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SVANTE JANSON

Abstract. This is a collection of various results and formulae. The
main purpose is to give explicit relations between the many different
similar notations and definitions that have been used by various authors.

There are no new results.
This is an informal note, not intended for publication.

1. Graph enumeration

Let C(n, q) be the number of connected graphs with n given (labelled)
vertices and q edges. Recall Cayley’s formula C(n, n− 1) = nn−2 for every
n ≥ 1. Wright [19] proved that for any fixed k ≥ −1, we have the analoguous
asymptotic formula

C(n, n + k) ∼ ρkn
n+(3k−1)/2 as n →∞, (1)

for some constants ρk given by

ρk =
2(1−3k)/2π1/2

Γ(3k/2 + 1)
σk, k ≥ −1, (2)

with other constants σk given by σ−1 = −1/2, σ0 = 1/4, σ1 = 5/16, and the
quadratic recursion relation

σk+1 =
3(k + 1)

2
σk +

k−1∑
j=1

σjσk−j , k ≥ 1. (3)

Note the equivalent recursion formula

σk+1 =
3k + 2

2
σk +

k∑
j=0

σjσk−j , k ≥ −1. (4)

Wright gives in the later paper [20] the same result in the form

ρk =
2(1−5k)/23kπ1/2(k − 1)!

Γ(3k/2)
dk, k ≥ 1, (5)
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(although he now uses the notation fk = ρk; we have further corrected a
typo in [20, Theorem 2]), where d1 = 5/36 and

dk+1 = dk +
k−1∑
j=1

djdk−j

(k + 1)
(
k
j

) , k ≥ 1. (6)

See also Bender, Canfield and McKay [3, Corollaries 1 and 2], which gives
the result using the same dk and further numbers wk defined by w0 = π/

√
6

and

wk =
(8/3)1/2π(k − 1)!

Γ(3k/2)

(27k

8e

)k/2
dk, k ≥ 1, (7)

so that

ρk =
31/2

2π1/2

( e

12k

)k/2
wk. k ≥ 0. (8)

(Wright [20] and Bender et al. [3] further consider extensions to the case
k →∞, which does not interest us here.)

In the form

ρk =
2−(5k+1)/23k+1π1/2k!

Γ(3k/2 + 1)
dk, (9)

(5) holds for all k ≥ 0, with d0 = 1/6.
Wright’s two versions (2), (3) [19] and (5), (6) [20] are equivalent and we

have the relation
σk =

(3
2

)k+1
k! dk, k ≥ 0. (10)

Next, define ck, k ≥ 1, as in [9, §8]; ck is the coefficient for the leading
term in an expansion of the generating function for connected graphs (or
multigraphs) with n vertices and n + k edges. (Note that ck = ck0 = ĉk0 in
[9, §8]. ck is denoted ck,−3k in Wright [19] and bk in Wright [20].) We have
by [20, §5] or comparing (6) and (13) below

ck =
(3

2

)k
(k − 1)! dk, k ≥ 1. (11)

From [9, (8.12)] (which is equivalent to Wright [19, (7)]) follows the re-
cursion

3rcr = 1
2(3r − 1)(3r − 3)cr−1 + 9

2

r−1∑
j=0

j(r − 1− j)cjcr−1−j , r ≥ 1, (12)

where jcj is interpreted as 1/6 when j = 0. In other words, c1 = 5/24 and

rcr = 1
2r(3r − 3)cr−1 + 3

2

r−2∑
j=1

j(r − 1− j)cjcr−1−j , r ≥ 2. (13)

By (10), (11) is equivalent to

σk =
3
2
kck, k ≥ 1 (14)

(and also for k = 0 with the interpretation 0c0 = 1/6 again).
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By [9, §§3 and 8], (1) holds for k ≥ 1 with

ρk =
2(1−3k)/2√π

Γ(3k/2)
ck, k ≥ 1, (15)

which clearly is equivalent to (2) and (5) by (14) and (11).
Finally, we note that (1) can be written

C(n, n + k − 1) ∼ ρk−1n
n+3k/2−2 k ≥ 0. (16)

2. Brownian excursion area

Let Bex denote a (normalized) Brownian excursion and

B :=
∫ 1

0
Bex(t) dt, (17)

the Brownian excursion area. Two variants of this are

A := 23/2B (18)

defined by Flajolet and Louchard [5], and by them called the Airy distribu-
tion, and

ξ := 2B (19)
used in [7, 4, 8]. (Louchard [11] uses ξ for our B. Takács [13, 14, 15, 16, 17]
uses ω+ for our B.)

The connection between Brownian excursion area and graph enumeration
was found by Spencer [12], who gave a new proof of (16), and thus (1), that
further shows

ρk−1 =
EBk

k!
, k ≥ 0. (20)

See also Aldous [1, §6].
Flajolet and Louchard [5] give the formula (further defining µk := EAk)

EAk =
2
√

π

Γ((3k − 1)/2)
Ωk, k ≥ 0, (21)

where they define Ωk by Ω0 := −1 and the recursion

2Ωk = (3k − 4)kΩk−1 +
k−1∑
j=1

(
k

j

)
ΩjΩk−j , k ≥ 1. (22)

In particular, Ω1 = 1/2. It is easily seen that (22) is equivalent to (4) and

Ωk = 2k! σk−1, k ≥ 0. (23)

Similarly, (21) is equivalent to (2) by (18), (20) and (23).
The first formula for the moments of B was given by Louchard [11] (using

formulas in [10]), who showed (using βn for EBn)

EBk = (36
√

2)−k 2
√

π

Γ((3k − 1)/2)
γk, k ≥ 0, (24)
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where γk satisfies (60) below. Clearly, (24) is equivalent to (21) and

γk = 18kΩk, k ≥ 0. (25)

It is easily seen from (22) that 2kΩk is an integer for all k ≥ 0, and thus
by (25), γk is an integer for k ≥ 0.

Takács [13, 14, 15, 16, 17] give the formula (using Mr for EBr)

EBk =
4
√

π 2−k/2k!
Γ((3k − 1)/2)

Kk, k ≥ 0, (26)

where K0 = −1/2 and

Kk =
3k − 4

4
Kk−1 +

k−1∑
j=1

KjKk−j , k ≥ 1. (27)

It is easily seen that (26) and (27) are equivalent to (21) and (22) and the
relation

Kk =
Ωk

2k+1k!
, k ≥ 0. (28)

By (28) and (23) we further have

Kk = 2−kσk−1, k ≥ 0. (29)

Flajolet, Poblete and Viola [6] define

ωk :=
Ωk

k!
, k ≥ 0, (30)

ω∗k := 22k−1ωk =
22k−1

k!
Ωk, k ≥ 0. (31)

Note that ω∗k is an integer for k ≥ 1. The numbers ω∗k are the same as ω∗k0
in Janson [7]. (This is a special case of ω∗kl in [7], but we will only need
the case l = 0.) The sequence (ω∗k) is called the Wright–Louchard–Takács
sequence in [6].

By (31), the recursion (22) translates to

ω∗k = 2(3k − 4)ω∗k−1 +
k−1∑
j=1

ω∗j ω
∗
k−j , k ≥ 1; (32)

with ω∗0 := −1/2 and ω∗1 = 1. By (23), or by comparing (32) and (4), it
follows that

ω∗k = 22kσk−1, k ≥ 0, (33)

and thus also, by (31),

ωk = 2σk−1, k ≥ 0. (34)

By [7, Theorem 3.3],

E ξk =
22−5k/2√π k!
Γ((3k − 1)/2)

ω∗k, k ≥ 0, (35)
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which is equivalent to (21) by (18), (19) and (31). By (38) below, this is
further equivalent to the formula (which also follows by (20) and (15))

E ξk =
21−k/23

√
π k!

Γ((3k − 1)/2)
(k − 1)ck−1 =

22−k/2√π k!
Γ(3(k − 1)/2)

ck−1, k ≥ 2, (36)

as claimed in [8, Remark 2.5].

3. Further relations

Further relations are immediately obtained by combining the ones above;
we give some examples.

By (23) and (14), or comparing (12) and (22), we find

Ωk = 3(k − 1)k! ck−1, k ≥ 2. (37)

By (33) and (14), or by (31) and (37), or by (12) and (32),

ω∗k = 22k−1 3(k − 1)ck−1, k ≥ 2. (38)

By (28), (30) and (31) we further have

Kk = 2−k−1ωk = 2−3kω∗k, k ≥ 0. (39)

By (2) and (33),

ρk−1 =
22−3k/2√π

Γ((3k − 1)/2)
σk−1 =

22−7k/2√π

Γ((3k − 1)/2)
ω∗k, k ≥ 0. (40)

Note further that (15) can be written

ρk−1 =
22−3k/2√π

Γ(3(k − 1)/2)
ck−1, k ≥ 2. (41)

4. Asymptotics

Wright [20] proved that the limit limk→∞ dk exists, and gave the approx-
imation 0.159155. The limit was later identified by Bagaev and Dmitriev,
[2] as 1/(2π), i.e.

dk →
1

2π
as k →∞. (42)

See [9, p. 262] for further history and references.
It follows by Stirling’s formula that for wk in (7),

wk → 1 as k →∞. (43)

Hence, by (8)

ρk ∼
31/2

2π1/2

( e

12k

)k/2
as k →∞, (44)

and, equivalently,

ρk−1 ∼ 3π−1/2k1/2
( e

12k

)k/2
as k →∞. (45)
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By (20) follows further, as stated in Takács [13, 14, 15, 16, 17]

EBk ∼ 3
√

2 k
( k

12e

)k/2
as k →∞, (46)

and equivalently, as stated by Flajolet and Louchard [5] and Chassaing and
Janson [4], respectively,

EAk ∼ 21/23k
(2k

3e

)k/2
as k →∞, (47)

E ξk ∼ 21/23k
( k

3e

)k/2
as k →∞. (48)

By (11) and (42), or by [9, Theorem 8.2],

ck ∼
1

2π

(3
2

)k
(k − 1)! as k →∞. (49)

Further, by (10) and (42),

σk ∼
1

2π

(3
2

)k+1
k! as k →∞, (50)

and thus by (33), (34) and (30),

ω∗k ∼
1

2π
6k(k − 1)! as k →∞, (51)

ωk ∼
1
π

(3
2

)k
(k − 1)! as k →∞, (52)

Ωk ∼
1
πk

(3
2

)k
(k!)2 ∼ 2

(3k2

2e2

)k
as k →∞. (53)

Similarly by (50) and (29), as stated in Takács [13, 14, 15, 16, 17]

Kk ∼
1

2π

(3
4

)k
(k − 1)! as k →∞. (54)

5. Numerical values

Numerical values for small k are given in Table 1. See further Louchard
[11] (EBk), Takács [13, 16, 17] (EBk, Kk), Janson, Knuth,  Luczak and
Pittel [9, p. 259 or 262] (ck), Flajolet, Poblete and Viola [6, Table 1 and p.
503] (EAk, Ωk, ωk, ω∗k), Flajolet and Louchard [5, Table 1] (EAk, Ωk), and
Janson [7, p. 343] (ω∗k).

6. Power series

Define the formal power series

C(z) :=
∞∑

r=1

crz
r. (55)

By [9, §8 and (7.2)], we then have

eC(z) =
∞∑

r=0

erz
r, (56)
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ρ−1 = 1 ρ0 =
√

2π

4
ρ1 =

5
24

ρ2 =
5
√

2π

256
ρ3 =

221
24192

EB =
√

2π

4
EB2 =

5
12

EB3 =
15
√

2π

128
EB4 =

221
1008

EA =
√

π EA2 =
10
3

EA3 =
15
√

π

4
EA4 =

884
63

σ−1 = −1
2

σ0 =
1
4

σ1 =
5
16

σ2 =
15
16

σ3 =
1105
256

d0 =
1
6

d1 =
5
36

d2 =
5
36

d3 =
1105
7776

c1 =
5
24

c2 =
5
16

c3 =
1105
1152

Ω0 = −1 Ω1 =
1
2

Ω2 =
5
4

Ω3 =
45
4

Ω4 =
3315
16

γ0 = −1 γ1 = 18 γ2 = 405 γ3 = 65610 γ4 = 21749715

K0 = −1
2

K1 =
1
8

K2 =
5
64

K3 =
15
128

K4 =
1105
4096

ω0 = −1 ω1 =
1
2

ω2 =
5
8

ω3 =
15
8

ω4 =
1105
128

ω∗0 = −1
2

ω∗1 = 1 ω∗2 = 5 ω∗3 = 60 ω∗4 = 1105

Table 1. Some numerical values

where

er :=
(6r)!

25r32r(3r)! (2r)!
=

(3
2

)r Γ(r + 5/6)Γ(r + 1/6)
2πr!

=
(3

2

)r (5/6)r(1/6)r

r!

= 18−r Γ(3r + 1/2)
Γ(r + 1/2) r!

. (57)

(The last formula follows by the triplication formula for the Gamma func-
tion, or by induction.) We have e0 = 1, e1 = 5/24, e2 = 385/1152,
e3 = 85085/82944. The constants er are the coefficient for the leading term
in an expansion of the generating function for all graphs (or multigraphs)
with n vertices and n + k edges, see [9, §7] (where er is denoted er0).

7. Linear recursions

From (56) follows the linear recursion, see [9, §8],

cr = er −
1
r

r−1∑
j=1

jcjer−j , r ≥ 1, (58)
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where ek are given explicitly by (57).
By (37) together with (57) and simple calculations, (58) is equivalent to

18rΩr =
12r

6r − 1
Γ(3r + 1/2)
Γ(r + 1/2)

−
r−1∑
j=1

(
r

j

)
Γ(3j + 1/2)
Γ(j + 1/2)

18r−jΩr−j , r ≥ 1,

(59)
which is given by Flajolet and Louchard [5], and, equivalently, see (25),

γr =
12r

6r − 1
Γ(3r + 1/2)
Γ(r + 1/2)

−
r−1∑
j=1

(
r

j

)
Γ(3j + 1/2)
Γ(j + 1/2)

γr−j , r ≥ 1, (60)

which is given by Louchard [11]. Changing the upper summation limit we
can also write these as

18rΩr =
6r + 1
6r − 1

Γ(3r + 1/2)
Γ(r + 1/2)

−
r∑

j=1

(
r

j

)
Γ(3j + 1/2)
Γ(j + 1/2)

18r−jΩr−j , r ≥ 0,

(61)

γr =
6r + 1
6r − 1

Γ(3r + 1/2)
Γ(r + 1/2)

−
r∑

j=1

(
r

j

)
Γ(3j + 1/2)
Γ(j + 1/2)

γr−j , r ≥ 0. (62)

By (28), these are further equivalent to the linear recursion in Takács [13, 14]

Kr =
6r + 1

2(6r − 1)
αr −

r∑
j=1

αjKr−j , r ≥ 1, (63)

where, cf. (57),

αj := 36−j Γ(3j + 1/2)
Γ(j + 1/2) j!

= 2−jej , j ≥ 0. (64)

8. Airy and Bessel functions

See [9, (8.14) and (8.15)] and Flajolet and Louchard [5].

9. Continued fractions

See [9, (8.15) and (8.16)].

10. Related results

Note the related formulas, involving related quadratic or linear recursions,
for the moments of the integrals

∫ 1
0 |B

br(t)| dt and
∫ 1
0 |B(t)| dt of absolute

values of a Brownian bridge and Brownian motion, respectively, by Takács
[16, 18], and for another functional of a Brownian excursion by Janson [7]
(see also [4]).

Acknowledgments

I thank Philippe Flajolet and Guy Louchard for providing me with several
references.



WRIGHT’S CONSTANTS AND BROWNIAN EXCURSIONS 9

References

[1] D. Aldous, Brownian excursions, critical random graphs and the multiplicative coa-
lescent. Ann. Probab. 25 (1997), 812–854.

[2] G. N. Bagaev & E. F. Dmitriev, Enumeration of connected labeled bipartite graphs.
(Russian.) Doklady Akad. Nauk BSSR 28 (1984), 1061–1063.

[3] E.A. Bender, E.R. Canfield & B.D. McKay, Asymptotic properties of labeled con-
nected graphs. Random Struct. Alg. 3 (1992), no. 2, 183–202.

[4] P. Chassaing & S. Janson, The center of mass of the ISE and the Wiener index of
trees. Electronic Comm. Probab. 9 (2004), paper 20, 178–187.

[5] P. Flajolet & G. Louchard, Analytic Variations on the Airy Distribution. Algorithmica
31 (2001), 361–377.

[6] P. Flajolet, P. Poblete & A. Viola, On the analysis of linear probing hashing. Algo-
rithmica 22 (1998), no. 4, 490–515.

[7] S. Janson, The Wiener index of simply generated random trees. Random Struct. Alg.
22 (2003), no. 4, 337–358.

[8] S. Janson, Left and right pathlenghts in random binary trees. Algorithmica, to appear.
Available at http://www.math.uu.se/~svante/papers/

[9] S. Janson, D.E. Knuth, T.  Luczak & B. Pittel, The birth of the giant component.
Random Struct. Alg. 3 (1993), 233–358.
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