SOME BANACH SPACE GEOMETRY

SVANTE JANSON

1. INTRODUCTION

I have collected some standard facts about Banach spaces from various sources, see the references below for further results. Proofs are only given sometimes.

Notation. ε is an arbitrarily small positive number.

L(X,Y) is the Banach space of bounded linear operators $T: X \to Y$.

B(X) is the closed unit ball $\{x \in X : ||x|| \leq 1\}$.

 $\overline{\mathbb{N}} := \mathbb{N} \cup \{\infty\}$ is the one-point compactification of the discrete space \mathbb{N} . All operators are bounded and linear.

A compact (topological) space always means a compact Hausdorff space. (We sometimes add "Hausdorff" explicitly for emphasis.)

2. INJECTIVE BANACH SPACES

Definition 2.1. Let $\lambda \ge 1$. A Banach space X is λ -injective if whenever Y and Z are Banach spaces with $Y \subseteq Z$ (isometrically), then every bounded linear operator $T: Y \to X$ can be extended to an operator $\tilde{T}: Z \to X$ with $\|\tilde{T}\| \le \lambda \|T\|$.

A Banach space X is ∞ -injective if it is λ -injective for some $\lambda < \infty$.

Example 2.2. The one-dimensional Banach space \mathbb{R} or \mathbb{C} is 1-injective. (This is the Hahn–Banach theorem.)

Example 2.3. ℓ^{∞} , and more generally $\ell^{\infty}(S)$ for any set S, is 1-injective. This follows by using the Hahn-Banach theorem on each coordinate.

Example 2.4. A finite-dimensional Banach space X is ∞ -injective. This follows from Example 2.3, since X is isomorphic to $\ell_n^{\infty} := \ell^{\infty}([n])$, where $n = \dim X$.

Remark 2.5. When studying isometric properties of Banach spaces, the natural notion is 1-injective. On the other hand, when studying isomorphic properties, the natural notion is ∞ -injective, which obviously is preserved by renorming the space. This is further shown by the simple Theorem 2.6 below, avoiding all estimates.

Date: 24 August, 2012; revised 27 August 2012.

Partly supported by the Knut and Alice Wallenberg Foundation.

More formally, using category theory terminology, "1-injective" is injective in category theoretic sense in the category BAN_1 of Banach spaces and linear contractions, while (by Theorem 2.6) " ∞ -injective" is injective in the category BAN_{∞} of Banach spaces and bounded linear operators.

We use *injective* as an abbreviation of ∞ -injective.

Warning: In several other papers, *injective* means 1-injective. (As said above, this is natural when studying isometric properties.)

Theorem 2.6. A Banach space X is injective if whenever Y and Z are Banach spaces with $Y \subseteq Z$, then every bounded linear operator $T: Y \to X$ can be extended to an operator $\tilde{T}: Z \to X$.

Proof. We may assume that Y is an isometric subspace of Z, i.e., $\| \|_Y = \| \|_Z$ on Y, since we otherwise may replace $\| \|_Y$ by the equivalent $\| \|_Z$.

Suppose that the extension property in the statement holds. We want to show that it is possible to choose \tilde{T} such that there is a uniform norm estimate $\|\tilde{T}\| \leq \lambda \|T\|$ for all such Y, Z and T.

First, fix a pair Y, Z with $Y \subseteq Z$ (isometrically). The property says that the restriction map $L(Z, X) \to L(Y, X)$ is onto. Hence, the open mapping theorem shows that there exists a constant C such that every $T: Y \to X$ has an extension $\tilde{T}: Z \to X$ with $\|\tilde{T}\| \leq C \|T\|$. We let C(Y, Z) be the infimum of the constants C for which this holds. (I do not know whether the minimum always is attained.)

Suppose that the set $\{C(Y, Z)\}$ is unbounded, where (Y, Z) ranges over all pairs of Banach spaces with $Y \subseteq Z$ (isometrically). Then there exists such pairs (Y_n, Z_n) with $C(Y_n, Z_n) \ge n$. Let $Y := \bigoplus_{n=1}^{\infty} Y_n$ and $Z := \bigoplus_{n=1}^{\infty} Z_n$ be the ℓ^1 sums of these spaces, and note that $Y \subseteq Z$ (isometrically).

Suppose that $n \ge 1$ and that $T: Y_n \to X$. We extend T to an operator $U: Y \to X$ by defining $U(y_1, \ldots,) := T(y_n)$; then ||U|| = ||T||. We may extend U to an operator $\tilde{U}: Z \to X$ with norm $||\tilde{U}|| \le (C(Y, Z) + \varepsilon)||U|| = (C(X, Y) + \varepsilon)||T||$ and the restriction to $Z_n \subseteq Z$ yields an extension $\tilde{T}: Z_n \to X$ of T with $||\tilde{T}|| \le ||\tilde{U}|| \le (C(X, Y) + \varepsilon)||T||$. Hence $C(Y_n, Z_n) \le C(Y, Z)$ for every n, which contradicts the assumption that $C(Y_n, Z_n) \ge n$.

Consequently, $\{C(Y,Z)\}$ is bounded, and then X is λ -injective for any $\lambda > \sup\{C(Y,Z)\}$.

The definition is equivalent to the existence of suitable projections, and to an extension property when X is a subspace of another space. This holds both for the isometric and isomorphic versions, i.e., with and without norm estimates, and we state this as a theorem containing both versions. See further e.g. [6] and [9].

Theorem 2.7. The following properties of a Banach space X are equivalent.

- (i) X is λ -/injective.
- (ii) If $X \subseteq Z$ [isometrically], where Z is another Banach spaces, then there is a projection $Z \to X$ [of norm $\leq \lambda$].

(iii) If $X \subseteq Z$ [isometrically], where Z is another Banach space, then every bounded linear operator $T: X \to Y$, where Y is another Banach space, can be extended to an operator $\tilde{T}: Z \to Y$ [with norm $\|\tilde{T}\| \leq \lambda \|T\|$].

Proof. (i) \Longrightarrow (ii): Extend the identity $X \to X$ to $P: Z \to X$.

(ii) \Longrightarrow (i): X can be embedded isometrically into some $\ell^{\infty}(S)$. (E.g. by taking $S = B(X^*)$.) Let $P : \ell^{\infty}(S) \to X$ be the projection given by (ii). If $Y \subseteq Z$ are Banach spaces and $T : Y \to X \subseteq \ell^{\infty}(S)$, then T can be regarded as a map $Y \to \ell^{\infty}(S)$, which by Example 2.3 can be extended (isometrically) to an operator $\tilde{T} : Z \to \ell^{\infty}(S)$. Then $P\tilde{T} : Z \to X$ is the desired extension. (ii) \Longrightarrow (iii): If P is such a projection, T may be extended by TP.

(ii) \Rightarrow (ii): Extend the identity $X \rightarrow X$ to $P: Z \rightarrow X$.

Corollary 2.8. The following properties of a Banach space X are equivalent.

- (i) X is injective.
- (ii) Every subspace isomorphic to X of an arbitrary Banach space Z is complemented.
- (iii) Every subspace isometric to X of an arbitrary Banach space Z is complemented.

Proof. This is a reformulation of Theorem 2.7(i) \iff (ii).

Corollary 2.9. If X is injective, then a closed subspace of X is injective if and only if it is complemented.

Proof. An injective subspace is always complemented by Corollary 2.8.

Conversely, let $W \subseteq X$ be a complemented subspace, where X is injective. Then there exists a projection $P: X \to W$, and we argue as in the proof of Theorem 2.7: If $Y \subseteq Z$ are Banach spaces and $T: Y \to W \subseteq X$, then T can be regarded as a map $Y \to X$, which by assumption can be extended to an operator $\tilde{T}: Z \to X$. Then $P\tilde{T}: Z \to W$ is the desired extension. \Box

There is a characterization of the 1-injective Banach spaces. (There is no known characterization of general injective Banach spaces, or of λ -injective Banach spaces for a given $\lambda > 1$.)

A topological Hausdorff space is *extremally disconnected* if the closure of an open set is open. See e.g. [5, Section 6.2, pp. 368–369].

Theorem 2.10 (Kelley [8], Hasumi [7]). The following are equivalent, for a Banach space X.

- (i) X is 1-injective.
- (ii) X is isometric to C(K) for some extremally disconnected compact Hausdorff space K.

In the real case, this can be elaborated as follows.

Theorem 2.11 (Nachbin [12], Goodner [6], Kelley [8]). For a real Banach space X, the following are equivalent:

- (i) X is 1-injective.
- (ii) X is isometric to C(K) for some extremally disconnected compact space K.
- (iii) The closed balls in X have the binary intersection property. (I.e., any family of closed balls that intersect pairwise has non-empty intersection.)
- (iv) X is isometric to some C(K) (K compact) such that the unit ball is a complete Boolean lattice. (I.e., any family $\{f_{\alpha}\}$ has a l.u.b.)
- (v) X is isometric to some C(K) (K compact) such that any family $\{f_{\alpha}\} \subset X$ that has an upper bound has a l.u.b.

Example 2.12. A finite-dimensional Banach space X is 1-injective if and only if it is isometric to ℓ_n^{∞} for some n. (Cf. Example 2.4.)

Note that if C(K) and C(L) are isometric, then K and L are homeomorphic (Theorem 4.3 below). Hence:

Corollary 2.13. If K is compact, then C(K) is 1-injective if and only if K is extremally disconnected.

Corollary 2.14. If X is a commutative C^* -algebra with maximal ideal space Δ , then X is 1-injective if and only if Δ is extremally disconnected.

Proof. X is isometric to $C(\Delta)$ by the Gelfand transform.

Corollary 2.15. The following properties of a Banach space X are equivalent.

- (i) X is injective.
- (ii) X is isomorphic (or isometric) to a complemented subspace of $\ell^{\infty}(S)$ for some set S.
- (iii) X is isomorphic (or isometric) to a complemented subspace of C(K)for some extremally disconnected compact space K.

Proof. (i) \implies (ii): As in the proof of Theorem 2.7, X is isometric to a subspace of $\ell^{\infty}(S)$ for some set S, and this subspace is complemented by Corollary 2.8.

(ii) \implies (iii): $\ell^{\infty}(S)$ is isometric to some such C(K) by Example 2.3 and Theorem 2.10.

(iii) \implies (i): By Theorem 2.10 and Corollary 2.9.

Although there is no characterization of infinite-dimensional injective Banach spaces, they are known to have, or not have, several properties.

Theorem 2.16. Let X be an infinite-dimensional injective Banach space.

- (i) X contains a complemented subspace isomorphic to ℓ^{∞} .
- (ii) X is not separable, not reflexive, not WCG (weakly compactly generated).

Proof. (i): By Corollary 2.15(iii) and [4, Corollary VI.2.11], X contains a subspace isomorphic to ℓ^{∞} , and this subspace is complemented by Corollary 2.8 since ℓ^{∞} is injective (Example 2.3).

(ii): Follows from (i), since ℓ^{∞} does not have these properties.

3. Injective dual spaces

For a dual space $X = W^*$, a linear operator $Y \to W^*$ is the same as a bilinear form $Y \times W \to \mathbb{R}$ or \mathbb{C} . This leads to the following, se [16, Corollary 2.12].

Theorem 3.1. The following properties of a Banach space W are equiva*lent:*

- (i) W^* is λ -*injective*.
- (ii) Whenever Y and Z are Banach spaces with $Y \subseteq Z$ (isometrically), every bounded bilinear form α on $Y \times W$ can be extended to a bounded bilinear form $\tilde{\alpha}$ on $Z \times W$ [with norm $\|\tilde{\alpha}\| \leq \lambda \|\alpha\|$].
- (iii) Whenever Y and Z are Banach spaces with $Y \subseteq Z$ (isometrically), the projective tensor norms $\| \|_{Y \widehat{\otimes} W}$ and $\| \|_{Z \widehat{\otimes} W}$ are equivalent on $Y \otimes W$ [with $||u||_{Y\widehat{\otimes}W} \leq \lambda ||u||_{Z\widehat{\otimes}W}$].
- (iv) Whenever Y and Z are Banach spaces with $Y \subseteq Z$ (isometrically), the projective tensor product $Y \widehat{\otimes} W$ is a closed subspace of $Z \widehat{\otimes} W$ [with $||u||_{Y\widehat{\otimes}W} \leq \lambda ||u||_{Z\widehat{\otimes}W} \text{ for } u \in Y\widehat{\otimes}W].$

Proof. (i) \iff (ii): By the comment before the theorem.

(ii) \iff (iii): A bounded bilinear form on $Y \times W$ is the same as a bounded linear form on $Y \otimes W$ with the projective tensor norm $\| \|_{Y \otimes W}$. The equivalence now follows easily using the Hahn-Banach theorem.

(iii) \iff (iv): This is immediate, since $Y \otimes W$ is the completion of $Y \otimes W$ in the norm $\| \|_{Y \widehat{\otimes} W}$, and similarly for $Y \widehat{\otimes} Z$.

Corollary 3.2. W^* is 1-injective if and only if $Y \widehat{\otimes} W \subseteq Z \widehat{\otimes} W$ isometrically whenever $Y \subseteq Z$.

Example 3.3. Let $W = L^1(S, \mathcal{F}, \mu)$ for a measure space (S, \mathcal{F}, μ) . Then $Y \widehat{\otimes} W = L^1(S, \mathcal{F}, \mu; Y)$, the space of Bochner integrable Y-valued functions on (S, \mathcal{F}, μ) , se [16, Section 2.3]. Thus, if $Y \subseteq Z$ isometrically, then

$$Y\widehat{\otimes}W = L^1(S, \mathcal{F}, \mu; Y) \subseteq L^1(S, \mathcal{F}, \mu; Z) = Z\widehat{\otimes}W$$

isometrically, so Theorem 3.1(iv) is satisfied with $\lambda = 1$. Thus Theorem 3.1 (or Corollary 3.2) shows that $W^* = L^1(S, \mathcal{F}, \mu)^*$ is 1-injective.

In particular, if μ is σ -finite, we obtain the following result [16, p. 30].

Theorem 3.4. If μ is a σ -finite measure on some measurable space, then $L^{\infty}(\mu) = L^{1}(\mu)^{*}$ is 1-injective.

Proof. $L^{\infty}(\mu) = L^{1}(\mu)^{*}$, which is 1-injective by Example 3.3.

Corollary 3.5. If μ is a σ -finite measure on some measurable space, then the maximal ideal space of $L^{\infty}(\mu)$ is extremally disconnected.

Proof. By Theorem 3.4 and Corollary 2.14.
$$\Box$$

Example 3.6. Theorem 3.4 and Corollary 3.5 do not extend to $L^{\infty}(\mu)$ for all (non- σ -finite) μ , as shown by the following example.

Let $X = L^{\infty}([0, 1], \mathcal{B}, \mu)$, where \mathcal{B} is the Borel σ -field and μ is the counting measure. Thus there are no null sets (except \emptyset), so X consists of all bounded Borel measurable functions on [0, 1] with $||f|| = \sup_{x} |f(x)|$.

The Gelfand transform $f \mapsto \hat{f}$ is an algebra isomorfism $X \to C(K)$ for some compact Hausdorff space K. The idempotents in X are $\mathbf{1}_E, E \in \mathcal{B}$, and the idempotents in C(K) are $\mathbf{1}_F, F \subseteq K$ is open and closed. Hence the Gelfand transform gives a bijection $E \mapsto \widehat{E}$ of \mathcal{B} onto the collection of open and closed subsets of K. (Thus, $\widehat{\mathbf{1}_E} = \mathbf{1}_{\widehat{E}}$.)

Note that

$$E \subseteq F \iff \mathbf{1}_E \mathbf{1}_F = \mathbf{1}_E \iff \mathbf{1}_{\widehat{E}} \mathbf{1}_{\widehat{F}} = \mathbf{1}_{\widehat{E}} \iff \widehat{E} \subseteq \widehat{F}, \tag{3.1}$$

and similarly

$$E \cap F = \emptyset \iff \mathbf{1}_E \mathbf{1}_F = 0 \iff \mathbf{1}_{\widehat{E}} \mathbf{1}_{\widehat{F}} = 0 \iff \widehat{E} \cap \widehat{F} = \emptyset.$$
(3.2)

For $x \in [0, 1]$, let

$$U_x := \{x\} \subseteq K. \tag{3.3}$$

Note that if $x \neq y$, then U_x and U_y are disjoint by (3.2),

Furthermore, for any set $A \subseteq [0, 1]$, let

$$U_A := \bigcup_{x \in A} U_x. \tag{3.4}$$

Thus, U_A is an open subset of K.

Suppose that $\overline{U_A}$ is open; then $\overline{U_A}$ is open and closed so $\overline{U_A} = \widehat{E}$ for some Borel set $E \subseteq [0,1]$. If $x \in A$, then $\widehat{\{x\}} = U_{\{x\}} \subseteq U_A \subseteq \overline{U_A} = \widehat{E}$ by (3.1), and thus $\{x\} \subseteq E$ by (3.1) again, i.e., $x \in E$. On the other hand, if $x \notin A$, then U_x is an open set disjoint from U_A , and thus $\widehat{\{x\}} \cap \widehat{E} = U_x \cap \overline{U_A} = \emptyset$; hence (3.2) yields $\{x\} \cap E = \emptyset$, i.e., $x \notin E$. Consequently, E = A, which means $A = E \in \mathcal{B}$.

In other words, if $A \notin \mathcal{B}$, then U_A is an open subset of K but $\overline{U_A}$ is not open. Hence K is not extremally disconnected and thus, by Theorem 2.10, C(K) is not 1-injective. Consequently, $L^{\infty}([0,1], \mathcal{B}, \mu)$ is not 1-injective.

Example 3.3 can be extended somewhat as follows.

Definition 3.7. A Banach space X is an $\mathcal{L}_{1,\lambda}$ -space if every finite-dimensional subspace M of X is contained in a finite-dimensional subspace N such that the Banach-Mazur distance between N and ℓ_1^n (where $n = \dim N$) is at most λ , i.e., there exists an isomorphism $T: N \to \ell_1^n$ such that $||T|| ||T^{-1}|| \leq \lambda$.

A Banach space is an $\mathcal{L}_{1,\lambda+}$ -space if it is an $\mathcal{L}_{1,\lambda+\varepsilon}$ -space for every $\varepsilon > 0$.

A Banach space is an \mathcal{L}_1 -space if it is an $\mathcal{L}_{1,\lambda}$ -space for some $\lambda < \infty$,

It is easily seen that if W is an $\mathcal{L}_{1,\lambda}$ -space, and $Y \subseteq Z$ (isometrically), then $\|u\|_{Y\widehat{\otimes}W} \leq \lambda \|u\|_{Z\widehat{\otimes}W}$ for every $u \in Y \otimes W$, see [16, Section 2.4]. (The idea is that that the tensor norm $\|u\|_{Z\widehat{\otimes}W}$ can be approximated by the norm in $Z\widehat{\otimes}M$ for a suitable finite-dimensional subspace $M \subseteq W$.) Consequently, Theorem 3.1(iii) \Longrightarrow (i) yields the following.

Theorem 3.8. If W is an $\mathcal{L}_{1,\lambda}$ -space, or more generally an $\mathcal{L}_{1,\lambda+}$ -space, then W^* is λ -injective.

Corollary 3.9. (i) If W is an \mathcal{L}_1 -space, then W^* is ∞ -injective. (ii) If W is an $\mathcal{L}_{1,1+}$ -space, then W^* is 1-injective.

Example 3.10. If K is a compact Hausdorff space, then $C(K)^* = M_r(K)$, the space of regular real-valued (or complex-valued) Borel measures on K, is an $\mathcal{L}_{1,1+}$ -space [16, p. 32]. (This is easily verified, since every finitedimensional subspace of $M_r(K) \subseteq M(K)$ can be seen isometrically as a subspace of $L^1(K,\nu)$ for some finite Borel measure ν by the Radon–Nikodým theorem, and $L^1(K,\nu)$ is an $\mathcal{L}_{1,1+}$ -space, see [16, Proposition 2.21].)

Consequently, the bidual $C(K)^{**}$ is 1-injective for every compact K.

4. More on
$$C(K)$$

We give a few simple results on the Banach spaces C(K), where K is a compact Hausdorff space. See e.g. [15] for further results.

Theorem 4.1. C(K) is separable if and only if K is metrizable.

See [2, Theorem V.6.6] for a proof.

Theorem 4.2. The dual space $C(K)^*$ is separable if and only if K is countable.

Proof. If K is countable, then every subset of K is a Borel set and $C(K)^* = M(K) = \ell^1(K)$ which is separable.

On the other hand, for any K, the point evaluations δ_x , $x \in K$, form a discrete subset of $C(K)^*$, so if K is uncountable, then $C(K)^*$ is not separable.

As a corollary to these two theorems we see that every countable compact space is metrizable, since X is separable whenever X^* is.

We have the following isomorphism theorems. Note the difference between isometries and isomorphisms.

Theorem 4.3 (Banach–Stone). If K_1 and K_2 are compact Hausdorff spaces such that $C(K_1)$ and $C(K_2)$ are isometric Banach spaces, then K_1 and K_2 are homeomorphic.

Theorem 4.4 (Miljutin). All spaces C(K) where K is an uncountable compact metric space are isomorphic as Banach spaces. (Equivalently, they are all isomorphic to C[0, 1].)

For the proof of Theorem 4.4 see Miljutin [11], Pełczyński [13] or Rosenthal [15].

The spaces C(K) with K countable are not isomorphic to C[0,1] by Theorem 4.2. These spaces are classified up to isomorphisms by Bessaga and Pełczyński [1], see alse [13] and [15].

Remark 4.5. Every countable compact set is homeomorphic to $[0, \gamma]$ for some countable ordinal γ , i.e., the space of all ordinals $\leq \gamma$ with the order topology. (This space is always compact, see [5, Example 3.1.27 and Problem 3.12.3].) In fact, every such space is homeomorphic to $[0, \omega^{\alpha} n]$ for some countable ordinal α and integer $n \geq 1$, and α and n are uniquely determined (by the fact that the α :th derived set is finite and non-empty with exactly n points), see [10].

Consequently, if K is compact and countable, then C(K) is isometric to $C[0, \omega^{\alpha} n]$ for some (unique) $\alpha < \aleph_1$ and $n \ge 1$.

Example 4.6. c_0 is isomorphic to $c = C(\overline{\mathbb{N}})$. By Theorem 4.2, c_0 is not isomorphic to C[0, 1].

Remark 4.7. The corresponding non-separable spaces ℓ^{∞} and $L^{\infty}[0,1]$ are isomorphic. (Their preduals ℓ^1 and $L^1[0,1]$ are not. This can be seen because $L^1[0,1]$ contains a subspace isomorphic to ℓ^2 , for example by Khinchine's inequalities the closed subspace spanned by the Rademacher functions, see e.g. [3, p. 105]; thus $L^1[0,1]$ does not have the Schur property that ℓ^1 has [3, p. 85]. Conversely, ℓ^1 does not contain any subspace isomorphic to ℓ^2 , because ℓ^1 has the Schur property.

Remark 4.8. It is easily seen that if K is any infinite compact metric space, then C(K) contains a subspace isometric to c, and thus a subspace isometric to c_0 . (Take a convergent sequence $x_n \to x_\infty$ in K with $d(x_n, x_\infty) \searrow 0$, and find continuous functions $f_n : K \to [0, 1]$ with disjoint supports and $f_n(x_m) = \delta_{nm}$.)

5. Embeddings into C(K).

Theorem 5.1 (Banach–Mazur). Every separable Banach space is isometric to a closed subspace of C[0, 1].

Sketch of proof. If X is separable, then the dual unit ball $K^{=}B(X^{*})$ is a compact metric space, and X can be regarded as a subspace of C(K).

There exists a surjective continuous map of the Cantor set $D = \{0, 1\}^{\infty}$ onto any compact metric space, and thus onto K, which gives an embedding of C(K) as a subspace of C(D). Finally, the Cantor set D has a traditional embedding as a subset of [0, 1], and C(D) may be embedded into C[0, 1] by extending each function linearly across each interval in the complement of the Cantor set.

Here [0, 1] can be replaced by various other spaces, for example (as seen in the proof) the Cantor set, as well as any other compact space that maps continuously onto [0, 1].

Remark 5.2. We cannot replace [0,1] by any countable compact space in Theorem 5.1; in particular, we cannot replace C[0,1] by $c_0 \cong c = C(\overline{\mathbb{N}})$. In fact, if $X \subseteq C(K)$ with K countable, then X^* is a quotient space of $C(K)^*$, and thus X^* has to be separable by Theorem 4.2; hence C[0,1] cannot be embedded in C(K) (not even isomorphically).

6. Separable injectivity

We note the following interesting example in the subcategory of separable Banach spaces; see e.g. [3, Theorem VII.4] or [9, Theorem 3.11.12] for a proof.

We say that a Banach space X is separably λ -injective if Definition 2.1 is satisfied for all separable Banach spaces Y and Z with $Y \subseteq Z$.

Theorem 6.1 (Sobczyk). c_0 is separably 2-injective.

It is easily seen that Theorem 2.7 holds also if we only consider separable spaces; thus Theorem 6.1 is equivalent to:

Theorem 6.2. If c_0 is a subspace (isometrically) of a separable Banach space Z, then there is a projection $Z \to c_0$ of norm at most 2.

Remark 6.3. c_0 is not separably 1-injective; the constant 2 is best possible in Theorems 6.1–6.2. In fact, if we take Z = c in Theorem 6.2, then every projection $c \rightarrow c_0$ has norm at least 2, as shown by Taylor [17]. (Note that in this case, the subspace c_0 has codimension 1.)

Remark 6.4. There is no bounded projection $\ell^{\infty} \to c_0$. Thus c_0 is not injective in the category of all Banach spaces. (Phillips [14]; see also Phillips's lemma [3, p. 83]. In fact, every bounded operator $\ell^{\infty} \to c_0$ is weakly compact [3, Exercise VII.4].) This follows also by Theorem 2.16.

Remark 6.5. If K is an infinite compact metric space (so C(K) is separable), then C(K) is separably injective if and only if C(K) is isomorphic to c_0 , which holds if and only if K is homeomorphic to $[0, \omega^m n]$ for some integers $m, n \ge 1$, cf. Remark 4.5. (Equivalently, the derived set $K^{(\omega)} = \emptyset$.)

In particular, C[0,1] is not separably injective. A concrete witness is the embedding of C[0,1] into C(D), where $D := \{0,1\}^{\infty}$ is the Cantor cube, induced by the surjection $\varphi : D \to [0,1]$ given by $\varphi((x_i)_1^{\infty}) = \sum_{i=1}^{\infty} x_i 2^{-i}$; this embeds C[0,1] as an uncomplemented subspace of C(D).

For proofs, see [15, Section 3C].

APPENDIX A. PROJECTIVE COMPACT SPACES

Theorem 2.10 is in some sense dual to the following result by Gleason for compact topological spaces. See $[9, \S7]$ for a proof.

A compact Hausdorff space K is projective (in the category of compact Hausdorff spaces) if whenever S and T are compact Hausdorff spaces, $f : S \to T$ is an onto continuous map, and $g : K \to T$ is any continuous map, then g can be lifted to a map $G : K \to S$, i.e., a map G such that g = fG.

Theorem A.1. A compact Hausdorff space is projective if and only if it is extremally disconnected. \Box

Furthermore, standard (category theoretical) arguments yield the following, see $[9, \S7]$:

We say that a compact Hausdorff space K is *free* if it is (homeomorphic to) the Stone–Čech compactification βS of a discrete space S. Equivalently, there exists a subset $S \subset K$ (necessarily the set of all isolated points), such that any map from S into a compact Hausdorff space has a unique continuous extension to K.

Theorem A.2. A compact Hausdorff space K is projective if and only if it is a retract of a free compact Hausdorff space. (I.e., there exists a free compact space L such that $K \subseteq L$ and there exists a continuous map $r : L \to K$ that is the identity on K.)

References

- C. Bessaga & A. Pełczyński, Spaces of continuous functions. IV. On isomorphical classification of spaces of continuous functions. *Studia Math.* 19 (1960), 53–62.
- [2] J. B. Conway, A Course in Functional Analysis. 2nd ed., Springer-Verlag, New York, 1990.
- [3] J. Diestel, Sequences and Series in Banach Spaces. Springer-Verlag, New York, 1984.
- [4] J. Diestel & J. J. Uhl, jr, Vector Measures. American Mathematical Society, Providence, R.I., 1977.
- [5] R. Engelking, *General topology.* 2nd ed., Heldermann Verlag, Berlin, 1989.
- [6] D. B. Goodner, Projections in normed linear spaces, Trans. Amer. Math. Soc. 69 (1950), 89–108.
- [7] M. Hasumi, The extension property of complex Banach spaces. *Tôhoku Math. J. (2)* 10 (1958), 135–142.
- [8] J. L. Kelley, Banach spaces with the extension property, Trans. Amer. Math. Soc. 72 (1952), 323–326.
- [9] H. E. Lacey, *The Isometric Theory of Classical Banach Spaces*. Springer-Verlag, New York-Heidelberg, 1974.
- [10] S. Mazurkiewicz & W. Sierpinski, Contribution à la topologie des ensembles dénombrables. Fund. Math. 1 (1920), 17–27.
- [11] A. A. Miljutin, Isomorphism of the spaces of continuous functions over compact sets of the cardinality of the continuum. (Russian) *Teor. Funkcii Funkcional. Anal. i Priložen. Vyp.* 2 (1966), 150–156.

- [12] L. Nachbin, A theorem of the Hahn-Banach type for linear transformations, Trans. Amer. Math. Soc. 68 (1950), 28–46.
- [13] A. Pełczyński, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions. *Dissertationes Math. Rozprawy Mat.* 58, 1968.
- [14] R. S. Phillips, On linear transformations. Trans. Amer. Math. Soc. 48 (1940), 516–541.
- [15] H. Rosenthal, The Banach spaces C(K), Handbook of the Geometry of Banach spaces, vol.2, W.B. Johnson and J. Lindenstrauss, eds., Elsevier, Amsterdam, 2003, pp. 1547–1602. http://www.ma.utexas.edu/ users/rosenthl/pdf-papers/92.pdf
- [16] R. A. Ryan, Introduction to Tensor Products of Banach Spaces. Springer-Verlag London, London, 2002.
- [17] A. E. Taylor, The extension of linear functionals. Duke Math. J. 5 (1939), 538–547.

Department of Mathematics, Uppsala University, PO Box 480, SE-751 06 Uppsala, Sweden

E-mail address: svante.janson@math.uu.se *URL*: http://www.math.uu.se/~svante/