) and (5.17), we have for the total activity in the urn

1

n

ÿ

iPQ

aiXni
a.s.
ÝÑ

1

X0

ÿ

iPQ˚

aiXi “ pλ. (5.18)

△

Remark 5.2. If we instead suppose pλ “ 0, which implies λi “ λ˚
i “ 0 for every i,

then (5.14) similarly shows that if we now define

Q˚ :“ ti : κi “ pκ0u, (5.19)

then (5.16) still holds. Note that it is quite possible that Q˚ is empty; this happens
precisely when pκ0 ą pκ, which by (5.4) happens when some i with κi “ pκ has activity
ai ą 0. (Such a colour cannot have any descendants, since all colours have the same
λ˚
j “ 0; hence we must have ξi “ 0 a.s., which means that such colours will be drawn,

but nothing happens to the urn at these draws.) In this case the total number of
balls is a.s. opnq, and the colour distribution is asymptotically concentrated on the
colours i such that κi “ pκ “ pκ0 ´ 1.

On the other hand, if Q˚ ‰ H, which means that pκ0 “ pκ, and thus by (5.4) ai “ 0
for every i with κi “ pκ, let Q˚´ :“ tj : κj “ pκ ´ 1u. Then (3.90) and (3.35) yield,
since j Ñ 0 if and only if aj ą 0, and then κ0j “ κj ` 1,

X0 “
ÿ

jPP0XQ˚´

X0j “
ÿ

jPQ˚´

aj
pκ
Xj “ pκ´1

ÿ

jPQ˚´

ajXj . (5.20)

△

6. Dependencies between the limits

The limits Xi in Theorem 4.1 are non-degenerate except in extreme cases, as shown
below, but there are frequently linear dependencies between them. To explore this,
we introduce more terminology.

We say that a colour i is a leader if λj ă λi for every j ≺ i, and a follower
otherwise. (In particular, a minimal colour i is a leader.) We have, recalling (2.8),

i is a leader ðñ

´

j ≺ i ùñ λj ă λi

¯

ðñ

´

j Ñ i ùñ λ˚
j ă λi

¯

, (6.1)
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i is a follower ðñ

´

Dj ≺ i with λj ě λi

¯

ðñ

´

Dj Ñ i with λ˚
j ě λi

¯

. (6.2)

By (2.8)–(2.9),

i is a leader ðñ λ˚
i “ λi and κi “ 0. (6.3)

If i is a follower, let Ai be the set of ancestors of i that have maximal λj , i.e.,
λj “ λ˚

i , and such that furthermore there is a path from j to i with the maximum
number κi ` 1 of colours ℓ with λℓ “ λ˚

i . (Recall (2.8) and (2.9).) Thus

Ai :“ tj ≺ i : Di1 “ j ≺ i2 ≺ ¨ ¨ ¨ ≺ iκi`1 ⪯ i with λi1 “ ¨ ¨ ¨ “ λiκ`1 “ λ˚
i u. (6.4)

Note that Ai is non-empty for every follower i. Moreover, it is easily seen from
(6.1)–(6.2) and (6.4) that every j P Ai is a leader. We may say that i follows the
leaders in Ai; note that a follower may follow several leaders. For completeness, we
define Ai :“ tiu when i is a leader. Note that, by (6.3) and (6.4),

λj “ λ˚
j “ λ˚

i for every j P Ai. (6.5)

We show first that the variables Xi are determined by the ones for leaders i.

Lemma 6.1. If i P Q, then Xi is a linear combination

Xi “
ÿ

kPAi

cikXk (6.6)

with strictly positive coefficients cik.

Proof. Note first that (6.6) is trivial when i is a leader, with cii “ 1. We may thus
suppose that i is a follower.

By induction on the colour i, we may assume that the formula (6.6) holds for
every colour that is an ancestor of i, and in particular for every j P Pi.

By Remark 3.8, we only have to consider j P Pi in (3.90). Let

P1
i :“

␣

j P Pi : pλ˚
ij , κij q “ pλ˚

i , κiq
(

, (6.7)

so that the sum in (3.90) really is over j P P1
i. By (6.3), since we now assume that

i is a follower, either λ˚
i ą λi or κi ą 0 (or both). Hence, if j P P1

i, then either
λ˚
ij

“ λ˚
i ą λi or κij “ κi ą 0; since λ˚

ij
“ λi _ λ˚

j , it follows in both cases (using

(2.9) in the latter) that λ˚
j “ λ˚

ij
ě λi and thus by (3.35)

Xij “ c1
ijXj (6.8)

for some constant c1
ij ą 0. Moreover, we have λ˚

j “ λ˚
j _λi “ λ˚

ij
“ λ˚

i and it follows

from (6.7) and (2.9) that

κi “ κij “ κj ` 1tλi“λ˚
i u. (6.9)

If j P P1
i is a leader, so λj “ λ˚

j “ λ˚
i and κj “ 0 by (6.3), it follows from (6.4) and

(6.9) that j P Ai. Similarly, if j P P1
i is a follower, then it follows from (6.4) and

(6.9) that if k P Aj , then a chain from k to j of the (maximal) type in (6.4) can be
extended to a chain from k to i of the same type, and thus k P Ai; consequently, if
j P P1

i is a follower, then Aj Ď Ai. The result (6.6), with some cij ě 0, now follows
by (3.90), (6.8), and induction.

Finally, if k P Ai, let i1 “ k, . . . , iκi`1 ⪯ i be as in (6.4), choose a path in Q
from k to i that contains all iℓ, and let j be the last colour in this path before i.
Then it follows from (6.4) that k P Aj , and thus by induction cjk ą 0, which implies
cik ě c1

ijcjk ą 0. □
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Motivated by (6.6), we turn to considering Xi for leaders i. We first consider a
trivial exceptional case.

Lemma 6.2. Let i be a colour with λi “ 0. Then i is a leader if and only if i
is minimal, i.e., there is no colour j with j Ñ i. In this case Xi “ Xip0q is a
deterministic positive constant.

Proof. We have already remarked that a minimal colour is a leader. Conversely,
if i is a leader with λi “ 0, then (6.1) shows that j Ñ i is impossible; hence i
is minimal. In this case, no balls of colour i are added by draws of balls of other
colours. Furthermore, since λi “ 0, also no balls of colour i are added by draws of
colour i. Consequently, Xiptq “ Xip0q for all t ě 0, and (3.80) holds trivially with
rXiptq “ Xiptq and Xi “ Xip0q. □

We next show that except for the case in Lemma 6.2, the distribution of Xi for a
leader i is absolutely continuous, and thus non-degenerate.

Lemma 6.3. (i) Let i be a leader with λi ą 0, and let E be a set of colours that
contains neither i nor any descendant of i, i.e., if j P E then j ń i. Then the
conditional distribution LpXi | Xj , j P Eq is a.s. absolutely continuous. In particular,
the distribution of Xi is absolutely continuous.

(ii) More generally, let L be a (non-empty) set of leaders with λi ą 0 for every
i P L, and suppose that L is an anti-chain in Q, i.e., i ć j when i, j P L. Let further
E be a set of colours such that if j P E, then j ń i for every i P L. Then the joint
conditional distribution LppXiqiPL | Xj , j P Eq is a.s. absolutely continuous. (This is

a distribution in R|L|.)

Proof. It suffices to consider (ii). The conclusion (conditional absolute continuity)
is preserved if we reduce E to a smaller set, see Lemma A.1 and Remark A.2. Thus
we may assume that E is maximal, i.e.,

E “ tj P Q : j ń i,@i P Lu. (6.10)

Note that, if i P L and j ≺ i, then we cannot have j ⪰ k for any k P L, since this would
imply k ≺ i, contradicting the assumption that L is an antichain. Consequently, by
(6.10), if i P L and j ≺ i, then j P E.

We argue as in the proof of Lemma 3.6, and condition on the entire processes
pXjptqqtě0, j P E, and also on the times of all draws of a color j P E, and on all

replacement vectors ξ
pnq

j (n ě 1, j P E).
Let i P L. If j P Pi, so j Ñ i, then λ˚

j ă λi “ λ˚
i by the assumption that i is

a leader. We use again the decomposition (3.84), and note that each e´λitXij ptq
(j P Pi) can be written as a sum as in (3.78) with (conditionally) independent terms,
and it follows as in the proof of Lemma 3.6 that each Xij has (conditionally) an
absolutely continuous distribution. Furthermore, Xi0 is independent of conditioning
on colours j P E, and if Xip0q ą 0, then its distribution too is absolutely continuous
by Lemma 3.4 (since we assume λi ą 0). Moreover (still conditionally), all Xij and
Xi0 (i P L, j P Pi) are independent.

Since i is a leader, Remark 3.8 shows that (3.93) holds. We have shown that
(conditionally) the terms in the sum in (3.93) are independent, and all are absolutely
continuous except Xi0 when Xip0q “ 0. Thus our assumption (A3) implies that
the sum contains at least one absolutely continuous summand, and hence Xi is
(conditionally) absolutely continuous.
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Moreover, this argument shows that Xi for different i P L are (conditionally)
independent, and since each has an absolutely continuous distribution, their joint
distribution is (conditionally) absolutely continuous.

Finally, Lemma A.1 (again with Remark A.2) shows that the same holds if we
instead condition on Xj , j P E. □

Theorem 6.4. Let L be a set of leaders such that λi ą 0 for every i P L. Then the
joint distribution L

`

pXiqiPL
˘

is absolutely continuous.

Proof. Order the elements of the set tλi : i P Lu as λp1q ă ¨ ¨ ¨ ă λprq. Let

Lℓ :“ ti P L : λi “ λpℓqu, 1 ď ℓ ď r, (6.11)

Lďℓ :“
ℓ
ď

k:“1

Lk, 0 ď ℓ ď r. (6.12)

(Thus, Lď0 “ H.) Let ℓ P t1, . . . , ru. If i, j P Lℓ, then (6.1) shows that j ć i, and
thus Lℓ is an antichain. Furthermore, if i P Lℓ and j P Lďℓ´1, then λ˚

j “ λj ă λi, and

thus i ł j. Consequently, Lemma 6.3(ii) shows that the conditional distribution of
pXiqiPLℓ given pXjqjPLďℓ´1

is a.s. absolutely continuous.
It now follows from Lemma A.3 by induction that the distribution of pXiqiPLďℓ

is absolutely continuous for ℓ “ 1, . . . , r. Taking ℓ “ r yields the result, since
Lr “ L. □

Theorem 6.5. Let i P Q be any colour.

(i) If λ˚
i “ 0, then Xi is a deterministic positive constant.

(ii) If λ˚
i ą 0, then Xi has an absolutely continuous distribution.

Proof. (i): Every k P Ai is a leader with λk “ λ˚
i “ 0. Thus Lemma 6.2 shows that

Xk is deterministic for k P Ai. Consequently, (6.6) shows that Xi too is deterministic.
(ii): Every k P Ai is a leader with λk “ λ˚

i ą 0. Thus Theorem 6.4 shows that the
joint distribution of pXkqkPAi

is absolutely continuous. It follows from (6.6) that the
distribution of Xi is absolutely continuous. (See Lemma A.4.) □

Corollary 6.6. If λ˚
i ą 0, then the coefficients cik in Lemma 6.1 are uniquely

determined.

Proof. Suppose, on the contrary, that (6.6) holds a.s. for two different sets of co-
efficients pcikqk and pc1

ikqk. Let bk :“ cik ´ c1
ik. Then

ř

kPAi
bkXk “ 0 a.s., and

thus pXkqkPAi
a.s. lies in the certain hyperplane orthogonal to pbkq. However, this

contradicts Theorem 6.5 which says that the distribution of pXkqkPAi
is absolutely

continuous. (See also Lemma A.4.) This contradiction proves the claim. □

The coefficients cik in (6.6) can be found by the recursive procedure in the proof
of Lemma 6.1. We proceed to show that they also can be found as eigenvectors of
suitable submatrices of the weighted mean replacement matrix pairijqi,jPQ. In the
sequel, we let cik be the coefficient given by the inductive proof of Lemma 6.1; this
determines cik uniquely for k P Ai also when λ˚

i “ 0. We further define cik :“ 0 if
k R Ai.

Let ν be a leader, and let

Dν :“ ti : λ˚
i “ λνu, (6.13)

Dκ
ν :“ ti P Dν : κi “ κu, κ “ 0, 1, . . . . (6.14)
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(The sets Dκ
ν are empty from some κ on; we only consider κ with Dκ

ν ‰ H. Note
also that Dν “ Dν1 if ν 1 is another leader with λν1 “ λν .) Note that if ciν ą 0, then
ν P Ai, and thus i P Dν .

Let i P Dκ
ν , and suppose first that λi ă λ˚

i “ λν . Then it follows from Remark 3.8
that in (3.90), we only have to sum over j P Pi. Moreover, if j P Pi and λ˚

ij
“ λ˚

i ,

then λ˚
j “ λ˚

ij
“ λ˚

i and κij “ κj . Hence, in (3.90) we only have to sum over

j P Pi X Dκ
ν . Since j P Pi ðñ j Ñ i ðñ rji ą 0 and j ‰ i by (2.3), it follows

from (3.90) and (3.35) that

Xi “
ÿ

jPDκ
νXPi

Xij “
ÿ

jPDκ
ν ztiu

ajrji
λ˚
j ´ λi

Xj . (6.15)

Consequently, the coefficient ciν in (6.6) is given by

ciν “
ÿ

jPDκ
ν ztiu

ajrji
λ˚
j ´ λi

cjν . (6.16)

Since j P Dκ
ν implies λ˚

j “ λν , (6.16) yields

pλν ´ λiqciν “
ÿ

jPDκ
ν ztiu

ajrjicjν , (6.17)

for every i P Dκ
ν with λi ă λ˚

i .
On the other hand, suppose that i P Dκ

ν with λi “ λ˚
i “ λν . If j P Dνztiu and

rji ą 0, then λ˚
j “ λν “ λ˚

i and j Ñ i, and thus κi ě κj ` 1, since a maximal chain

in the definition (2.9) of κj can be extended by i. Hence, if j P Dκ
νztiu, then rji “ 0.

It follows that (6.17) holds trivially for i P Dκ
ν with λi “ λ˚

i .
Consequently, (6.17) holds for every i P Dκ

ν , and thus, recalling λi “ airii,
ÿ

jPDκ
ν

ajrjicjν “ pλν ´ λiqciν ` airiiciν “ λνciν , i P Dκ
ν . (6.18)

We summarize, and elaborate, this as a lemma. We say that i P Q is a subleader
if λi “ λ˚

i but i is not a leader; recalling (6.3) we thus have

i is a subleader ðñ λ˚
i “ λi and κi ě 1. (6.19)

Lemma 6.7. For any leader ν, and any κ ě 0 such that Dκ
ν ‰ H, we have (6.18),

and thus pciνqiPDκ
ν
is a left eigenvector of the triangular matrix pairijqi,jPDκ

ν
for its

largest eigenvalue λν .
For κ “ 0, the value ciν for a leader i P D0

ν is determined by ciν “ δiν (i.e., 1 when
i “ ν and 0 otherwise), and these values for the leaders determine the eigenvector
pciνqiPDκ

ν
uniquely.

For κ ě 1, the value ciν for a subleader i P Dκ
ν is determined recursively from the

values cjν for j P Dκ´1
ν by

ciν “
ÿ

jPDκ´1
ν

ajrji
κ

cjν , (6.20)

and these values for the subleaders determine the eigenvector pciνqiPDκ
ν
uniquely.

Proof. We have shown that (6.18) holds, and thus pciνqiPDκ
ν
is a left eigenvector.

Since the matrix Aκ :“ pajrijqi,jPDκ
ν
is triangular, its eigenvalues are its diagonal

elements ajrjj “ λj , j P Dκ
ν . The definition (2.9) of κi implies that if Dκ

ν ‰ H, then
there exists i P Dκ

ν with λi “ λ˚
i , i.e. a leader (if κ “ 0) or a subleader (if κ ě 1).
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Since λi ď λ˚
i “ λν for every i P Dκ

ν , it follows that λ
˚
ν is the largest eigenvalue, and

that its multiplicity equals the number of leaders or subleaders in Dκ
ν .

Let Lκ be the set of leaders or subleaders in Dκ
ν , and consider the projection

Πκ : RDκ
ν Ñ RLκ mapping pxiqiPDκ

ν
ÞÑ pxiqiPLκ . Let Vκ be the left eigenspace of the

matrix Aκ for its largest eigenvalue λν . The recursion in the proof of Lemma 6.1
and the calculations (6.15)–(6.17) show, more generally, that any vector pxiqiPLκ can
be extended to a vector pxiqiPDκ

ν
that belongs to Vκ. In other words, the projection

Πκ maps Vκ onto RLκ . These spaces have the same dimension |Lκ|, and thus Πκ :
Vκ Ñ RLκ is a bijection. Consequently, an eigenvector is determined by its values
for leaders or subleaders.

It is trivial that ciν “ δiν for a leader i.
For κ ě 1, let i be a subleader in Dκ

ν , so λi “ λ˚
i . Since κi “ κ ą 0, it follows from

Remark 3.8 that λi “ λ˚
j for some j P Pi, and furthermore that κj ` 1 ď κi for every

such j. Since then also λ˚
ij

“ λ˚
j “ λ˚

i and κij “ κj ` 1, it follows that in (3.90) we

only have to sum over j P Dκ´1
ν , which together with (3.35) yields (6.20). □

Remark 6.8. It is well known that the eigenvalues and eigenvectors of the weighted
mean replacement matrix pairijqi,jPQ are important for the asymptotics of Pólya urns
in general; see for example [4, Section V.9.3] and [27] for irreducible urns. Lemma 6.7,
where we consider eigenvectors of certain submatrices, is inspired by a special case
in [12], see Example 14.12. △

7. Degenerate limits in discrete time

Consider now the limits pXi in Theorem 1.8 for the discrete-time urn.

Theorem 7.1. Let i P Q.

(i) If λ˚
i “ 0, then pXi is a positive constant.

(ii) If 0 ă λ˚
i ă pλ, then pXi has an absolutely continuous distribution.

(iii) If λ˚
i “ pλ ą 0, then pXi is either constant or has an absolutely continuous

distribution; both alternatives are possible.

Proof. Consider the urn with an added dummy colour 0 as in Section 5.

(i): In this case, Theorem 6.5 shows that Xi is a positive constant. If pλ ą 0, then

(5.12) shows that pXi “ pλ´κiXi is a constant. If pλ “ 0, then (5.2) and Theorem 6.5

show that also X0 is a positive constant; thus (5.14) shows that pXi is a constant.

(ii): By (5.2), we have λ˚
0 “ pλ ą 0. By Lemma 6.1, Xi is a linear combination

(6.6) of Xk for leaders k with λ˚
k “ λ˚

i , and X0 is a similar linear combination,

now for leaders k with λ˚
k “ λ˚

0 “ pλ. The two sets of leaders are disjoint, and
thus Theorem 6.4 implies, using Lemma A.4, that the distribution of pXi,X0q is
absolutely continuous in R2. It is then easily seen from (5.12) that the distribution

of pXi is absolutely continuous.
(iii): In this case, Lemma 6.1 shows that both Xi and X0 are linear combinations

(6.6) of Xk for leaders k with λ˚
k “ pλ. If the two vectors of coefficients of these

linear combinations are proportional, then Xi and X0 are proportional; since now

(5.12) shows that pX “ cXi{X0 for some constant c, it follows that pX is constant. On
the other hand, if the vectors of coefficients are not proportional, then Lemma A.4
shows that the distribution of pXi,X0q is absolutely continuous in R2, and as in (ii),

it follows easily from (5.12) that the distribution of pXi is absolutely continuous. □
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An example where λ˚
i “ pλ and pXi is absolutely continuous is given by the classical

Pólya urn, see Example 14.1. Many examples with degenerate pXi are provided by
the following theorem; see also the examples in Section 14.

Theorem 7.2. Suppose that there is only one leader ν with λν “ pλ. (This is

equivalent to λν “ pλ and that i ⪰ ν for every colour i with λi “ pλ.) Then pXi is

deterministic for every i with λ˚
i “ pλ.

Proof. If pλ “ 0, this follows from Theorem 7.1(i).

Suppose now pλ ą 0, and consider the urn with an added dummy colour 0 as in

Section 5. Then λ˚
0 “ pλ by (5.2). Furthermore, λν “ pλ ą 0 and thus aν ą 0; hence

ν Ñ 0 and consequently ν is still the only leader k with λk “ pλ. In particular,

A0 “ tνu. Lemma 6.1 shows that Xi “ ciνXν for every i P Q with λ˚
i “ pλ, and also

that X0 “ c0νXν . Hence, the result follows from (5.12). □

Even when the limits pXi are not deterministic, there are generally linear depen-

dencies between them just as for Xi. In fact, in the main case pλ ą 0, we have the
following analogue of Lemmas 6.1 and 6.7.

Lemma 7.3. If pλ ą 0, then for every i P Q

pXi “
ÿ

kPAi

pcik pXk, (7.1)

where

pcik “ pλ´κicik ą 0. (7.2)

Moreover, Lemma 6.7 holds also for pcik, with the only difference that (6.20) is re-
placed by

pciν “
ÿ

jPDκ´1
ν

ajrji

κpλ
pcjν . (7.3)

Proof. The expansion (7.1)–(7.2) follows from (6.6) and (5.12), since k P Ai implies
λ˚
k “ λ˚

i and κk “ 0. The final claim follows by (7.2) and Lemma 6.7. □

We leave the corresponding result for the less interesting case pλ “ 0 to the reader.

8. Urns with subtractions

We have so far assumed (A5): ξij ě 0 for all i, j P Q. In many applications, there
are urns with subtractions, where we allow ξij ă 0. In the present paper, we are only
interested in cases where the urn allows an infinite number of drawings according to
the rules in Section 1; in other words we want (1.1) to make sense as probabilities
for all n, and thus we require that the urn is such that Xni ě 0 for all n, and also
ř

i aiXni ‰ 0. Such urns are often called tenable. (See e.g. [38] for a discussion
and examples.) A standard way to ensure that Xni ě 0 without assuming ξii ě 0
is to assume that X0i and every ξji always is an integer, so that Xni is an integer,
and that ξii ě ´1 while ξji ě 0 for j ‰ i. Typically, this is done for all i. (Thus
Xn P Zq

ě0; we may then regard the urn process as drawings without replacement
followed by adding ξij ` δij ě 0 balls of each colour j.) However, we will be more
flexible and allow a combination with this assumption for some colours i, and ξji ě 0
(as in earlier sections) for the others. We therefore assume:
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(A51) For each colour i P Q, we have either (or both)
(a) ξji ě 0 a.s. for all j P Q, or
(b) ξii P Zě0 Y t´1u a.s. and ξji P Zě0 a.s. for all j ‰ i, and Xip0q P Zě0.

Note that (A5) is (A51)(a) for every i P Q. Note also that (A51) implies ξji ě 0 a.s.
for all i, j P Q with i ‰ j. We let

Q´ :“
␣

i P Q : Ppξii ă 0q ą 0
(

“
␣

i P Q : Ppξii “ ´1q ą 0
(

(8.1)

denote the set of colours where (A51)(b) but not (A51)(a) applies. Note that (A2)
implies that ai ą 0 for every i P Q´.

Remark 8.1. More generally, we may assume that, for a given i, ξii may take some
negative value ´b, provided it does not take any other negative value, and Xip0q

and all ξji (j P Q) a.s. are multiples of b. This case is easily reduced to the case
b “ 1 in (A51) by dividing all Xni, Xiptq, and ξji by b and multiplying the activity ai
by b. (See Example 14.8 for an example where we, however, use a slightly different
alternative.) For convenience, and thus without real loss of generality, we will assume
(A51), where the only allowed negative replacement is ´1. △

Remark 8.2. If i P Q´ XQmin, then Xiptq is not influenced by the other colours, and
(A51)(b) implies that Xiptq is integer-valued and a classical continuous-time Markov
branching process of the type studied in e.g. [4, Chapter III]. (As noted above, we
have ai ą 0 by (A2).) Recall that [4, Section III.7] in the subcritical and critical
cases λi ď 0, this process a.s. dies out, i.e., Xiptq “ 0 for all sufficiently large t, while
in the supercritical case λi ą 0, the process survives for ever with positive probability
(assuming E ξii log ξii ă 8, as we do); this probability is strictly less than 1, since
the process always may die out when Ppξii “ ´1q ą 0. △

We continue to use the definitions above, in particular (2.7)–(2.13). Note that we
now may have rii ă 0, and thus λi ă 0; we may also have λi “ rii “ 0 without
ξii “ 0 a.s.

We will see that the results in the previous sections are valid with minor changes
also if we replace (A5) by (A51), at least under some further technical assumptions
(A6)–(A8) given below. However, in order to get more general results, these will be
assumed only when needed. Hence, we assume throughout this section (A1)–(A4)
and (A51), with the following further assumptions added explicitly when needed.

(A6)
ř

iPQ aiXiptq ą 0 a.s. for all t ě 0.

(A7) If i P Q´, then λ˚
i ą 0.

(A8) If i P Q is a minimal colour, then ξii ě 0 a.s. (i.e., i R Q´).

In other words, (A7) says that if i P Q´, then either λi ą 0 or there exists j P Q
with j ≺ i and λj ą 0 (or both). In particular, if i is a minimal colour, then either
λi ą 0 or ξii ě 0 a.s.

Note that (A8) implies that Xiptq ě Xip0q when i is minimal; since (A1)–(A3)
imply that there exists a minimal i with ai ą 0 and Xip0q ą 0, (A8) together with
(A1)–(A3) imply (A6).

8.1. Some motivation for (A6)–(A8). The assumption (A51) implies that the
continuous-time urn Xptq “ pXiptqqiPQ is well-defined for t P r0,8q, with Xiptq ě 0
for all i P Q. However, the urn might possibly reach a state where Xiptq “ 0 for all i
with ai ą 0, and thus

ř

i aiXiptq “ 0; such a state is absorbing and no more draws
will be made, and then the total number of draws is finite and the discrete-time
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urn is not well defined for all n. For results on the discrete-time urn, we therefore
further assume (A6). Since

ř

i aiXiptq is constant between the jumps, (A6) implies

that waiting times pTn`1 ´ pTn are finite a.s., and thus there is a.s. an infinite number

of draws; hence pTn ă 8 for every n, and the discrete-time urn pXnq8
1 is well defined

by (2.19).
Next, we note that a colour i with λ˚

i ă 0 will die out:

Lemma 8.3. If λ˚
i ă 0, then a.s. Xiptq “ 0 for all large t, and thus Xni “ 0 for all

large n.

Proof. Since every j Ñ i has λ˚
j ď λ˚

i ă 0, we can use induction and assume that

the statement holds for every j Ñ i. Then there exists a.s. a (random) time T such
that no colour j with j Ñ i exists for times t ě T . Hence, for t ě T , Xiptq evolves
as a single colour urn with only colour i; we have λi ď λ˚

i ă 0, and thus, as in
Remark 8.2, this process is a subcritical Markov branching process, which dies out
a.s. □

Hence, if λ˚
i ă 0, we can wait until colour i and all its ancestors have disappeared,

and we may then regard the urn as restarted at that time; then we have an urn with
fewer colours. Consequently, we may without loss of generality assume λ˚

i ě 0 for
every colour i. Note that it follows from the definition (2.8) that

λ˚
i ě 0 for every colour i ðñ λj ě 0 for every minimal colour j. (8.2)

Moreover, also the case λ˚
i “ 0 may be problematic when i P Q´, and we will

actually make a stronger assumption than (8.2). There are two reasons.
First, suppose that i P Q´ is a minimal colour (and thus λ˚

i “ λi). Then, as
said in Remark 8.2, Xiptq is a Markov branching process which dies out also in the
critical case λi “ λ˚

i “ 0, so as above we may in this case wait until colour i has
disappeared and consider an urn with fewer colours.

Secondly, and more importantly, if i P Q´ is not minimal and λ˚
i “ 0, there are

examples where (after normalization) Xiptq converges in distribution but not a.s.,
and similarly for Xni; see Examples 14.14 and 14.15. (In Example 14.15, Xni does
not even converge in distribution.)

We therefore exclude these cases and assume (A7). Note that if i R Q´, then
λ˚
i ě λi ě 0. Hence, (A7) implies that λ˚

i ě 0 for every i, and thus both conditions
in (8.2) hold. (So we do not have to assume this explicitly.)

Even with these assumptions, one complication remains. If i P Q´ is a minimal
colour, then, as noted in Remark 8.2, Xiptq is a branching process, and even in the
supercritical case λi ą 0, it dies out with positive probability. We will accept this
complication, but note that it may be eliminated by the additional assumption (A8),
which we only assume when needed.

8.2. Main results for urns with subtractions. With the assumptions above, our
main theorems for discrete and continuous time still hold:

Theorem 8.4. Let pXiptqqiPQ be a discrete-time triangular Pólya urn satisfying the
conditions (A1)–(A4), (A51), and (A7)–(A8). Then the conclusions of Theorem 1.8
hold.

We do not explicitly assume (A6) in Theorem 8.4, but it is implicit since it follows
from (A8) and the other assumptions, as noted above.
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Without (A8), we get a more complicated partial result (where X0 is as in Sec-
tion 5); it is particularly useful in cases where X0 ą 0 a.s. for some other reason, for
example by Lemma 10.9 below in the balanced case. (See Example 14.8.)

Theorem 8.5. Let pXiptqqiPQ be a discrete-time triangular Pólya urn satisfying the
conditions (A1)–(A4), (A51), and (A6)–(A7). Then the conclusions of Theorem 1.8

hold a.s. on the event tX0 ą 0u (which has positive probability), except that pXi “ 0

is possible, with 0 ď Pp pXi “ 0 | X0 ą 0q ă 1.

Theorem 8.6. Let pXiptqqiPQ be a continuous-time triangular Pólya urn satisfying
the conditions (A1)–(A4), (A51), and (A7). Then the conclusions of Theorem 4.1
hold, except that Xi “ 0 is possible, with 0 ď PpXi “ 0 | X0 ą 0q ă 1; moreover, we
have PpXi ą 0 @i P Qq ą 0.

If furthermore (A8) holds, then the all conclusions of Theorem 4.1 hold.

Remark 8.7. In Theorems 8.5 and 8.6, if the limit pXi “ 0 or Xi “ 0, then the
result (1.3), (1.4) or (4.1) does not give the correct growth of Xni or Xiptq. In such
cases, it might be possible to find more precise results using our methods on suitable
subsets of the colours; it seems that this can be done very generally, at least on a
case-by-case basis. We give one example in Example 14.13 but do not attempt to
state any general theorem. △

Remark 8.8. Also the results in Section 6–7 still hold (with the same proofs) under
the assumptions (A1)–(A4), (A51), and (A7)–(A8), as the reader might verify.

If we do not assume (A8) and assume only (A1)–(A4), (A51), and (A6)–(A7), then
the results on absolute continuity do not hold as stated, since typically the limits
may be 0 with positive probability. (We conjecture that these results might hold
conditioned on the variables being non-zero, but we have not pursued this.) The
remaining results in Section 6–7 still hold. △

Note that (A5) implies (A51), (A7), and (A8) (with Q´ “ H), and thus (A1)–(A5)
imply also (A6); hence these theorems (strictly) extend Theorems 1.8 and 4.1.

We prove Theorems 8.4–8.6 in the remainder of this section. As in Section 3, we
first study a single colour, and as there we split the discussion into several subsections.

First note that we used that Xjptq is increasing in Lemma 3.1 and its proof. This
is no longer necessarily true, but we may replace Xjptq by X˚

j ptq with no further
consequences. Hence, Lemmas 3.1 and 3.2 hold with the assumption modified to
EX˚

j ptq ă 8.

8.3. A colour not influenced by others. Consider the situation in Section 3.1,
where ξji “ 0 for j ‰ i, i.e., i P Qmin. If i P Q´, then Xiptq is, as noted in Remark 8.2,
a Markov branching process.

Lemma 3.3 extends to this case, with some modifications.

Lemma 8.9. Suppose that (A1)–(A4) and (A51) hold and that i P Qmin.

(a) If i R Q´ (i.e., ξii ě 0 a.s.), then Lemma 3.3 still holds.
(b) If i P Q´, then Lemma 3.3 holds with the following modifications:

(i) If λi ą 0, the only difference is that Xi “ 0 is possible with positive probabil-
ity. If x0 ą 0, then 0 ă PpXi “ 0q ă 1.

(ii) If λi “ 0, then Xiptq is a martingale with

Xiptq
a.s.
ÝÑ Xi “ 0, as t Ñ 8, (8.3)



ALMOST SURE AND MOMENT CONVERGENCE FOR TRIANGULAR PÓLYA URNS 35

E
“

Xiptq
‰

“ x0, (8.4)

Var
“

Xiptq
‰

“ Cx0t, (8.5)

E
`

sup
0ďtďu

Xiptq
˘2

ď Cx20 ` Cx0u, for every u ă 8. (8.6)

Furthermore, for every δ ą 0,

E
`

sup
tě0

te´δtXiptqu
˘2

ă 8. (8.7)

(iii) If λi ă 0, then

Xiptq
a.s.
ÝÑ Xi “ 0, as t Ñ 8, (8.8)

Var
“

Xiptq
‰

ď Cx0e
λit, (8.9)

E
`

sup
0ďtă8

Xiptq
˘2

ď Cx20. (8.10)

Proof. (a): We thus assume (A5) = (A51)(a) for the colour i, and then the proof
of Lemma 3.3 still holds. (Recall that for simplicity we had (A1)–(A5) as standing
assumptions in Section 3, including (A5) for all colours; however, as remarked before
Lemma 3.3, this is needed only for the colour i in that subsection, and in particular
for Lemma 3.3 and its proof.)

(b): Now assume (A51)(b). By (A2), we also have ai ą 0.
We argue as in the proof of Lemma 3.3, with the following differences. Note that

x0 is assumed to be an integer, and the case x0 “ 0 is trivial; we thus may assume
x0 ě 1. It is still true that Mptq :“ e´λitXiptq is a martingale, and (3.20) holds if
λi ‰ 0.

Now, however, as said in Remark 8.2, with positive probability, Xiptq “ 0 for all
large t; moreover, in the critical and subcritical cases (ii) and (iii), this happens a.s.

We study the three cases separately:
(i): The proof of Lemma 3.3 still holds, except for the final part yielding (3.25).
By Remark 8.2, with positive probability Xiptq dies out and thus Xi “ 0. More-

over, by (3.14), EXi “ x0 ą 0. Consequently, 0 ă PpXi “ 0q ă 1.
(ii): By Remark 8.2, a.s. Xiptq “ 0 for all large t, which gives (8.3).
For λi “ 0, (3.12) says that Xiptq “ Mptq is a martingale, which implies (8.4).

Furthermore, (3.20) in this case yields

EXiptq
2 “ EMptq2 “ E rM,M st “ x20 ` aiβx0t, (8.11)

which gives (8.5) and, together with Doob’s inequality, (8.6). To prove (8.7), we
note that (8.6) implies

E
´

sup
tě0

te´δtXiptqu

¯2
ď E

8
ÿ

n“0

e´2δn
´

sup
nďtďn`1

Xiptq
¯2

ď E
8
ÿ

n“0

e´2δnOpn ` 1q ă 8.

(8.12)

(iii): As for (ii), Remark 8.2 shows that a.s. Xiptq “ 0 for all large t, and thus
(8.8) holds. Since λi ă 0, we obtain from (3.20)

EMptq2 “ E rM,M st ď x20 ` Cx0e
´λit (8.13)

and thus

Var
“

Xiptq
‰

“ e2λitVar
“

Mptq
‰

ď Cx0e
λit, (8.14)
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showing (8.9). Furthermore, (8.13) and Doob’s inequality yield, for any m ě 1,

E
“

sup
m´1ďtďm

Xiptq
2
‰

ď e2λipm´1q E
“

sup
m´1ďtďm

Mptq2
‰

ď Ce2λim E
“

Mpmq2
‰

ď Ceλimx20. (8.15)

Since λi ă 0, the sum over all m ě 1 is ď Cx20, which implies (8.10). □

Remark 8.10. In fact, it follows from [4, Theorem III.7.2] (using (A4)) that if
i P Qmin X Q´, then Xi “ 0 occurs a.s. exactly when Xiptq “ 0 for large t so that
the branching process dies out in finite time. Thus, PpXi “ 0q equals the probability
that the continuous-time branching process Xiptq dies out. Considering only the
times that a ball of colour i is drawn, we obtain an embedded random walk with
i.i.d. increments distributed as ξii; thus PpXi “ 0q also equals the probability that
this random walk hits 0. (It is easy to see that this also equals the probability of
extinction for a Galton–Watson process with offspring distribution 1 ` ξii started
with x0 individuals.) △

8.4. A colour only produced by one other colour. Consider the situation in
Section 3.2, where there is a single colour j such that j Ñ i.

We used that Xjptq is increasing in (3.56); this is no longer necessarily true, but
we may replace Xjptq by X˚

j ptq there with no further consequences.
Lemma 3.5 holds with the following minor modifications. We assume λ˚

j ě 0,

since otherwise j eventually becomes extinct by Lemma 8.3, and after that Xiptq
evolves as in Lemma 8.9. (We are not really interested in this case, as discussed
earlier.) Note that we also exclude the case λ˚

i “ λ˚
j “ 0. (For good reasons, see

Examples 14.14 and 14.15).

Lemma 8.11. Suppose that (A1)–(A4) and (A51) hold. Let i P Q, and suppose that
there is exactly one colour j P Q such that j Ñ i, and that Xip0q “ 0. Suppose also
that one of the following holds:

(a) i R Q´ (i.e., ξii ě 0 a.s.), and λ˚
j ě 0.

(b) i P Q´, λ˚
i ą 0, and λ˚

j ě 0.

Then Lemma 3.5 still holds, i.e., if (3.31)–(3.32) hold, then we have the conclusions
(3.33)–(3.35) and Xj ą 0 ùñ Xi ą 0 a.s.

Proof. (a): Recall again that we had (A1)–(A5) as standing assumptions in Sec-
tion 3, including (A5) for all colours; however, it is easily verified that the proof of
Lemma 3.5 does not use this for other colours than i, except in (3.56), where we now
replace Xjptq by X˚

j ptq as discussed above, and to see that λ˚
j ě 0. Hence, in the

present setting where we assume (A1)–(A4) and (A51), and also explicitly assume
λ˚
j ě 0, if ξii ě 0 a.s., then the proof of Lemma 3.5 still holds.

(b): We now assume (A51)(b) for i. Most of the proof of Lemma 3.5 remains the
same. The main difference in the proof comes in Steps 4–5, where we used Lemma 3.3
in (3.65), but now instead use Lemma 8.9(b). We consider three cases:

(1) λi ą 0: Then (3.65) still holds by Lemma 8.9, and thus all estimates in Steps
4–5 hold.

(2) λi “ 0: Then (3.65) is replaced by, using (8.5),

E
“

rZ1, Z1st | pTk, ηkq8
1

‰

“

8
ÿ

k“1

1tTkďtu Var
“

Ykpt ´ Tkq | Tk, ηk
‰
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“

8
ÿ

k“1

1tTkďtuCpt ´ Tkqηk. (8.16)

Thus

E rZ1, Z1st “ C E
8
ÿ

k“1

1tTkďtupt ´ Tkq ď CtENptq. (8.17)

Using Lemma 3.2 (or Lemma 3.1), it follows that (3.68) for ℓ “ 1 is replaced
by (with λi “ 0)

E rZ1, Z1st ď CtE
ż t

0
Xjpsq ds ď C E rX˚˚

j t

ż t

0
ps ` 1qκjepλ˚

j ´2λiqs ds, (8.18)

with an extra factor t. We assume 0 ă λ˚
i “ λi _ λ˚

j and λi “ 0, and thus

λ˚
j ą 0 “ λi, so we are in Case (ii1) of Step 5; (3.71) now holds with an

insignificant extra factor n and thus (3.72)–(3.73) still hold and the conclusions
of Step 5 remain the same.

(3) λi ă 0: Then we obtain instead of (3.65), now using (8.9),

E
“

rZ1, Z1st | pTk, ηkq8
1

‰

ď

8
ÿ

k“1

1tTkďtue
´2λiTkCe´λipt´Tkqηk

“ C
8
ÿ

k“1

1tTkďtue
´λit´λiTkηk. (8.19)

Thus, by Lemma 3.2(ii),

E rZ1, Z1st ď C E
8
ÿ

k“1

1tTkďtue
´λit´λiTkηk “ Ce´λit E

ż t

0
e´λisXjpsq ds. (8.20)

It follows that (3.68) for ℓ “ 1 is replaced by

E rZ1, Z1st ď C E rX˚˚
j e´λit

ż t

0
ps ` 1qκjepλ˚

j ´λiqs ds. (8.21)

However, for t ď 1, (8.21) is trivially equivalent to (3.68), and for t ě 1, (8.21)
implies, using λ˚

j ´ λi ě ´λi ą 0,

E rZ1, Z1st ď C E rX˚˚
j pt ` 1qκjepλ˚

j ´2λiqt

ď C E rX˚˚
j

ż t

t´1
ps ` 1qκjepλ˚

j ´2λiqs ds. (8.22)

Hence (3.68) holds for all ℓ ď 3 also in the present setting. By our assumption
λ˚
i “ λi _ λ˚

j ą 0 we have λ˚
j ą 0, so we are again in Case (ii1) of Step 5;

(3.71)–(3.73) still hold and the conclusions of Step 5 remain the same.

In all cases, the conclusions (3.33)–(3.35) of Step 6 follow as for Lemma 3.5.
Finally, as for Lemma 3.5, if λi ď λ˚

j , then (3.35) shows that Xj ą 0 ùñ Xi ą 0.

If λi ą λ˚
j and Xj ą 0, then we use again (3.78), where still a.s. all Tk are finite. Let

Yk :“ limtÑ8 e´λitYkptq. In contrast to Lemma 3.5, Yk “ 0 is now possible also if
ηk ą 0, but 0 ă PpYk “ 0q ă 1 by Lemma 8.9. We now let K be the smallest k such
that Yk ą 0, and conclude as in Section 3 that Xi ą 0. □
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Remark 8.12. In Lemma 8.11(b) we have excluded the case λi “ λ˚
j “ 0, since

then λ˚
i “ 0. In this case we are in Case (iii1) of Step 5 of the proof of Lemma 3.5.

As mentioned above, there is now an extra factor t in (3.68), and therefore we obtain
instead of (3.75)

E rZ;

ℓ pnq2 ď C2´κjn. (8.23)

Hence, if furthermore κj ě 1, then (3.76) still holds, and the rest of the proof of
Lemma 3.5 applies. Consequently, Lemma 8.11(b) holds also in the case λi “ λ˚

j “ 0
and κi ě 1.

Example 14.14 gives an example with λi “ λ˚
j “ 0 “ κi where the conclusion of

Lemma 8.11 does not hold. For simplicity we have in Lemma 8.11(b) excluded all
cases with λi “ λ˚

j “ 0 (and thus λ˚
i “ 0).

Similarly, Example 14.15 gives an example with λi ă 0 “ λ˚
j “ κi where the

conclusion of Lemma 8.11 does not hold. We have excluded all cases with λi ă λ˚
j “

0; it seems likely that Lemma 8.11(b) might hold also in this case if κi ě 1, but we
have not investigated this further. △

We need also a coarse estimate in the case excluded in Lemma 8.11(b).

Lemma 8.13. Suppose that (A1)–(A4) and (A51) hold and that i P Q is such that
Ppξii “ ´1q ą 0. Assume that there is exactly one colour j P Q such that j Ñ i, and
that Xip0q “ 0. Assume also that λ˚

i “ λ˚
j “ 0.

Assume further that (3.31)–(3.32) hold. Then, for every δ ą 0,

e´δtXiptq
a.s.
ÝÑ 0, (8.24)

and ∥∥∥sup
tě0

␣

e´δtXiptq
(

∥∥∥
2

ă 8. (8.25)

Proof. We have λi ď λ˚
i “ 0 and, by (A2), ai ą 0. Thus rii “ λi{ai ď 0. Fur-

thermore, ξii ě ´1 a.s., and thus rii “ E ξii ě ´1. Choose p P p0, 1q such that
0 ă rii ` 2p ă δ{ai.

Modify the urn by increasing ξii to qξii :“ ξii`2ζ, where ζ P Beppq is independent of
ξii; all other ξkℓ and initial conditions Xkp0q remain the same. We denote quantities
for the new urn by adding q. The modification does not affect any ancestors of i;

thus qXjptq “ Xjptq and qλ˚
j “ λ˚

j “ 0. On the other hand, by our choice of p,

qλi “ ai E qξii “ aipE ξii ` 2E ζq “ aiprii ` 2pq P p0, δq. (8.26)

Consequently, qλ˚
i “ qλi_qλ˚

j “ qλi ą 0 and thus Lemma 8.11(b) applies to the modified

urn. (The other conditions of Lemma 8.11(b) obviously hold.)
The modification adds extra balls of colour i, and these may get descendants of

colour i and they may disappear again, but we may separate these extra balls of

colour i from the original ones, and thus couple the two versions such that qXiptq ě

Xiptq for all t ě 1. Consequently, noting that qλ˚
i “ qλi and qκi “ 0, Lemma 8.11

yields, from (3.33)–(3.34) and (3.29)–(3.30),

lim sup
tÑ8

e´qλitXiptq ď lim
tÑ8

e´qλit
qXiptq “ qXi ă 8 a.s., (8.27)
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and ∥∥∥sup
tě0

␣

e´qλitXiptq
(

∥∥∥
2

ď

∥∥∥sup
tě0

␣

e´qλit
qXiptq

(

∥∥∥
2

ă 8. (8.28)

The results follow, since qλi ă δ by (8.26). □

8.5. The general case for a single colour.

Lemma 8.14. Suppose that (A1)–(A4), (A51), and (A7) hold. Then Lemma 3.7
still holds, except for the last sentence.

The last sentence remains valid if i R Q´, and also if i R Qmin. (In particular, it
is valid if (A8) holds.) In the remaining case, when i P Q´ and is minimal, then
0 ă PpXi ą 0q ă 1.

Proof. Recall that the assumption (A7) implies that λ˚
j ě 0 for every j P Q.

We follow the proof of Lemma 3.7 and split the colour i into subcolours i0 and ij ,
j P Pi (also if i is minimal so Pi “ H); then (3.84) holds, and also (3.85)–(3.89) and
(3.91).

If i R Q´, then the proof is exactly as for Lemma 3.7, now using Lemmas 8.9(a)
and 8.11(a) instead of Lemmas 3.3 and 3.5.

Assume thus in the sequel of the proof that instead i P Q´. (Thus, (A51)(b)
holds.) Then by (A7), we have λ˚

i ą 0. However, it is possible that λi0 “ λi ď 0 or
that λ˚

ij
“ λi _ λ˚

j “ 0 for some j P Pi.

For i0, we now apply Lemma 8.9(b). If λi ą 0, then Lemma 8.9(b)(i) shows that
Xi0 can be treated as before in (3.89) and (3.91). If λi ď 0, we replace, as we may,
rXi0ptq by e´λ˚

i tXi0ptq in the estimate (3.89), cf. (3.84) and (3.29). By (8.3) and (8.8),

this term contributes 0 to the limit (3.82). Similarly, in (3.91) we replace rX˚˚
i0

by

suptě0te´λ˚
i tXi0ptqu, which gives a finite contribution to (3.83) by (8.7) and (8.10).

Similarly, for each ij (j P Pi), we now apply Lemma 8.11(b) if λ˚
ij

ą 0; otherwise,

i.e., if λi ď 0 and λ˚
j “ 0, we apply Lemma 8.13 (with δ :“ λ˚

i ą 0). In the latter

case we replace rXij ptq by e´λ˚
i tXij ptq in the estimate (3.89) and use (8.24), and we

replace rX˚˚
ij

by suptě0te´λ˚
i tXij ptqu in (3.91) and use (8.25).

This proves, in all cases, that (3.82) and (3.83) hold. Moreover, for each j P PiYt0u

such that we apply Lemma 8.9(b)(ii),(iii) or Lemma 8.13 to ij , the contribution to
the limit (3.82) is 0, and so is the contribution to the right-hand side of (3.90) since
in these cases λ˚

ij
ď 0 ă λ˚

i by (3.85)–(3.86). Hence, (3.90) still holds.

It remains to consider the final sentence in Lemma 3.7. First, if Pi ‰ H, then it
follows as in the proof of Lemma 3.7 that if Xj ą 0 for every j P Pi, then Xi ą 0. In
the remaining case, i is minimal. Note that then Xip0q ą 0 by (A3). If i is minimal
and i R Q´, then a.s. Xi ą 0 by Lemma 3.3. On the other hand, if i is minimal and
i P Q´, then Lemma 8.9(b)(i) shows that PpXi “ 0q P p0, 1q. □

8.6. Proofs of Theorems 8.4–8.6.

Proof of Theorem 8.6. As in Section 4, now using Lemma 8.14; we use again induc-
tion on the colour i and conclude that (3.82) and (3.83) hold for every i P Q, although
now Xi “ 0 is possible.

The processes Xiptq for i P Qmin are independent, and thus so are their limits Xi.
Each is strictly positive with positive probability, by Lemma 8.9 or 8.14, and thus
there is a positive probability that Xi ą 0 for every minimal i. Moreover, if (A8)
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holds, then this probability is 1. Finally, it follows by Lemma 8.14 by induction on
the colour i that a.s. if Xi ą 0 for every minimal i, then Xi ą 0 for every i. □

Proof of Theorems 8.4 and 8.5. As in Section 5, now using Theorem 8.6 and consid-
ering only the event tX0 ą 0u. Note that Theorem 8.6, applied to the extended urn,
shows that with positive probability X0 ą 0 and Xi ą 0 for all i P Q; furthermore,
in Theorem 8.4, where we assume (A8), this holds a.s.

Note also that since we assume (A6), we have a.s. pTn ă 8 for every n, and thus
the discrete-time process Xn is well-defined. □

9. Random vs non-random replacements

Consider a Pólya urn U with a random replacement matrix pξijqi,jPQ. For simplic-
ity we study only the case when all ξij ě 0, and we thus assume (A1)–(A5). Consider
also another urn U 1 with the same colours Q, the same initial vector X0, and the
same activities ai, but non-random replacements rij “ E ξij . We thus replace the
replacement matrix by its mean, and we may call U 1 the mean urn corresponding

to U . Both urns have the same rij , and thus the same colour graph, λi, λ
˚
i , κi,

pλ,
pκ and γi, see (2.3) and (2.7)–(2.13). The new urn U 1 also satisfies (A1)–(A5), and
Theorems 1.8 and 4.1 show that we have the same qualitative asymptotic behaviour

for both urns, with the same normalization factors. However, the limits pXi and Xi

are in general not the same for the two urns U and U 1, and thus the asymptotic
distributions may be be different; see Example 14.5.

We note that the constants cik in Section 6 by Lemma 6.7 are the same for the

two urns. This yields one simple case. (We assume pλ ą 0 for simplicity, and leave a

study of the case pλ “ 0 to the reader.)

Theorem 9.1. Assume pλ ą 0. If i is a colour such that pXi is deterministic for one

of the two urns, then pXi is the same constant for both urns.

Proof. By Theorem 7.1, there are two cases: either λ˚
i “ 0, or λ˚

i “ pλ.
If λ˚

i “ 0, then (6.5) and Lemma 6.2 show that for every j P Ai, Xj “ Xjp0q is a
constant, the same for both urns. Hence, Lemmas 6.1 shows, since the constants cik
are the same for both urns, that Xi is the same constant for both urns. Consequently,

(5.12) shows that pXi “ pλ´κiXi is the same constant for both urns.

Assume now λ˚
i “ pλ. If we add dummy balls to both urns as in Section 5, then,

by Lemma 6.1 and (5.2), for any of the urns, both Xi and X0 are linear combinations
ř

jPJ cijXj and
ř

jPJ c0jXj , where J is the set of leaders with λ˚
j “ pλ. The joint

distribution of pXjqPJ is absolutely continuous by Theorem 6.4, and since (5.12)

yields pXi “ pλ´γiXi{X0, it follows that if pXi is deterministic in one of the two urns,
then the vectors pcijqjPJ and pc0jqjPJ are proportional. Since these vectors are the

same for both urns, it follows that then pXi is the same constant in both urns. □

10. Balanced urns

Many papers on Pólya urns assume that urn is balanced (as defined below); while
this is quite restrictive, it is partly justified by the fact that Pólya urns that appear
in applications often are balanced. We have not needed this assumption in the
preceding sections, but it will be used for some results in the following sections (in
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particular Section 12). The present section contains the definition and some simple
results for later use.

In the standard case when all activities ai “ 1, a Pólya urn is said to be balanced if
we add the same total number of balls at each draw; in other words, if the replacement
matrix pξijqi,jPQ satisfies

ř

j ξij “ b a.s., for some b P R and every i P Q. In
general, with possibly different activities ai, it is not the total number of balls but
their total activity that is important, and we make the following general definition.
(Definition 10.1 and Lemma 10.2 – Remark 10.6 below apply to all Pólya urns,
triangular or not.)

Definition 10.1. A Pólya urn is balanced if there exists a constant b P R (called
the balance) such that for every i P Q with ai ą 0, we have

ÿ

jPQ

ajξij “ b a.s. (10.1)

With a :“ pajqjPQ, the vector of activities, (10.1) may be written a ¨ ξi “ b for all
i with ai ą 0.

Suppose that the urn is balanced as in Definition 10.1. It follows from (1.2) (since
colours i with ai “ 0 will never be drawn) that a.s.

a ¨ Xn “
ÿ

jPQ

ajXnj “ a ¨ X0 ` nb. (10.2)

Hence, the denominator in (1.1) is deterministic. This has been used in several
ways in many papers by different authors. (In particular, it makes it possible to
use martingale methods for the discrete-time urn, similar to the continuous-time
arguments in the present paper; see Remark 1.11 and e.g. [12].) Here we note some
simple consequences.

Note first that if the balance b ă 0, then (10.2) shows that the activity a ¨ Xn

becomes negative for large n; this is clearly impossible and shows that the discrete-
time urn process must stop and cannot be continued for ever. In the present paper,
we are not interested in this case, so we must have b ě 0, and we thus assume this in
the sequel (whether it is said explicitly or not). In this case, there are no problems.

Lemma 10.2. A balanced urn with balance b ě 0 which satisfies (A1) and (A5) or
(more generally) (A51) is well-defined for all discrete or continuous times, and thus
satisfies (A6).

Proof. By (10.2), we have, for every n, a.s. a ¨ Xn ě a ¨ X0 ą 0. Hence the discrete-
time process Xn is well-defined, and also a ¨ Xptq ą 0 for every t. □

We assume (A1) and (A5) or (A51) below; thus (A6) holds.

Remark 10.3. The case b “ 0 is trivial. First, if (A5) holds, so there are no
subtractions, then the only possibility is ξij “ 0 a.s. for all i, j P Q; in other words,
we draw from the urn but nothing happens. If we allow subtractions as in (A51)(b),
there may be a few initial draws that wipe out some colours, but nothing more will
happen; furthermore, such urns violate (A7). △

Lemma 10.4. If a Pólya urn is balanced, then the random processes pXnq8
n“1 and

p pTnq8
n“1 are independent.
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Proof. Let n ě 0. Stop the continuous-time process Xptq at pTn, i.e., at the nth draw.

Conditionally on everything that has happened so far, the waiting time pTn`1 ´ pTn

until the next draw is an exponential random variable with rate
ř

i aiXni, which by

(10.2) is the constant a ¨ X0 ` nb. Hence, pTn`1 ´ pTn is independent of Xn, and thus

also of the colour of the drawn ball, say i, and of Xn`1 ´ Xn “ ξ
pnq

i , recall (1.2).

Consequently, the processes p pTnqn and pXnqn evolve independently. □

Lemma 10.5. If a Pólya urn is balanced, then the distribution of the random se-

quence p pTnq8
n“1 depends only on the balance b and the initial activity a ¨ X0.

Proof. As in the proof of Lemma 10.4, pTn`1 ´ pTn is exponential distributed with rate
a ¨ X0 ` nb, and these waiting times are independent. □

Remark 10.6. The distribution of p pTnq8
n“1 is thus the same as for the single-colour

urn with initial value x0 :“ a ¨ Xo, activity a1 “ 1, and replacement matrix pbq. For
b ą 0, this is the more or less trivial case q “ 1 of Example 14.1, and it is well known

that pb pTnq8
1 are the jump times of a Yule process started with x0{b individuals. △

In the remaining part of the section we consider, as in the rest of the paper,
triangular urns.

Lemma 10.7. Consider a triangular balanced urn with balance b ě 0, and suppose

that the urn satisfies (A1)–(A4). Then pλ “ b. Furthermore, if b ą 0, then pκ “ 0.

Proof. Let Q1 :“ ti P Q : ai ą 0u. Then Q1 ‰ H by (A1). There are three possibilities
for a colour i P Q:

(i) If i R Q1, then ai “ 0 and thus λi “ 0.
(ii) If i P Q1 and i is maximal in Q1 for the order ≺, i.e., i ­Ñ j for every j P Q1,

then ξij “ 0 a.s. when j P Q1ztiu, and aj “ 0 for every j R Q1; hence ajξij “ 0
a.s. for all colours j ‰ i. Consequently, (10.1) yields

aiξii “
ÿ

jPQ

ajξij “ b (10.3)

a.s., and thus, taking the expectation,

λi “ airii “ ai E ξii “ b. (10.4)

(iii) If i P Q1 is not maximal in Q1, then there exists j P Q1 with i Ñ j and thus
rij ą 0. Taking expectations in (10.1) yields

λi “ airii “ b ´
ÿ

j‰i

ajrij ď b ´ ajrij ă b. (10.5)

It follows that pλ :“ maxi λi “ b. Furthermore, if b ą 0, then the maximum is
attained precisely in Case (ii), i.e., for i that are maximal in Q1. It follows that for
every such i we have λj ă b for all j P Pi, and thus κi “ 0. Hence, pκ “ 0. □

Remark 10.8. The proof shows also that if a balanced triangular urn has b ą 0
and all activites ai “ 1, then ξii “ rii “ λi “ b a.s. for every i that is maximal in Q1,
but E ξii “ rii “ λi ă b for all other colours i. △

For urns with subtractions as in Section 8, there are further simplifications when
the urn is balanced.



ALMOST SURE AND MOMENT CONVERGENCE FOR TRIANGULAR PÓLYA URNS 43

Lemma 10.9. Consider a triangular balanced urn with balance b ě 0, and sup-
pose that the urn satisfies (A1)–(A4), (A51), and (A7). Then, with notation as in
Section 5, X0 ą 0 a.s.

Proof. The case b “ 0 is trivial by Remark 10.3, so we may assume b ą 0.
For convenience, denote the urn by U . Lemma 10.5 and Remark 10.6 show that

pTn are (jointly) distributed as for the one-colour urn U1 with replacement matrix pbq,
activity a “ 1, and the same initial total activity. Hence we may couple the urns

such that they have the same pTn. (Or we may simply define the content of U1 as
being the total activity in the urn U .) The urn U1 obviously satisfies (A1)–(A5), and
thus (5.5) applies to it, with X0 ą 0 a.s. Moreover, (5.5) applies also to the original
urn U by the same argument in Section 5 (as in the proof of Theorems 8.4 and 8.5

in Section 8.6); note that the two urns U and U1 have the same pλ “ b and κ0 “ 0 by
Lemma 10.7 and (5.3). Consequently, the two urns U and U1 have the same X0. □

In fact, in Lemma 10.9, X0 has a Gamma distribution by the proof and (14.2).

11. The drawn colours

We have so far studied Xn and Xptq, the numbers of balls of each colour in the
urn. It is also of interest to study the number of times each colour is drawn. (See
Examples 14.7–14.9 for an application.) For i P Q, we denote the number of times
that a ball of colour i is drawn up to time n in the discrete-time urn by Nni, and
the number of times up to time t in the continuous-time urn by Niptq; thus

Nni “ Nip pTnq, i P Q, n ě 0. (11.1)

We state first a continuous-time and then a discrete-time result; both are similar
to the results for Xptq and Xn earlier, but note that exponents change when λ˚

i “ 0.
(Proofs are given later in this section.)

Theorem 11.1. Let pXiptqqiPQ be a continuous-time triangular Pólya urn satisfying
either (A1)–(A5), or (more generally) (A1)–(A4), (A51), and (A7). Let i P Q.

(i) If λ˚
i ą 0, then, as t Ñ 8,

t´κie´λ˚
i tNiptq

a.s.
ÝÑ Ni :“

ai
λ˚
i

Xi. (11.2)

(ii) If λ˚
i “ 0, then, as t Ñ 8,

t´κi´1Niptq
a.s.
ÝÑ Ni :“

ai
κi ` 1

Xi. (11.3)

Furthermore, if (A5) or (A8) holds, then Ni ą 0 a.s.

Theorem 11.2. Let pXiptqqiPQ be a discrete-time triangular Pólya urn and suppose
that it satisfies (A1)–(A5). Alternatively, suppose that the urn satisfies (A1)–(A4),
(A51), and (A6)–(A7), and also either satisfies (A8) or is balanced. Let i P Q.

(i) If λ˚
i ą 0, then as n Ñ 8,

Nni

nλ˚
i {pλ logγi n

a.s.
ÝÑ pNi :“

ai
λ˚
i

pXi. (11.4)

(ii) If λ˚
i “ 0 and pλ ą 0, then as n Ñ 8,

Nni

logκi`1 n

a.s.
ÝÑ pNi :“

ai

pκi ` 1qpλ
pXi. (11.5)
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(iii) If λ˚
i “ pλ “ 0, then as n Ñ 8,

Nni

npκi`1q{pκ0

a.s.
ÝÑ pNi :“

ai
κi ` 1

X´1{pκ0

0
pXi. (11.6)

Furthermore, if (A5) or (A8) holds, then pNi ą 0 a.s.

Remark 11.3. If we assume only (A1)–(A4), (A51), and (A6)–(A7) in Theorem 11.2,
then the results hold on the event tX0 ą 0u, by the same proof and Theorem 8.5. △

We can also state the results as the following simple a.s. limit results for the
ratios Nni{Xni and Niptq{Xiptq; in particular, if λ˚

i ą 0 (the main case), these ratios
converge a.s. to a positive constant.

Theorem 11.4. Let pXiptqqiPQ be a discrete-time triangular Pólya urn and suppose
that it satisfies (A1)–(A5) or (more generally) (A1)–(A4), (A51), and (A7)–(A8).
Let i P Q.

(i) If λ˚
i ą 0, then

lim
nÑ8

Nni

Xni
“ lim

tÑ8

Niptq

Xiptq
“

ai
λ˚
i

a.s. (11.7)

(ii) If λ˚
i “ 0, then, as t Ñ 8,

Niptq

tXiptq
a.s.
ÝÑ

ai
κi ` 1

. (11.8)

(iii) If λ˚
i “ 0 and pλ ą 0, then, as n Ñ 8,

Nni

Xni log n
a.s.
ÝÑ

ai

pκi ` 1qpλ
. (11.9)

(iv) If λ˚
i “ 0 and pλ “ 0, then, as n Ñ 8,

Nni

Xnin1{κ0

a.s.
ÝÑ

ai
κi ` 1

X´1{pκ0

0 . (11.10)

Note that the limit in all cases is a strictly positive constant, in case (iv) by
Theorem 6.5 (and Remark 8.8).

Proof of Theorem 11.1. We use (as in the proof of the corresponding result in [27])
dummy balls similarly to the proof in Section 5, but now we use one dummy ball for
each colour.

It suffices to consider one colour at a time, so we fix i P Q; we assume ai ą 0 since
otherwise Nni “ Niptq “ 0 a.s. and the results are trivial. Denote the urn by U . We
consider one new colour, which we denote by ι, and let Q` :“ Q Y tιu be the new
set of colours. Balls of colour ι have activity aι :“ 0 and are thus never drawn, and
we let ξιj :“ 0 for all j P Q`; we further let ξiι :“ 1 and ξjι :“ 0 for every j ‰ i, and
we start with X0ι :“ 0.

Consequently, the new urn, which we denote by U`, differs from the old one U
only in that one additional ball of colour ι is added each time a ball of colour i is
drawn. We may thus assume that the two urns are coupled such that they have the
same Xjptq for all j P Q and t ě 0, and then

Niptq “ Xιptq and Nni “ Xnι. (11.11)
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The new urn U` is also triangular and satisfies (A1)–(A5), or (A1)–(A4), (A51), and
(A7), if U does. In U` we have λι “ 0 and, using (2.8) and (2.9),

λ˚
ι “ λ˚

i , (11.12)

κι “

#

κi, λ˚
i ą 0,

κi ` 1, λ˚
i “ 0.

(11.13)

(i): By Theorem 4.1 or Theorem 8.6 applied to the new urn U`, we have (4.1) for
the colour ι, and thus, using (11.11) and (11.12)–(11.13),

t´κie´λ˚
i tNiptq “ t´κιe´λ˚

ι tXιptq
a.s.
ÝÑ Xι. (11.14)

Furthermore, Lemma 3.5 or Lemma 8.11(a) applies to ι P Q` (with i replaced by ι
and j by i), and thus (3.35) yields, since λι “ 0 ă λ˚

i ,

Xι “
airiι

λ˚
i ´ λι

Xi “
ai
λ˚
i

Xi. (11.15)

Hence, (11.2) follows, with Ni :“ Xι.
(ii): Similar, now with κι “ κi ` 1 by (11.13), and using the second alternative in

(3.35) which gives

Ni :“ Xι “
airiι
κι

Xi “
ai

κi ` 1
Xi. (11.16)

The final sentence follows from Theorems 4.1 and 8.6, which yield Xι ą 0 a.s. □

Proof of Theorem 11.2. We add a dummy colour ι as in the proof of Theorem 11.1,
and note that if the original urn U satisfies (A8) or is balanced, then the same
holds for the new urn U`. (Note that dummy colours with activity 0 are ignored in
Definition 10.1.)

By Theorem 1.8, Theorem 8.4, or Theorem 8.5 together with Lemma 10.9, the

conclusions of Theorem 1.8 hold for U`, except that pXι “ 0 is possible unless we
have (A51) or (A8). (However, our assumptions yield X0 ą 0 a.s. in all cases.)

We argue similarly to the proof of Theorem 11.1, now using (1.3) or (1.4) for the
dummy colour ι in U`, together with (11.11) and (11.12)–(11.13). This yields a.s.

convergence to pNi :“ pXι in (11.4), (11.5), or (11.6) (depending on λ˚
i and pλ); note

that pλ ě λ˚
i , that (2.13) yields γι “ γi in (i) and γι “ κι “ κi ` 1 in (ii), and that

(2.12) shows that pκ0 is the same for U` as for U .
Finally, the formulas for pNi follow from (11.15)–(11.16) and (5.12) or (5.14). □

Alternatively, we may prove Theorem 11.2 from Theorem 11.1 by adding a dummy
colur 0 as in Section 5. In any case, the proof is really based on adding two dummy
colours 0 and ι to the continuous-time urn.

Proof of Theorem 11.4. The results for the continuous-time urn in (i) and (ii) follow
by comparing the results of Theorem 11.1 with the limits for Xiptq in Theorem 4.1
or Theorem 8.6, recalling that Xi ą 0 a.s. as stated in Theorem 4.1. The result for
Nni{Xni in (i) then follows by (11.1) and (2.19). Similarly, (11.9) and (11.10) follow
from (11.8) and (5.9) or (5.13). (Alternatively, the results for Nni{Xni follow by
comparing the results in Theorem 11.2 and Theorem 1.8.) □

Remark 11.5. In Theorem 11.4, if we assume only (A1)–(A4), (A51), and (A7)

but not (A8), then the conclusions hold on the event t pXi ą 0u for Niptq and on

t pXi ą 0,X0 ą 0u for Nni. △
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12. Moment convergence

We have so far considered convergence a.s., which as always implies convergence
in distribution. We consider in this section whether we also have convergence of
moments, or equivalently convergence in Lp; recall the general fact that for a sequence
of positive random variables converging a.s. (as we have here), convergence of the
pth moment is equivalent to convergence in Lp, for any (real) p ą 0, see e.g. [21,
Theorem 5.5.2].

Unlike earlier sections, there seems to be an important difference between the
discrete-time and continuous-time cases.

For a continuous-time urn, we will see below (Theorem 12.2) that we always have
convergence in L2 in Theorems 4.1 and 8.6; hence the mean and variance converge in
these results. This extends to convergence in Lp for any p ą 2, and thus convergence
of any moment, assuming a corresponding moment condition for the replacements
ξij (Theorem 12.3).

The situation for discrete-time urns is more complicated. We will only consider
balanced urns, and then prove L2-convergence, and thus convergence of mean and
variance; we also extend this to Lp and higher moments under the corresponding
moment condition for the replacements ξij (Theorem 12.5). It seems likely that this
result extends to a wider class of triangular urns. However, it does not hold for all
triangular urns. Example 14.2 gives a simple example where the a.s. limit does not
have a finite mean, and thus we cannot have even L1-convergence in Theorem 1.8.

Remark 12.1. The counterexample in Example 14.2 is rather special (a diagonal
urn); [28, Theorem 1.6] shows that for a class of more typical unbalanced triangular
urns, the a.s. limit in Theorem 1.8 has moments of all orders. This does not prove
moment convergence, but we see no reason against it, and we conjecture that for these
urns, and many others, we have convergence in Lp for all p ą 0 (Problem 12.6). △

Lp-convergence or moment convergence (usually as part of a proof of convergence
in distribution by the method of moments) have been proved earlier by different
methods for some discrete-time Pólya urns, as far as we know all of them bal-
anced. This includes balanced triangular urns with q “ 2 or 3 and deterministic
integer-valued replacements by Flajolet, Dumas and Puyhaubert [17], [43] (see Ex-
amples 14.3 and 14.11), and, for L2 only, more general balanced triangular urns with
deterministic replacements by Bose, Dasgupta, and Maulik [12] (Example 14.12).
Further examples where moment convergence has been shown earlier are discussed
in Examples 14.6, 14.7, 14.8, and 14.10.

12.1. Continuous-time urns.

Theorem 12.2. In Theorems 4.1 and 8.6, the limit (4.1) holds also in L2. In
particular, mean and variance converge.

Proof. Let i P Q. The proofs of Theorems 4.1 and 8.6 show that (3.83) holds. Thus,
by the definitions (3.29)–(3.30),

sup
tě1

∣∣ rXiptq
∣∣2 ď

∣∣2κi
rX˚˚
i

∣∣2 P L1. (12.1)

Hence, the collection t| rXiptq|2 : t ě 1u is uniformly integrable, and consequently

the a.s. convergence rXiptq Ñ Xi implies convergence in L2 [21, Theorems 5.4.4 and
5.5.2]. □
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Theorem 12.2 extends to Lp for all p ě 2 as follows. The proof is based on the
arguments in Section 3 combined with the Burkholder–Davis–Gundy inequalities
which enable us to replace L2 estimates by Lp estimates. The details are quite long,
however, so we postpone them to Appendix B.

Theorem 12.3. Let p ě 2. In Theorems 4.1 and 8.6, assume also ξij P Lp for all

i, j P Q. Then, for every i P Q, the limit (4.1) holds also in Lp. Moreover, rX˚˚
i P Lp.

Remark 12.4. In Appendix B, we further show that Theorem 12.3 holds for any
p ą 1, also without the L2 condition (A4). The proofs below then show that the
same holds for all Lp results in this section. △
12.2. Balanced discrete-time urns.

Theorem 12.5. Consider a balanced triangular urn statisfying (A1)–(A5) or (A1)–
(A4), (A51), and (A7).

(i) In Theorems 1.8 and 8.4–8.5, the limit (1.3) or (1.4) holds also in L2. In
particular, mean and variance converge.

(ii) Moreover, if p ě 2 and ξij P Lp for all i, j P Q, then, for every i P Q, the limit
(1.3) or (1.4) holds also in Lp. Hence all moments of order ď p converge.

As said above, this has been shown earlier in some special cases and examples, in
particular [17], [43] (q “ 2, 3), and [12] (p “ 2); see also the examples in Section 14.

Proof. Part (i) is a special case of (ii), so we show only the latter.
Note first that (A6) holds by Lemma 10.2, and that Lemma 10.7 shows that X0 ą 0

a.s.; thus the conclusion (1.3) or (1.4) of Theorem 1.8 holds by Theorem 1.8 or 8.5.
(Or Theorem 8.4 when it is applicable.)

Let c ą 0 be so small that PpX0 ą cq ą 1
2 . Our assumptions imply (as in the proof

of Theorems 8.4 and 8.5) that (5.5) holds, by the proof in Section 5. This implies,
by our choice of c,

P
´

pT´κ0
n e´pλ pTnn ą c

¯

ą
1

2
(12.2)

for all large n. By decreasing c (or just by ignoring some small n in the sequel), we
may assume that (12.2) holds for all n ě 1. Let En denote the event

En :“
␣

pT´κ0
n e´pλ pTnn ą c

(

, (12.3)

so that (12.2) reads PpEnq ą 1
2 .

Let i P Q. By Theorem 12.3, rX˚˚
i P Lp. Hence, by (2.19) and (3.30),

Yn :“

∣∣∣∣∣ Xni
`

1 ` pTn

˘κieλ
˚
i
pTn

∣∣∣∣∣
p

“

∣∣∣∣∣ Xip pTnq
`

1 ` pTn

˘κieλ
˚
i
pTn

∣∣∣∣∣
p

ď p rX˚˚
i qp P L1. (12.4)

Consequently, the sequence Yn is uniformly integrable. It follows from this and
(12.2) that the sequence of conditioned random variables pYn | Enq also is uniformly
integrable. We consider two cases:

Case 1: pλ ą 0. In this case, Lemma 10.7 shows, using (5.3) and (2.13), that

κ0 “ pκ “ 0 and γi “ κi. Hence, the event En means e´pλ pTnn ą c, and thus pTn ď

tn :“ pλ´1plog n ` Cq. Consequently, on the event En we have (for n ě 2)

Zn :“

∣∣∣∣∣ Xni

nλ˚
i {pλ logγi n

∣∣∣∣∣
p

“

∣∣∣∣∣ Xni

nλ˚
i {pλ logκi n

∣∣∣∣∣
p

ď C

∣∣∣∣ Xni

tκi
n eλ

˚
i tn

∣∣∣∣p ď CYn (12.5)
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and thus the uniform integrability of pYn | Enq implies uniform integrability of pZn |

Enq. However, by Lemma 10.4 and (12.3), Xni is independent of the event En; hence,
so is Zn and thus pZn | Enq

d
“ Zn. Consequently, the sequence Zn is uniformly

integrable.
In other words, the left-hand side of (1.3) is uniformly pth power integrable.

Hence, the a.s. convergence in (1.3) implies convergence also in Lp.

Case 2: pλ “ 0. This is similar. In this case, (12.3) means pTn ď Cn1{κ0 . We now
define

Zn :“

∣∣∣∣ Xni

nκi{pκ0

∣∣∣∣p , (12.6)

and note again that Zn is independent of En. Since 0 ď λ˚
i ď pλ “ 0 we have λ˚

i “ 0,
and pκ0 “ κ0 by (5.4); hence (12.6) and (12.4) show that on En, we have Zn ď CYn.

Consequently, we have again Zn
d
“ pZn | Enq ď pCYn | Enq, and it follows that Zn is

uniformly integrable. Hence the a.s. convergence (1.4) holds also in Lp. □

As said above, Example 14.2 shows that Theorem 12.5 does not extend to all
triangular urns. However, it seems likely that it extends to many unbalanced urns;
we leave this as an open problem.

Problem 12.6. Find more general conditions (including also some unbalanced urns)
for convergence in L2 or Lp in Theorems 1.8 and 8.4.

12.3. Moments for drawn colours. The results above on convergence in L2, and
thus convergence of mean and variance, apply to the number of drawn balls with a
given colour, Nni and Niptq, since as shown in the proofs in Section 11, they can be
regarded as Xnι and Xιptq for an extended urn with a dummy colour ι added. Hence
we obtain:

Theorem 12.7. In Theorem 11.1, the a.s. limit (11.2) or (11.3) holds also in L2.
Moreover, if p ě 2 and ξij P Lp @i, j P Q, then the limit holds also in Lp.

Proof. By Theorem 12.2 or 12.3 applied to Xιptq. □

Theorem 12.8. In Theorem 11.2, if the urn is balanced, then the a.s. limit (11.4),
(11.5), or (11.6) holds also in L2. Moreover, if p ě 2 and ξij P Lp @i, j P Q, then
the limit holds also in Lp.

Proof. By Theorem 12.5 applied to Xnι. □

13. Rates of convergence?

For classical Pólya urns (Example 14.1), the rate of convergence for convergence in
distribution in (14.4) or (14.5) has been studied, for several different metrics; see [29]
and the references there. As noted in [29, Remark 1.4], the rate of a.s. convergence
is slower, and is the same as in the law of large numbers for i.i.d. Bernoulli variables,
which is given by the law of iterated logarithm.

For other triangular urns, we are not aware of any similar results on rates of
convergence; however, [17] gives upper bounds for the rate of convergence of moments
and in a local limit theorem, for some balanced triangular urns with deterministic
replacements. (Irreducible, and thus non-triangular, balanced urns with q “ 2 and
deterministic replacements are studied in [34].)
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Problem 13.1. Study rates of convergence in e.g. (1.3) and (4.1), both for the a.s.
convergence and for convergence in distribution.

Note that this problem is closely related to the problem studying fluctuations from
the limit, mentioned in Remark 1.9.

14. Examples

We consider several examples, many of which have been treated earlier from dif-
ferent perspectives. The purpose is to illustrate both the theorems above and (some
of) their relations to earlier literature. We generally label the colours by 1, . . . , q,
and then assume ξij “ 0 when i ă j. We assume that the initial composition X0 is
deterministic. We write for convenience xi :“ Xi0 “ Xip0q and x :“ pxiq

q
1 “ X0. We

denote the total number of balls in the urn after n draws by |Xn| :“
řq

i“1Xni.
When q “ 2 we sometimes also call the colours white and black (in this order;

thus a black draw may add only black balls: “there is no escape from a black hole”).
We then may write Wn :“ Xn1, Bn :“ Xn2, W ptq :“ X1ptq, Bptq :“ X2ptq, w0 :“
x1 “ X10, b0 :“ x2 “ X20.

We usually describe the urns using the replacement matrix pξijq
q
i,j“1 where the

rows are the replacement vectors. (See Remark 1.4.)
In all our examples, all activities ai “ 1. Thus

λi “ rii “ E ξii, i P Q “ t1, . . . , qu. (14.1)

Example 14.1. The classical Pólya urn has balls of q colours; when a ball is drawn
it is replaced together with a fixed number b ą 0 balls of the same colour. Hence,
the replacement matrix is deterministic and diagonal, with entries b on the diagonal.
This urn is obviously balanced, and we have λi “ λ˚

i “ b and κi “ 0 for every colour
i.

This urn model was studied (for q “ 2) already by Markov [39], Eggenberger
and Pólya [16] and Pólya [41]. See also e.g. Johnson and Kotz [31, Chapter 4] and
Mahmoud [38].

For this urn (as for any diagonal urn), in the continuous-time version, the dif-
ferent colours evolve independently, and each colour is version of the Yule process.
More precisely, Xiptq{b is a Yule process started with xi{b individuals, where each
individual gets children at rate b; thus Xipt{bq{b is a Yule process with the standard
rate 1. (This is a classical branching process if xi{b is an integer, and in general a

CB process.) It is well-known that in this case e´btXiptq{b
d

ÝÑ Γpxi{b, 1q and thus

e´btXiptq
a.s.
ÝÑ Xi P Γpxi{b, bq; (14.2)

furthermore, X1, . . . ,Xq are independent, since the processes Xiptq are independent.
This is an example of Theorem 4.1. Moreover, (5.11)–(5.12), or (5.16) where now
Q˚ “ Q, show together with (5.17) that

Xin

n
a.s.
ÝÑ pXi :“ b

Xi
řq

j“1Xj
. (14.3)

It follows that the vector of proportions converges:

Xn

|Xn|

a.s.
ÝÑ

1

b
pX :“

1

b

`

pX1, . . . , pXq

˘

“
pX1, . . . ,Xqq
řq

j“1Xj
, (14.4)
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where, as a consequence of (14.2), the limit vector b´1
pX has a Dirichlet distribution

with parameter x{b. In particular, each marginal converges a.s. to a Beta distributed
variable:

Xni

|Xn|

a.s.
ÝÑ b´1

pXi „ B
´xi
b
,
ÿ

j‰i

xj
b

¯

. (14.5)

These results are all well known; the limit (14.5) with convergence in distribution
was shown for q “ 2 already in [39] and [41], and for general q in [10] (in a special
case) and [2]; see also [31, Section 6.3.3] and [38]. Furthermore, a.s. convergence has
been shown by a number of methods, for example in [10] and [2]. △

Example 14.2. A diagonal Pólya urn has ξij “ 0 for i ‰ j; in other words, all added
balls have the same colour as the drawn ball. This is a generalization of the classical
Pólya urn in Example 14.1, but now the diagonal elements ξii can be random, and
they may have different distributions. A.s. convergence for this urn has been shown,
under weak technical conditions, by Athreya [2]; see also Aguech [1, Theorem 4].

Consider for simplicity the case when the replacements are deterministic, and
assume to avoid trivialities that rii “ ξii ą 0 for every i P Q.

As in Example 14.1, in the continuous-time urn, the colours evolve as independent
Yule processes, now with possibly different rates λi “ ξii. Hence, generalizing (14.2),

e´λitXiptq
a.s.
ÝÑ Xi P Γpxi{λi, λiq, (14.6)

with all Xi independent.
Consider the simplest case: q “ 2, and assume λ1 “ α and λ2 “ δ with α ą δ ą 0.

Then λ˚
i “ λi, pλ “ α, κi “ pκ “ γi “ 0 (i “ 1, 2). It follows from (5.11)–(5.12) and

(5.17) (or directly from (14.6)) that

n´δ{αXn2
a.s.
ÝÑ pX2 “ αδ{α X2

X δ{α
1

. (14.7)

Note that if X „ Γpa, bq, then its moments (for arbitrary real r) are given by

EX r “

#

brΓpa ` rq{Γpaq ă 8, ´a ă r ă 8,

8, r ď ´a.
(14.8)

In particular, since X1 and X2 are independent, it follows from (14.6)–(14.8) that for
r ą 0,

E pX r
2 ă 8 ðñ EX´rδ{α

1 ă 8 ðñ rδ{α ă x1{α ðñ r ă x1{δ. (14.9)

Consequently, pX2 does not have finite moments of all orders. In particular, we
cannot always have (finite) moment convergence in (14.7). Taking, for example,

α “ 2, δ “ 1, and x1 “ x2 “ 1 we see that not even the mean E pX2 is finite; hence
we cannot have convergence in L1 or L2 in Theorem 1.8.

As far as we know, it is an open problem to find asymptotics of moments EXr
n2

for general r ą 0 in this (simple) example. △

Example 14.3. Consider a two-colour urn with a deterministic replacement matrix
ˆ

δ γ
0 α

˙

. (14.10)

(We have chosen a notation agreeing with [28], although colours are taken in different
order there and thus the matrices are written differently.) This urn (and special cases



ALMOST SURE AND MOMENT CONVERGENCE FOR TRIANGULAR PÓLYA URNS 51

of it) have been studied in many papers; in particular, [28] gives a detailed study of
limits in distribution. The balanced case α “ δ ` γ with integers α, γ, δ is studied
by very different methods (generating functions) in [43] and [17]. A.s. convergence
has been shown in special cases in [18; 19; 11; 12] (α “ δ ` γ), and [1] (α ě δ).

Suppose that δ ą 0, γ ą 0, w0 “ x1 ą 0, and b0 “ x2 ě 0; suppose also either
α ě 0, or α “ ´1 together with γ P Z` and x2 P Zě0. Then the urn satisfies (A1)–
(A5) if α ě 0, and (A1)–(A4), (A51), and (A7)–(A8) for all α. Hence, Theorems 1.8
and 4.1 apply if α ě 0, and Theorems 8.4 and 8.6 apply for any α; consequently, the
conclusions of Theorems 1.8 and 4.1 hold for all cases.

We have λ1 “ δ and λ2 “ α. Furthermore, since γ ą 0, we have 1 Ñ 2. (Thus 1

is the only minimal colour.) Hence, λ˚
1 :“ δ, λ˚

2 :“ α _ δ and thus pλ “ λ˚
2 “ α _ δ;

furthermore κ1 “ 0 while κ2 “ 1 when α “ δ and κ2 “ 0 otherwise. We consider
several cases.

Case 1, α ă δ:

Then λ˚
1 “ λ˚

2 “ pλ “ δ ą 0; furthermore, κ1 “ κ2 “ 0 “ pκ, and (2.13) yields
γ1 “ γ2 “ 0. Consequently, Theorem 1.8(i) or Theorem 8.4 yields

Xni

n
a.s.
ÝÑ pXi, i “ 1, 2. (14.11)

Furthermore, 1 is the only leader, and thus Theorem 7.2 shows that pX1 and pX2 are
constants. To find them, we can use Lemma 6.7. By Lemma 6.1 (simplifying the
notation), Xi “ ciX1, where obviously c1 “ 1, and Lemma 6.7 gives the eigenvalue
equation

pc1, c2q

ˆ

δ γ
0 α

˙

“ δpc1, c2q, (14.12)

i.e., γ ` αc2 “ δc2, with the solution c2 “ γ{pδ ´ αq. In other words,

X2 “
γ

δ ´ α
X1. (14.13)

This follows also directly from Lemma 3.5 and (3.35).
If we add a dummy colour 0 as in Section 5, then (5.17) and (14.13) yield

X0 “ δ´1pX1 ` X2q “
1

δ

γ ` δ ´ α

δ ´ α
X1. (14.14)

Hence, by (5.12),

pX1 “
X1

X0
“

δpδ ´ αq

γ ` δ ´ α
, (14.15)

pX2 “
X2

X0
“

δγ

γ ` δ ´ α
. (14.16)

Consequently, as n Ñ 8 we have

Xn1

n
a.s.
ÝÑ pX1 “

δpδ ´ αq

γ ` δ ´ α
, (14.17)

Xn2

n
a.s.
ÝÑ pX2 “

δγ

γ ` δ ´ α
. (14.18)
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This is in agreement with [28, Theorem 1.3(i)-(iii) and Lemma 1.2], which give the

asymptotic distribution of the difference Xni ´ n pXi divided by the correct normal-
ization factor, which implies (and is much more precise than) convergence in proba-

bility in (14.17)–(14.18). (The normalization factor is n1{2 for α ă δ{2, pn log nq1{2

for α “ δ{2 and nα{δ for δ{2 ă α ă δ. Moreover, the distribution is asymptotically
normal for α ď δ{2, but not for δ{2 ă α ă δ. See [28] for details.)

Case 2, α “ δ:

Then λ˚
1 “ λ˚

2 “ pλ “ δ ą 0; furthermore, κ1 “ 0 and κ2 “ 1 “ pκ, and thus (2.13)
yields γ1 “ ´1 and γ2 “ 0. Consequently, Theorem 1.8(i) yields

Xn1

n{ log n
a.s.
ÝÑ pX1, (14.19)

Xn2

n
a.s.
ÝÑ pX2. (14.20)

Furthermore, also in this case, 1 is the only leader, and thus Theorem 7.2 shows

that pX1 and pX2 are constants. However, unlike Case 1, λ2 “ λ˚
2 and thus 2 is now

a subleader. Again, Lemma 6.1 shows that X2 “ c2X1, where (6.20) in Lemma 6.7
immediately yields

c2 “
a1r12
κ2

c1 “ γ. (14.21)

Furthermore, (5.15) now yields Q˚ “ t2u, and thus (5.17) yields

X0 “ pλ´1X2 “ δ´1X2. (14.22)

Consequently, recalling (5.12), the limits in (14.19)–(14.20) are

pX1 “ pλ
X1

X0
“ δ2

X1

X2
“

δ2

c2
“

δ2

γ
, (14.23)

pX2 “
X2

X0
“ δ. (14.24)

This is in agreement with the result on the asymptotic distribution in [28, Theorem
1.3(iv) and Lemma 1.2], which implies convergence in probability in (14.19)–(14.20).

Case 3, α ą δ:

Then 0 ă λ˚
1 “ δ ă λ˚

2 “ α “ pλ; furthermore, κ1 “ κ2 “ 0 “ pκ, and thus
γ1 “ γ2 “ 0. Consequently, Theorem 1.8(i) yields (see also [1])

Xn1

nδ{α

a.s.
ÝÑ pX1, (14.25)

Xn2

n
a.s.
ÝÑ pX2. (14.26)

In this case, both colours 1 and 2 are leaders; hence Theorem 6.4 shows that X1 and
X2 are absolutely continuous, also jointly. Furthermore, Theorem 7.1(ii) shows that
pX1 is absolutely continuous, while Theorem 7.2 shows that pX2 is deterministic. We
have again Q˚ “ t2u, which by (5.17) now yields

X0 “ pλ´1X2 “ α´1X2. (14.27)

Hence, (5.12) yields

pX1 “
X1

X δ{α
0

“ αδ{α X1

X δ{α
2

, (14.28)
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pX2 “
X2

X0
“ α. (14.29)

However, the formula (14.28) for pX1 does not seem to be of much use to find the

distribution of pX1. This distribution was found by other methods in [28, Theorem

1.3(v)], which yields convergence in distribution of Xn1{nδ{α; the a.s. convergence in

(14.25) is a stronger result, and the distribution of pX1 is thus the limit distribution
found in [28]. This limit distribution is characterized in [28], but no simple form

is known in general; it is shown in [28, Theorem 1.6] that pX1 has moments of all
orders, and a complicated integral formula is given for these moments. Except in
the balanced case below, it is, as far as we know, an open problem whether moments
converge in (14.25) (to these limits) or not.

Case 4, α “ δ ` γ:
The balanced case of the two-colour urn studied here is α “ δ`γ; by our assump-

tion γ ą 0, this is a special case of Case 3, and thus (14.25)–(14.29) hold. In this

special case, pX1 can be characterized by its moments, for which there is a simple
formula, see (for integers α, γ, δ, r) [43, Theorem 2.9], [17, Proposition 17], and (for
the general case) [28, Theorem 1.7]:

E pX r
1 “ δr

Γ
`

px1 ` x2q{α
˘

Γpx1{δ ` rq

Γpx1{δqΓ
`

px1 ` x2 ` rδq{α
˘ , r ą 0. (14.30)

It follows that the moment generating function E et
pX1 is finite for all real t, and

thus the moments (14.30) (even for integer r) determine the distribution. Moreover,
Theorem 12.5 shows that all moments converge in (14.25) (to the limits (14.30)); this
was earlier shown in [17; 43] in the case that the replacements δ, γ, α are integers.

If we further assume x2 “ 0, so we start only with white balls, then pX1 has a
density function that can be expressed using the density function of a Mittag-Leffler
distribution with parameter δ{α, or a δ{α-stable distribution, see [28, Theorem 1.8]
and [17, Proposition 16].

The continuous-time processes W ptq and Bptq are studied by [13], which includes
our Theorem 4.1 for this balanced urn. △

Example 14.4. Generalizing Example 14.3, consider a general triangular two-colour
urn U with random replacement matrix

ˆ

ξ11 ξ12
0 ξ22

˙

. (14.31)

Such urns have been studied by Aguech [1], who proved (among other results) the
existence of a.s. limits under some assumptions (including our (A5), E ξ22 ě E ξ11,
and an unnecessary independence assumption). We extend this result as follows.

Assume ξ11, ξ12, ξ22 P L2 (Condition (A4)), and let δ :“ E ξ11, γ :“ E ξ12, α :“
E ξ22, so that

`

δ γ
0 α

˘

is the mean replacement matrix. Suppose that (A51) holds,
that ξ11 ě 0 a.s., and that, as in Example 14.3, δ ą 0, γ ą 0, w0 “ x1 ą 0, and
b0 “ x2 ě 0. Then the urn satisfies (A1)–(A5) if ξ22 ě 0 a.s., and (A1)–(A4),
(A51), and (A7)–(A8) in any case. Hence, Theorems 8.4 and 8.6 apply, and thus the
conclusions of Theorems 1.8 and 4.1 hold for all α.

As in Section 9, we let U 1 denote the mean urn with replacement matrix
`

δ γ
0 α

˘

;
this urn is of the type in Example 14.3. As discussed in Section 9, all parameters

λi, λ
˚
i ,
pλ, . . . are the same for U and U 1, and thus all results are qualitatively the same
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for the two urns. Hence, all results in Example 14.3 hold for the urn U with random
replacements too, except any assertions on the precise distributions of the limits
(including the moment formula (14.30), which as shown in Example 14.5 below is
not valid in general for random replacements). Note, however, that by Theorem 9.1,

in all cases in Example 14.3 with a deterministic limit pXi for the mean urn, we have
the same limit for the urn U . △

Example 14.5. Consider a two-colour urn U with the random replacement matrix
ˆ

ξ 1 ´ ξ
0 1

˙

, (14.32)

where ξ P Beppq for some p P p0, 1q. In other words, if we draw a white ball, we add
another ball that is white with probability p, and otherwise black; if we draw a black
ball we always add another black ball. (As usual, we also always return the drawn
ball.) Note that this urn is balanced, in spite of replacements being random.

This urn appears in several applications, see Examples 14.6 and 14.10 for two of
them.

This urn is a special case of Example 14.4, and a.s. convergence for the urn follows
from Theorem 1.8. Moment convergence follows from Theorem 12.5.

The mean replacement matrix is

prijq
2
i,j“1 “

ˆ

p 1 ´ p
0 1

˙

. (14.33)

By Section 9, the asymptotic behaviour of the urn U is qualitatively the same as
for the mean urn U 1 with the replacement matrix (14.33), which is an instance of
Example 14.3, more precisely the balanced Case 4. In particular, since (14.29) shows

that pX2 “ α “ 1 is constant for the mean urn U 1, the same holds for the original urn
U by Theorem 9.1.

We may also relate the urn U to the mean urn U 1 in another, more direct, way.
Conditioned on the contents pXn1, Xn2q of the urn at time n, the probability that
the next added ball is white is, letting ζ be the colour of the drawn ball,

P
`

ζ “ 1 | Xn1, Xn2

˘

¨ p ` P
`

ζ “ 2 | Xn1, Xn2

˘

¨ 0 “
pXn1

Xn1 ` Xn2
. (14.34)

Hence, if we define

Yn1 :“ pXn1, (14.35)

Yn2 :“ p1 ´ pqXn1 ` Xn2, (14.36)

and note that Yn1 ` Yn2 “ Xn1 ` Xn2, we see from (14.34) that we may regard
the added ball in U as the drawn ball in an urn with composition Yn “ pYn1, Yn2q.
Adding a white ball to pXn1, Xn2q (i.e., increasing Xn1 by 1) means by (14.35)–
(14.36) adding pp, 1´pq to pYn1, Yn2q, while adding a black ball to pXn1, Xn2q means
adding p0, 1q to pYn1, Yn2q. Consequently, the stochastic process pYnqně0 describes
a Pólya urn with the replacement matrix

`

p 1´p
0 1

˘

, which is the same as (14.33)
for the mean urn U 1 above. Note, however, that the initial conditions now are, by
(14.35)–(14.36),

y1 “ px1, y2 “ p1 ´ pqx1 ` x2. (14.37)

By Example 14.3, we have

Yn1{np a.s.
ÝÑ pY1 (14.38)
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where the limit by (14.30) has moments, recalling (14.37),

E pYr
1 “ pr

Γpy1 ` y2qΓpy1{p ` rq

Γpy1{pqΓpy1 ` y2 ` rpq
“ pr

Γpx1 ` x2qΓpx1 ` rq

Γpx1qΓpx1 ` x2 ` rpq
. (14.39)

Hence, by (14.35), we have in the urn U with replacements (14.32)

Xn1{np a.s.
ÝÑ pX1 (14.40)

with pX1 “ p´1
pY1, and thus

E pX r
1 “ p´r E pYr

1 “
Γpx1 ` x2qΓpx1 ` rq

Γpx1qΓpx1 ` x2 ` rpq
, r ě 0. (14.41)

By comparing (14.40) with (14.30) for the mean urn, we see that the means E pX1

are the same for the two urns, while for the second moment, (14.41) and (14.30)
yield, for the urn U and its mean urn U 1, respectively,

E pX 2
1 “ x1px1 ` 1q

Γpx1 ` x2q

Γpx1 ` x2 ` 2pq
, E pX 2

1 “ x1px1 ` pq
Γpx1 ` x2q

Γpx1 ` x2 ` 2pq
. (14.42)

The variance is thus larger for the urn U with random replacement. (Perhaps not
surprisingly.) This shows that an urn and its mean urn in general have different
asymptotic distributions, although the qualitative behaviour is the same as shown
in Section 9. △

Example 14.6. One example where the urn in Example 14.5 with replacement
matrix (14.32) appears is that it describes the size of the root cluster for bond
percolation (with parameter p) on the random recursive tree (with vertices in the
root cluster coloured white and all other vertices black, and the initial vector p1, 0q).
(See the argument in the generalization Example 14.7 below. The root cluster is
studied by other methods in [6], [35], [5], [14].) In this case we obtain (14.40) where
(14.41) yields

E pX r
1 “

Γpr ` 1q

Γp1 ` rpq
, r ě 0, (14.43)

which means that pX1 has a Mittag-Leffler distribution; this was proved by Baur and
Bertoin [6] (using other methods). △

Example 14.7. Baur [5] and Desmarais, Holmgren, and Wagner [14] considered
(among other things) the root cluster in bond percolation on a preferential attach-
ment tree, generalizing Example 14.6. The tree is defined as follows, for a real
parameter α. Construct the rooted tree Tn with n vertices recursively, starting with
T1 being just the root and adding vertices one by one; each new vertex is attached to
a parent v chosen among existing vertices with probability proportional to αdpvq`1,
where dpvq is the current outdegree of v. We also perform bond percolation, and
let each edge by active with probability p P p0, 1q, independently of all other edges.
(Note that both active and passive edges are counted in the outdegree.) A vertex is
active if it is connected to the root by a path of active edges. Let Zn be the number
of active vertices in Tn.

The case α “ 0 gives the random recursive tree in Example 14.6. We consider
here the case α ě 0 (as assumed in [5]), and study the modifications for α ă 0 in
the following example.
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We model this process by an urn with two colours, where each vertex v contributes
αdpvq ` 1 balls, which are white if the urn is active and black otherwise. To find the
parent of the next vertex corresponds to drawing a ball from the urn; if the ball is
white then the parent is active and the new vertex becomes active with probability
p (and otherwise passive); if the ball is black then the parent is passive and the new
vertex always becomes passive. Since the outdegree of the parent increases by 1, we
add α balls of the same colour as the drawn ball, plus one ball for the new vertex
which is white if the new vertex is active, i.e., with probability p if the drawn ball is
white, and otherwise black. Hence, the urn is a Pólya urn with random replacement
matrix

ˆ

α ` ξ 1 ´ ξ
0 α ` 1

˙

, (14.44)

where ξ P Beppq. We start with 1 active vertex, and thus the urn starts with a single
white ball, i.e., x “ p1, 0q.

If α “ 0 (the random recursive tree), we get again (14.32), as discussed in Exam-
ple 14.6. In general, unlike Example 14.6, the number of active vertices Zn is not
directly reflected by the contents of the urn. However, if Nn1 is the number of drawn
white balls, then this is the number of vertices that get an active parent; hence Nn1

is the total outdegree of the active vertices, and therefore the number of white balls
in the urn is

Wn “ Xn1 “ αNn1 ` Zn. (14.45)

The replacement matrix (14.44) shows that the urn is of the type in Example 14.4;
furthermore, it is balanced with balance α ` 1. We have λ˚

1 “ λ1 “ E ξ11 “ α ` p

and pλ “ λ2 “ α ` 1; further κ1 “ κ2 “ 0. Theorem 1.8 yields

Xn1

npα`pq{pα`1q

a.s.
ÝÑ pX1. (14.46)

Moreover, Theorem 11.4 yields

Nn1

Xn1

a.s.
ÝÑ

1

λ˚
1

“
1

α ` p
, (14.47)

and thus (14.45) yields

Zn

Xn1
“

Xn1 ´ αNn1

Xn1

a.s.
ÝÑ 1 ´

α

α ` p
“

p

α ` p
. (14.48)

Hence, (14.46) yields

Zn

npα`pq{pα`1q

a.s.
ÝÑ Z :“

p

α ` p
pX1, (14.49)

where the limit is in p0,8q a.s. The limits (14.46) and (14.49) hold also in Lr for
any r ă 8 by Theorems 12.5 and 12.8; hence all moments converge.

This complements Baur [5, Proposition 4.1], who shows L2-convergence in (14.49)
and gives the first two moments of the limit (by different but related methods), and
Desmarais, Holmgren, and Wagner [14] who prove convergence of all moments in
(14.49) and give a recursion for the moments of the limit. (The distribution of the
limit is not known explicitly.) △



ALMOST SURE AND MOMENT CONVERGENCE FOR TRIANGULAR PÓLYA URNS 57

Example 14.8. In Example 14.7, we assumed α ě 0. However, the results extend
easily to the case α ă 0. (This case was included in [14].) In this case, as is well
known, we must have α “ ´1{d with d ě 1 an integer; the random tree Tn then
is a random d-ary recursive tree [15, Section 1.3.3]. (The case d “ 1 is trivial, and
we assume d ě 2.) In this case the replacements (14.44) do not satisfy (A51), since
α ` ξ may take the non-integer negative value ´1{d. This is can be remedied as in
Remark 8.1 by multiplying the number of white balls by d and adjusting the activity
a1, but in the present case we find it simpler to multiply the number of balls of both
colours by d and keep the activities ai “ 1. This gives the replacement matrix

ˆ

dξ ´ 1 d ´ dξ
0 d ´ 1

˙

, (14.50)

with the initial state x “ pd, 0q. In (14.45), we have to replace Xn1 by Xn1{d, which
yields

Zn “
Xn1 ` Nn1

d
. (14.51)

We have λ˚
1 “ λ1 “ E ξ11 “ dp ´ 1, so (A7) requires dp ą 1. (In fact, it is easily

seen that if dp ď 1, then Zn
a.s.
ÝÑ Z8 ă 8 [14].) Assuming dp ą 1, this urn satisfies

(A1)–(A4), (A51), and (A6)–(A7). It does not satisfy (A8), but Lemma 10.9 shows
that X0 ą 0 a.s., and thus we obtain by Theorem 8.5 the a.s. limit (14.49) again

(with pX1 replaced by pX1{d); this can be written

Zn

npdp´1q{pd´1q

a.s.
ÝÑ Z :“

p

dp ´ 1
pX1. (14.52)

Moment convergence, earlier shown by [14], follows from Theorems 12.5 and 12.8. △

Example 14.9. In Example 14.7, we studied the number Zn of vertices in the
preferential attachment tree Tn such that the path to the root contains only active

vertices. More generally, let Z
pkq
n be the number of vertices such that this path

contains exactly k ě 0 passive edges. For fixed k, this can be treated similarly, with
an urn with q ě k ` 2 colours 1, . . . , q, where vertices with j passive edges on the
path to the root are represented by colour maxpj ` 1, qq. For example, for q “ 3,
this leads to an urn with replacement matrix

¨

˝

α ` ξ 1 ´ ξ 0
0 α ` ξ 1 ´ ξ
0 0 α ` 1

˛

‚, (14.53)

where ξ P Beppq as above. (It does not matter whether we write this with the same
ξ on both rows or not; recall Remark 1.4.) For a general q ě 2 we have ξii “ α ` ξ
and ξi,i`1 “ 1 ´ ξ for 1 ď i ď q ´ 1, ξqq “ α ` 1, and all other ξij “ 0. The urn is
balanced with balance b “ α ` 1. We assume for simplicity α ě 0; the case α ă 0
can be treated as in Example 14.8.

We find λ1 “ ¨ ¨ ¨ “ λq´1 “ α`p and λq “ α`1, and thus λ˚
1 “ ¨ ¨ ¨ “ λ˚

q´1 “ α`p,
pλ “ λ˚

q “ α ` 1, κi “ i ´ 1 for 1 ď i ď q ´ 1, and κq “ 0. We have in analogy with

(14.45), Z
pkq
n “ Xn,k`1 ´ αNn,k`1 for k ď q ´ 2. Theorem 1.8 applies and shows

together with Theorem 11.4 as in Example 14.7, an a.s. limit. Since κk`1 “ k, we
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now get

Z
pkq
n

npα`pq{pα`1q logk n

a.s.
ÝÑ Zpkq :“

p

α ` p
pXk`1. (14.54)

Furthermore, we obtain from (7.3) and induction, since ri,i`1 “ E p1´ ξq “ 1´ p for
every i ď q ´ 1,

Zpkq “
1

k!

ˆ

1 ´ p

α ` 1

˙k

Zp0q, (14.55)

where Zp0q equals Z in (14.49). Consequently, the numbers Z
pkq
n for different k are

asymptotically proportional. △

Example 14.10. Another example where the urn in Example 14.5 with replacement
matrix (14.32) appears is for elephant random walks with delays. In a standard
elephant random walk (ERW), the elephant takes steps Yn P t˘1u; after an initial
step Y1, the elephant (which remembers the entire walk) chooses one of the preceding
steps, uniformly at random, and then randomly either (with probability p) repeats
it, or (with probability q) takes a step in the opposite direction. (Here q “ 1´p.) As
noted by Baur and Bertoin [7] (to which we refer for details and further references),
this may be modelled by a (non-triangular) Pólya urn, with one white ball for each
step `1 and one black ball for each step ´1 taken so far; the replacement matrix is

ˆ

ξ 1 ´ ξ
1 ´ ξ ξ

˙

(14.56)

with ξ P Beppq. Hence results for the ERW follows from known results for irreducible
Pólya urns [7]. (We have nothing to add here.)

In the elephant random walk with delays [33; 23; 22], the elephant has a third
possibility: with probability r it makes a step 0 (i.e., stays put), regardless of the
remembered step. (Now p` q ` r “ 1; we assume p, q, r ą 0.) This can be modelled
by a 3-colour urn, with colours representing steps `1, ´1, and 0, and replacement
matrix

¨

˝

ζ1 ζ2 ζ3
ζ2 ζ1 ζ3
0 0 1

˛

‚, (14.57)

where pζ1, ζ2, ζ3q is a random vector with exactly one component 1 and the others 0,
and pP rζi “ 1sq3i“1 “ pp, q, rq. This Pólya urn is neither triangular nor irreducible,
but it may be regarded as a combination of two such urns (cf. Remark 2.3) as
follows. Let as before Yn P t˘1, 0u be the nth step, and let Zn :“ |Yn| P t0, 1u;
Zn thus just records whether the elephant moves or stays put. (The process Zn is
called Bernoulli elephant random walk in [25]; it has also been studied in [8] and,
for somewhat different reasons, in [26].) As noted by [7, V.C], the process pZnq can
be modelled by a Pólya urn with q “ 2 and one white ball for each step ˘1 and one
black ball for each step 0 so far; the replacement matrix is

ˆ

1 ´ ζ3 ζ3
0 1

˙

. (14.58)

This is the urn in Example 14.5 with ξ “ 1´ζ3 P Bep1´rq. The number of non-zero
steps up to time n is Wn, the number of white balls in the urn. By conditioning
on Z1 :“ |Y1|, we may assume that Z1 is deterministic. Moreover, the case Z1 “ 0
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is trivial, with Yn “ Zn “ 0 for all n ě 1; hence we may assume Z1 “ 1, and
thus the urn starts with 1 white ball. ([22; 24] use a different initial condition with
Z1 „ Bep1 ´ rq.) Then the urn is the same as in Example 14.6, and Theorem 1.8
yields

Wn{n1´r Ñ pX1, (14.59)

as shown by other methods in [22, Theorem 3.1]; furthermore, [8, Lemma 2.1] and
[24, Theorem 5.1] show that (14.43) holds (with p replaced by 1 ´ r and r by s,

say), and thus pX1 has a Mittag-Leffler distribution (as we saw in Example 14.6).
Moreover, [8] and [25] show that moment convergence holds in (14.59); this also
follows from Theorem 12.5.

Conditioned on the number Wn, the position of the elephant is the same as for
a standard ERW with Wn steps, and thus the limit results in [8] and [24] for the
ERW with delays may easily be obtained by combining (14.59) and the results for
the standard ERW obtained by [7] from the urn (14.56); we leave the details to the
reader. △

Example 14.11. The triangular urn with q “ 3 and balanced deterministic replace-
ments (with all entries integers ě 0)

¨

˝

α β σ ´ α ´ β
0 δ σ ´ δ
0 0 σ

˛

‚ (14.60)

was studied by Puyhaubert [43, Section 2.5] and Flajolet, Dumas and Puyhaubert
[17, Section 10]; the results include convergence in distribution (after normalization),
and, in some cases, convergence of all moments with explicit formulas for moments
of the limits.

In particular, they show (in our notation and correcting several typos) that if
α ą δ ą 0 and β ą 0, then

Xn2{nα{σ d
ÝÑ pX2 (14.61)

where the limit has moments

E pX r
2 “

ˆ

αβ

α ´ δ

˙r Γpx1{α ` rqΓp|x|{σq

Γpx1{αqΓpp|x| ` rαq{σq
. (14.62)

In this case, we have σ ě α ` β ą α ą δ and thus λ˚
1 “ λ˚

2 “ λ1 “ α, λ2 “ δ,
pλ “ λ˚

3 “ λ3 “ σ, pκ “ κi “ 0, γi “ 0 (i “ 1, 2, 3). Hence, Theorem 1.8 yields
(14.61) with the stronger convergence a.s. Moreover, the leaders are 1 and 3, and

Lemma 7.3 yields pX2 “ pc21 pX1, where Lemma 7.3 and (6.18) show that p1,pc21q is a
left eigenvector of

`

α β
0 δ

˘

, with eigenvalue α. Consequently, pc21 “ β{pα ´ δq and

pX2 “
β

α ´ δ
pX1. (14.63)

Furthermore, as noted in [17], we may in this urn be partially colour-blind and merge
colours 2 and 3; then pXn1, Xn2 ` Xn3q is a 2-colour urn with replacement matrix
`

α σ´α
0 σ

˘

; hence the moments E pX r
1 are given by (14.30), where now α and δ are

replaced by σ and α, and x1 ` x2 is replaced by |x| “ x1 ` x2 ` x3, i.e.,

E pX r
1 “ αr Γ

`

|x|{σ
˘

Γpx1{α ` rq

Γpx1{αqΓ
`

p|x| ` rαq{σ
˘ , r ě 0. (14.64)
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Thus, (14.62) follows by (14.63).
Similarly, in the case α “ δ ą 0 and β ą 0, [43] and [17] show (again correcting

several typos)

Xn2{pnα{σ log nq
d

ÝÑ pX2 (14.65)

where the limit has moments

E pX r
2 “

ˆ

αβ

σ

˙r Γpx1{α ` rqΓp|x|{σq

Γpx1{αqΓpp|x| ` rαq{σq
. (14.66)

In this case λ˚
1 “ λ˚

2 “ λ1 “ λ2 “ α, κ1 “ 0 and κ2 “ 1, and as above pλ “ λ˚
3 “

λ3 “ σ and pκ “ κ3 “ 0. Hence, Theorem 1.8 yields (14.65) with convergence a.s.
Moreover, Lemma 7.3 and (7.3) yield

pX2 “
β

σ
pX1, (14.67)

which yields (14.66) by (14.64).
[17] and [43] further prove moment convergence in (14.61) and (14.65), which also

follows from Theorem 12.5.
Note that [17] and [43] assume the replacements to be integers, while we obtain

the results above also for non-integer replacements.
A.s. convergence in (14.61) and (14.65) follows also from [12], see Example 14.12.

△

Example 14.12. Bose, Dasgupta, and Maulik [12] study a rather general class
of balanced triangular urns with deterministic ξi; thus ξij “ rij . They show a.s.
convergence of Xni suitably normalized, as in our Theorem 1.8.

We introduce some of the notation from [12]. The colours are t1, . . . , qu (where
they write q “ K ` 1), and the replacement matrix is triangular, so (2.4)–(2.6) hold
with the natural order ă. The diagonal entries rii “ λii are denoted ri, and the
positions of the weak maxima in the sequence r1, . . . , rq are denoted i1, . . . , iJ`1.
Thus ri1 ď ri2 ď . . . ď riJ`1 , and rk ă rij when ij ă k ă ij`1. Since the urn is

balanced, Lemma 10.7 and Remark 10.8 show that rq “ λq “ pλ is a maximum, and
thus iJ`1 “ q. Clearly, i1 “ 1. The jth block of colours is tij , . . . , ij`1 ´ 1u. (In

[12], the replacements are normalized by λq “ pλ “ 1, which can be assumed without
loss of generality. It is also assumed that initially there is 1 ball in the urn, i.e.,
ř

i xi “ 1; this seems to be a mistake since one cannot in general normalize both to
1 simultaneously.)

[12] says that the colours are arranged in increasing order if for every k P pij , ij`1q

(with 1 ď j ď J), there exists m P rij , kq such that rmk ą 0. Using our terminology,
this is easily seen to be equivalent to: If k P pij , ij`1q, then k is a descendant of ij .
[12, Proposition 2.1] shows that in every balanced triangular urn, the colours can be
rearranged in increasing order. [Sketch of proof: Construct the blocks in backwards
order. In each step find a colour i (to be labelled ij) with λi maximal among the
remaining colours; let the next block consist of i and all its remaining descendants.
Order this block in a suitable way, with i first, and place it before the previously
constructed blocks. Repeat with the remaining colours.]

The main result of [12] further assumes [12, (2.2)], which says that for every
j “ 1, . . . , J , there exists m P rij , ij`1q such that rm,ij`1 ą 0. In our terminology,
and assuming (as in [12]) that the colours are in natural order, this is equivalent
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to ij`1 ≻ ij . It follows that the assumptions in [12] (i.e., increasing order and
their (2.2)) imply that i1, . . . , iJ`1 are precisely the colours i with λ˚

i “ λi, i.e. our
leaders and subleaders (see (6.3) and (6.19)), and that the leaders ν have distinct λ˚

ν .
Moreover, for each leader ν “ ij , the subleaders in Dν (see (6.13)) are ij`1, . . . , ij`ℓ

where ℓ “ ℓj ě 0 is the largest integer with λij`ℓ
“ λij ; these subleaders form a

chain in the partial order ≺, and thus κij`k
“ k for k “ 0, . . . , ℓ. The set Dκ

ν is an
interval rij , ij`1q from a (sub)leader to the next.

The a.s. convergence in the main result [12, Theorem 3.1] now follows from The-
orem 1.8, Lemma 6.7, and Theorem 7.1. Moreover, [12, Remark 3.3] says that it is
clear from their proof that a.s. convergence holds also without their assumptions of
increasing order and their (2.2); [12] thus essentially states our Theorem 1.8 for the
case of a balanced urn with deterministic replacements.

Furthermore, [12] also shows convergence in L2, which is extended to Lp for any
p by our Theorem 12.5. △

Example 14.13. Consider an urn with q “ 4 and replacement matrix
¨

˚

˚

˝

αη1 ´ 1 0 η2 0
0 βη1 ´ 1 η2 0
0 0 γ 0
0 0 0 δ

˛

‹

‹

‚

, (14.68)

where α, β, γ, δ are positive integers and η1, η2 P Bep1{2q are independent. We have
λ1 “ α{2´1, λ2 “ β{2´1, λ3 “ γ, and λ4 “ δ. Suppose that λ4 “ λ1 ą λ2 ą λ3 ą 0,
and start with X0 “ p1, 1, 0, 1q.

This urn satisfies (A1)–(A4), (A51), and (A6)–(A7), but not (A8). We have pλ “

λ˚
1 “ λ˚

3 “ λ˚
4 “ λ1, λ

˚
2 “ λ2, and κi “ 0 @i. Theorem 8.6 shows that (4.1) holds for

all colours i, with

e´λ˚
i tXiptq

a.s.
ÝÑ Xi. (14.69)

Furthermore, X4 ą 0 a.s., as is seen by considering only balls of colour 4; hence, by

(5.17), X0 “ pλ´1pX1 ` X4q ě pλ´1X4 ą 0 a.s.
Furthermore, 3 is a follower of the leader 1, and Lemma 6.1 with Remark 8.8

yields X3 “ cX1 for some c ą 0. (In fact, c “ 1{2pλ1 ´λ3q, by the same argument as
for (14.13).) Note also that X1 and X2 are independent.

It is obvious that colours 1 and 2 both may die out in a few draws, and that if
they do, they may or may not first generate a ball of colour 3. If they do not die
out, then a.s. X1 ą 0 and X2 ą 0 respectively, see Remark 8.10.

Consequently, the following cases can appear, all with positive probabilities:

(i) X1 ą 0 and then X3 ą 0 and thus X3ptq grows at rate eλ
˚
3 t “ eλ1t. Similarly,

by Theorem 8.5 and (5.12), Xn3{n
a.s.
ÝÑ pX3 ą 0.

(ii) X1 “ 0 but X2 ą 0; then X3 “ 0, but by considering the urn with colour 2, 3,

and 4 only (after 1 has died out), it follows that e´λ2X3ptq
a.s.
ÝÑ X 1

3 :“ c1X2 ą 0

for some c1 ą 0, and thus X3ptq grows at rate eλ2t; similarly Xn3{nλ2{λ1
a.s.
ÝÑ

pX 1
3 ą 0.

(iii) X1 “ X2 “ 0 and both X1ptq and X2ptq die out, but at least one of them first
gets a ball of colour 3 as offspring. Then, by considering only balls of colour 3
and 4 (when the others have died out), e´λ3X3ptq

a.s.
ÝÑ X 2

3 ą 0, and thus X3ptq

grows at rate eλ3t; similarly Xn3{nλ3{λ1
a.s.
ÝÑ pX 2

3 ą 0.
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(iv) X1 “ X2 “ 0, and both X1ptq and X2ptq die out without producing an offspring
of colour 3. Then, X3ptq “ 0 for all t and thus X3n “ 0 for all n.

This example shows that in a case when Xi “ 0 with positive probability, it may
still be possible to find precise limit results, but different limit results may hold in
different subcases. It seems that this can be done very generally on a case by case
basis, but as said in Remark 8.7 we do not attempt any general statement. △

Example 14.14. An interesting counterexample is given by the replacement matrix
ˆ

0 1
0 ˘1

˙

, (14.70)

where ξ22 “ ˘1 denotes a random variable with Ppξ22 “ 1q “ Ppξ22 “ ´1q “ 1
2 . In

words: when we draw a white ball, it is replaced together with a black ball; when we
draw a black ball, we toss a coin and then (with probability 1

2 each) either remove
the ball or replace it together with another black ball.

We have r22 “ E ξ22 “ 0, and thus λ1 “ λ2 “ 0 “ λ˚
1 “ λ˚

2 “ pλ, κ1 “ 0,
κ2 “ 1, pκ “ 1, pκ0 “ 2. Note that this example is excluded from Theorems 8.4–8.6
since (A7) does not hold. (However, (A1)–(A4), (A51), and (A6) hold, provided
x1 ą 0 and x2 P Zě0.) We will see that, in fact, we do not have a.s. convergence of

Bn{n1{2 “ Xn2{n1{2 and Bptq{t “ X2ptq{t as (1.4) and (4.1) would give; however,
these converge in distribution.

Consider first a continuous time urn with only black balls. This is a branching
process where balls live an Expp1q time and then randomly either die or are split
into two. Let Y ptq denote such an urn with black balls, starting with Y p0q “ 1, and
denote its probability generating function by (for |z| ď 1, say)

gtpzq :“ E zY ptq. (14.71)

Then the Kolmogorov backward equation [32, Theorem 12.22] yields, for t ą 0,

B

Bt
gtpzq “

1

2

`

1 ` gtpzq2
˘

´ gtpzq “
1

2

`

1 ´ gtpzq
˘2

(14.72)

with g0pzq “ z, which has the solution

gtpzq “ 1 ´

´ 1

1 ´ z
`

t

2

¯´1
“

tp1 ´ zq ` 2z

tp1 ´ zq ` 2
“

t

t ` 2
`

2

t ` 2
¨

2
t`2z

1 ´ t
t`2z

. (14.73)

Consequently, Y ptq has a modified geometric distribution: PpY ptq “ 0q “ gtp0q “
t

t`2 and the conditional distribution
`

Y ptq | Y ptq ą 0
˘

is Ge
`

2
t`2

˘

. In particular,

PpY ptq “ 0q Ñ 1 as t Ñ 8; since 0 is an absorbing state, it follows that a.s. Y ptq “ 0
for sufficiently large t; in other words, Y ptq dies out. (This follows also since Y ptq
is a time-changed simple random walk, absorbed at 0.) A simple calculation yields
EY ptq “ 1 and VarY ptq “ t, in accordance with (8.4)–(8.5) and (8.11). Note that
`

t´1Y ptq | Y ptq ą 0
˘ d

ÝÑ Exp
`

1
2

˘

as t Ñ 8. Roughly speaking, for large t, Y ptq is
non-zero with probability « 2{t, and if it is, it is of order t.

Now consider the two-colour urn above, and assume that we start withX0 “ p1, 0q,
i.e., 1 white ball. The number of white balls is constant for this urn, and thus
W ptq “ 1 for all t in the continuous-time urn. This means that white balls are
drawn according to a Poisson process Ξ with constant rate 1. If the times they are
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drawn are pTkq8
1 , then we have

Bptq “
ÿ

Tkďt

Ykpt ´ Tkq, (14.74)

where Yk are independent copies of the one-colour process Y ptq, independent also of
pTkq8

1 . Consequently, for z P r0, 1s say, we have

E
`

zBptq | Ξ
˘

“
ź

Tkďt

gt´Tk
pzq “ exp

´

ÿ

Tkďt

log gt´Tk
pzq

¯

“ exp
´

ż t

0
log gt´upzq dΞpuq

¯

. (14.75)

Hence, by a standard formula for Poisson processes [32, Lemma 12.2],

E zBptq “ E exp
´

ż t

0
log gt´upzq dΞpuq

¯

“ exp
´

ż t

0

`

gspzq ´ 1
˘

ds
¯

“ exp
´

´

ż t

0

´ 1

1 ´ z
`

s

2

¯´1
ds
¯

“ exp
´

´2
´

log
´ 1

1 ´ z
`

t

2

¯

´ log
´ 1

1 ´ z

¯¯¯

“

´

1 `
t

2
p1 ´ zq

¯´2
“

´

2
t`2

1 ´ t
t`2z

¯2
. (14.76)

Consequently, Bptq has a negative binomial distribution NegBin
`

2, 2
t`2

˘

. In partic-
ular,

EBptq “ t, (14.77)

which also follows directly from (14.74).
It follows from (14.76) that as t Ñ 8, for any s ą 0,

E e´sBptq{t “

´

1 `
t

2
p1 ´ e´s{tq

¯´2
Ñ

´

1 `
s

2

¯´2
(14.78)

and thus Bptq{t converges in distribution to a Gamma distribution:

t´1Bptq
d

ÝÑ Γp2, 12q, as t Ñ 8. (14.79)

However, we will see that Bptq{t does not converge a.s., which shows that Theo-
rem 8.6 does not extend to this example.

To see this, we extend (14.79) to process convergence. We claim that as t Ñ 8,
we have

t´1Bptxq
d

ÝÑ Bpxq :“ 1
4BESQ

4pxq in Dr0,8q, (14.80)

where BESQ4pxq denotes a squared 4-dimensional Bessel process [44, Chapter XI].
Recall that

BESQ4pxq “ |Wpxq|2 “

4
ÿ

i“1

Wipxq2, (14.81)

where W1pxq, . . . ,W4pxq are independent standard Brownian motions (Wiener pro-
cesses), and Wpxq :“

`

W1pxq, . . . ,W4pxq
˘

thus is a 4-dimensional Brownian mo-

tion. Hence, 1
4BESQ

4pxq „ Γp2, x{2q, in accordance with (14.79). Furthermore, a.s.

BESQ4pxq ą 0 for every x ą 0.
The proof of (14.80) is somewhat technical and is given in Appendix C, where we

also extend the result to other initial values pw0, b0q, see Theorem C.1.
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Suppose now that Bptq{t
a.s.
ÝÑ Z for some random variable Z; then Z „ Γp2, 12q by

(14.79). Moreover, for every r ą 0, we would have

t´1
`

Bprtq ´ rBptq
˘

“ r
´Bprtq

rt
´

Bptq

t

¯

a.s.
ÝÑ rpZ ´ Zq “ 0. (14.82)

However, the process convergence in (14.80) implies finite dimension convergence,
and in particular

t´1
`

Bprtq ´ rBptq
˘ d

ÝÑ
1

4

`

BESQ4prq ´ rBESQ4p1q
˘

. (14.83)

Hence, (14.82) would imply BESQ4prq “ rBESQ4p1q a.s., for every r ą 0, which
obviously is false (even for a single r ‰ 1). This contradiction proves the claim that
Bptq{t does not converge a.s. Hence, the convergence in (14.79) holds in distribution
but not a.s.

We use (14.80) to derive corresponding results for the discrete-time urn. Let, as

above, pTn be the nth time that a ball is drawn, and let Nptq be the total number of

draws up to time t; thus Np pTnq “ n. Since all balls are drawn with intensity 1,

rNptq :“ Nptq ´

ż t

0

`

W psq ` Bpsq
˘

ds “ Nptq ´ t ´

ż t

0
Bpsq ds (14.84)

is a local martingale with rNp0q “ 0, and it follows as in the proof of Lemma 3.1

(now using (14.77)) that rNptq is a martingale. In particular E rNptq “ 0, and thus
by (14.84) and (14.77)

ENptq “ t ` E
ż t

0
Bpsq ds “ t `

ż t

0
EBpsqds “ t ` t2{2. (14.85)

Furthermore, all jumps are `1 and thus the quadratic variation is by (2.16)

r rN, rN st “
ÿ

0ăsďt

∆Npsq “ Nptq. (14.86)

Consequently, by Doob’s inequality (2.18) and (14.85),

E rN˚ptq2 ď C E r rN, rN st “ C ENptq “ Ct ` Ct2. (14.87)

In particular, rN˚ptq{t2
p

ÝÑ 0 as t Ñ 8, which together with (14.84) implies that

Nptxq{t2 ´

ż x

0
t´1Bptyq dy “ t´2Nptxq ´ t´2

ż tx

0
Bpsq ds “ t´2

rNptxq ` t´1x
p

ÝÑ 0

(14.88)

in Dr0,8q, and consequently (14.80) implies

Nptxq{t2
d

ÝÑ Vpxq :“

ż x

0
Bpyq dy, (14.89)

in Dr0,8q, jointly with (14.80). Note that Vpxq is a continuous stochastic process
which strictly increases from Vp0q “ 0 to 8. Define τ by

Vpτq “ 1; (14.90)

thus τ is random with 0 ă τ ă 8 a.s. It follows easily from (14.89) (we omit the
details) that, jointly with (14.80),

pTn{
?
n

p
ÝÑ τ (14.91)
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and as a consequence

Bn{
?
n “ Bp pTnq{

?
n

d
ÝÑ Bpτq. (14.92)

This proves convergence in distribution of Bn{
?
n. The limit Bpτq is determined by

(14.80), (14.89), and (14.90); unfortunately we do not know any simpler description
of the limit distribution, and we leave it as an open problem to find one.

For the discrete-time urn, we thus have convergence in distribution of Bn{n1{2.
(The exponent 1{2 equals κ2{pκ0, just as in Theorem 1.8(ii) although we cannot
apply that theorem.) However, we do not have convergence a.s. in (14.92). In fact,

if Bn{n1{2 a.s.
ÝÑ pZ for some pZ, then for every x ą 0, as t Ñ 8,

Bpxtq2

Npxtq
“

B2
Npxtq

Npxtq
a.s.
ÝÑ pZ2, (14.93)

while the joint convergence of (14.80) and (14.89) implies

Bpxtq2

Npxtq
“

ˆ

Bpxtq

t

˙2

¨
t2

Npxtq
d

ÝÑ
Bpxq2

Vpxq
(14.94)

in Dp0,8q, i.e., in Dra, bs for every 0 ă a ă b ă 8. Consequently, (14.93) would

imply that a.s. Bpxq2{Vpxq “ pZ2 for every x ą 0, and thus a.s.
ż x

0
Bpyqdy “ Vpxq “ pZ´2Bpxq2, x ą 0. (14.95)

But this impossible, for example because (14.95) would imply that Bpxq, and thus
BESQ4pxq, is differentiable (and, moreover, linear). This contradiction shows that
Bn{

?
n does not converge a.s. △

Example 14.15. A counterexample somewhat similar to Example 14.14 is given by
the replacement matrix

ˆ

0 1
0 ´1

˙

. (14.96)

In words: when we draw a white ball, it is replaced together with a black ball; when
we draw a black ball, we discard it.

We have λ1 “ 0 and λ2 “ ´1, and thus λ˚
1 “ λ˚

2 “ 0. Note that this example
too is excluded from Theorem 8.6 since (A7) does not hold. (However, again (A1)–
(A4), (A51), and (A6) hold, provided x1 ą 0 and x2 P Zě0.) We will see that, as in
Example 14.14, Bptq converges in distribution but not a.s.

Suppose that the urn starts with a single white ball, i.e., X0 “ p1, 0q. Then, for the
continuous-time urn, W ptq “ 1 for all t, and thus white balls are drawn according to
a Poisson process with constant rate 1. At each draw in this Poisson process, we add
a black ball. Black balls live an exponential time with mean 1, and then disappear.
Consequently, Bptq, the number of black balls, is a birth-death process where the
birth rate is constant 1 and the death rate equals the number of particles. (Thus
µk “ 1 and λk “ k in the standard notation.)

Let Tk be the time of the kth white draw, and Lk the life-length of the black ball
that then is added. Then the pairs pTk, Lkq form a Poisson process in R2

` with rate
e´y dx dy. The number of black balls at time t is

Bptq “

8
ÿ

k“1

1tTkďtu1tLkąt´Tku “

8
ÿ

k“1

1tpTk,LkqPDtu (14.97)
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where Dt :“ tpx, yq P R2 : 0 ă x ď t, y ą t ´ xu. Consequently, Bptq has a Poisson
distribution Popµptqq, where

µptq “

ż

Dt

e´y dx dy “

ż t

0

ż 8

t´x
e´y dy dx “

ż t

0
ex´t dx “ 1 ´ e´t. (14.98)

As t Ñ 8, we thus have convergence in distribution Bptq
d

ÝÑ Pop1q. Obviously,
we cannot have convergence a.s., since Bptq jumps `1 at every Tk, and Tk Ñ 8 as
k Ñ 8.

Bn does not converge in distribution as n Ñ 8 for a simple parity reason: since
Bn changes by ˘1 at each draw, we have Bn ” n pmod 2q. However, Bn is a Markov
chain (since Wn is constant), it is irreducible, and it is easily seen that the expected
time to return to 0 is finite; hence the Markov chain Bn is positive recurrent. The
period is 2, and and it follows that the two subsequences B2n and B2n`1 converge in

distribution to some limits, say pBeven and pBodd. The mixture (with equal weights)

of pBeven and pBodd has a stationary distribution for the Markov chain, and it is easily
found that the limit distributions are given by

Pp pBeven “ kq “
k ` 1

k!
e´11tk is evenu, (14.99)

Pp pBodd “ kq “
k ` 1

k!
e´11tk is oddu. (14.100)

These can be described as Pop1q rounded up to nearest even or odd integer, respec-
tively.

Obviously, we do not have convergence a.s., even for these subsequences. △

Example 14.16. Consider a diagonal urn with q “ 2 and replacement matrix
´

ξ11 0
0 ξ22

¯

as in [2]; cf. the deterministic case in Example 14.2. Assume that ξ11, ξ22 P

Zě0 a.s., that E ξ11 “ E ξ22 “ 1, and that E ξ222 ă 8 but E ξ11 log ξ11 “ 8, so
that (A4) does not hold. (We may simply take ξ22 “ 1 a.s.) Then the stochastic
processes X1ptq and X2ptq are independent Markov branching processes, and [4,
Theorem III.7.2] shows that, as t Ñ 8,

e´tX1ptq
a.s.
ÝÑ 0. (14.101)

Hence, (4.1) holds with X1 “ 0 a.s., while Theorem 4.1 (applied to colour 2 only),
or [4, Theorem III.7.2] again, shows that (4.1) holds also for i “ 2 with X2 ą 0 a.s.

It follows that X1ptq{X2ptq
a.s.
ÝÑ 0 as t Ñ 8, and thus Xn1{Xn2

a.s.
ÝÑ 0 as n Ñ 8. It

follows easily that (1.3) holds, which in this case is Xni{n
a.s.
ÝÑ pXi, with pX1 “ 0 and

pX2 “ 1; we thus have X1 “ pX1 “ 0, in contrast to Theorems 1.8 and 4.1.
This shows that the main results in the present paper do not hold without assum-

ing at least E ξij log ξij ă 8. We have for convenience assumed the stronger second
moment condition (A4), but as said in Remark 2.1, we conjecture that it can be
weakened. △

Acknowledgement. I thank Allan Gut for help with references.

Appendix A. Absolute continuity and conditioning

In this appendix we state three general lemmas on absolute continuity of distri-
butions and conditioning. We find them intuitively almost obvious, but only almost,
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and since we do not know any references, we provide complete proofs. For two mea-
sures µ and λ on the same space, we let µ ! λ denote that µ is absolutely continuous
with respect to λ, i.e., that λpBq “ 0 ùñ µpBq “ 0.

We recall some further standard definitions:
A measure space pX,X q is a Borel space if it is (or is isomorphic to) a Borel set

in a complete separable metric space with its Borel σ-field, see [32, Appendix A1].
This includes, for example, R, Rn, and the function space Dr0,8q; moreover, any
finite or countable product of Borel spaces is a Borel space.

If pX,X q and pY,Yq are two measurable spaces, then a probability kernel from
X to Y is a mapping µ : X ˆ Y Ñ r0, 1s such that B ÞÑ µpx,Bq is a probability
measure on pY,Yq for every fixed x P X, and furthermore x ÞÑ µpx,Bq is measurable
on pX,X q for every fixed B P Y, see [32, p. 20].

If X and Y are random variables with values in measurable spaces pX,X q and
pY,Yq, respectively, then a regular conditional distribution of X, given Y , is a prob-
ability kernel µ from Y to X such that for any fixed B P X ,

µpY,Bq “ PrX P B | Y s a.s., (A.1)

see [32, p. 106–107]. It follows that for any measurable f : X Ñ r0,8s,

E rfpXq | Y s “

ż

X
fpxqµpY,dxq a.s. (A.2)

Similarly [32, (7) on p. 108], for any measurable f : X ˆ Y Ñ r0,8s,

E fpX,Y q “ E
ż

X
fpx, Y qµpY,dxq. (A.3)

If pX,X q is a Borel space, then a such a regular conditional distribution µ exists,
and the probability measure µpy, ¨q is LpY q-a.e. unique (in the standard sense that
two different such kernels are equal for LpY q-a.e. y P Y) [32, Theorem 6.3].

Lemma A.1. Let X,Y, Z be random variables taking values in Borel spaces pX,X q,
pY,Yq, pZ,Zq, respectively, and suppose that Z “ φpY q for some measurable function
φ : Y Ñ Z. Let λ be a measure on X, and suppose that the regular conditional distri-
bution µpy, ¨q of X given Y is absolutely continuous with respect to λ for LpY q-a.e.
y P Y. Then the regular conditional distribution µ1pz, ¨q of X given Z is absolutely
continuous with respect to λ for LpZq-a.e. z P Z.

Remark A.2. Although Lemma A.1 is stated for conditionings on single random
variables Y and Z, it holds also for conditionings on finite or countably infinite
sequences of random variables (taking values in possibly different Borel spaces), since
such sequences can be regarded as a single variable in a suitable product space. △

Proof. If B Ă X is any set with λpBq “ 0, then µpY,Bq “ 0 a.s., and thus, by (A.1),

µ1pZ,Bq “ E r1BpXq | Zs “ E
“

E r1BpXq | Y s | Z
‰

“ E rµpY,Bq | Zs “ 0 a.s.
(A.4)

However, this is for a fixed B, while the conclusion of the lemma is that a.s. (A.4)
holds simultaneously for every λ-null set B Ă X. There is in general an uncountable
number of λ-null sets B Ă X, and we do not see how to use the argument in (A.4)
to prove the result.
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Instead, we argue as follows. First, by if necessary changing µpy, ¨q on a LpY q-null
set of y, we may assume that

µpy, ¨q ! λ for every y P Y. (A.5)

Let νpz, ¨q be the regular conditional distribution of Y given Z. Then, for any
B P X , a.s., using (A.1) and (A.2),

PrX P B | Zs “ E r1BpXq | Zs “ E
“

E r1BpXq | Y s | Z
‰

“ E rµpY,Bq | Zs

“

ż

Y
µpy,BqνpZ,dyq. (A.6)

This shows that (a version of) the regular conditional distribution µ1 is given by the
composition of the kernels ν and µ defined by

µ1pz,Bq :“

ż

Y
νpz,dyqµpy,Bq, B P X ; (A.7)

note that this composition is a probability kernel, see e.g. the more general [32,
Lemma 1.41(iii)].

Now, if λpBq “ 0, then (A.5) shows that µpy,Bq “ 0 for every y, and hence (A.7)
yields µ1pz,Bq “ 0 for every z P Z. Consequently, µ1pz, ¨q ! λ for every z P Z. □

Lemma A.3. Let X and Y be random variables taking values in Borel spaces pX,X q

and pY,Yq, respectively. Let λ and λ1 be σ-finite measures on X and Y, respectively.
Suppose that LpY q ! λ1 and that the regular conditional distribution µpy, ¨q of X
given Y satisfies µpy, ¨q ! λ for LpY q-a.e. y P Y. Then the distribution of pX,Y q in
X ˆ Y is absolutely continuous with respect to λ ˆ λ1.

Proof. By if necessary changing µpy, ¨q on a LpY q-null set of y P Y, we may assume
that (A.5) holds.

Let B Ă XˆY with λˆ λ1pBq “ 0. For y P Y, let By :“ tx P X : px, yq P Bu. Let
A :“ ty P Y : λpByq ą 0u. By Fubini’s theorem,

0 “ λ ˆ λ1pBq “

ż

XˆY
1Bpx, yq dλpxq dλ1pyq “

ż

Y
λpByqdλ1pyq (A.8)

and thus λpByq “ 0 for λ1-a.e. y, i.e., λ1pAq “ 0. Since LpY q ! λ1, this implies

PpY P Aq “ 0. (A.9)

Furthermore, by (A.3),

PrpX,Y q P Bs “ E1BpX,Y q “ E
ż

X
1Bpx, Y qµpY,dxq “ E

ż

X
1BY

pxqµpY,dxq

“ EµpY,BY q. (A.10)

If Y R A, then λpBY q “ 0, and thus µpy,BY q “ 0 for every y by (A.5); in particular
µpY,BY q “ 0. By (A.9), this shows that µpY,BY q “ 0 a.s., and thus (A.10) yields
PrpX,Y q P Bs “ 0. □

For easy reference, we state also an elementary result on absolute continuity in
Rd, as in the main part of the paper this tacitly means with respect to Lebesgue
measure.

Lemma A.4. Let T : Rn Ñ Rm be a linear operator, where 1 ď m ď n. If X is a
random vector in Rn with an absolutely continuous distribution, and T is onto, then
the distribution of T pXq in Rm is absolutely continuous.
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Proof. By changes of bases, we may assume that T is the projection to the first m
coordinates. Let λd denote the Lebesgue measure in Rd. If A Ă Rm with λmpAq “ 0,
then

P
`

T pXq P A
˘

“ P
`

X P A ˆ Rn´m
˘

“ 0, (A.11)

since λnpA ˆ Rn´mq “ 0. □

Appendix B. Lp theory

The proofs in this paper frequently use martingales and L2 theory, in particular
the identity (2.17). In this appendix, we extend the results to Lp estimates for
any p ą 1 by combining the arguments in Section 3 with the Burkholder–Davis–
Gundy inequalities (see e.g. [32, Theorem 26.12]), which say that if p ě 1, then there
exist constants c “ cppq and C “ Cppq such that for every (continuous-time) local
martingale Mptq

cE rM,M s
p{2
t ď EM˚ptqp ď C E rM,M s

p{2
t , 0 ď t ď 8. (B.1)

(All constants in this appendix may depend on the exponent p.) We will mainly use
the second inequality.

This extension to Lp leads to two major results. Using the case p ą 2, we will
obtain a proof of Theorem 12.3 (and therefore Theorem 12.5) showing convergence
in Lp and thus moment convergence under natural conditions. Moreover, using the
case 1 ă p ă 2, we show that, as said in Remark 2.1, our main results hold also if
we weaken the L2 condition (A4) to Lp for some p ą 1. More precisely, we will show
the following.

Theorem B.1. Theorems 1.8 and 4.1, and their extensions Theorems 8.4–8.6, all
hold also if (A4) is replaced by the weaker

(A4p) E |ξij |
p ă 8 for all i, j P Q and some p ą 1.

Also other results in this paper, for example the results on the drawn colours in
Section 11, hold if (A4) is replaced by (A4p), provided we replace any L2-norms by
Lp norms ∥ ∥p; see also Remark 12.4 for the results on moments in Section 12. We
leave the details to the reader.

We will basically follow the arguments in the main part of the paper, replacing
L2 estimates by Lp estimates, but sometimes the details of the arguments will differ.
Moreover, we have chosen to first focus on obtaining the Lp estimates, leading to the
proof of Theorem 12.3 (partly because this seems to be of greater interest for applica-
tions); we then return to the arguments yielding a.s. convergence and Theorem B.1.
As before, we argue in several steps.

B.1. A single colour not influenced by others. We begin with a colour i that is
not influenced by any other (i.e., i P Qmin), and prove an Lp-version of Lemmas 3.3
and 8.9.

Lemma B.2. Assume (A1)–(A3), (A51) (or (A5)), and (A4p) for some p ą 1. Let
i P Qmin, and assume

either i R Q´ (i.e., ξii ě 0 a.s.) or λi ą 0. (B.2)

Then
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(i) The martingale e´λitXiptq is Lp-bounded, and thus the a.s. limit (3.13) holds
for some limit Xi, and

rX˚˚
i :“ sup

tě0

␣

e´λitXiptq
(

P Lp. (B.3)

(ii) Let pTkq8
1 be the times a ball of colour i is drawn, and let ηk be the number of

balls of colour i that are added at time Tk. Let 0 ă q ď p, and let f : R Ñ R be a
function such that E |fpξiiq|q ă 8. Finally, let µ ą 0 be such that p1^qqµ ą λi.
Then (with a.s. convergent sum)

8
ÿ

k“1

e´µTkfpηkq P Lq. (B.4)

The statement in (i) that the martingale is Lp-bounded, is (since we have p ą 1)
by Doob’s inequality equivalent to (B.3), but we state both for emphasis. Moreover,
the statements are equivalent to Xi :“ limtÑ8 e´λitXiptq P Lp. Note also that the

definition of rX˚˚
i in (B.3) agrees with (3.30) since κi “ 0 and λ˚

i “ λi when i P Qmin.
Similarly, (B.2) is equivalent to (A7) for i, but for later use we prefer the form (B.2).

Proof. If λi ď 0, then by (B.2) we have i R Q´ and thus ξii ě 0 a.s.; consequently
ξii “ 0 a.s. and Xiptq is constant so the results are trivial (with an empty sum in
(B.4)). We thus assume λi ą 0.

Step 1: (ii) for q “ 1. Since ηk
d
“ ξii and is independent of Tk, we have by

Lemma 3.2(ii), letting t Ñ 8,

E
8
ÿ

k“1

e´µTk
∣∣fpηkq

∣∣ “ ai E |fpξiiq|

ż 8

0
e´µs EXipsq ds, (B.5)

which is finite by (3.11) and the assumption µ ą λi.

Step 2: (ii) for q ă 1. We have

´

8
ÿ

k“1

e´µTk
∣∣fpηkq

∣∣¯q
ď

8
ÿ

k“1

e´qµTk
∣∣fpηkq

∣∣q P L1, (B.6)

by Step 1 applied to |f |q and qµ.

Step 3: If (i) holds for some p ą 1, then (ii) holds for all q ď p. We have already
proved the case q ď 1, so we may assume q ą 1. In particular, E |fpξiiq| ă 8.
Furthermore, by induction (on rlog2 qs), we may assume that (ii) holds if q is replaced
by q{2.

We consider first two special cases, and then the general one.

(i) E fpξiiq “ 0. In this case,

Mptq :“
8
ÿ

k“1

1tTkďtue
´µTkfpηkq (B.7)

is a local martingale with Mp0q “ 0, since each Tk is a stopping time and fpηkq

has mean 0 and is independent of FTk
. (Cf. Z2 in the proof of Lemma 3.5.) The

quadratic variation is by (2.16) (cf. (3.59))

rM,M st “

8
ÿ

k“1

1tTkďtue
´2µTkfpηkq2. (B.8)
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We have fpξiiq
2 P Lq{2, so by the induction hypothesis, we have rM,M s8 P Lq{2. (If

q{2 ă 1, note that pq{2q2µ “ qµ ą µ ą λi.) Consequently, (B.1) shows that M is an
Lq-bounded martingale, which yields (B.4).

(ii) f “ c is a constant. It suffices to consider the case c “ 1. We now define

Mptq :“
8
ÿ

k“1

1tTkďtue
´µTk ´

ż t

0
e´λisaiXipsq ds (B.9)

and note that Mptq is a local martingale (Cf. Z3 in the proof of Lemma 3.5 and
(3.55).) The quadratic variation is (cf. (3.57))

rM,M st “

8
ÿ

k“1

1tTkďtue
´2µTk . (B.10)

Hence, in this case too, the induction hypothesis yields rM,M s8 P Lq{2, and thus,
(B.1) shows that Mptq is an Lq-bounded martingale. Furthermore,

8
ÿ

k“1

e´µTk “ Mp8q `

ż 8

0
e´µsaiXipsqds. (B.11)

By assumption, (i) holds, and thus rX˚˚
i P Lp Ď Lq by (B.3). Furthermore, since

µ ą λi,
ż 8

0
e´µsXipsq ds ď

ż 8

0
e´µs`λis

rX˚˚
i ds “ pµ ´ λiq

´1
rX˚˚
i P Lq. (B.12)

This and (B.11) show that
ř

k e
´µTk P Lq, which is (B.4) in this case.

(iii) General f . We use the decomposition fpxq “
`

fpxq ´ E fpξiiq
˘

` E fpξiiq and
the two preceding cases.

Step 4: (i) holds for all p ą 1. By induction (on rlog2 ps), we may for p ą 2 assume
that (i) holds if p is replaced by p{2.

As in the proof of Lemma 3.3, we let Mptq :“ e´λitXiptq, so that Mptq is a
martingale with quadratic variation (3.18):

rM,M st “ Xip0q2 `

8
ÿ

k“1

1tTkďtue
´2λiTkη2k. (B.13)

If 1 ă p ď 2, we apply (ii) with q “ p{2 ď 1; this case holds by Step 1 or Step 2. If
p ą 2, we apply (ii) with q “ p{2 and p replaced by p{2 ą 1; this case holds by the
induction hypothesis and Step 3. In both cases, we take fpxq “ x2 and note that

E |fpξiiq|q “ E |ξii|
p ă 8. Hence, taking µ :“ 2λi, (B.4) shows that rM,M s8 P Lp{2.

Consequently, (B.1) shows thatM is an Lp-bounded martingale and that (B.3) holds.
This completes the proof. □

We will also need a quantitative version of Lemma B.2(i).

Lemma B.3. Under the assumptions of Lemma B.2, we have∥∥∥sup
tě0

∣∣e´λitXiptq
∣∣∥∥∥

p
ď CrXip0qs, (B.14)

where C does not depend on Xip0q.
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Proof. It ought to be straightforward to keep track of the norms of all quantities in
the proof of Lemma B.2, but it seems simpler to argue as follows. First, if Xip0q “ m
is an integer, then the process Xiptq can be seen as the sum of m independent and

identially distributed processes X
pkq

i ptq, k “ 1, . . . ,m, each started with X
pkq

i p0q “ 1
(but otherwise the same as Xiptq). Hence,

sup
tě0

∣∣e´λitXiptq
∣∣ ď

m
ÿ

k“1

sup
tě0

∣∣e´λitX
pkq

i ptq
∣∣, (B.15)

and (B.14) follows by (B.3) and Minkowski’s inequality.
If Xip0q is not an integer, let X 1

iptq be an independent copy of Xiptq started with
X 1

ip0q “ rXip0qs ´ Xip0q. Then Xiptq ` X 1
iptq is a copy of the same process started

with rXip0qs. Since 0 ď Xiptq ď Xiptq ` X 1
iptq, the result follows from the special

case just treated. □

B.2. A colour only produced by one other colour. Consider now the situation
in Lemmas 3.5 and 8.11, with two colours i and j such that Pi “ tju, and also
Xip0q “ 0. We fix such i and j throughout this subsection. (We may repeat the
assumptions for emphasis.)

As in Section 3.2, let 0 ă T1 ă T2 ă . . . be the times that a ball of colour j is
drawn, and let FTk

be the corresponding σ-fields.
Recall the notation (3.30). Define also, for µ P R,

κ˚pµq :“

$

’

&

’

%

κj , µ ă λ˚
j ,

κj ` 1, µ “ λ˚
j ,

0, µ ą λ˚
j .

(B.16)

Note that, by (2.9), κi “ κ˚pλiq. (We are mainly interested in the case µ “ λi, but
we use induction to prove Lemma B.5 below, and we will then need more general µ.)

Lemma B.4. Let µ P R and define

V ptq :“

ż t

0
e´µsXjpsq ds. (B.17)

Then

rV ˚˚ :“ sup
tě0

␣

pt ` 1q´κ˚pµqe´pλ˚
j ´µq`t

|V ptq|
(

ď C rX˚˚
j . (B.18)

Proof. By (3.30) we have, considering the three cases in (B.16) separately,

V ptq ď

ż t

0
ps ` 1qκjepλ˚

j ´µqs
rX˚˚
j ds ď C rX˚˚

j pt ` 1qκ
˚pµqepλ˚

j ´µq`t, (B.19)

and (B.18) follows. □

Lemma B.5. Assume (A1)–(A3), (A51) (or (A5)), and (A4p) for some p ą 1.
Suppose that i, j P Q are such that Pi “ tju and Xip0q “ 0, and suppose also that

rX˚˚
j P Lp. (B.20)

Let pζkq8
1 be a sequence of random variables with the same distribution such that ζk

is independent of FTk
. Let µ P R be such that

#

µ ě 0, if i R Q´,

µ _ λ˚
j ą 0, if i P Q´,

(B.21)
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and let

Zptq :“
8
ÿ

k“1

1tTkďtue
´µTkζk. (B.22)

If 1 ă q ď p and E |ζk|q ă 8, then

rZ˚˚ :“ sup
tě0

␣

pt ` 1q´κ˚pµqe´pλ˚
j ´µq`t

|Zptq|
(

P Lq. (B.23)

Proof. The proof is similar to Step 5 in the proof of Lemma 3.5 (which essentially is
the case q “ 2 of the present lemma), now using (B.1).

By induction (on rlog2 qs), we may for q ą 2 assume that the lemma holds for q{2.

Case 1: E ζk “ 0. In this case, Zptq is a local martingale, for the same reason as
Mptq in (B.7). Its quadratic variation is, by (2.16) again,

rZ,Zst “

8
ÿ

k“1

1tTkďtue
´2µTk |ζk|2. (B.24)

We consider two subcases.

(i) 1 ă q ď 2. By (B.1), together with (B.24) and the independence of ζk and Tk,
we have, since q{2 ď 1,

EZ˚ptqq ď C E rZ,Zs
q{2
t “ C E

´

8
ÿ

k“1

1tTkďtue
´2µTk |ζk|2

¯q{2

ď C E
8
ÿ

k“1

1tTkďtue
´qµTk |ζk|q. (B.25)

Hence, Lemma 3.2(ii) and (3.30) yield

EZ˚ptqq ď Caj E
ż t

0
e´qµsXjpsq ds ď C E rX˚˚

j

ż t

0
ps ` 1qκjepλ˚

j ´qµqs ds. (B.26)

In the sequel, we allow constants C to depend on ∥ rX˚˚
j ∥p (which is finite by assump-

tion); hence we may absorb E rX˚˚
j into C in (B.26).

We consider three subsubcases:

(i)(a) λ˚
j ă qµ. In this case, we may take t “ 8 in (B.26) and obtain Z˚p8q P Lq.

The result (B.23) follows since rZ˚˚ ď Z˚p8q.

(i)(b) λ˚
j ě qµ and λ˚

j ą 0. Define, similarly to (3.70),

rZ:pnq :“ sup
n´1ďtďn

pt ` 1q´κ˚pµqe´pλ˚
j ´µqt

|Zptq| ď Cn´κ˚pµqe´pλ˚
j ´µqnZ˚pnq. (B.27)

By (B.26), we thus have

E rZ:pnqq ď Cn´qκ˚pµqe´qpλ˚
j ´µqn

ż n

0
ps ` 1qκjepλ˚

j ´qµqs ds

ď Cn1`κj´qκ˚pµqep´qpλ˚
j ´µq`λ˚

j ´qµqn
“ Cn1`κj´qκ˚pµqe´pq´1qλ˚

j n. (B.28)

We have pq ´ 1qλ˚
j ą 0, and thus (B.28) implies

E p rZ˚˚qq ď E
8
ÿ

n“1

rZ:pnqq ă 8, (B.29)
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which shows (B.23).

(i)(c) λ˚
j ě qµ and λ˚

j ď 0. Then also µ ď 0, and thus µ _ λ˚
j ď 0. By (B.21), we

must have i R Q´ and µ “ 0, and then also λ˚
j “ 0. Hence, κpµq “ κj ` 1 by (B.16).

We define, similarly to (3.74),

rZ;pnq :“ sup
2n´1ďtď2n

t´κ˚pµqe´pλ˚
j ´µqt

|Zptq| “ sup
2n´1ďtď2n

t´κj´1|Zptq|. (B.30)

Similarly to (B.28), it follows from (B.26) that

E rZ;pnqq ď C2´qpκj`1qn

ż 2n

0
ps ` 1qκj ds ď C2p1´qqpκj`1qn ď C2´pq´1qn. (B.31)

Hence, (B.23) follows by

E p rZ˚˚qq ď EZ˚p1qq ` E
8
ÿ

n“1

rZ;pnqq ă 8, (B.32)

since EZ˚p1qq ă 8 by (B.26).

(ii) q ą 2. By (B.1), together with (B.24) and the induction hypothesis (for q{2

and 2µ, using E |ζ2k |q{2 ă 8)

EZ˚ptqq ď C E rZ,Zs
q{2
t ď C

`

pt ` 1qκ
˚p2µqepλ˚

j ´2µq`t˘q{2
. (B.33)

Again, we consider three subsubcases:

(ii)(a) λ˚
j ă 2µ. Then κ˚p2µq “ 0 by (B.16), and thus we may let t Ñ 8 in (B.33)

and obtain EZ˚p8qq ă 8, which yields (B.23) since rZ˚˚ ď Z˚p8q.

(ii)(b) λ˚
j ě 2µ and λ˚

j ą 0. Define again rZ:pnq by (B.27). Then, by (B.33),

E rZ:pnqq ď Cn´qκ˚pµq`
q
2
κ˚p2µqep´qpλ˚

j ´µq`
q
2

pλ˚
j ´2µqqn

ď Cn´qκ˚pµq`
q
2
κ˚p2µqe´

q
2
λ˚
j n. (B.34)

Hence, we have again (B.29), and thus (B.23).

(ii)(c) λ˚
j ě 2µ and λ˚

j ď 0. Again, by (B.21), we must have i R Q´ and µ “ 0, and

then also λ˚
j “ 0. Hence, κ˚pµq “ κ˚p2µq “ κj ` 1. Define again rZ;pnq by (B.30).

Then, by (B.33),

E rZ;pnqq ď C2p´qpκj`1q`
q
2
κ˚p2µqqn “ C2´

q
2

pκj`1qn. (B.35)

Consequently, (B.32) holds, and thus (B.23).

Case 2: ζk “ c is a constant. We may assume c “ 1.
Let V ptq be as in (B.17) and define

Mptq :“ Zptq ´ ajV ptq “

8
ÿ

k“1

1tTkďtue
´µTk ´ aj

ż t

0
e´µsXjpsqds. (B.36)

Then Mptq is a local martingale by the same argument as for (B.9) (i.e., as for Z3

in the proof of Lemma 3.5), and its quadratic variation is (cf. (3.57))

rM,M st “

8
ÿ

k“1

1tTkďtue
´2µTk . (B.37)
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This is the same as in (B.24), except for the factor |ζk|2 there (or the same if we
choose ζk “ ˘1). Consequently, the argument in Case 1 yields

ĂM˚˚ :“ sup
tě0

␣

pt ` 1q´κ˚pµqe´pλ˚
j ´µq`t

|Mptq|
(

P Lq. (B.38)

Furthermore, (B.18) and the assumption (B.20) yield rV ˚˚ P Lp Ď Lq. Consequently,
(B.23) follows by (B.36).

Case 3: General ζk. The result follows from Cases 1 and 2 by the decomposition
ζk “ pζk ´ E ζkq ` E ζk. □

Lemma B.6. Assume (A1)–(A3), (A51) (or (A5)), and (A4p) for some p ą 1.
Suppose that i, j P Q are such that Pi “ tju and Xip0q “ 0, and suppose also that

(B.2) holds. If rX˚˚
j P Lp, then rX˚˚

i P Lp.

Proof. We use again the decomposition (3.28), where we recall that Ykptq denote
copies of the one-colour process in Section 3.1, and that the process Ykptq is inde-
pendent of FTk

. Let

ζk :“ sup
tě0

␣

e´λitYkptq
(

. (B.39)

Then (3.28) implies

e´λitXiptq “

8
ÿ

k“1

1tTkďtue
´λiTk ¨ e´λipt´TkqYkpt ´ Tkq

ď

8
ÿ

k“1

1tTkďtue
´λiTkζk “: Zptq. (B.40)

Let ηk “ Ykp0q, and recall that ηk
d
“ ξji P Lp. Then, conditioning on ηk,

Lemma B.3 applies to Ykptq and shows that

E
`

ζpk | ηk
˘

ď Crηksp ď Cpηk ` 1qp. (B.41)

Consequently, using (A4p),

E ζpk ď C E pηk ` 1qp “ E pξji ` 1qp ă 8. (B.42)

We apply Lemma B.5 to the sum Zptq in (B.40), taking q “ p and µ “ λi. Note
that then (B.21) holds: if i R Q´ then ξii ě 0 a.s., and thus µ “ λi ě 0; if i P Q´ then
µ “ λi ą 0 by our assumption (B.2). Hence, (B.23) holds. Furthermore, κ˚pµq “ κi
and pλ˚

j ´ µq` “ pλ˚
i ´ λiq, as is easily verified by considering the three cases in

(B.16) (and after (3.40)) separately. Hence, (3.30), (B.40), and (B.23) yield

rX˚˚
i “ sup

tě0

␣

pt ` 1q´κie´pλ˚
i ´λiqt ¨ e´λitXiptq

(

ď rZ˚˚ P Lp. (B.43)

□

B.3. The general case for a single colour. We now consider any colour i P Q.

Lemma B.7. Assume (A1)–(A3), either
`

(A51) and (A7)
˘

or (A5), and (A4p) for

some p ą 1. Let i P Q, and assume that for every j P Pi, we have rX˚˚
j P Lp. Then

rX˚˚
i P Lp.
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Proof. Since (A5) implies (A51) and (A7), these hold in any case. We consider two
cases.

Case 1: (B.2) holds, i.e. i R Q´ or λi ą 0. As in the proof of Lemmas 3.7 and 8.14,
we split the colour i into subcolours i0 and ij , j P Pi. We then use Lemma B.2(i)
for i0 and Lemma B.6 for every ij , and the result follows by (3.91).

Case 2: i P Q´ and λi ď 0. Then (A7) yields λ˚
i ą 0. Hence λ˚

i ą λi, and since
λ˚
i “ λi _ maxjPPi

λ˚
j , we have Pi ‰ H and

λ˚
i “ max

jPPi

λ˚
j . (B.44)

Consider a modification ξ̄ii of ξii such that ξ̄ii ě ξii a.s., and λ̄i :“ ai E ξ̄ii P p0, λ˚
i q.

(For example, let ξ̄ii :“ ξii _ ξ̃ where ξ̃ P t˘1u is independent of ξii and Ppξ̃ “ 1q P

p0, 1s is chosen suitably.) Modify the urn by replacing ξii by ξ̄ii; this does not affect
any colour j ≺ i; in particular Xjptq and all draws of colour j remain the same for
every j P Pi, but at each draw of colour i we may add more balls of colour i; hence,
letting Xiptq denote the number of balls of colour i in the modified urn, we have,
using an obvious coupling of the two urns,

Xiptq ě Xiptq, t ě 0. (B.45)

The modified urn satisfies all our conditions in the present lemma, and since λ̄i ą 0,

the already proven Case 1 shows that (with obvious notation) rX
˚˚

i P Lp. Further-
more, λ̄i ă λ˚

i , and thus (B.44) implies

λ̄˚
i :“ λ̄i _ max

jPPi

λ˚
j “ λ̄i _ λ˚

i “ λ˚
i . (B.46)

Similarly, using (2.9), we have κ̄i “ κi. Consequently, the exponents in (3.30) are
the same for Xiptq and Xiptq, and thus (B.45) implies

rX˚˚
i ď

rX
˚˚

i . (B.47)

Since, as just shown, rX
˚˚

i P Lp, this completes the proof. □

B.4. Lp bounds and convergence.

Lemma B.8. Assume (A1)–(A3), either
`

(A51) and (A7)
˘

or (A5), and (A4p) for

some p ą 1. Then rX˚˚
i P Lp for every i P Q.

Proof. By Lemma B.7 and induction on the colour i. □

Proof of Theorem 12.3. By Lemma B.8, rX˚˚
j P Lp; hence it follows, exactly as for

the case p “ 2 in Theorem 12.2, that the collection
␣

| rXiptq|p : t ě 1
(

is uniformly
integrable, and thus the convergence (4.1) holds also in Lp. □

Once we have proved Theorem B.1, the proof of Theorem 12.3 applies to any
p ą 1, as claimed in Remark 12.4.
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B.5. A.s. convergence. We now turn Theorem B.1, i.e., that our a.s. convergence
results hold also if (A4) is replaced by (A4p). We may assume 1 ă p ă 2, since for
p ě 2 the assumption (A4p) implies (A4), and the results are already proven.

We begin by extending Lemma 8.9 to 1 ă p ă 2, complementing Lemmas B.2 and
B.3 for the case excluded there when (B.2) does not hold.

Lemma B.9. Assume (A1)–(A3), (A51), and (A4p) for some p P p1, 2s. Let i P Qmin

and assume λi ď 0. Let x0 :“ Xip0q.

(i) If λi “ 0, then Xiptq is a martingale with

Xiptq
a.s.
ÝÑ Xi “ 0, as t Ñ 8, (B.48)

EX˚
i ptqp ď Cxp0 ` Cx0t, for every t ă 8. (B.49)

Furthermore, for every δ ą 0,

E
`

sup
tě0

te´δtXiptqu
˘p

ă 8. (B.50)

(ii) If λi ă 0, then, with Mptq :“ e´λitXiptq,

Xiptq
a.s.
ÝÑ Xi “ 0, as t Ñ 8, (B.51)

EXiptq
p ď Cxp0e

λit, (B.52)

EM˚ptqp ď Cxp0e
´pp´1qλit. (B.53)

Proof. In both cases, Xiptq is a (sub)critical continuous-time branching process and
therefore a.s. dies out, see Remark 8.2, which gives (B.48) and (B.51).

Recall from (3.12) that Mptq :“ e´λitXiptq is a martingale (this does not require
(A4), only E ξii ă 8), and hence, or by (3.11),

EXiptq “ eλit EMptq “ eλitMp0q “ x0e
λit. (B.54)

It follows from (3.18) that

rM,M s
p{2
t ď xp0 `

8
ÿ

k“1

1tTkďtue
´pλiTkηpk, (B.55)

and hence, using Lemma 3.2(ii) and (B.54),

E rM,M s
p{2
t ď xp0 ` C

ż t

0
e´pλis EXipsqds “ xp0 ` Cx0

ż t

0
e´pp´1qλis ds. (B.56)

If λi “ 0, this yields (B.49) by (B.1); then (B.50) follows as in (8.12).
If λi ă 0, then (B.56) and (B.1) yield, recalling that x0 is an integer,

EM˚ptqp ď Cxp0 ` Cx0e
´pp´1qλit ď Cxp0e

´pp´1qλit (B.57)

and thus

EXiptq
p “ epλit EM˚ptqp ď Cxp0e

λit, (B.58)

showing (B.53) and (B.52). □

Proof of Theorem B.1. As said above, we may assume 1 ă p ă 2. It suffices to prove
the continuous-time versions Theorem 4.1 and 8.6; then the proofs of Theorems 1.8,
8.4, and 8.5 are as before.

By Lemma B.8, we have rX˚˚
i P Lp for every i P Q, but it remains to show that

rXiptq converges. We follow the proof of Theorem 4.1 (and Theorem 8.6) step by step
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in the claims below which extend the limit statements in the lemmas in Section 3
and Section 8 (recall that Lp versions of the L2 estimates there already are given);

we omit some details. Assumptions on ∥ rX˚˚
j ∥2 are replaced by ∥ rX˚˚

j ∥p (and hold in

our case by Lemma B.8). We assume in the sequel (A1)–(A3), (A51) (or (A5)), and
(A4p) for some p P p1, 2s. (But not (A7) unless said so.)

Note first that (3.11)–(3.12) still hold. (In fact, they require only the first moment
E ξii ă 8.)

(i) In Lemmas 3.3 and 8.9, the convergence rXi :“ e´λitXiptq
a.s.
ÝÑ Xi still holds. We

still have Xi ą 0 a.s. when i R Q´, and PpXi ą 0q ą 0 when if i P Q´ and λi ą 0.

Proof. The convergence rXiptq
a.s.
ÝÑ Xi for some limit Xi P Lp is shown in Lemma B.2

or B.9. Furthermore, if i R Q´, then the argument in the proof of Lemma 3.3 shows
that Xi ą 0 a.s.; otherwise, if λi ą 0, then EXi “ Xip0q ą 0 and thus at least
PpXi ą 0q ą 0. □

(ii) In Lemmas 3.5 and 8.11, the convergence rXiptq
a.s.
ÝÑ Xi still holds; furthermore,

Xj ą 0 ùñ Xi ą 0 a.s.

Proof. We argue as in the proof of Lemmas 3.5 and 8.11, using again the decom-
positions (3.40) and (3.43). For Z4ptq, the argument in (3.49)–(3.54) holds without
changes. Also for Z3ptq the argument in the proof of Lemma 3.5 still holds, since
the L2 estimate (3.58) remains valid.

The remaining terms Z1ptq and Z2ptq are still local martingales. For Z2ptq we have
by the definition (3.59), (B.1), Lemma 3.2(ii), and (3.30)

EZ˚
2 ptqp ď C E rZ2, Z2s

p{2
t ď C E

8
ÿ

k“1

1tTkďtue
´pλiTk |ηk ´ rji|

p

“ C E
ż t

0
e´pλisXjpsqds

ď C E rX˚˚
j

ż t

0
ps ` 1qκjepλ˚

j ´pλiqs ds. (B.59)

We now argue as in Step 5 of the proof of Lemma 3.5, using (B.59) instead of (3.68)
and Lp instead of L2; we replace 2 by p in all exponents, and the cases (i1) and (ii1)
are replaced by λ˚

j ă pλi and (λ˚
j ě pλi and λ˚

j ą 0). We obtain as before that
rZ2ptq

a.s.
ÝÑ Z2 as t Ñ 8, where the limit Z2 “ 0 except in case (i).

For Z1ptq we use (3.64) and both directions of (B.1) to obtain

E |Z˚
1 ptq|p ď C E rZ1, Z1s

p{2
t ď C E

8
ÿ

k“1

rZ
pkq

1 , Z
pkq

1 s
p{2
t ď C E

8
ÿ

k“1

|Z
pkq˚

1 ptq|p. (B.60)

The definition (3.62) yields∣∣Zpkq˚

1 ptq
∣∣p “ 1ttěTkue

´pλiTk |rY ˚
k pt ´ Tkq|p, (B.61)

where the martingale rYkptq :“ e´λitYkptq ´ Ykp0q is independent of Tk, and Ykptq is
a copy of the one-colour process in Section 3.1 and Lemma B.9. Thus (B.60) and
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Lemma 3.2(ii) yield

E |Z˚
1 ptq|p ď C E

8
ÿ

k“1

1ttěTkue
´pλiTk

rY ˚
k ptqp

“ C E
“

rY ˚
1 ptqp

‰

E
ż t

0
e´pλisXjpsq ds. (B.62)

We separate three cases, as in the proof of Lemma 8.11:

(1) i R Q´ or λi ą 0: This is condition (B.2); thus Lemma B.3 applies to Ykptq
conditionally on ηk, which gives

E
“

rY ˚
k ptqp | ηk

‰

ď Crηksp, (B.63)

and consequently

E
“

rY ˚
1 ptqp

‰

ď C. (B.64)

Thus (B.62) yields the same estimate (B.59) as for Z˚
2 ptq, and the argument

after (B.59) applies to Z1 too and yields rZ1ptq
a.s.
ÝÑ Z1 for some Z1, with Z1 “ 0

except in case (i).
(2) i P Q´ and λi “ 0: (As in the proof of Lemma 8.11, the assumptions then

yield λ˚
j “ λ˚

i ą 0.) In this case, rYkptq “ Ykptq ´ Ykp0q where Ykptq is a copy of

Xiptq in Lemma B.9. Thus, (B.49) yields, recalling that now ηk is an integer,
for t ě 1,

E
“

rY ˚
k ptqp | ηk

‰

ď Cηpkt, (B.65)

and consequently

E
“

rY ˚
1 ptqp

‰

ď Ct. (B.66)

This and (B.62) yield, still for t ě 1,

E |Z˚
1 ptq|p ď CtE

ż t

0
e´pλisXjpsq ds ď CtE rX˚˚

j

ż t

0
ps ` 1qκjepλ˚

j ´pλiqs ds

ď Ctκj`1epλ˚
j ´pλiqt. (B.67)

This differs from (B.59) by an extra factor t, but the argument after (B.59) (in

this case modifications of (3.70)–(3.73)) still works and yields rZ1ptq
a.s.
ÝÑ 0.

(3) λi ă 0: (The assumptions yield λ˚
j “ λ˚

i ą 0 in this case too.) In this case, we

condition on Tk and ηk and then use (B.61) and (B.53), yielding

E
“

|Zpkq˚

1 ptq|p | Tk, ηk
‰

“ 1ttěTkue
´pλiTk E

“

|rY ˚
k pt ´ Tkq|p | Tk, ηk

‰

ď C1ttěTkue
´pλiTkηpke

´pp´1qλipt´Tkq

“ C1ttěTkue
´λiTke´pp´1qλitηpk. (B.68)

Hence, (B.60), Lemma 3.2(ii), and (3.30) yield

E |Z˚
1 ptq|p ď C E

8
ÿ

k“1

E
“

|Zpkq˚

1 ptq|p | Tk, ηk
‰

ď Ce´pp´1qλit E
8
ÿ

k“1

1ttěTkue
´λiTkηpk

“ Ce´pp´1qλit E
ż t

0
e´λisXjpsqds
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ď Ce´pp´1qλit E rX˚˚
j

ż t

0
ps ` 1qκjepλ˚

j ´λiqs ds

ď Cpt ` 1qκjepλ˚
j ´pλiqt. (B.69)

With rZ:

ℓ pnq defined in (3.70), we again modify (3.71) using pth powers, now
using (B.69) instead of (3.68), and it follows similarly to (3.72) that

E
8
ÿ

n“1

rZ:

ℓ pnqp ă 8. (B.70)

Hence, rZ1
a.s.
ÝÑ 0.

Finally, in all cases, it follows from (3.43) that rXiptq
a.s.
ÝÑ Xi. Furthermore, we

have Xj ą 0 ùñ Xi ą 0 a.s. by the argument in Step 6 of Lemma 3.5, if necessary
modified as in the proof of Lemma 8.11. □

(iii) In Lemma 8.13, e´δtXiptq
a.s.
ÝÑ 0 still holds.

Proof. The same as for Lemma 8.13. □

(iv) In Lemmas 3.7 and 8.14, rXi
a.s.
ÝÑ Xi still holds, and so do the claims on Xi ą 0.

Proof. The same as for Lemmas 3.7 and 8.14, using the claims above. Note that the
assumptions now include (A7). □

To complete the proof of Theorem B.1, we now obtain by induction from (iv)

above that for every i P Q we have rXi Ñ Xi as t Ñ 8, i.e., (4.1). This proves
that Theorems 4.1 and 8.6 hold with (A4) replaced by (A4p), which as said above
completes the proof. □

Appendix C. Proof of (14.80)

In this appendix we prove (14.80) in Example 14.14, using results from Markov
process theory.

Suppose, more generally, that the Pólya urn in Example 14.14 starts with w0 “

α ą 0 white balls and b0 ě 0 black balls. Thus W ptq “ α for all t ě 0. (We do
not have to assume that α is an integer, although we must have b0 P Zě0, since we
allow subtractions.) The stochastic process Bptq is a time-homogeneous pure-jump
Markov process on Zě0 with jumps

#

`1 with intensity α ` 1
2Bptq,

´1 with intensity 1
2Bptq.

(C.1)

We define for any real ℓ ą 0 the scaled process

rBℓptq :“ ℓ´1Bpℓtq. (C.2)

It follows from (C.1) that rBℓ is a pure-jump Markov process with jumps
#

`1{ℓ with intensity ℓ
`

α ` 1
2Bpℓtq

˘

“ αℓ ` ℓ2

2
rBℓptq,

´1{ℓ with intensity ℓ2

2
rBℓptq.

(C.3)
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In other words, the generator Aℓ of the Markov process rBℓ is given by, see e.g. [32,
Theorem 19.23],

Aℓfpxq “ αℓ
`

fpx ` ℓ´1q ´ fpxq
˘

` x
ℓ2

2

`

fpx ` ℓ´1q ` fpx ´ ℓ´1q ´ 2fpxq
˘

. (C.4)

Since Bptq takes its values in Zě0, rBℓptq is a Markov process on the state space
ℓ´1Zě0 “ t0, ℓ´1, 2ℓ´1, . . . u. For technical reasons, we extend it to a pure-jump
Markov process on r0,8q by defining the intensities to be as in (C.3) whenever
rBℓptq ě ℓ´1; otherwise, if rBℓptq “ b ă 1{ℓ, we jump `1{ℓ with intensity αℓ and

˘b with intensities ℓ2

2 b each. (This makes no difference if we start with an integer
number of black balls.) The generator of the extended process is

Aℓfpxq “ αℓ
`

fpx ` ℓ´1q ´ fpxq
˘

` x
ℓ2

2

`

fpx ` hℓ,xq ` fpx ´ hℓ,xq ´ 2fpxq
˘

, (C.5)

where hℓ,x :“ ℓ´1 ^ x.
Let C2r0,8q be the space of all continuous functions f on r0,8q that have two

continuous derivatives in p0,8q with f 1 and f2 extending continuously to r0,8q. Let
further

C :“
␣

f P C2r0,8q : fpxq, f 1pxq, f2pxq “ Ope´εxq for some ε ą 0
(

. (C.6)

It follows from (C.5) and Taylor’s formula that if f P C, then as ℓ Ñ 8,

Aℓfpxq Ñ Afpxq :“ αf 1pxq `
x

2
f2pxq (C.7)

uniformly in x P r0,8q, and thus in the space C0r0,8q. Note that 4A “ 2x d2

dx2 `4α d
dx

is the generator of the squared Bessel process BESQδ with dimension δ :“ 4α, see

[44, p. 443 and Proposition VII.(1.7)]; hence A is the generator of BESQ4αpt{4q
d
“

1
4BESQ

4αptq [44, Proposition XI.(1.6)]; It is well known that BESQ4αptq is a Feller
process on r0,8q [44, p. 442], and it is easily verified directly that each Aℓ also is
a Feller process on r0,8q. The transition probabilities qδt px, yq of BESQδ are given
explicitly in [44, XI.(1.4)], and a simple calculation using [40, (10.29.4)] shows that

B

Bx
qδt px, yq “

1

2t

`

qδ`2
t px, yq ´ qδt px, yq

˘

, (C.8)

and hence

B2

Bx2
qδt px, yq “

1

4t2
`

qδ`4
t px, yq ´ 2qδ`2

t px, yq ` qδt px, yq
˘

. (C.9)

Since BESQδ is a Feller process for every δ ą 0, the transition operator T δ
t fpxq :“

ş

qδt px, yqfpyq dy maps C0r0,8q into itself for every t ą 0, and it follows from (C.8)–

(C.9) that T δ
t maps C0r0,8q into C2r0,8q; moreover, using also again the explicit

form of qδt in [44, XI.(1.4)], it is easy to see that Tt maps C into itself. Hence, it
follows from [32, Proposition 19.9] that C is a core for the generator 4A, and thus
also for A. Consequently, (C.7) and [32, Theorem 19.25] show the following.

Theorem C.1. Let the Pólya urn in Example 14.14 start with w0 “ α ą 0 white
balls and b0 “ 0 black balls. Then, as ℓ Ñ 8, we have

ℓ´1Bpℓtq “ rBℓptq
d

ÝÑ
1

4
BESQ4αptq in Dr0,8q. (C.10)
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The squared Bessel process BESQ4α in (C.10) is the standard one starting at 0.
More generally, if we start the urn with α white balls and βℓ` opℓq black balls, then
the same proof shows that (C.10) holds with the initial value 1

4BESQ
4αp0q “ β.
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