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1. Introduction

The purpose of this note is to show some well-known relations between
quaternions and the Lie groups SO(3) and SO(4) (rotations in R3 and R4)
and SU(2) (unitary operators in C2 with determinant 1). In particular, this
gives a simple description of the 2–1 covering homomorphisms SU(2) →
SO(3) and SU(2)× SU(2)→ SO(4).

We also include an explanation of the compact sympletic group Sp(n) as
the group of norm-preserving H-linear maps of the quaternionic vector space
Hn into itself. (These could be thought of as rotations in Hn.)

The quaternions were discovered by Sir William Rowan Hamilton in
Dublin in 1843, and the results below were discovered rather shortly af-
terwards by him and others. In particular, the realization of SO(3) was
found by Hamilton in 1844, and the realization of SO(4) by Cayley in 1855.

For more on quaternions, see e.g. [1, Chapter 7].

2. Quaternions

A quaternion is an element of the quaternion algebra H, which is a four-
dimensional algebra over R that as a vector space has a basis {1, i, j,k}; i.e.,
a quaternion can uniquely be written as w+xi+ yj+ zk with w, x, y, z ∈ R.
The multiplication is bilinear, and is thus determined by the products of the
basis elements; 1 is a unit and

i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j.
(2.1)

The multiplication defined in this way is associative but not commutative.
Moreover, H is a division ring, i.e., every quaternion q ∈ H with q 6= 0 has
a (unique) inverse q−1.

In fact, if we define the conjugate of a quaternion q = w+ xi+ yj+ zk as

q̄ := w − xi− yj− zk, (2.2)

and the norm ‖q‖ by

‖q‖2 := qq̄, (2.3)

then a simple calculation shows that

‖q‖2 := w2 + x2 + y2 + z2, (2.4)

so ‖q‖ is the usual Euclidean norm in R4, and in particular ‖q‖ > 0 if q 6= 0.
Hence, when q 6= 0 we can define an inverse by

q−1 := q̄/‖q‖2. (2.5)
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We regard R as the subspace of H spanned by 1; note that this is a
subalgebra and that addition and multiplication in R and H agree for x, y ∈
R.

Let ImH be the three-dimensional subspace of H spanned by i, j,k, i.e.,

ImH = {xi + yj + zk : x, y, z ∈ R} = {q ∈ H : q̄ = −q}. (2.6)

The elements of ImH are called purely imaginary quaternions.
Note that H is a direct sum R ⊕ ImH of the subspaces R and ImH. In

other words, every quaternion q can be written (uniquely) as r + p, where
r ∈ R and p ∈ ImH; we call r the real part and p the imaginary part or pure
part or vector part of q.

We note the easily verified rule

q1q2 = q̄2q̄1, q1, q2 ∈ H. (2.7)

A simple consequence of this is that

‖q1q2‖2 = q1q2q̄2q̄1 = q1‖q2‖2q̄1 = q1q̄1‖q2‖2 = ‖q1‖2‖q2‖2, (2.8)

and thus

‖q1q2‖ = ‖q1‖‖q2‖ = ‖q2q1‖. (2.9)

Furthermore,

‖q̄‖ = ‖q‖ (2.10)

and, for every q 6= 0,

‖q−1‖ = ‖q‖−1. (2.11)

3. Vector calculus

If we identify ImH and R3 in the obvious way (identifying i, j,k and the
standard basis of R3), then it follows from (2.1) and bilinearity that for any
two purely imaginary quaternions u, v ∈ ImH,

uv = −〈u, v〉+ u× v, (3.1)

where 〈u, v〉 is the scalar product and u×v the vector product in R3. (Thus,
in (3.1), −〈u, v〉 is the real part and u × v is the imaginary part of the
quaternion uv.)

This connection with vector calculus in R3 was one important motivation
for the interest in quaternions in the 19th century.

We use it to derive the following important symmetry property of the
quaternion algebra.

Theorem 3.1. Let T ∈ SO(3), i.e., a rotation of R3, and regard T as acting

on ImH. Extend T to a linear operator T̂ : H → H by T̂ (r + u) = r + Tu
for r ∈ R, u ∈ ImH. Then

T̂ (q1q2) = T̂ (q1)T̂ (q2), q1, q2 ∈ H, (3.2)

and thus T̂ is an algebra automorphism of H.

Proof. It is well-known that if u, v ∈ ImH = R3, then 〈Tu, Tv〉 = 〈u, v〉
T (u)×T (v) = T (u×v), and thus (3.1) yields (T̂ u)(T̂ v) = (Tu)(Tv) = T̂ (uv).
Thus (3.2) holds when q1 and q2 are purely imaginary. Furthermore, (3.2)
is trivial if q1 ∈ R or q2 ∈ R, and the general case follows by bilinearity. �
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Remark 3.2. Conversely, it is not difficult to show that every automor-

phism of H is of the form T̂ for some T ∈ SO(3). The automorphism group

of H is thus isomorphic to SO(3) by the bijection T̂ ↔ T .

4. Unit quaternions

Let

Q := {q ∈ H : ‖q‖ = 1}. (4.1)

Elements of Q are called unit quaternions.
If q1, q2 ∈ Q, then by (2.9), q1q2 ∈ Q. Furthermore, if q ∈ Q, then

q−1 = q̄ ∈ Q. Also, trivially, 1 ∈ Q. These properties show that Q is a
group.

As a set, Q is the unit sphere in H = R4, i.e., the three-dimensional sphere
S3. We give Q the topology and manifold structure of S3, inherited from the
Euclidean space R4. It is obvious that the group operations are continuous
and differentiable, and thus Q is a Lie group. Furthermore, Q is compact,
connected and simply connected, since S3 is.

5. Quaternions as matrices

The quaternion algebra H can be realized as a subalgebra of the matrix
algebra M2(C) by identifying 1 and the unit matrix I = ( 1 0

0 1 ) and setting

i :=

(
i 0
0 −i

)
, j :=

(
0 1
−1 0

)
, k :=

(
0 i
i 0

)
; (5.1)

note that the matrices (5.1) satisfy (2.1). The quaternion algebra then is

identified with the set H̃ of all complex 2 × 2 matrices
( α γ
β δ

)
that are real

linear combinations of I and the three matrices i, j,k. This means that we
make the identification

H ∼= H̃ :=

{(
α −β̄
β ᾱ

)
: α, β ∈ C

}
. (5.2)

In this realization of the quaternions, the multiplication is ordinary matrix
multiplication.

Moreover, if a quaternion q =
(
α −β̄
β ᾱ

)
, then q̄ =

(
ᾱ β̄
−β α

)
=
(
α −β̄
β ᾱ

)∗
, and

‖q‖2 = |α|2 + |β|2. In particular the group Q of unit quaternions becomes

Q =

{(
α −β̄
β ᾱ

)
: α, β ∈ C, |α|2 + |β|2 = 1

}
= SU(2), (5.3)

the group of unitary 2× 2 matrices, see [2, Chapter 1 and Exercise 1.5].

Remark 5.1. The matrices in (5.1) are not unique, and other choices can
be used instead. (For example, a minor variation of the signs of some entries
is used in [1].)

Remark 5.2. M2(C) is a 4-dimensional complex vector space, and therefore
an 8-dimensional real vector space. The construction above identifies H with

the 4-dimensional subspace H̃ of this real vector space.
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6. Rotations

If q ∈ Q, let Lq and Rq be the linear operators H→ H given by

Lqp = qp, Rqp = pq. (6.1)

By (2.9), the operators Lq and Rq preserve the norm in H = R4, and
thus Lq, Rq ∈ O(4). Moreover, for q = 1 we obtain L1 = R1 = I with
determinant +1. Since the maps q 7→ Lq and q 7→ Rq are continuous maps
Q → O(4), and Q is connected, it follows that Lq, Rq ∈ SO(4) for every
q ∈ Q.

Moreover, Lq1q2 = Lq1Lq2 and Rq1q2 = Rq2Rq1 , and it follows that q 7→ Lq
and q 7→ Rq−1 are homomorphisms Q→ SO(4). This mapping is obviously
continuous and differentiable, and is thus a Lie group homomorphism.

Combining these two maps we get a homomorphism Ψ : Q×Q→ SO(4)
given by

(q1, q2) 7→ Ψq1,q2 := Lq1Rq−1
2
, (6.2)

i.e.,

Ψq1,q2(p) = q1pq
−1
2 , p ∈ H. (6.3)

We specialize to the case q1 = q2 and write Φq := Ψq,q = LqRq−1 , i.e.,

Φq(p) = qpq−1. (6.4)

In particular, Φq1 = 1, and thus every element of R ⊂ H is fixed by Φq. Since

Φq ∈ SO(4), also the orthogonal complement R⊥ = ImH is invariant under
Φq. In other words, we can regard Φq as a linar operator ImH→ ImH, for
every q ∈ Q. Since ImH ∼= R3, we can thus regard Φq as a linear operator
on R3. Since each Φq is an isometry, this means that Tq ∈ O(3), and thus
Φ : q 7→ Φq is a homomorphism Q → O(3); as above we see by continuity
that in fact this homomorphism maps into SO(3), i.e., Φq ∈ SO(3) for every
q ∈ Q. This homomorphism is continuous and differentiable since Ψ is.

We have shown that the mapping q 7→ Φq is a Lie group homomorphism
Q → SO(3). If we identify Q and SU(2) as in (5.3), then this can be
seen as a homomorphism SU(2) → SO(3). In fact, this is the same as the
homomorphism defined in [2, Section 1.4]. To see this, it suffices to note
that the operator Φq defined there is the same as (6.4), and that the three-

dimensional space V defined in [2] equals i Im H̃, so Im H̃ = iV ; obviously,

Φq acts the same way in Im H̃ and i Im H̃. (To be formal, the representations
in ImH and i ImH are isomorphic, with p 7→ ip as an intertwining operator.)

The rotation Φq can be described explicitly. Note that if a unit quaternion
q is decomposed into real and imaginary parts as q = r+ p, with r ∈ R and
p ∈ ImH, then r2 + ‖p‖2 = ‖q‖2 = 1, and thus there exists a real number
θ such that r = cos θ and ‖q‖ = sin θ. Consequently, if q ∈ Q, then there
exists θ ∈ R and a unit vector u ∈ ImH such that

q = cos θ + sin θ · u. (6.5)

Lemma 6.1. Let q be as in (6.5). Then Φq is the rotation by angle 2θ
around the axis through u.
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Proof. First, it is clear that q and u commute, and thus Φqu = quq−1 = u,
so u is a fixed point of Φq, and thus Φq is a rotation around the axis through
u.

To compute the angle of this rotation, consider first the case u = i. Then
a direct calculation using (2.1) shows that

Φcos θ+i sin θj = (cos θ + i sin θ)j(cos θ − i sin θ)

= (cos2 θ − sin2 θ)j + 2 sin θ cos θ k

= cos(2θ)j + sin(2θ)k.

(6.6)

Since Φcos θ+i sin θ has i as a fixed point, it is a rotation in the jk plane, and
we see from (6.6) that it is a rotation by 2θ (using the standard orientation).
This verifies the lemma when u = i.

In general, note first that if T is any rotation of ImH, q ∈ Q and h ∈ H,
then, using the notation of Theorem 3.1,

T (Φqh) = T̂ (Φqh) = T̂ (qhq−1) = T̂ (q)T̂ (h)T̂ (q)−1 = Φ
T̂ (q)

(Th), (6.7)

and thus, replacing h by T−1h, Φ
T̂ (q)

(h) = T (Φq(T
−1(h))), i.e.,

Φ
T̂ (q)

= T ◦ Φq ◦ T−1. (6.8)

Now let q be an arbitrary unit quaternion given by (6.5). Let T be a
rotation of ImH such that T i = u, and let q1 := cos θ + i sin θ. Then,

q = T̂ (q1) and thus, by (6.8),

Φq = T ◦ Φq1 ◦ T−1, (6.9)

where Φq1 is a rotation by 2θ around the axis through i. The composition
(6.9) is thus a rotation by 2θ around T i = u. �

Remark 6.2. Note that the representation (6.5) of a quaternion is not
unique. Of course, θ can be replaced by θ+2nπ for any integer n. Moreover,
(θ, u) can be replaced by (−θ,−u), and thus by (−θ+ 2nπ,−u). (If q 6= ±1,
these are the only possibilities.) Note that both representations yield the
same rotation Φq in Lemma 6.1, as they must, since a rotation by 2θ around
u is the same as a rotation by −2θ around −u.

Theorem 6.3 (Hamilton (1844)). The Lie group homomorphism Φ : Q →
SO(3) is onto and 2–1, with kernel {±1}.

Proof. Let q ∈ Q. Then Tq = I if and only if qpq−1 = p for every p ∈ ImH,
i.e., if qp = pq for every p ∈ ImH. Using this with p = i, j,k shows by a
simple calculation that q ∈ R = {r · 1} ⊂ H. Since also q ∈ Q, it follows
that q = ±1. Conversely, if q = ±1, then Φq = I.

Lemma 6.1 shows that Φ is onto SO(3). �

Alternatively, it follows from Lemma 6.1 that Φq1 = Φq2 ⇐⇒ q1 = ±q2.

Theorem 6.4 (Cayley (1855)). The Lie group homomorphism Ψ : Q×Q→
SO(3) is onto and 2–1, with kernel {±(1, 1)}.

Proof. First, suppose that Ψq1,q2 = I. This means, by (6.3), that q1pq
−1
2 = p

for every p ∈ H. In particular, taking p = 1 yields q1q
−1
2 = 1 and thus
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q1 = q2. Hence Φq1 = Ψq1,q1 = I and by Theorem 6.3, q1 = ±1. Conversely,
if q1 = q2 = ±1, then Ψq1,q2 = I.

To show that Ψ maps onto SO(4), let T ∈ SO(4), as above regarded
as a group of rotations of H. Let q1 := T1. Then ‖q1‖ = ‖1‖ = 1, and
thus q1 ∈ Q. Moreover, Lq−1

1
(T1) = 1, and thus T1 := Lq−1

1
◦ T ∈ SO(4)

is a rotation that preserves 1, and thus T1 preserves also the orthogonal
complement R⊥ = ImH. The restriction of T1 to ImH is thus a rotation of
ImH, i.e., an element of SO(3), and Theorem 6.3 shows that there exists a
quaternion q ∈ Q such that T1 = Φq on ImH, and thus T = Lq1T1 = Lq1Φq

on ImH. Explicitly, this means that for every p ∈ ImH,

Tp = q1Φq(p) = q1qpq
−1. (6.10)

Furthermore, T1 = q1 = q1q1q
−1, and thus (6.10) holds also for p = 1, and

by linearity thus for all p ∈ H. This shows that T = Ψq1q,q, and thus Ψ is
onto SO(4). �

Using the isomorphism Q ∼= SU(2) in Section 5, the homomorphisms in
Theorems 6.3 and 6.4 can also be seen as 2–1 Lie group homomorphisms
SU(2)→ SO(3) and SU(2)× SU(2)→ SO(4).

Remark 6.5. These homomorphisms Q→ SO(3) and Q×Q→ SO(4) (or
SU(2) → SO(3) and SU(2) × SU(2) → SO(4)) are covering maps, and since
Q ∼= S3 is simply connected, universal covering maps, as is easily seen from
the definition [2, Definition 13.1].

7. Sp(n) and quaternionic vector spaces

The quaternion algebra H is a non-commutative division ring and not
a field. Nevertheless, much of the theory of vector spaces can (with some
care) be extended to (left) modules over a division rings, and we can thus
talk about quaternionic vector spaces, with quaternions as scalars. In par-
ticular, the space Hn is an n-dimensional quaternionic vector space with the
multiplication q(q1, . . . , qn) = (qq1, . . . , qqn).

Note that Hn is a 4n-dimensional real vector space, and that an map
T : Hn → Hn is H-linear if and only if T is a real linear map such that
T (qv) = qT (v) for every q ∈ H and v ∈ Hn. By (real) linearity, this is
equivalent to the three conditions

T (iv) = iT (v), T (jv) = jT (v), T (kv) = kT (v) (7.1)

for all v ∈ Hn. Since ij = k, we see that the first two conditions (for all v)
imply the third, so it suffices to verify the first two.

We can identify Hn with R4n and give Hn the corrresponding Euclidean
norm.

Let Sp(n) be the group of H-linear maps Hn → Hn that preserve the norm.
(This is thus the analogue of O(n) and U(n) in the quaternionic case.) We
will show that this is isomorphic to the compact symplectic group as defined
in [2, Section 1.2.4], using a minor variation of the argument in [2, Section
1.2.8].

In order to do this, we use again the realization of the quaternions as the

matrix algebra H̃ in Section 5. Each matrix in M2(C) acts on C2 by the
usual multiplication of a matrix and a vector, and it follows that this defines
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a scalar multiplication H̃ × C2 → C2 that makes C2 into a 1-dimensional
quaternionic vector space.

Actually, we will use a different construction of C2 as a quaternionic vector
space, which is equivalent to the one just given by the (real linear) involution

ι : (z1, z2) 7→ (z1,−z̄2). If q ∈ H, q̃ ∈ H̃ is the corresponding matrix defined
in Section 5 and v = (z, w) ∈ C2, we thus thus define (regarding the vectors
as column vectors)

q · v := ι(q̃ι(v)). (7.2)

In particular, by (5.1), this yields

i ·
(
z
w

)
= ι

((
i 0
0 −i

)(
z
−w̄

))
= ι

(
iz
iw̄

)
=

(
iz
iw

)
= i

(
z
w

)
, (7.3)

so i acts by usual complex multiplication, and

j ·
(
z
w

)
= ι

((
0 1
−1 0

)(
z
−w̄

))
= ι

(
−w̄
−z

)
=

(
−w̄
z̄

)
. (7.4)

(We do not have to write explicitly the action of k, since k = ij.)
Taking the direct sum of n copies of this H-vector space C2, we obtain

an n-dimensional quaternionic vector space C2n, where (if we order the
coordinates suitably), i acts by ordinary complex multiplication by i and j
by

j · (α, β) = J(α, β) := (−β̄, ᾱ), α, β ∈ Cn. (7.5)

This is an n-dimensional quaternionic vector space, and therefore it is
isomorphic to Hn. Consider now the H-linear maps of this vector space
into itself. By (7.1) and the comment after it, and the description above of
multiplication by quaternions in C2n, a real linear map T : C2n → C2n is
H-linear if and only if T (iv) = iT (v) and T (J(v)) = J(T (v)) for all v ∈ C2n.
However, T (iv) = iT (v) if and only if T is complex linear. Thus the H-linear
maps C2n → C2n are precisely the complex linear maps that commute with
J .

In particular, if we define the group GL(n;H) to be the set of all H-linear
maps of C2n (or Hn) into itself, this yields

GL(n;H) = {T ∈ GL(2n;C) : TJ = JT}. (7.6)

Moreover, by definition, a complex linear map T : C2n → C2n preserves
the (Euclidean) norm if and only T ∈ U(2n). Consequently, with the defi-
nition of Sp(n) above, we have

Sp(n) = GL(n;H) ∩ U(2n) = {T ∈ U(2n) : TJ = JT}. (7.7)

Finally, let 〈z, w〉 =
∑2n

i=1 z̄iwi denote the usual inner product in C2n

(with the less usual conjugation convention in [2]), and define

ω(z, w) := 〈Jz, w〉, z, w ∈ Cn. (7.8)

Since J is conjugate-linear; ω is a bilinear form on C2n, and it is easily seen
to be the standard skewsymmetric (sympletic) form defined in [2, (1.7)].

Suppose that T ∈ U(2n). By (7.8),

ω(Tz, Tw) = 〈JTz, Tw〉 = 〈T ∗JTz,w〉 = 〈T−1JTz,w〉, (7.9)

and by comparing with (7.8), we see that ω(Tz, Tw) = ω(z, w) for all z, w ∈
C2n if and only if T−1JT = J , which is equivalent to JT = TJ .
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Thus, recalling that Sp(n;C) is the group of all complex-linear maps T :
C2n → C2n such that ω(Tz, Tw) = ω(z, w) for all z, w ∈ C2n, we see by
(7.7) that

Sp(n) = {T ∈ U(2n) : T ∈ Sp(n;C)} = U(2n) ∩ Sp(n;C). (7.10)

This is the definition used in [2].

Example 7.1. Consider the simple case n = 1. Let T : H1 → H1 be an
H-linear map. Let q := T1; then, by H-linearity, for every p ∈ H,

Tp = T (p · 1) = pT (1) = pq, (7.11)

and thus T = Rq, defined in (6.1). Conversely, every Rq : H→ H is H-linear.
Consequently, the set of H-linear maps H → H equals {Rq : q ∈ H}. (Note
that Lq is in general not H-linear.)

Moreover, Rq preserves the norm if and only if ‖q‖ = 1. It follows that q 7→
Rq−1 is an isomorphism Q→ Sp(1). Thus, there are Lie group isomorphisms

Sp(1) ∼= Q ∼= SU(2). (7.12)
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