
ON SEMI-RESTRICTED ROCK, PAPER, SCISSORS

SVANTE JANSON

Abstract. Spiro, Surya and Zeng (Electron. J. Combin. 2023) recently studied
a semi-restricted variant of the well-known game Rock, Paper, Scissors; in this
variant the game is played for 3n rounds, but one of the two players is restricted
and has to use each of the three moves exactly n times. They show that the optimal
strategy for the restricted player is the greedy strategy, and show that it results
in an expected score for the unrestricted player Θp

?
nq; they conjecture, based on

numerical evidence, that the expectation is « 1.46
?
n. We analyse the result of the

strategy further and show that the average is „ c
?
n with c “ 3

?
3{2

?
π

.
“ 1.466,

verifying the conjecture.
The proof is based on considering the case when both players play greedily,

which leads to the same expectation as optimal play; for this case we also find the
asymptotic distribution of the score, and compute its variance.

1. Introduction

A semi-restricted variant of the well-known game Rock, Paper, Scissors (RPS) was
recently studied by Spiro, Surya and Zeng [6]. In the standard version of RPS, two
players simultaneously select one of the three choices rock, paper, scissors, where
paper beats rock, scissors beats paper, and rock beats scissors; if both select the
same, the result is a draw. The game is symmetric, so there is obviously no advantage
to any of the players. It is easy to see that the optimal strategy for both players is
to choose randomly, with equal probability for each choice (see further Section 2.2).

In the semi-restricted variant in [6], two players R (restricted) and N (normal)
agree to play 3n rounds of RPS for some integer n, but R is restricted to choose rock,
paper, and scissors exactly n times each, while N plays without restriction. Clearly,
the restriction is a disadvantage for R. (In particular, N will always win the last
round, since R then has only one choice, and N knows which one.) How large is this
disadvantage? More precisely, let Sn be the final score of N, defined as the number
of rounds won by N minus the number lost. We assume (as [6]) that the objective
of both players is the expectation ESn, which N wants as high as possible, while R
wants the opposite. Semi-restricted RPS is a two-player zero-sum game, and thus
by the theory of von Neumann [5], each player has an optimal randomized strategy,
see further e.g. [4, Chapter 2]. We use Sop

n to denote the final score when both
players use their optimal strategies. (This is a random variable, since the strategies
are randomized.)

The main result of [6] is that the unique optimal strategy for R is to play greedily,
i.e., as if each round were the last; see further Section 2.2. (This is far from obvious,
and rather surprising.) It is also shown in [6] that with optimal strategies, the
expected gain ESop

n “ Θp
?
nq, and it is asked [6, Question 21] whether ESop

n „ c
?
n
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for some constant c ą 0 as n Ñ 8; [6] says further that numerical calculations for
n ď 100 suggest that this might hold with c « 1.46.

The main purpose of the present note is to verify this conjecture, and to identify
the constant.

Theorem 1.1. For semi-restricted RPS played over 3n rounds, the expected score
for N with optimal plays for both players is, as n Ñ 8,

ESop
n „

c

27n

4π
“

3
?

3

2
?
π

?
n. (1.1)

The constant 3
?

3{p2
?
πq

.
“ 1.4658, which verifies also the numerical conjecture

in [6].
The optimal strategy for R is thus the greedy strategy. Given that R uses this

strategy, there are many strategies for N that give the optimal expectation ESop
n .

One of them is the greedy strategy for N, but as pointed out to me by Sam Spiro
[personal communication], the greedy strategy is not the optimal strategy for N; see
Section 2.3. We let Sgr

n denote Sn when both players play with their greedy strategies.
This is also a random variable, and as just said, we have

ESgr
n “ ESop

n . (1.2)

The random variable Sgr
n can be analysed asymptotically using standard tools

from probability theory. This is done in Sections 3 and 4 and yields the asymptotics
of ESgr

n ; Theorem 1.1 then follows by (1.2). Moreover, our analysis also yields the
asymptotic distribution of Sgr

n , see Theorem 4.1.
In Section 5 we give some partial results on the asymptotic distribution of Sn if R

uses the optimal (greedy) strategy and N uses a rather arbitrary strategy, including
the case Sop

n when both play optimally. We leave as an open problem whether Sop
n

and Sgr
n have the same asymptotic distribution.

In Section 6, we discuss the probability that the disadvantaged player R never-
theless wins the game; we compute it for the case that both players play greedily,
but leave the case of optimal play for the objective of maximizing the probability of
winning as an open problem.

Acknowledgement. I am grateful to Sam Spiro for pointing out a serious error in
a previous version, and for showing me Example 2.1. I also thank an anonymous
referee for helpful comments.

2. Preliminaries

2.1. Notation. The three choices rock, paper, scissors will be numbered 1, 2, 3; thus
i ` 1 beats i pmod 3q.

The random variable Sptq is the score of N after round t “ 1, . . . , 3n, i.e., the
number of rounds won by N so far minus the number of rounds won by R. As in the
introduction, Sn :“ Sp3nq is the score at the end of the game. (Except for Sn, we do
not show n explicitly in the notation, although Sptq and many variables introduced
below depend on n.)

If Xn is a sequence of random variables, and an a sequence of (positive) numbers,
we write Xn “ Oppanq if the family tXn{anu is bounded in probability (also called
tight), i.e., if for every ε ą 0 there exists C such that Pp|Xn| ą Canq ă ε for all
n. Furthermore, we write Xn “ OLppanq (where p ą 0 is a parameter) if the family
tXn{anu is bounded in Lp, i.e., supn E |Xn{an|p ă 8.
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Np0, σ2q denotes the normal distribution with mean 0 and variance σ2 ě 0. More
generally, if Σ is a symmetric positive semidefinite dˆ d matrix, then Np0,Σq is the
normal distribution with mean 0 and covariance matrix Σ; this is a distribution of a
random vector in Rd.

The basis vectors in R3 are denoted e1 :“ p1, 0, 0q, e2 :“ p0, 1, 0q, e3 :“ p0, 0, 1q.
We use Cp, C

1
p, C

2
p for some constants that depend on the parameter p.

Unspecified limits are as n Ñ 8.

2.2. The greedy strategy. Recall that in any two-person zero-sum game, each
player has an optimal strategy which in general is randomized; the different alter-
natives are selected with some probabilities chosen such that they maximize the
minimum over all strategies of the opponent of the expected gain; see [5] and e.g.
[4].

As said above, it was shown by Spiro, Surya and Zeng [6] that in semi-restricted
RPS, the best strategy of R is to play greedily, i.e., to analyse each round separately
and use the optimal strategy for the expected score in that round. (This is far
from obvious, since the best play in one specific round may be punished by lower
expected score in later rounds; nevertheless, [6] shows that the expected later gains
by any alternative strategy are offset by the immediate expected loss.) This optimal
strategy for a single round is easy to find (as was done in [6]):

(i) If R still has all three choices available, then the optimal strategy is (obviously,
by symmetry), to choose one of them randomly, with probability 1{3 each. And
the best strategy for N is the same. (This game was one of the examples in the
original paper by von Neumann [5].) The outcome for N is ´1, 0, or `1 with
probability 1{3 each.

(ii) If R has only two choices available, say 1 (rock) and 2 (paper), then the game is
described by the matrix in Figure 1. N should never play 1 (which in this case
can lose but never win). A simple calculation shows [6] that the best strategy
for R is to play 1 with probability 1{3 and 2 with probability 2{3; similarly N
plays 2 with probability 2{3 and 3 with probability 1{3. The expected gain for
N is 1{3.

rock paper scissors
rock 0 1 ´1

paper ´1 0 1

Figure 1. Score matrix for N when R is restricted to trock, paperu;
rows show the move by R; columns the move by N.

(iii) If R has only one choice, then R has to play that, and N obviously plays the
next choice (mod 3) and is sure to win. Gain for N is 1.

2.3. Strategies for N. Suppose that R plays optimally, i.e., greedily. Then R plays
each time with a random move that depends only on the available moves, and thus
on the history of the moves made by R. However, these moves are not affected by the
moves made by N. Hence, the moves made by R will be the same regardless of the
strategy chosen by N. It thus follows from the discussion above of the greedy strategy
that the expected gain for N will be the same for any strategy of N that does not do
anything stupid (here and in the sequel meaning making a move that cannot win);
for example, as long as R is able to make all three moves, the expected gain of each
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round is 0 for any strategy of N. In particular, the expected gain for N when both
players use their optimal strategies is the same as when both play greedily, which
shows (1.2). Nevertheless, the greedy strategy is not optimal for N, since it may be
worse if R chooses a different strategy as shown by the following simple example.

Example 2.1. (Sam Spiro, personal communication.) Suppose that N plays with
the greedy strategy described above. If R chooses to play (deterministically) 1, 2, 3, 1,
2, 3, . . . for all 3n rounds, then for all but the last two rounds, the greedy strategy
by N makes him play randomly, with probability 1{3 for each choice, and therefore
the expected gain is 0 for each round. Hence the total gain ESn will in this case be
only 1{3 ` 1 “ 4{3 (from the last two rounds), while we know from von Neumann’s
theorem [5] that N has some strategy guaranteeing an expected gain of at least
ESop

n against every strategy of R. (Note that ESop
n ą 4{3 at least for large n by

Theorem 1.1. In fact, it is can easily be seen from (3.3) below that the inequality
holds for every n ě 2.) △

It seems likely that the optimal strategy of N is very complicated. See further
Section 5.1.

3. Analysis for the greedy strategies

In this section we assume that R uses the greedy strategy, which is known to be
optimal. For simplicity, we assume here that also N uses the greedy strategy. In
fact, most of the analysis is valid for almost any strategy by N; we discuss the few
but important differences in Section 5.

Let Nt,i be the number of times that R plays i during rounds 1, . . . , t. The vector
Nt “ pNt,iq

3
i“1 then evolves as a random walk which changes character each time

some Nt,i hits n and R thus cannot choose i in the future. We let Tj , j “ 1, 2, 3,
be the first time that R has used up j of the three choices; in particular, T3 :“ 3n,
when the game ends.

Since R uses the greedy strategy described above, Nt evolves as follows, for t “

0, . . . , n, starting at N0 “ p0, 0, 0q:

I. A random walk N0, . . . ,NT1 with increments that are independent and uni-
formly chosen from te1, e2, e3u, until

T1 :“ inf
␣

t : Nt,i “ n for some i P t1, 2, 3u
(

. (3.1)

II. A random walk NT1 , . . . ,NT2 with increments chosen independently and ran-
domly from the remaining two choices by the strategy above; for example, if
Nt,1 hits n first, so NT1,1 “ n ą NT1,2, NT1,3, then the increments are chosen as
e2 and e3 with probabilities 1{3 and 2{3. This goes on until

T2 :“ inf
␣

t : Nt,i “ n for at least two i P t1, 2, 3u
(

. (3.2)

III. A deterministic walk NT2 , . . . ,NT3 where all increments are ei for the only i
that still has Nt,i ă n.

The expected gain for N is 0 for each step in phase I, 1{3 for each step in phase
II, and 1 for each step in phase III, so the expected score for N is

ESn “ ESp3nq “ E rpT2 ´ T1q{3 ` T3 ´ T2s. (3.3)

We will analyse this more carefully below and also both bound and asymptotically
describe the random fluctuations. We do this by analysing the constrained random
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walk Nt and the stopping times T1 and T2 in some detail. A central role in the
analysis is played by the (somewhat arbitrary) non-random time

T0 :“ 3n ´ 3rn2{3s. (3.4)

3.1. Phase I: until T1. Let pξtq
8
t“1 be an i.i.d. sequence of random vectors with the

distribution Ppξt “ eiq “ 1{3 for i “ 1, 2, 3. We may assume that Nt ´ Nt´1 “ ξt
for 1 ď t ď T1. Let

N1
t “ pN 1

t,iq
3
i“1 :“

t
ÿ

u“1

ξu, t ě 0; (3.5)

thus N1
t “ Nt for t ď T1. (We may interpret ξt and N1

t as how R would have played
if the restriction had not existed.) In particular, for t ď T1 we have N 1

t,i “ Nt,i ď n

for all i, and for t ě T1 we have maxiN
1
t,i ě maxiNT1,i “ n; thus T1 is also the time

that maxiN
1
t,i hits n.

At time T0, the central limit theorem shows that

N 1
T0,i “ 1

3T0 ` Oppn1{2q “ n ´ n2{3 ` Op

`

n1{2
˘

. (3.6)

This is less that n for each i w.h.p. (with high probability, i.e., with probability
1´op1q as n Ñ 8), and thus w.h.p. T1 ą T0. More precisely, the Chernoff inequality
(e.g. in the version in [2, Remark 2.5]) yields

PpT1 ď T0q ď

3
ÿ

i“1

PpN 1
T0,i ě nq “ 3P

`

N 1
T0,1 ´ 1

3T0 ě rn2{3s
˘

ď e´2n4{3{T0 ď e´n1{3
.

(3.7)

Hence, this probability decreases faster than any polynomial, which means that we
can ignore the event T1 ď T0 also when calculating moments below (since the random
variables we consider all are deterministically Opnq).

Similarly, concentrating on the time after T0, define

M 1 :“ max
i“1,2,3

max
T0ďtď3n

∣∣N 1
t,i ´ N 1

T0,i ´ 1
3pt ´ T0q

∣∣. (3.8)

By classical results on moment convergence in the central limit theorem together with
Doob’s inequality (since N 1

t,i ´N 1
T0,i

´ 1
3pt´ T0q is a martingale), see for example [1,

Theorem 7.5.1, Corollary 3.8.2, and Theorem 10.9.4], we have, for any p ą 1

E pM 1qp ď

3
ÿ

i“1

E max
T0ďtď3n

∣∣N 1
t,i ´ N 1

T0,i ´ 1
3pt ´ T0q

∣∣p
ď Cp

3
ÿ

i“1

E
∣∣N 1

3n,i ´ N 1
T0,i ´ 1

3p3n ´ T0q
∣∣p

ď C 1
pp3n ´ T0qp{2 ď C2

pn
p{3. (3.9)

Consequently,

M 1 “ OLp

`

n1{3
˘

(3.10)

for every p ă 8. (The case p ď 1 follows from the case p ą 1 by Lyapounov’s
inequality [1, Theorem 3.2.5].)

We introduce some further notation. Let, for i “ 1, 2, 3,

Xi :“ N 1
T0,i ´ EN 1

T0,i “ N 1
T0,i ´ 1

3T0. (3.11)
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(If we ignore the minor technical difference between Nt,i and N 1
t,i, these measure

thus the deviation from the expectation at time T0 of the choices made by R.) Note
for later use that

X1 ` X2 ` X3 “

3
ÿ

i“1

N 1
T0,i ´ T0 “ 0. (3.12)

Furthermore, let

Xmax :“ max
i“1,2,3

Xi. (3.13)

(As we will see in detail below, this largest deviation will give us a good estimate of
the time T1 when R runs out of one choice.)

Condition on the event T1 ą T0, which has probability 1´op1q. Then, N 1
T0

“ NT0 .
Moreover, we may take t “ T1 in (3.8) and obtain, using (3.11),

NT1,i “ N 1
T1,i “ N 1

T0,i ` 1
3pT1 ´ T0q ` OpM 1q “ Xi ` 1

3T1 ` OpM 1q. (3.14)

Hence, recalling the definitions of T1 and Xmax,

n “ max
i

NT1,i “ max
i

Xi ` 1
3T1 ` OpM 1q “ Xmax ` 1

3T1 ` OpM 1q. (3.15)

Consequently,

T1 “ 3n ´ 3Xmax ` OpM 1q (3.16)

and thus, using (3.10),

T1 “ 3n ´ 3Xmax ` OLp

`

n1{3
˘

. (3.17)

This was derived conditioned on T1 ą T0, but by (3.7) and the comment after it,
(3.17) holds also unconditionally.

Furthermore, for every i P t1, 2, 3u, by (3.14) and (3.10),

NT1,i ´ 1
3T1 “ Xi ` OLp

`

n1{3
˘

(3.18)

and thus by (3.17)

n ´ NT1,i “ n ´ 1
3T1 ´ Xi ` OLp

`

n1{3
˘

“ Xmax ´ Xi ` OLp

`

n1{3
˘

. (3.19)

Thus, at time T1, when R runs out of one of the three choices, she has approxi-
matively Xmax ´ Xi left of each other choice i.

To find the score in Phase I, consider first the score at T0, and condition again on
T1 ą T0. Then in each round up to T0, R plays normally and thus R and N win with
probability 1{3 each, and draw otherwise; thus ∆Sptq :“ Sptq ´ Spt ´ 1q P t˘1, 0u

with probability 1{3 each. Consequently, the central limit theorem shows that, since
E∆Sptq “ 0 and Var ∆Sptq “ 2{3, and T0 „ 3n,

SpT0q

n1{2

d
ÝÑ Np0, 2q, as n Ñ 8, (3.20)

together with all moments. Moreover, since also N is assumed to use the optimal
strategy, which for these t means uniformly randomly, the score in each round is
independent of the choices made by R, and thus of the vectors Nt. Consequently,
SpT0q is independent of pX1, X2, X3q. We conditioned here on T1 ą T0, but in the
unlikely event T1 ď T0, we may modify SpT0q (similarly as we defined N1 above) and
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define a sum S1pT0q that is independent of pX1, X2, X3q and satisfies S1pT0q “ SpT0q

whenever T1 ą T0, and thus, by (3.7), (rather coarsely)

SpT0q “ S1pT0q ` OLp

`

n1{3
˘

. (3.21)

For T0 ă t ď T1, we still have the same distribution of ∆Sptq, and by the same
argument as in (3.9), if we condition on T1 ą T0, then

SpT1q ´ SpT0q “ OLp

`

n1{3
˘

. (3.22)

By (3.7), this holds also unconditionally.

3.2. Phase II: T1 to T2. Since the entire game is symmetric under cyclic permu-
tations of the three choices rock, paper, scissors, we may for the next phase assume
that R first uses up all n rock, i.e., that NT1,1 “ 0. Note, however, that the game is
not symmetric under odd permutations, so having made this assumption, choices 2
(paper) and 3 (scissors) play different roles, since 3 beats 2.

By the discussion of the greedy strategy in Section 2.2, for t P rT1, T2q, R should
play randomly and choose 2 or 3 with probabilities 1/3 and 2/3. We argue as
in the preceding subsection (and therefore omit some details); we now let pηtq

8
1

be an i.i.d. sequence of random vectors with Ppηt “ eiq “ pi for i “ 1, 2, 3, with
pp1, p2, p3q “ p0, 13 ,

2
3q, and we assume as we may that Nt´Nt´1 “ ηt for T1 ă t ď T2.

Let

N2
t “ pN2

t,iq
3
i“1 :“ NT1 `

t
ÿ

u“T1`1

ηu, t ě T1. (3.23)

Then N2
t “ Nt for T1 ď t ď T2. Let

M2 :“ max
i“1,2,3

max
T1ďtď3n

∣∣N2
t,i ´ N2

T1,i ´ pipt ´ T1q
∣∣. (3.24)

If we again condition on T1 ą T0, we obtain, by conditioning on T1 and arguing as
in (3.9) and using 3n ´ T1 ă 3n ´ T0 “ Opn2{3q,

M2 “ OLp

`

n1{3
˘

. (3.25)

By (3.7) again, this holds also unconditionally. We obtain from (3.24) and (3.25),
taking t “ T2, for every i,

NT2,i “ N2
T2,i “ NT1,i ` pipT2 ´ T1q ` OLp

`

n1{3
˘

(3.26)

and thus, by (3.19),

n ´ NT2,i “ n ´ NT1,i ´ pipT2 ´ T1q ` OLp

`

n1{3
˘

“ Xmax ´ Xi ´ pipT2 ´ T1q ` OLp

`

n1{3
˘

. (3.27)

We have assumed NT1,1 “ n, and then T2 is the first t such that Nt,2 “ n or Nt,3 “ n.
In particular, (3.27) implies

0 “ min
i“2,3

`

n ´ NT2,i

˘

“ min
i“2,3

`

Xmax ´ Xi ´ pipT2 ´ T1q
˘

` OLp

`

n1{3
˘

. (3.28)

Consequently,

min
i“2,3

`

Xmax ´ Xi ´ pipT2 ´ T1q
˘

“ OLp

`

n1{3
˘

. (3.29)

It follows that also

min
i“2,3

p´1
i

`

Xmax ´ Xi ´ pipT2 ´ T1q
˘

“ OLp

`

n1{3
˘

, (3.30)
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which can be written

min
i“2,3

p´1
i

`

Xmax ´ Xi

˘

´ pT2 ´ T1q “ OLp

`

n1{3
˘

. (3.31)

Thus

T2 ´ T1 “ min
i“2,3

Xmax ´ Xi

pi
` OLp

`

n1{3
˘

. (3.32)

We repeat that this holds assuming that choice 1 is the first to be used up by R.
In this phase, the gain ∆Sptq of N has expectation 1{3 in each round (and its

absolute value is bounded by 1, so all moments are bounded); moreover, the gains in
different rounds are i.i.d. Hence, similarly to (3.9) again, the central limit theorem
with moment convergence together with Doob’s inequality yields

SpT2q ´ SpT1q “ 1
3pT2 ´ T1q ` OLp

`

n1{3
˘

. (3.33)

3.3. Phase III: T2 to T3. This phase is deterministic, and not very fun to play (at
least not for R): R has only one choice, and N wins every round. The total gain for
N in this phase are thus, using (3.17) and recalling that T3 “ 3n,

SpT3q ´ SpT2q “ T3 ´ T2 “ T3 ´ T1 ´ pT2 ´ T1q

“ 3Xmax ´ pT2 ´ T1q ` OLp

`

n1{3
˘

. (3.34)

3.4. Collecting the gains. By (3.22), (3.33), and (3.34), the final score of N is

Sn “ SpT3q “ SpT0q ` 3Xmax ´ 2
3pT2 ´ T1q ` OLp

`

n1{3
˘

, (3.35)

where furthermore T2 ´ T1 is given by (3.32) when choice 1 (rock) is the first to be
used up by R. We develop (3.35) as follows.

Lemma 3.1. We have

Sn ´ SpT0q “ max
␣

X1 ` 2X2, X2 ` 2X3, X3 ` 2X1

(

` OLp

`

n1{3
˘

. (3.36)

Proof. We may again, by symmetry, suppose that R first uses up 1. Typically, this
is the case when Xmax “ X1, but it is possible that X1 is not the maximum. (Then
Nt,1 is not the largest at t “ T0, but Nt,1 overtakes the other two components and
hits n first.) In any case, NT2,1 “ NT1,1 “ n, and thus (3.27) yields, recalling p1 “ 0,

0 “ n ´ NT2,1 “ Xmax ´ X1 ` OLp

`

n1{3
˘

. (3.37)

Hence,

Xmax “ X1 ` OLp

`

n1{3
˘

. (3.38)

We obtain from (3.35), (3.32) and (3.38), recalling p2 “ 1
3 and p3 “ 2

3 ,

Sn ´ SpT0q “ 3Xmax ´ 2
3pT2 ´ T1q ` OLp

`

n1{3
˘

“ 3Xmax ´ min
␣

2pXmax ´ X2q, pXmax ´ X3q
(

` OLp

`

n1{3
˘

“ max
␣

Xmax ` 2X2, 2Xmax ` X3

(

` OLp

`

n1{3
˘

“ max
␣

X1 ` 2X2, 2X1 ` X3

(

` OLp

`

n1{3
˘

. (3.39)

Furthermore, (3.12) implies that Xmax ě 0 and that, using also (3.38),

2X1 ` X3 “ 3X1 ` X2 ` 2X3 “ 3Xmax ` X2 ` 2X3 ` OLp

`

n1{3
˘

ě X2 ` 2X3 ` OLp

`

n1{3
˘

. (3.40)
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Hence (3.39) yields (3.36) in the case when R first uses up choice 1. By symmetry
(3.36) holds in general. □

We may now summarize the analysis in the following limit result.

Theorem 3.2. As n Ñ 8, we have convergence in distribution, together with all
moments,

n´1{2Sn
d

ÝÑ Sgr :“ W ` max
␣

V1 ` 2V2, V2 ` 2V3, V3 ` 2V1

(

, (3.41)

where W,V1, V2, V3 are jointly normal with W independent of pV1, V2, V3q and

W P Np0, 2q, (3.42)

pV1, V2, V3q P N

¨

˚

˝

0,

¨

˚

˝

2
3 ´1

3 ´1
3

´1
3

2
3 ´1

3

´1
3 ´1

3
2
3

˛

‹

‚

˛

‹

‚

. (3.43)

Proof. The random vectors ξt in (3.5) are i.i.d. with E ξt “ 0 and covariance matrix
(regarding ξt as a column vector)

Varpξtq :“ E ξtrt ξt ´ pE ξtrt qpE ξtq “ Σ :“

¨

˚

˝

2
9 ´1

9 ´1
9

´1
9

2
9 ´1

9

´1
9 ´1

9
2
9

˛

‹

‚

. (3.44)

Since T0 „ 3n by (3.4), the central limit theorem yields, recalling (3.11),

n´1{2pX1, X2, X3q
d

ÝÑ pV1, V2, V3q P Np0, 3Σq, (3.45)

which agrees with (3.43). Similarly, as noted in (3.20), n´1{2SpT0q
d

ÝÑ W . Further-
more, by (3.21) we may here replace SpT0q be the approximation S1pT0q which, as
noted above, is independent of pX1, X2, X3q. Hence,

n´1{2
`

SpT0q, X1, X2, X3

˘ d
ÝÑ pW,V1, V2, V3q, (3.46)

and thus (3.36) and the continuous mapping theorem yield (3.41). Moreover, all
moments converge in the central limit theorems (3.45) and (3.20) [1, Theorem 7.5.1],
and it follows (e.g. using uniform integrability) that all moments converge also in
(3.46) and (3.41). □

In the following section, we give more convenient expressions for the limit Sgr.

4. The distribution of the limit for greedy strategies

We give several alternative descriptions of the asymptotic distribution found in
Theorem 3.2; using them we then prove Theorem 1.1. See also Section 6 for another
use of these descriptions.

Theorem 4.1. The limit Sgr in Theorem 3.2 can be described by any of the following
equivalent formulas:

(i) We have

Sgr “ W ` max
␣

Z1, Z2, Z3

(

(4.1)

where W,Z1, Z2, Z3 are jointly normal with W independent of pZ1, Z2, Z3q and

W P Np0, 2q, (4.2)
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pZ1, Z2, Z3q P N

¨

˝0,

¨

˝

2 ´1 ´1
´1 2 ´1
´1 ´1 2

˛

‚

˛

‚. (4.3)

(ii) We have

Sgr “ W 1 `
?

3 max
␣

Z 1
1, Z

1
2, Z

1
3

(

(4.4)

where W 1, Z 1
1, Z

1
2, Z

1
3 are independent standard normal Np0, 1q.

(iii) We have

Sgr “ max
␣

Z2
1 , Z

2
2 , Z

2
3

(

(4.5)

where Z2
1 , Z

2
2 , Z

2
3 are jointly normal with

pZ2
1 , Z

2
2 , Z

2
3 q P N

¨

˝0,

¨

˝

4 1 1
1 4 1
1 1 4

˛

‚

˛

‚. (4.6)

(iv) We have

Sgr “ W ` R cos Θ, (4.7)

where W,R,Θ are independent with W P Np0, 2q as in (4.2), R has a Rayleigh

distribution with density 1
2re

´r2{4, r ą 0, and Θ has a uniform distribution
Up0, π{3q.

We will use the notation

Zmax :“ maxtZ1, Z2, Z3u. (4.8)

Note also that (4.3) implies that Z1 ` Z2 ` Z3 has variance 0, and thus the normal
variables Z1, Z2, Z3 in (4.1) satisfy Z1 `Z2 `Z3 “ 0 almost surely; thus pZ1, Z2, Z3q

lives in a 2-dimensional space.

Proof of Theorem 4.1. (i): Define

Z1 :“ V1 ` 2V2, Z2 :“ V2 ` 2V3, Z3 “ V3 ` 2V1. (4.9)

Then (3.41) shows that (4.1) holds, and a simple calculation shows that pZ1, Z2, Z3q

has the distribution (4.3).
(iii): Define Z2

i :“ W ` Zi, i “ 1, 2, 3. Then (4.1) yields (4.5), and (4.2)–(4.3)
yield (4.6).

(ii): We may write W “ W 1 ` ĂW , where W 1,ĂW P Np0, 1q, and W 1 and ĂW are

independent of each other and of pZ1, Z2, Z3q. Define Z 1
i :“ pĂW ` Ziq{

?
3, i “

1, 2, 3. Then (4.1) yields (4.4), and it follows from (4.3) that the covariance matrix
of pZ 1

1, Z
1
2, Z

1
3q is the identity matrix; thus the jointly normal variables W 1, Z 1

1, Z
1
2, Z

1
3

are independent Np0, 1q.
(iv): As said above, Z1 ` Z2 ` Z3 “ 0 almost surely, so pZ1, Z2, Z3q has really

a 2-dimensional normal distribution. In fact, if ζ “ pζ1, ζ2q is a centered normal
distribution in R2 with Var ζ1 “ Var ζ2 “ 2 and Covpζ1, ζ2q “ 0, then we can
construct pZ1, Z2, Z3q with the desired distribution (4.3) by

Zi :“ fi ¨ ζ, (4.10)

where f1 :“ p1, 0q, f2 :“ p´1
2 ,

?
3
2 q, f3 :“ p´1

2 ,´
?
3
2 q. We define R :“ |ζ| and

Θ :“ argpζ1 ` iζ2q P r´π, πq; thus

ζ “ pR cos Θ, R sin Θq, (4.11)
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and it follows from (4.10) by simple calculations (which are made even simpler by
identifying R2 and C and regarding ζ as a complex random variable) that

Z1 “ R cos Θ, Z2 “ R cospΘ ´ 2π{3q, Z3 “ R cospΘ ` 2π{3q. (4.12)

The normal distribution of ζ is rotationally symmetric, and thus, as is well-known,
R and Θ are independent, with Θ uniformly distributed on r´π, πq; furthermore,
R has the Rayleigh distribution stated in the theorem. To find the distribution of
Zmax :“ maxtZ1, Z2, Z3u, we may by symmetry condition on Zmax “ Z1, which by
(4.12) is equivalent to Θ P r´π{3, π{3s, and since cos Θ is an even function, we may
further restrict to Θ P r0, π{3s. Then Zmax “ Z1 “ R cos Θ, and thus (4.7) follows
from (4.1) □

Proof of Theorem 1.1. By the moment convergence in Theorem 3.2, it suffices to find
ESgr. For this we use (4.7). We have EW “ 0, and by simple calculations

ER “

ż 8

0

1
2r

2e´r2{4 dr “
?
π, (4.13)

E cos Θ “
3

π

ż π{3

0
cosϑ dϑ “

3
?

3

2π
. (4.14)

Hence, by the independence,

ESgr “ ER ¨ E cos Θ “
3
?

3

2
?
π

.
“ 1.4658075. (4.15)

□

Remark 4.2. Alternatively, we can use (4.4) and conclude

ESgr “
?

3E max
␣

Z 1
1, Z

1
2, Z

1
3

(

, (4.16)

where the right-hand side contains the expectation of the maximum of three i.i.d.
standard normal variables which is known to be 3{p2

?
πq [3]. △

Higher moments of Sgr can be computed in the same way. For example, we have

E pSgrq2 “ EW 2 ` ER2 E cos2 Θ “ 2 ` 4
´1

2
`

3
?

3

8π

¯

“ 4 `
3
?

3

2π
.
“ 4.82699 (4.17)

and hence

VarSgr “ 4 ´
27 ´ 6

?
3

4π
.
“ 2.67840. (4.18)

Hence, we have

VarSgr
n „

´

4 ´
27 ´ 6

?
3

4π

¯

n. (4.19)

5. Analysis when N does not play greedily

Assume as above that R uses the optimal strategy, i.e., the greedy strategy. In
Section 3 we assumed that N uses the greedy strategy. More generally, suppose now
that N uses any strategy that does not do anything stupid (a move that cannot win
when R has only one or two choices). (This includes both the unknown optimal
strategy for N, and the greedy strategy, but also many others.) Then, as noted
in Section 2.3, the expected gain for N is still 1{3 in each round where R has two
choices left, and 1 in each round where R has only one choice. Hence, (3.3) still
holds. Moreover, the strategy of R is not affected by the moves made by N, and
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thus the random walk N0, . . . ,N3n and the variables T1, T2, X1, X2, X3, Xmax (and
others) are the same as in Section 3. In particular, (3.45) still holds.

For the score of N, recall first that in Phase I, when R still has three choices, R plays
each with the same probability. It follows that regardless of the strategy of N, the
outcome ∆Sptq of each round has the same distribution as discussed in Section 3,
i.e., 1, 0, or ´1 with probability 1{3 each; moreover, this is independent of the
previous history, so the outcomes of different rounds in this phase are independent.
Consequently, SpT1q has the same distribution as for the greedy strategy, and so
has SpT0q if we condition on T1 ą T0. It follows that (3.19) still holds, and so do
(3.20)–(3.21). However, there is one important difference from the case of the greedy
strategy in Section 3: there the score SpT0q is independent of pX1, X2, X3q (again
conditioned on T1 ą T0). This is no longer true in general, since the strategy of N
may cause dependencies. We give a simple example showing that this actually may
happen in Example 5.3.

In Phase II, R has two choices, and uses the greedy strategy described in Sec-
tion 2.2(ii). We have assumed that the strategy of N is not stupid, and that leaves
two choices for N. Both give an expected gain E∆Sptq “ 1{3, but the distributions
are different. The precise distribution of SpT2q ´ SpT1q may therefore depend on
the strategy of N, but if we define Mi :“ SpT1 ` iq ´ SpT1q ´ 1

3 i, then the sequence
pMi^pT2´T1qqiě1 (where we stop at T1 ` i “ T2) is, for any non-stupid strategy of N,
a martingale with uniformly bounded increments, and Doob’s inequality shows that
(3.33) holds.

In Phase III, N has only one choice that is not stupid, so the strategy is the same
is in Section 3, and (3.34) still holds.

It follows that (3.35) holds, and thus Lemma 3.1 holds, by the same proof as
above. This leads to the following result.

Theorem 5.1. Suppose that R uses the optimal (i.e., greedy) strategy, and that N
uses any non-stupid strategy. (For example, his optimal strategy.) If we decompose

n´1{2Sn “ n´1{2SpT0q ` n´1{2pSn ´ SpT0qq, (5.1)

then the two terms individually converge in distribution to the limits W and Zmax

in (4.1); however, in general the two terms are dependent, so Theorems 3.2 and
Theorem 4.1 do not hold.

Note that it does not follow from Theorem 5.1 that n´1{2Sn converges in distri-
bution. By general principles, the convergence in distribution implies that each of
the sequences n´1{2SpT0q and n´1{2pSn ´ SpT0q is tight, and thus so is their sum

n´1{2Sn; this implies that there are subsequences that converge in distribution, but
it is conceivable that different subsequences have different limits. (This can easily
happen if the strategy explicitly depends on, for example, whether n is even or odd,
but it is not expected for “natural” strategies.)

Remark 5.2. In general, any (subsequential) limit in distribution S can be written
as W ` Zmax with W and Zmax as in Theorem 4.1, but possibly dependent. It
follows from Minkowski’s inequality and calculations as in (4.17)–(4.18) that, with
the notation ra ˘ bs :“ ra ´ b, a ` bs,

pVarSq1{2 P
“

pVarW q1{2 ˘ pVarZmaxq1{2
‰

“

”?
2 ˘

d

2 ´
27 ´ 6

?
3

4π

ı

(5.2)



ON SEMI-RESTRICTED ROCK, PAPER, SCISSORS 13

and thus, numerically, pVarSq1{2 P r0.590 . . . , 2.237 . . . s and thus

VarS P r0.348 . . . , 5.008 . . . s. (5.3)

Since we have moment convergence by the same arguments as before, it follows that,
for any non-stupid strategy for N, lim inf n´1 VarSn and lim supn´1 VarSn lie in the
interval (5.3). Furthermore, (5.3) shows that VarS ą 0, so the limit distribution is
non-degenerate. △

We give next a simple example showing that there are strategies for N for which
n´1{2Sn has a limit in distribution that is different from Sgr; we then discuss briefly
the optimal strategy.

Example 5.3. Let the strategy of N be to always play rock as long as R has three
choices, and then switch to the greedy strategy for the endgame. (This is obviously
a risky strategy if R would guess it, but we assume that R is a mathematician and
knows that the greedy strategy is proven to be optimal, and therefore sticks to it.)
We do not claim that this is a clever strategy, but it is not stupid in the sense above;
thus the results above hold for it. Moreover, in Phase I, N wins when R plays scissors,
and loses when R plays paper ; hence Sptq “ Nt,3 ´Nt,2 for all t ď T1. Consequently,
assuming T1 ą T0, we have

SpT0q “ NT0,3 ´ NT0,2 “ X3 ´ X2. (5.4)

It follows that (3.41) still holds, with pV1, V2, V3q and pZ1, Z2, Z3q as before and

W “ V3 ´ V2 “ ´V1 ´ 2V2 “ ´Z1. (5.5)

Hence, instead of (3.41) and (4.1) we find

n´1{2Sn
d

ÝÑ S :“ W ` Zmax “ ´Z1 ` Zmax “ maxt0, Z2 ´ Z1, Z3 ´ Z1u. (5.6)

Note that (3.42)–(3.43) and (4.2)–(4.3) still hold, but W and Zmax are no longer
independent. To see that the dependence really matters and leads to a different
limit distribution S than for the greedy strategy, we compute, using symmetry and
the representation in Theorem 4.1(iv),

E
“

W 2Zmax

‰

“ E
“

Z2
1Zmax

‰

“ 1
3 E

”

Zmax

3
ÿ

1

Z2
i

ı

“ 1
3 E

“

pR cos ΘqR2
‰

“ 1
3 ER3 E cos Θ

ą 1
3 ER2 ¨ ERE cos Θ “ EW 2 EZmax. (5.7)

(ER3 ą ER2 ER follows from Lyapounov’s inequality, or because a calculation
yields ER “

?
π, ER2 “ 4, ER3 “ 6

?
π.) Similarly,

E
“

WZ2
max

‰

“ ´E
“

Z1Z
2
max

‰

“ ´1
3 E

“

Z2
max

3
ÿ

1

Zi

‰

“ 0 “ EW EZ2
max. (5.8)

It follows that if W 1 „ Np0, 2q is independent of Zmax, then

ES3 “ E pW ` Zmaxq3 ą E pW 1 ` Zmaxq3 “ E pSgrq3. (5.9)

Hence the limit distribution S differs from Sgr for the greedy distribution. △
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5.1. On the optimal strategy for N. Consider now the unknown optimal strategy
for N. Theorem 4.1 leads to an obvious conjecture:

Conjecture 5.4. If both players play optimally, then

n´1{2Sop
n

d
ÝÑ Sop “ W ` Zmax, (5.10)

where W and Zmax :“ maxtZ1, Z2, Z3u each are as in Theorem 4.1, but they now
may be dependent.

Note that if this holds, then (5.2)–(5.3) hold for Sop.
The optimal strategy for N has to punish strategies for R like the one in Exam-

ple 2.1. Intuitively, it therefore seems likely that if R plays greedily, then the optimal
strategy of N will punish R in games where the times T1 and T2 in our analysis in
Section 3 are unusually large (and conversely reward R when they are small; remem-
ber that the expectation is the same as if N plays greedily). It therefore seems likely
that if both players play optimally, there is a negative correlation between the two
terms in (5.1). However, even if this is correct, it is possible that the dependency
vanishes asymptotically so that we have the same limit Sgr as in Theorem 4.1. We
have no guess, and leave this as a problem.

Problem 5.5. If both players play optimally, does n´1{2Sn have the same asymp-
totic distribution Sgr as in Theorem 4.1 for greedy play? If not, is there an asymptotic
distribution Sop (as conjectured above), and what is it?

6. The probability of winning for greedy play

Finally, we return to the case of both players using their greedy strategies and
note that we may also calculate the asymptotic probability that R wins the game, in
spite of her restriction, i.e., that the final score Sn ă 0. (Recall that Sn is the score
for N.)

Theorem 6.1. If both players use their greedy strategies, then the probability that R
wins has as n Ñ 8 the limit

PpSn ă 0q Ñ
3 arccosp1{4q ´ π

4π
“

arccosp11{16q

4π
.
“ 0.064677. (6.1)

Proof. By Theorem 4.1, we have PpSn ă 0q Ñ PpSgr ă 0q (since Sgr has a continuous
distribution, e.g. by (4.1)). We compute this probability using Theorem 4.1(iii). By
(4.5), we have

Sgr ă 0 ðñ Z2
i ă 0 @i. (6.2)

We may, similarly to (4.10), construct Z2
i as

Z2
i :“ pfi ¨ pζ, (6.3)

where pζ is a standard normal distribution in R3, and pf1,pf2,pf3 are three vectors in R3

such that

pfi ¨ pfj “

#

4, i “ j,

´1, i ‰ j.
(6.4)

By (6.3), the condition (6.2) means that pζ lies in the intersection of three open half-

spaces H1, H2, H3, which are bounded by hyperplanes orthogonal to pf1, pf2 and pf3.
The angle between any two of these vectors is, by (6.4), α :“ arccosp´1{4q. Hence,
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the interior angle between any of the two hyperplanes is β :“ π ´ α “ arccosp1{4q,
and thus the intersection of the unit sphere and H1 XH2 XH3 is a spherical triangle
∆ with all three angles β. Consequently, the area |∆| of ∆ is 3β´π. The distribution

of pζ is rotationally symmetric, and thus we may project pζ onto the unit sphere, and
find, recalling that the area of the sphere is 4π,

PpZmax ă 0q “ P
`

pζ P H1 X H2 X H3

˘

“
|∆|

4π
“

3β ´ π

4π
“

3 arccosp1{4q ´ π

4π
. (6.5)

Finally, note that

cosp3β ´ πq “ ´4 cos3 β ` 3 cosβ “ ´4
`

1
4

˘3
` 3 ¨ 1

4 “ 11
16 . (6.6)

□

Theorem 6.1 assumes that the players use their greedy strategies; we know that
this is optimal for R, and yields the same expectation for N as his optimal strategy, if
their objectives are to maximize the expected gain; if they instead want to maximize
the probability of winning (but do not care about how much they win or lose), the
optimal strategies are presumably different (see Example 6.3), and most likely much
more complex; hence we do not know whether (6.1) holds or not in that case.

Problem 6.2. Suppose that both players want to maxime Ppwinq ´ Pploseq. What
is (asymptotically) the probability that R wins?

It is possible that the asymptotic answer is the same as in Theorem 6.1, although
the probabilities for finite n are different. (See Example 6.3.) It might seem likely
that a strategy that gives one of the players a significantly lower expected score will
also give a lower probability that this score is positive. However, Example 6.4 shows
that strategies with the same expectation still might give different distributions of
the score and therefore different probabilities of winning, so it seems that there is no
simple solution to Problem 6.2.

Example 6.3. Here is simple example showing that the greedy strategy is not the
optimal strategy for R if the objective is to win, as in Problem 6.2. Let n “ 2, and
suppose that in the first four rounds, R has (by chance) chosen rock, paper, scissors,
scissors, and that R won two of these while two were draws. Thus the score (for N)
Sp4q “ ´2. Hence, N cannot win, but since he will win the last round, the game
will be a draw if he wins round 5. Therefore, in round 5, the objective for R is to
minimize the probability of losing (but a draw is as good as a win). In this round
R plays the game in Figure 1; if she wants to minimize the probability of losing this
round the best strategy is to play rock or paper with equal probabilities, and not
with the probabilities in Section 2.2 that minimize the expected loss. (The example
can be extended to any n ě 2 by assuming that R has played the three choices n´ 2
times each in the first 3pn ´ 2q rounds, and that each of these rounds was a draw;
the play then continues as above.) △

Example 6.4. Suppose that R uses the greedy strategy above, but that N uses the
strategy in Example 5.3. As seen in Example 5.3, then

n´1{2Sn
d

ÝÑ S :“ ´Z1 ` Zmax “ max
␣

0, Z2 ´ Z1, Z3 ´ Z1

(

. (6.7)

Thus S ě 0 with a point mass PpS “ 0q “ 1{3 (by symmetry). In this case, we
cannot immediately find the limit of PpSn ă 0q, but if the strategy is perturbed a
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little, and N plays normally for the first εnn rounds with εn Ñ 0 very slowly, it can
be seen that PpSn ă 0q Ñ 1

2 PpS “ 0q “ 1{6.
In this case, the new strategy for N is worse for him; it gives the same expected

score but a lower probability that the score is positive (given that R plays greedily).
However, it suggests that there also might be other strategies that instead increase
the probability that N wins. △
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