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Introduction

The purpose of these notes is to give a quick course on tensors in general
differentiable manifolds, as a complement to standard textbooks.

Most proofs are quite straightforward, and are left as exercises to the reader.
The remarks contain additional information, but may be skipped by those

so inclined.
More details can be found in, for example, Boothby [1] and Warner [3].

1. Tensors over a vector space

Throughout this section, V is a finite-dimensional real vector space. The
dimension dim(V ) will be denoted by n.

Remark. It is also possible to define tensors over a complex vector space (with
no essential modifications in the definitions and results below, except that the
special Euclidean case no longer applies). This is important in many other
applications (including complex manifolds), but will not be considered here.

1.1. The dual space. Let V ∗ = hom(V ;R) be the dual of V , i.e. the vector
space of all linear functionals V → R. We write 〈v∗, v〉 for v∗(v), where v∗ ∈ V ∗
and v ∈ V .

Note that V and V ∗ are isomorphic vector spaces, since they have the same
dimension, but there is, in general, no specific natural isomorphism between
them and it is important to distinguish between them. (For the Euclidean
case, see below.) On the other hand, there is a natural isomorphism V ∼= V ∗∗

between V and its second dual, and these space may be identified. (v ∈ V
corresponds to v∗∗ ∈ V ∗∗ given by 〈v∗∗, v∗〉 = 〈v∗, v〉, v∗ ∈ V ∗.)

If {e1, . . . , en} is a basis in V , so that the elements of V may uniquely be
written

∑n
1 a

iei, a
i ∈ R, we define e1, . . . , en ∈ V ∗ by

ei
( n∑

1

ajej

)
= ai.

It is easily seen that {e1, . . . , en} is a basis in V ∗, called the dual basis of
{e1, . . . , en}. We have

〈ei, ej〉 = δij =

{
1, i = j

0, i 6= j.
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In other words, the matrix (〈ei, ej〉)ni,j=1 is the identity matrix.
Note that duality of bases is a symmetric relation; using the identification

of V ∗∗ and V , the dual basis of {e1, . . . , en} is {e1, . . . , en}.
If {f1, . . . , fn} is another basis in V , then fi =

∑
j aijej for some numbers

aij, and similarly for the corresponding dual bases f i =
∑

j bije
j. We have

〈f i, fj〉 =
∑

k bik〈ek, fj〉 =
∑

k bikajk, and thus, introducing the matrices A =
(aij)ij and B = (bij)ij,

I = (〈f i, fj〉)ij = BAt.

Consequently, the matrices of the changes of bases are related by B = (At)−1 =
(A−1)t.

1.2. Tensors. For two non-negative integers k and l, T k,l(V ) is defined to be
the vector space of all multilinear maps f(v∗1, . . . , v

∗
k, v1, . . . , vl) : V ∗ × · · · ×

V ∗ × V × · · · × V → R, with k arguments in V ∗ and l arguments in V . The
elements of T k,l(V ) are called tensors of degree (or order) (k, l).

Given a basis {e1, . . . , en} of V , a tensor T of degree (k, l) is uniquely deter-
mined by the nk+l numbers (which we call coefficients of the tensor)

T i1,...,ikj1,...,jl
= T (ei1 , . . . , eik , ej1 , . . . , ejl). (1.1)

Conversely, there is such a tensor of degree (k, l) for any choice of these num-
bers. Thus the vector space T k,l(V ) has dimension nk+l.

A tensor of type (k, 0) for some k ≥ 1 is called contravariant and a tensor
of type (0, l) for some l ≥ 1 is called covariant. Similarly, in the coefficients
(1.1), the indices i1, . . . , ik are called contravariant, and the indices j1, . . . , jl
are called covariant. It is conventional, and convenient, to use superscripts for
contravariant indices and subscripts for covariant indices.

Example 1.2.1. The case k = l = 0 is rather trivial (but useful); T 0,0(V ) is
just the vector space of all real numbers, T 0,0(V ) = R and a tensor of degree
(0, 0) is a real number. Tensors of degree (0,0) are also called scalars.

Example 1.2.2. T 0,1(V ) is the space of all linear maps V → R. Thus
T 0,1(V ) = V ∗, and a tensor of degree (0, 1) is a linear functional on V .

Example 1.2.3. Similarly, T 1,0(V ) equals V ∗∗, which we identify with V .
Thus, T 1,0(V ) = V , and a tensor of degree (1, 0) is an element of V .

Example 1.2.4. A linear mapping S : V → V defines a tensor T of degree
(1, 1) by

T (v∗, v) = 〈v∗, S(v)〉; v∗ ∈ V ∗, v ∈ V. (1.2)

In a basis {e1, . . . , en}, this tensor has the coefficients

T ij = T (ei, ej) = 〈ei, S(ej)〉 = sij,

where sij is the matrix representation of S in the basis {e1, . . . , en}. Hence
(1.2) defines a natural bijection between T 1,1(V ) and the space hom(V ;V ) of
all linear mappings V → V , so we may identify T 1,1(V ) and hom(V ;V ) and
regard a tensor of degree (1, 1) as a linear mapping V → V . Note that the
identity mapping V → V thus corresponds to the special tensor ι ∈ T 1,1(V )
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given by ι(v∗, v) = 〈v∗, v〉, with coefficients ιij = δij (in this context better

written δij).

Example 1.2.5. More generally, a multilinear mapping S : V l → V defines
a tensor T of degree (1, l) by T (v∗, v1, . . . , vl) = 〈v∗, S(v1, . . . , vl)〉. Hence we
may identify T 1,l(V ) and the space hom(V, . . . , V ;V ) of all such multilinear
mappings.

1.3. Tensor product. Tensors may be multiplied by real numbers, and two
tensors of the same degree may be added, because each T k,l(V ) is a vector
space. Moreover, there is a multiplication, known as tensor product such that
any two tensors may be multiplied. The tensor product of two tensors T and U
of degrees (k1, l1) and (k2, l2), respectively, is a tensor of degree (k1 +k2, l1 + l2)
denoted by T ⊗ U and defined by

T ⊗ U(v∗1, . . . , v
∗
k1+k2

, v1, . . . , vl1+l2)

= T (v∗1, . . . , v
∗
k1
, v1, . . . , vl1)U(v∗k1+1, . . . , v

∗
k1+k2

, vl1+1, . . . , vl1+l2). (1.3)

If T or U has order (0, 0), the tensor product reduces to the ordinary multi-
plication of a tensor by a real number.

By (1.1) and (1.3), the coefficients of the tensor product are given by

(T ⊗ U)
v∗1 ,...,v

∗
k1+k2

v1,...,vl1+l2
= T

v∗1 ,...,v
∗
k1

v1,...,vl1
U
v∗k1+1,...,v

∗
k1+k2

vl1+1,...,vl1+l2
.

The tensor product is associative; T1 ⊗ (T2 ⊗ T3) = (T1 ⊗ T2) ⊗ T3 for
any three tensors T1, T2, T3, so we may write T1 ⊗ T2 ⊗ T3 etc. without any
danger for the tensor product of three or more tensors. The tensor product
is not commutative, however, so it is important to keep track of the order
of the tensors. The tensor product is further distributive; (T1 + T2) ⊗ T3 =
T1 ⊗ T3 + T1 ⊗ T3 and T1 ⊗ (T2 + T3) = T1 ⊗ T2 + T1 ⊗ T3.

Remark. The tensor algebra is defined as the direct sum
⊕∞

k,l=0 T
k,l(V ) of

all the spaces T k,l(V ); its elements are thus sums of finitely many tensors of
different degrees. Any two elements in the tensor algebra may be added or
multiplied (so it is an algebra in the algebraic sense).

We will not use this construct, which sometimes is convenient; for our pur-
poses it is better to consider the spaces T k,l(V ) separately.

Remark. There is also a general construction of the tensor product of two
vector spaces. We will not define it here, but remark that using it, T k,l(V ) =
V ⊗ · · · ⊗ V ⊗ V ∗ ⊗ · · · ⊗ V ∗ (with k factors V and l factors V ∗), which yields
another, and perhaps more natural, definition of the tensor spaces T k,l(V ).

1.4. Bases. If {e1, . . . , en} is a basis in V , we can for any indices i1, . . . , ik,
j1, . . . , jl ∈ {1, . . . , n} for the tensor product

ei1 ⊗ . . .⊗ eik ⊗ ej1 ⊗ . . .⊗ ejl ∈ T k,l(V ). (1.4)

(Recall that ei ∈ T 1,0(V ) and ej ∈ T 0,1(V ).) It follows from (1.1) and (1.3)
that this tensor has coefficients

ei1 ⊗ . . .⊗ eik ⊗ ej1 ⊗ . . .⊗ ejl(ei
′
1 , . . . , ei

′
k , ej′1 , . . . , ej′l) = δi1i′1δi2i′2 . . . δjlj′l
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in the basis {e1, . . . , en}; thus exactly one coefficient is 1 and the others 0. It
follows that the set of the nk+l tensors ei1 ⊗ . . . ⊗ eik ⊗ ej1 ⊗ . . . ⊗ ejl form a
basis in T k,l(V ), and that the coefficients (1.1) of a tensor T ∈ T k,l(V ) are the
coordinates in this basis, i.e.

T =
∑

i1,...,ik,j1,...,jl

T i1,...,ikj1,...,jl
ei1 ⊗ . . .⊗ eik ⊗ ej1 ⊗ . . .⊗ ejl .

1.5. Change of basis. Consider again a change of basis fi =
∑

j aijej, and

thus for the dual bases f i =
∑

j bije
j, where as shown above the matrices

A = (aij)ij and B = (bij)ij are related by B = (At)−1 = (A−1)t. It follows
immediately from (1.1) that the coefficients of a tensor T in the new basis are
given by

T (f i1 , . . . , f ik , fj1 , . . . , fjl) = T
(∑

p1

bi1p1e
p1 , . . . ,

∑
ql

ajlqleql

)
=

∑
p1,...,pk,q1,...,ql

bi1p1 · · · bikpkaj1q1 · · · ajlqlT p1,...,pkq1,...,ql
.

(1.5)

Thus, all covariant indices are transformed using the matrix A = (aij)ij, and
the contravariant indices using B = (bij)ij.

Remark. This is the historical origin of the names covariant and contravariant.
The names have stuck, although in the modern point of view, with empha-
sis on vectors and vector spaces rather than coefficients, they are really not
appropriate.

Remark. It may be better to write ai
j and bij, to adhere to the convention that

a summation index usually appears once as a subscript and once as a super-
script, and that other indices should appear in the same place on both sides of
an equation. In fact, many authors use the Einstein summation convention,
where summation signs generally are omitted, and a summation is implied for
each index repeated this way.

Example 1.5.1. Both linear operators V → V and bilinear forms on V may be
represented by matrices, but, as is well-known from elementary linear algebra,
the matrices transform differently under changes of basis. We see here the
reason: a linear operator is a tensor of degree (1, 1), but a bilinear form is a
tensor of degree (0, 2).

1.6. Contraction. A tensor T of degree (1,1) may be regarded as a linear
operator in V (Example 1.2.4). The trace of this linear operator is called the
contraction of T .

More generally, let T be a tensor of degree (k, l), with k, l ≥ 1, and select
one contravariant and one covariant argument. By keeping all other arguments
fixed, T becomes a bilinear map V ∗×V → R of the two selected arguments, i.e.
a tensor of degree (1, 1) which has a contraction (i.e. trace). This contraction
is a real number depending on the remaining (k− 1) + (l− 1) arguments, and
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it is clearly multilinear in them, so it defines a tensor of degree (k − 1, l − 1),
again called the contraction of T .

Given a basis {e1, . . . , en} and its dual basis {e1, . . . , en}, the contraction of
a tensor T of degree (1,1) is given by, letting S denote the corresponding linear
operator as in (1.2),∑

i

〈ei, S(ei)〉 =
∑
i

T (ei, ei) =
∑
i

T ii .

More generally, the coefficients of a contraction of a tensor T of degree (k, l) are
obtained by summing the n coefficients of T where the indices corresponding
to the two selected arguments are equal. For example, contracting the second
contravariant and first covariant indices (or arguments) in a tensor T of degree

(2,3), we obtain a tensor with coefficients T̃ ijk =
∑

m T
im
mjk.

Note that we have to specify the indices (or arguments) that we contract. A
tensor of degree (k, l) has kl contractions, all of the same degree (k− 1, l− 1),
but in general different.

1.7. Symmetric and antisymmetric tensors. A covariant tensor T of de-
gree 2 is symmetric if T (v, w) = T (w, v) for all v, w ∈ V , and antisymmetric
if T (v, w) = −T (w, v) for all v, w ∈ V . (The terms alternating and skew
are also used for the latter.) More generally, a covariant tensor T of de-
gree k is symmetric if T (vσ(1), . . . , vσ(k)) = T (v1, . . . , vk) and antisymmetric if
T (vσ(1), . . . , vσ(k)) = sgn(σ)T (v1, . . . , vk) for all v1, . . . , vk ∈ V and all permu-
tations σ ∈ Sk, the set of all k! permutations of {1, . . . , k}, where sgn(σ) is +1
is σ is an even permutation and −1 is σ is odd. Equivalently, T is symmetric
(antisymmetric) if T (v1, . . . , vk) is unchanged (changes its sign) whenever two
of the arguments are interchanged. In particular, if T is antisymmetric, then
T (v1, . . . , vk) = 0 when two of v1, . . . , vk are equal. (In fact, this property is
equivalent to T being antisymmetric.)

Given a basis of V , a tensor T is symmetric (antisymmetric) if and only if
its coefficients Ti1,...,ik are symmetric (antisymmetric) in the indices. Con-
sequently, a symmetric covariant tensor of degree k is determined by the
coefficients Ti1,...,ik with 1 ≤ i1 ≤ · · · ≤ ik ≤ n, and an antisymmetric
covariant tensor of degree k is determined by the coefficients Ti1,...,ik with
1 ≤ i1 < · · · < ik ≤ n (since coefficients with two equal indices automati-
cally vanish). These coefficients may be chosen arbitrarily, and it follows that
the linear space of all symmetric covariant tensors of degree k has dimension(
n+k−1

k

)
, while the linear space of all antisymmetric covariant tensors of degree

k has dimension
(
n
k

)
.

Symmetric and antisymmetric contravariant tensors are defined in the same
way. More generally, we may say that a (possibly mixed) tensor is symmetric
(or antisymmetric) in two (or several) specified covariant indices, or in two
(or several) specified contravariant indices. (It does not make sense to mix
covariant and contravariant indices here.)

The tensor product of two symmetric or antisymmetric tensors is, in general,
neither symmetric nor antisymmetric. It is, however, possible to symmetrize
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(antisymmetrize) it, and thus define a symmetric tensor product and an anti-
symmetric tensor product.

The antisymmetric case, which is the most important in differential geome-
try, is studied in some detail in the next subsection.

1.8. Exterior product. Let Ak(V ) be the linear space of all antisymmetric
covariant tensors of degree k. By the last subsection, dimAk(V ) =

(
n
k

)
; in

particular, the case k > n is trivial with dimAk(V ) = 0 and thus Ak(V ) = {0}.
Note the special cases A0(V ) = R and A1(V ) = V ∗. Note also that An(V ) is
one-dimensional.

Form further the direct sum A(V ) =
⊕∞

k=0 Ak(V ) =
⊕n

k=0 Ak(V ) with
dimension

∑n
0

(
n
k

)
= 2n.

If T ∈ Ak(V ) and U ∈ Al(V ), with k, l ≥ 0, we define their exterior product
to be the tensor T ∧ U ∈ Ak+l(V ) given by

T∧U(v1, . . . , vk+l) =
1

k! l!

∑
σ∈Sk+l

sgn(σ)T (vσ(1), . . . , vσ(k))U(vσ(k+1), . . . , vσ(k+l)).

(1.6)

Remark. Some authors prefer the normalization factor 1
(k+l)!

instead of 1
k! l!

,

which leads to different constants in some formulas.

It is easily seen that when k or l equals 0, the exterior product coincides
with the usual product of a tensor and a real number.

The exterior product is associative, T1 ∧ (T2 ∧ T3) = (T1 ∧ T2) ∧ T3, and
bilinear (i.e. it satisfies the distributive rules), and it may be extended to a
product on A(V ) by bilinearity, which makes A(V ) into an associative (but
not commutative) algebra.

The exterior product is anticommutative, in the sense that

U ∧ T = (−1)klT ∧ U, T ∈ Ak(V ), U ∈ Al(V ). (1.7)

If v∗1, . . . , v
∗
k ∈ V ∗ = A1(V ), then v∗1 ∧ · · · ∧ v∗k ∈ Ak(V ), and it follows from

(1.6) and induction that

v∗1 ∧ · · · ∧ v∗k(v1, . . . , vk) = det(〈v∗i , vj〉)ki,j=1. (1.8)

If {e1, . . . , en} is a basis in V , and {e1, . . . , en} is the dual basis, then, for
any k ≥ 0, {ei1 ∧ · · · ∧ eik : 1 ≤ i1 < . . . ik ≤ n} is a basis in Ak(V ) (for k = 0
we interpret the empty product as 1), and any T ∈ Ak(V ) has the expansion

T =
∑

1≤i1<...ik≤n

Ti1,...,ike
i1 ∧ · · · ∧ eik ,

as is easily verified using (1.8). The set of all 2n products ei1 ∧ · · · ∧ eik , where
k is allowed to range form 0 to n, is thus a basis in A(V ).

Example 1.8.1. In particular, the one-dimensional space An(V ) (where, as
usually, n = dimV ) is spanned by e1∧ · · ·∧ en, for any basis {e1, . . . , en} in V .
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If {f1, . . . , fn} is another basis in V , with fi =
∑

j aijej, then the basis change

in An(V ) is given by

f1 ∧ · · · ∧ fn =
∑
j1,...,jn

( n∏
i=1

aiji

)
ej1 ∧ · · · ∧ ejn

=
∑
σ∈Sn

( n∏
i=1

aiσ(i)

)
eσ(1) ∧ · · · ∧ eσ(n)

=
∑
σ∈Sn

( n∏
i=1

aiσ(i)

)
sgn(σ)e1 ∧ · · · ∧ en

= det(A) e1 ∧ · · · ∧ en, (1.9)

using the matrix A = (aij)ij.

1.9. Tensors over a Euclidean space. An inner product on V is a bilinear
form V ×V → R that is positive definite (and thus symmetric), in other words
a special tensor of degree (0,2).

Now suppose that V is a Euclidean space, i.e. a vector space equipped with
a specific inner product, which we denote both by 〈 , 〉 and g. Then there is a
natural isomorphism between V and V ∗, where v ∈ V can be identified with the
linear functional h(v) : w 7→ 〈v, w〉. Using this identification we define a dual
inner product g∗ in V ∗ by g∗(v∗, w∗) = g(v, w) when v∗ = h(v), w∗ = h(w),
thus making h an isometry. Note that g∗ is a bilinear form on V ∗ and thus a
contravariant tensor of degree (2,0). We use the alternative notation 〈 , 〉 for
g∗ too; thus 〈 , 〉 is really used in three senses, viz. for the inner products in
V and V ∗, and for the pairing between V and V ∗. There is no great danger
of confusion, however, because the three interpretations coincide if we use the
identification between V and V ∗: 〈v, w〉 = 〈h(v), w〉 = 〈h(v), h(w)〉.

Given a basis {e1, . . . , en}, we denote the coefficients of the inner products
g and g∗ by gij and gij, respectively. If v ∈ V corresponds to v∗ = h(v) ∈ V ∗,
then the coefficients of v and v∗ are related by

v∗i = 〈v∗, ei〉 = 〈v, ei〉 = 〈
∑
j

vjej, ei〉 =
∑
j

vjg(ej, ei) =
∑
j

gijv
j. (1.10)

We thus obtain the coefficients of v∗ by multiplying the coefficients of v by the
matrix (gij)ij. Similarly, the coefficients of v are obtained by multiplying the
coefficients of v∗ by the matrix (gij)ij:

vi = 〈ei, v〉 = 〈ei, v∗〉 = 〈ei,
∑
j

v∗j e
j〉 =

∑
j

gijv∗j . (1.11)

Since the operations in (1.10) and (1.11) are inverse to to each other, it follows
that the matrix (gij)ij is the matrix inverse of (gij)ij.

The operations of going between v ∈ V and the corresponding v∗ = h(v) ∈
V ∗ are known as lowering and raising the index. Note that, by (1.10), lowering
the index may be regarded as taking the tensor product with g followed by a
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contraction. Similarly, raising an index may be regarded as taking the tensor
product with g∗ followed by a contraction.

The isomorphism between V and V ∗, or equivalently between tensors of
degree (1,0) and (0,1), extends to tensors of higher degree. Indeed, a tensor
of degree (k, l) is defined as a multilinear form on V ∗k × V l, but we may
now identify such a form with a multilinear form on V k+l (or on any other
product of k + l spaces V or V ∗), and thus there is a natural correspondence
T k,l(V ) ∼= T 0,k+l(V ) between tensors of degree (k, l) and covariant tensors of
degree k + l. Thus it suffices to consider covariant tensors only (or, which
in some cases is better, contravariant tensors only). The relations (1.10) and
(1.11) extend to tensors of higher degree; again they may be regarded as taking
tensor products with g or g∗ followed by a contraction; now several indices may
be lowered or raised simultaneously, independently of each other, by taking
the tensor product with several copies of g and g∗ and making the appropriate
contractions. Note, however, that we still have to keep track of the order of
the indices.

Example 1.9.1. A covariant tensor T of degree (0,2) corresponds to two ten-
sors of degree (1,1), obtained by raising different indices, and a contravariant
tensor of degree (2,0) obtained by raising both indices (in any order). If T has
coefficients tij, these tensors have coefficients T ij =

∑
k g

ikTkj, Ti
j =

∑
k g

jkTik
and T ij =

∑
k,l g

ikgjlTkl, respectively.

Example 1.9.2. Recall from Example 1.2.4 that the identity mapping V → V
can be regarded as a tensor ι ∈ T 1,1(V ) with coefficients δij. Lowering or raising

an index we obtain tensors with the coefficients gij and gij, respectively, i.e. g
and g∗. In other words, g, ι and g∗ correspond to each other under raising and
lowering of indices. (In this case, the two tensors of degree (1,1) obtained by
raising different indices in g coincide by symmetry.)

Example 1.9.3. If {e1, . . . , en} is an orthonormal basis in V , i.e. gij = δij, we
have gij = δij (better written δij) too. Thus the dual basis {e1, . . . , en} is also
orthonormal. Moreover, the basis elements correspond to each other under
the identification of V and V ∗: h(ei) = ei. Raising and lowering of indices
becomes trivial; the coefficients remain the same regardless of the position
of the indices. For example, for a tensor of degree 2 as in Example 1.9.1,
Tij = T ij = Ti

j = T ij.

2. Tensors on a manifold

In this section, M is a differentiable manifold of dimension n. The linear
space of all infinitely differentiable real-valued functions on M is denoted by
C∞(M) (another common notation is D(M)), and the space of all vector fields
is denoted by X (M).
Tp(M) is the tangent space at p ∈M , and T (M) is the tangent bundle, i.e.

the (disjoint) union of all Tp(M).
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2.1. Cotangent vectors. The dual space T ∗p (M) of Tp(M) is called the cotan-
gent space at p, and its elements, i.e. the linear functionals on Tp(M), are called
cotangent vectors.

If f is a smooth function on M , or at least in a neighbourhood of p, the
mapping X 7→ X(f) is defined for all X ∈ Tp(M); this mapping is clearly
linear and thus defines a cotangent vector denoted by dfp or just df . In other
words, dfp ∈ T ∗p (M) is defined by

〈dfp, X〉 = X(f), X ∈ Tp(M). (2.1)

Remark. The general definition of the differential df of a differentiable mapping
between two manifolds defines dfp as a linear mapping between the respective
tangent spaces at p and f(p). With the standard identification of the tangent
space Tf(p)(R) with R, the two definitions of dfp coincide (which justifies the
use of the same notation for both).

If (x1, . . . , xn) is a coordinate system in a neighbourhood of p, the partial
derivatives ∂i = ∂/∂xi, i = 1, . . . , n, form a basis in Tp(M). Moreover, the
differentials dxi of the coordinate functions satisfy by (2.1)

〈dxi, ∂/∂xj〉 =
∂xi

∂xj
= δij. (2.2)

Consequently, the dual basis of {∂1, . . . , ∂n} is {dx1, . . . , dxn}. Note that in
this basis, the differential df of a function f has the coefficients 〈df, ∂/∂xi〉 =
∂f/∂xi, i.e.

df =
∑
i

∂f

∂xi
dxi.

2.2. Frames. A frame {E1, . . . , En} in an open subset U of M is a collection
of n vector fields on U that are linearly independent at each q ∈ U , and thus
form a basis of each tangent space Tq(M). At each q ∈ U there is a dual basis
{E1

q , . . . , E
n
q } in T ∗q (M), and the collection of the n functions Ei : q 7→ Ei

q is
called the dual frame.

If (x1, . . . , xn) is a coordinate system in an open set U , the partial derivatives
∂/∂x1, . . . , ∂/∂xn form a frame in U , and the dual frame is, as shown above,
given by the differentials dx1, . . . , dxn. (This is called a coordinate frame and
is perhaps the most important example of a frame, but other frames are some-
times convenient; for example it is in a Riemannian manifold often useful to
consider orthonormal frames.)

Remark. It is not always possible to define a frame on all of M , so we have to
consider subsets U . (Manifolds that have a globally defined frame are known
as parallelizable.) For example, on the sphere S2 (or any even-dimensional
sphere), there does not even exist a vector field that is everywhere nonzero.

2.3. Tensors at a point. At each point p ∈ M , and for each k, l ≥ 0, we
define the tensor space T k,lp (M) to be the space T k,l(Tp(M)) of tensors over
the tangent space. In particular, a tensor at p of degree (0,0) is a real number,
a tensor at p of degree (1,0) is a tangent vector, and a tensor at p of degree
(1,0) is a cotangent vector.
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2.4. Tensor fields. Let k and l be non-negative integers. A rough tensor field
of degree (k, l) on M is a function p 7→ T (p) that for every p ∈ M assigns a
tensor T (p) ∈ T k,lp (M). We similarly define rough tensor fields on a subset of
M .

In particular, a rough tensor field of degree (0,0) is any real-valued function,
and a rough tensor field of degree (1,0) is a rough vector field, i.e. a function
that to every point assigns a tangent vector at that point, without any assump-
tion on smoothness (or even continuity). Just as for vector fields, we want to
add a smoothness assumption for tensor fields; this can be done as follows.

Let {E1, . . . , En} be a frame in a neighbourhood U of p ∈ M , with the
dual frame {E1, . . . , En}. A rough tensor field T of degree (k, l) on U can be
described by its coefficients

T i1,...,ikj1,...,jl
(q) = T (Ei1 , . . . , Eik , Ej1 , . . . , Ejl)(q) (2.3)

(evaluated pointwise); the coefficients are thus real-valued functions on U .
We say that T is smooth at p if all coefficients are smooth functions in a
neighbourhood of p. Note that if {F1, . . . , Fn} is another frame on a (possibly
different) neighbourhood of p, the corresponding change of basis in each Tq(M)
is described by a matrix-valued function A = (aij)ij (defined on the intersection
of the two neighbourhoods); clearly each aij a smooth fuction, and thus also
B = (A−1)t has smooth entries. It follows from (1.5) that if T has smooth
coefficients at p for {E1, . . . , En}, it has so for {F1, . . . , Fn} too, and conversely;
consequently the definition of smooth does not depend on the chosen frame.

A smooth tensor field on M (or on an open subset) is a rough tensor field
that is smooth at every point; in other words, the coefficients for each frame
are smooth (on the subset where the frame is defined). Note that it suffices to
check this for any collection of frames whose domains cover M . (For example,
one can use a collection of coordinate frames whose domains cover M .)

A smooth tensor field is usually called just a tensor field or even a tensor.

Example 2.4.1. A tensor field of degree (0,0), also called a scalar tensor field,
is the same as a smooth real-valued function.

Example 2.4.2. A tensor field of degree (1,0) is the same as a vector field.

Example 2.4.3. A tensor field of degree (0, 1) is a smooth assignment of a
cotangent vector at each point of M . This is usually called a 1-form, for
reasons explained in Section 3.

Example 2.4.4. If {E1, . . . , En} is a frame on an open set U , the elements
E1, . . . , En of the dual frame are n tensor fields of degree (0,1) on U , which
trivially are smooth; thus they are 1-forms on U .

In particular, for any coordinate system (x1, . . . , xn) in an open set U , the
differentials dx1, . . . , dxn are 1-forms on U .

Example 2.4.5. More generally, the differential df of any smooth function f
is a 1-form.



TENSORS AND DIFFERENTIAL FORMS 11

Example 2.4.6. A Riemannian metric in M is by definition a tensor field
of degree (0,2) which at each point is positive definite (as a bilinear form on
Tp(M)).

2.5. Change of basis. As said above, the coefficients of a tensor with respect
to two different frames (on the same set) are related by (1.5), where (aij) and
(bij) are matrices (of functions) describing the change of frame. In the special
case of two coordinate frames given by coordinate systems (x1, . . . , xn) and
(y1, . . . , yn), we have aij = ∂xj/∂yi and bij = ∂yi/∂xj, and thus, if the tensor

has coefficients T i1,...,ikj1,...,jl
for (x1, . . . , xn), its coefficients for (y1, . . . , yn) are given

by ∑
p1,...,pk,q1,...,ql

∂yi1

∂xp1
· · · ∂y

ik

∂xpk
∂yq1

∂xj1
· · · ∂y

ql

∂xjl
T p1,...,pkq1,...,ql

.

2.6. Algebraic operations on tensor fields. The sum of two tensor fields
of the same degree, the tensor product of two arbitrary tensor fields, and con-
tractions of a tensor fields are defined by applying the definitions of Section 1 at
each point p. Clearly, the results are (smooth) tensor fields of the appropriate
degrees.

2.7. Tensor fields as C∞-linear maps. A rough tensor field ω of degree
(0,1) defines a mapping from X (M) to the space of all real-valued functions
on M by X 7→ ω(X) (evaluated pointwise), and ω is smooth if and only if
ω(X) is a smooth function for every vector field X, i.e. if this mapping maps
X (M) into C∞(M).

Moreover, the mapping X 7→ ω(X) is C∞-linear, i.e. ω(fX) = fω(X) for
every f ∈ C∞(M). Conversely, every C∞-linear mapping X (M)→ C∞(M) is
given in this way by a (unique) 1-form.

Proof. If S : X (M) → C∞(M) is C∞-linear and p ∈ M , we first show that
X(p) = 0 implies S(X)(p) = 0. Indeed, if {E1, . . . , En} is any frame in a
neighbourhood U of p, then X =

∑
i fiEi in U , where fi are smooth functions

in U with fi(p) = 0. Choose a function ϕ ∈ C∞(M) with support in U
such that ϕ(p) = 1, and let gi(q) = ϕ(q)fi(q) when q ∈ U and gi(q) = 0
otherwise; then gi ∈ C∞(M). Similarly, define vector fields Yi ∈ X (M) such
that Yi = ϕEi on U . Then, ϕ2X =

∑
i giYi on M . Thus, at p,

S(X) = ϕ2S(X) = S(ϕ2X) = S
(∑

i

giYi

)
=
∑
i

giS(Yi) = 0,

since gi(p) = 0 for all i.
Consequently, using linearity, S(X)(p) depends only on X(p), and thus there

is a cotangent vector ωp ∈ T ∗p (M) such that S(X)(p) = ωp(X(p)); in other
words there is a rough tensor field ω of degree (0,1) that defines S. Since S
maps into C∞(M), ω is smooth. �

The argument extends to tensor fields of higher degrees and multilinear
mappings as follows.
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Theorem 2.7.1. Let T : X ∗(M)k × X (M)l → C∞(M) be a multilinear map-
ping, where k, l ≥ 0. Then the following are equivalent:

(i) There exists a tensor field T̃ of degree (k, l) such that (at every point)

T (ω1, . . . , ωk, X1, . . . , Xl) = T̃ (ω1, . . . , ωk, X1, . . . , Xl).
(ii) T is C∞-multilinear.

(iii) If ω1, . . . , ωk, ω
′
1, . . . , ω

′
k, X1, . . . , Xl, X

′
1, . . . , X

′
l are 1-forms and vector

fields, respectively, such that ωi(p) = ω′i(p) and Xi(p) = X ′i(p) at some
p ∈M , then T (ω1, . . . , ωk, X1, . . . , Xl)(p) = T (ω′1, . . . , ω

′
k, X

′
1, . . . , X

′
l)(p).

(iv) If one of the fields ω1, . . . , ωk, X1, . . . , Xl vanishes at a point p, then
T (ω1, . . . , ωk, X1, . . . , Xl)(p) = 0.

Furthermore, if T is a tensor field of degree (1, l) for some l ≥ 0, then by

Example 1.2.5, it defines at each p ∈ M a multilinear map T̃ : T ∗p (M)l →
Tp(M) such that for any vector fields X1, . . . , Xl and a 1-form ω, we have at
every p

T (ω,X1, . . . , Xl) = 〈ω, T̃ (X1, . . . , Xl)〉. (2.4)

It follows that, as p varies, T̃ (X1, . . . , Xl) defines a vector field on M ; evidently

T̃ is a C∞-multilinear mapping X (M)l → X (M). Conversely every such map-
ping defines by (2.4) a C∞-multilinear mapping X ∗(M)× X (M)l → C∞(M),
and thus by Theorem 2.7.1 a tensor field of degree (1, l). This yields the
following variant of Theorem 2.7.1.

Theorem 2.7.2. Let T : X (M)l → X (M) be a multilinear mapping, where
l ≥ 0. Then the following are equivalent.

(i) There exists a tensor field T̃ of degree (1, l) such that (2.4) holds.
(ii) T is C∞-multilinear.

(iii) If X1, . . . , Xl, X
′
1, . . . , X

′
l are vector fields such that Xi(p) = X ′i(p) at

some p ∈M , then T (X1, . . . , Xl)(p) = T (X ′1, . . . , X
′
l)(p).

(iv) If one of the fields X1, . . . , Xl vanishes at a point p, then T (X1, . . . , Xl)(p)
= 0.

Example 2.7.1. A Riemannian metric can equivalently be defined as a C∞-
bilinear mapping g : X (M)2 → C∞(M) such that g(X,X) > 0 at every point
where X 6= 0.

Example 2.7.2. The Lie product (X, Y ) 7→ [X, Y ] of vector fields is a bilinear
mapping X (M)2 → X (M), but it is not C∞-bilinear, and is thus not a tensor.

Example 2.7.3. An affine connection on M is a bilinear mapping X (M)2 →
X (M) which it is not C∞-bilinear, and is thus not a tensor. This is also seen
because its coefficients in a coordinate system (or for a general frame) do not
obey the transformation rule (1.5).

Example 2.7.4. On the other hand, if ∇ is an affine connection and Y is
a fixed vector field, then X 7→ ∇XY is a C∞-linear map X (M) → X (M),
and can thus be regarded as a tensor field of degree (1,1). This tensor field is
denoted by ∇Y .
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Example 2.7.5. If ∇ is an affine connection, then a simple calculation shows
that (X, Y ) 7→ ∇XY − ∇YX − [X, Y ] defines a C∞-bilinear map X (M)2 →
X (M), and thus a tensor field of degree (1,2). This is called the torsion
tensor (of the connection). The connection is called symmetic when its torsion
vanishes, (The standard connection on a Riemannian manifold is symmetric,
and thus there is no interest in the torsion tensor in Riemannian geometry.)

Example 2.7.6. If ∇ is an affine connection, then a somewhat longer calcu-
lation shows that

(X, Y, Z) 7→ R(X, Y )Z := −∇X∇YZ +∇Y∇XZ +∇[X,Y ]Z

defines a C∞-trilinear map X (M)3 → X (M), and thus a tensor field of degree
(1,3). This is the Riemann curvature tensor, generally denoted by R. (Many
authors choose the opposite sign.)

We can contract the curvature tensor to a tensor of degree (0,2). This can
be done in three different ways, but for a Riemannian connection, one of them
yields the zero tensor (by symmetry), and is thus not very interesting. (It is
non-zero for other affine connections, in general, but I do not know any use
of this contraction.) The other two possibilities differ by sign only, again by
symmetry because R(X, Y )Z = −R(Y,X)Z from the definition, and one of
them is called the Ricci tensor ; we define it by contraction of the contravariant
and the second covariant index in R. (All authors make the choice depending
on their choice of sign for R, so that the sign of the Ricci tensor always is
the same; for example, the Ricci tensor for a sphere is a positive multiple of
the metric tensor. However, do Carmo [2] uses a non-standard normalization
factor 1/(n− 1) in his definition.)

2.8. Tensor bundles. The tensor bundle T k,l(M) of degree (k, l) is defined
as the disjoint union of all tensor spaces T k,lp (M). Each coordinate system

(x1, . . . , xn) on an open set U defines a coordinate system on the corresponding
part T k,lp (U) =

⋃
p∈U T

k,l
p of T k,lp (M) by taking as coordinates of a tensor T ∈

T k,lp , p ∈ U , the n coordinates xi(p) followed by the nk+l coefficients of T for

the basis {∂/∂x1, . . . , ∂/∂xn}. It is easily seen that these coordinates systems
define a differentiable structure on T k,l(M), and thus the tensor bundle T k,l(M)
is a differentiable manifold with dimension n+ nk+l.

Letting π : T k,l(M) → M denote the natural projection mapping a tensor
T ∈ T k,lp to p, we can give an alternative (but equivalent) definition of a tensor

field of degree (k, l) as a differentiable function p 7→ T (p) of M into T k,l(M),
such that π(T (p)) = p for every p. (Such functions are known as sections in
the bundle.

Example 2.8.1. T 0,0(M) = M × R.

Example 2.8.2. T 1,0(M) is the tangent bundle T (M).

Example 2.8.3. T 0,1(M) is called the cotangent bundle.

Remark. More generally, a vector bundle over a manifold M is a disjoint union
of a collection {Vp}p∈M of vector spaces of a fixed dimension N which is
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equipped with a differentiable structure on the bundle that can be defined by a
collection of open sets U covering M and for each of them a set of N functions
e1, . . . eN from U into the bundle, such that, at each p ∈ U , e1(p), . . . eN(p)
form a basis in Vp; a coordinate system for the bundle is defined by taking
as coordinates of v ∈ Vp the coordinates of p in a coordinate system on M ,
followed by the coordinates of v in the basis e1(p), . . . eN(p). (Hence, a vector
bundle is locally isomorphic to a product U ×RN , U ⊂M .) The vector space
Vp is called the fiber of the bundle at p. Sections of the bundle are defined as
above, thus yielding generalizations of vector fields and tensor fields.

Algebraic operations on vector spaces like taking the dual, direct sum, tensor
product, . . . , yield (applied to the fibers) corresponding operations on vector
bundles, generalizing the constructions above.

For another example of a vector bundle, suppose that N is another manifold
and f : M → N a differentiable function, and define Vp = Tf(p)(N); this defines
a vector bundle over M (known as the pull-back of the tangent bundle over
N). If further f is an immersion, we can identify Tp(M) with the subspace
dfp(Tp(M) of Tf(p)(N), and thus regard T (M) as a subbundle of the pull-back;
if moreover N is a Riemannian manifold, we can define another bundle over
M , the normal bundle of the immersion, as the subbundle of the pull-back
whose fiber Vp at p is the orthogonal complement of dfp(Tp(M) in Tf(p)(N),
see [2, Section 6.3].

2.9. Covariant derivation of tensor fields. In any differentiable manifold,
we can differentiate functions by a vector field (or by a tangent vector at a
single point). Given an affine connection, we can also differentiate vector fields
(the covariant derivative). This extends to tensor fields of arbitrary degrees as
follows.

Let T k,l(M) denote the linear space of all tensor fields of degree (k, l) om
M . (Thus T 0,0(M) = C∞(M) and T 1,0(M) = X (M).)

Theorem 2.9.1. If M is a differentiable manifold with an affine connection
∇, there is a unique extension of ∇ to an operator (X,T ) 7→ ∇XT defined for
any vector field X and tensor field T (of arbitrary degree) such that:

(i) For each k, l ≥ 0, ∇ is a bilinear mapping X (M) × T k,l(M) →
T k,l(M). (Thus ∇XT has the same degree as T .)

(ii) ∇XT is further C∞-linear in X: ∇fXT = f∇XT for any f ∈ C∞(M)
and tensor field T .

(iii) ∇X(fT ) = f∇XT + (Xf)T for any f ∈ C∞(M) and tensor field T .
(iv) ∇Xf = Xf when f ∈ C∞(M), i.e. when f is a tensor field of degree

(0, 0).
(v) ∇XY is the vector field given by the connection when Y is a vector

field, i.e. when Y is a tensor field of degree (1, 0).
(vi) ∇X(T ⊗U) = (∇XT )⊗U +T ⊗∇XU for any two tensor fields T and

U .
(vii) ∇X commutes with contractions.
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This operator ∇ is explicitly given for a 1-form ω by

〈∇Xω, Y 〉 = X(〈ω, Y 〉)− 〈ω,∇XY 〉, X, Y ∈ X (M), (2.5)

and, in general, for a tensor field of degree (k, l) by

∇XT (ω1, . . . , ωk, Y1, . . . , Yl) = ∇X

(
T (ω1, . . . , ωk, Y1, . . . , Yl)

)
− T (∇Xω1, . . . , ωk, Y1, . . . , Yl)− · · · − T (ω1, . . . ,∇Xωk, Y1, . . . , Yl)

− T (ω1, . . . , ωk,∇XY1, . . . , Yl)− · · · − T (ω1, . . . , ωk, Y1, . . . ,∇XYl) (2.6)

for any 1-forms ω1, . . . , ωk and vector fields Y1, . . . , Yl.
Finally, the value of ∇XT at a point p depends only on Xp and the values

of T in a neigbourhood of p.

Proof. Suppose that ∇ is such an extension. If ω is a 1-form and Y a vector
field, then ω ⊗ Y is a tensor field of degree (1,1), whose contraction is the
function 〈ω, Y 〉 = ω(Y ). By (vi), ∇X(ω⊗Y ) = (∇Y ω)⊗Y +ω⊗ (∇XY ), and
thus by contracting, using (vii),

∇X〈ω, Y 〉 = 〈∇Xω, Y 〉+ 〈ω,∇XY 〉.

By (iv), this yields (2.5).
Similarly, if T is of degree (k, l), ω1, . . . , ωk are 1-forms and X1, . . . , Xl are

vector fields, then the function T (ω1, . . . , ωk, X1, . . . , Xl) may be obtained by
contracting all indices (in the correct combination) of the tensor product T ⊗
ω1 ⊗ · · · ⊗ ωk ⊗X1 ⊗ · · · ⊗Xl. Using again (vi) and (vii), we obtain (2.6).

This shows uniqueness of ∇X . Conversely, we may define ∇XT for all tensor
fields T by (2.6), where ∇Xω are defined by (2.5). A routine verification shows
that ∇X satisfies all properties listed in the theorem. (Note that, using (iv),
(iii) is a special case of (vi).) �

The operator ∇ is called covariant derivation. Let T be a tensor field of
degree (k, l). Since X 7→ ∇XT is C∞-linear in X, we can also (in the usual
way) define ∇vT for a single tangent vector v ∈ T (M). Moreover, the mapping
(ω1, . . . , ωk, X1, . . . , Xl, X) 7→ ∇XT (ω1, . . . , ωk, X1, . . . , Xl) is C∞-multilinear,
and defines thus by Theorem 2.7.1 a tensor of degree (k, l + 1), called the
covariant differential of T . (Cf. Example 2.7.4.)

Let (x1, . . . , xn) be a coordinate system (in some open set). Let ∂i = ∂/∂xi

and denote the coefficients of the connection by

Γkij = 〈dxk,∇∂j∂i〉.

It is traditional to denote partial differentiation (with respect to a particular
coordinate system) by a comma, thus f,i = ∂if = ∂f/∂xi for a function f ,
and to denote covariant differentiation by a semicolon, thus the components of
∇T , where T ∈ T k,l(M), are written T i1,...,ikj1,...,jl;j

. For a vector field X =
∑

iX
i∂i

we have

∇∂jX = ∇∂j

(∑
i

X i∂i

)
=
∑
i

(
(∂jX

i)∂i +X i∇∂j∂i
)

=
∑
i

X i
,j∂i +

∑
ik

X iΓkij∂j
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and thus
X i

;j = X i
,j +

∑
m

XmΓimj.

It now follows from (2.5) that for a 1-form ω,

ωi;j = 〈∇∂jω, ∂i〉 = ωi,j −
∑
k

ωkΓ
k
ij.

In particular, ∇∂jdx
k = −

∑
i Γ

k
ijdx

i and

∇dxk = −
∑
ij

Γkijdx
i ⊗ dxj.

In general, (2.6) now implies that for a tensor T of degree (k, l),

T i1,...,ikj1,...,jl;j
= T i1,...,ikj1,...,jl,j

+
∑
m

Tm,i2,...,ikj1,...,jl
Γi1mj + · · ·+

∑
m

T
i1,...,ik−1,m
j1,...,jl

Γikmj

−
∑
m

T i1,...,ikm,j2,...,jl
Γmj1j − · · · −

∑
m

T i1,...,ikj1,...,jl−1,m
Γmjlj.

Remark. Given a vector bundle, an operator ∇ that for each vector field X
and section S of the bundle yields a section ∇XS satisfying the analogues of
conditions (i)–(iii) in Theorem 2.9.1 is called an affine connection in the bundle.
An affine connection on a manifold is thus the same as an affine connection in
the tangent bundle, and the theorem says that it defines a natural connection
in each tensor bundle.

Now consider a Riemannian manifold with a metric tensor g and an arbitrary
affine connection ∇. If X and Y are two vector fields, we have by (2.6), for
any vector fields X, Y, Z,

∇g(Y, Z,X) = (∇Xg)(Y, Z) = X(g(Y, Z))− g(∇XY, Z)− g(Y,∇XZ). (2.7)

The condition on the Riemannian (Levi-Civita) connection that X(g(Y, Z)) =
g(∇XY, Z) + g(Y,∇XZ) can thus be written as ∇g = 0. In other words, the
Riemannian connection is characterized as the unique affine connection that
is symmetric (cf. Example 2.7.5) and is such that ∇g = 0.

2.10. Tensors on a Riemannian manifold. Suppose that M is a Riemann-
ian manifold, with metric tensor g and Riemannian (Levi-Civita) connection
∇. Recall from Section 2.9 that ∇g = 0.

We can raise or lower indices of tensors on M using the Riemannian metric
g, by applying the isomorphisms described in Section 1.9 at each point p; recall
that the Riemannian metric by definition makes each Tp(M) into a Euclidean
space. Thus there

Example 2.10.1. The curvature tensor R has a covariant form (also denoted
by R), which is a covariant tensor of degree 4. The connection with the tensor
of degree (1, 3) defined in Example 2.7.6 is

R(X, Y, Z,W ) = 〈R(X, Y )Z,W 〉,
for arbitrary vector fields (or just tangent vectors at a single point) X, Y, Z,W .
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Example 2.10.2. For the coefficients in a coordinate system let, as usual, gij

be the coefficients of the dual inner product so that (gij) is the matrix inverse
of (gij). If Rl

ijk and Rijkl denote two forms of the Riemann curvature tensor,
Rij the Ricci tensor and R the scalar curvature obtained by contracting the
Ricci tensor, we have

Rl
ijk =

∑
m

glmRijkm

Rijkl =
∑
m

glmR
m
ijk

Rij =
∑
k

Rk
ikj =

∑
k,l

gklRikjl =
∑
k,l

gklRkilj

R =
∑
i,j

gijRij =
∑
i,j,k,l

gikgjlRijkl.

If X is a vector field and T is any tensor field, then ∇X(g ⊗ T ) = (∇Xg)⊗
T + g ⊗ ∇XT = g ⊗ ∇XT by Theorem 2.9.1(vi). Since lowering an index of
T can be described as taking the tensor product with g followed by a contrac-
tion (Section 1.9), and ∇X commutes with contractions, it follows that ∇X

commutes with lowerings of indices, and thus also with raisings of indices.

Example 2.10.3. The covariant form of the Riemann curvature tensor has
coefficients Rijkl in a coordinate system, and its covariant differential ∇R has
coefficients Rijkl;m. The Bianchi identities are

Rijkl +Riklj +Riljk = 0

and

Rijkl;m +Rijlm;k +Rijmk;l = 0.

Raising the indices i and j in the second Bianchi identity and contracting the
two pairs (i, k) and (j, l), we obtain, since covariant differentiation commutes
with contractions and raisings of indices,

R;m −
∑
i

Ri
m;i −

∑
l

Rl
m;l = 0,

where Ri
j denotes the coefficients of (the mixed form of) the Ricci tensor,

and R =
∑

iR
i
i is the scalar curvature. It follows that if Ei

j = Ri
j − 1

2
δijR

denotes the coefficients of the mixed form of the Einstein tensor, then, using
the easily verified fact that the tensor ι with coefficients δij has ∇ι = 0 (cf.
Example 1.9.2), ∑

i

Ei
j;i = 0.

(The covariant form of the Einstein tensor is Eij = Rij − 1
2
Rgij.)
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3. Differential forms

A differential form of degree k, often simply called a k-form, on a manifold
is an antisymmetric covariant tensor field (of degree k). More generally, we
can define a differential form as a (formal) sum ω0 +ω1 + · · ·+ωn, where ωk is
a differential form of degree k. The value at a point p of a differential form is
thus an element of the exterior algebra A(Tp(M)); if the differential form has
degree k, then the value belongs to the subspace Ak(Tp(M)).

By Theorem 2.7.1, a k-form may be regarded as an antisymmetric C∞-
multilinear mapping ω : X (M)k → C∞(M).

We let Ek(M) denote the linear space of all k-forms on M , and E∗(M) =⊕n
k=0E

k(M) the linear space of all differential forms.

Remark. Using the theory of vector bundles, we may form the exterior bundle
A(M) =

⋃
p∈M A(Tp(M)) and its subbundles Ak(M) =

⋃
p∈M Ak(Tp(M)), 0 ≤

k ≤ n. A differential form (of degree k) is then a section in the exterior bundle
(in Ak(M)).

We form the sum and exterior product of two differential forms by perform-
ing the operations pointwise; thus the space E∗(M) of all differential forms
becomes an algebra. This algebra is associative but not commutative; it is by
(1.7) anticommutative in the sense that

ω2 ∧ ω1 = (−1)klω1 ∧ ω2, ω1 ∈ Ek(M), ω2 ∈ El(M). (3.1)

3.1. Bases. Given a frame {E1, . . . , En} in an open subset U of M , the dual
frame {E1, . . . , En} gives a basis in T ∗q (M) for every q ∈ U , and by taking
exterior products, we obtain a basis in each Ak(Tp(M)).

In particular, if (x1, . . . , xn) is a coordinate system in an open set U , the
differentials dx1, . . . , dxn form a basis in each T ∗q (M), and the exterior products

dxi1 ∧ . . . dxik , i1 < · · · < ik, form a collection of differential forms on U that
yield a basis in Ak(Tq(M)) for every q ∈M (0 ≤ k ≤ n). Hence, any differential
form on U may uniquely be written

n∑
k=0

∑
1≤i1<...ik≤n

ai1,...,ikdx
i1 ∧ · · · ∧ dxik , (3.2)

for some smooth functions ai1,...,ik on U .

3.2. Exterior differentiation. If f is a smooth function on M , i.e. a 0-form,
its differential df was defined in Section 2 as a cotangent field, i.e. a 1-form
(Section 2.1 and Example 2.4.5). This operation d has an important extension
to differential forms described by the following theorem; d is called exterior
differentiation.

Theorem 3.2.1. There exists a unique operator d : E∗(M) → E∗(M) with
the following properties:

(i) d : E∗(M)→ E∗(M) is linear.
(ii) If ω ∈ Ek(M), then dω ∈ Ek+1(M).
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(iii) If ω1 ∈ Ek(M) and ω2 ∈ El(M), then

d(ω1 ∧ ω2) = (dω1) ∧ ω2 + (−1)kω1 ∧ (dω2).

(iv) d ◦ d = 0, i.e. d(dω) = 0 for every ω ∈ E∗(M).
(v) If f ∈ E0(M) = C∞(M), then df ∈ E1(M) is the differential of f

given by df(X) = Xf , X ∈ X (M).

Moreover, d is a local operator in the sense that for every p ∈ M , dω(p)
depends only on the values of ω in a neighbourhood of p (i.e. on the germ of ω
at p). Explicitly, in a coordinate system, d is given by

d
(∑

ai1,...,ikdx
i1 ∧ · · · ∧ dxik

)
=
∑

dai1,...,ikdx
i1 ∧ · · · ∧ dxik

=
∑ ∂ai1,...,ik

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik . (3.3)

Proof. Suppose first that M is covered by a single coordinate neighbourhood,
and let (x1, . . . , xn) be a global coordinate system. Then every differential form
on M can be written as (3.2) for some smooth functions ai1,...,ik . If d satifies
the conditions, then (3.3) follows directly, which further shows that d is local
and unique. Conversely, we may define d by (3.3), and it is easily verified that
(i)–(v) hold. (For (iv), first note that if f is a smooth function, then

ddf = d
(∑

i

∂f

∂xi
dxi
)

=
∑
i,j

∂2f

∂xi∂xj
dxj ∧ dxi = 0,

because ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

and dxj ∧ dxi = −dxi ∧ dxj. The general case then
follows by (3.3).)

For a general manifold M , suppose that d satisfies (i)–(v). First, assume
that p ∈M and that ω1, ω2 ∈ E∗(M) coincide in a neighbourhood V of p. Let
ω = ω1 − ω2 and choose ϕ ∈ C∞(M) such that ϕ(p) = 1 and suppϕ ⊂ V .
Then ϕω = 0 and dϕ∧ω = 0, and since (iii) yields d(ϕω) = dϕ∧ω+ϕ∧dω, we
obtain ϕdω = ϕ ∧ dω = 0. In particular dω(p) = 0 and thus dω1(p) = dω2(p).
This shows that d is a local operator.

Next, let U be an open subset of M . If ω ∈ E∗(U) and p ∈ U , we can
find ω̄ ∈ E∗(M) such that ω̄ = ω in a neighbourhood of p. By the fact just
shown that d is local, dω̄(p) does not depend on the choice of ω̄, so we may
uniquely define dUω(p) = dω̄(p). It is easily seen that dUω ∈ E∗(U) and that
we have defined an operator dU : E∗(U) → E∗(U) that satisfies (i)–(v) on U .
In particular, if U is a coordinate neighbourhood, the first part of the proof
applies and shows that dU is given by (3.3). Moreover, if ω ∈ E∗(M) and ωU is
the restriction of ω to U , we can choose ωU = ω which shows that dω = dUωU
on U . Consequently, dω is given by (3.3) on U . This further shows uniqueness
in the general case.

For existence, finally, we can for any ω ∈ E∗(M) use (3.3) to define dω in any
coordinate neighbourhood. We must, however, verify that these definitions are
consistent. Thus, suppose that U and Ū are two open sets where coordinate
systems (x1, . . . , xn) and (x̄1, . . . , x̄n), respectively, are defined, and define the
corresponding operators dU on E∗(U) and dŪ on E∗(Ū) by (3.3), using the
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respective coordinate systems. On the intersection U ∩ Ū , both coordinate
systems are defined and thus define differentiation operators in E∗(U ∩ Ū) by
(3.3); by the uniqueness shown in the first part of the proof, these operators
coincide, and thus dUω = dŪω on U ∩ Ū for any ω ∈ E∗(M), which is the
requied consistency. Hence, dω is well defined, and it is easily checked that
(i)–(v) hold. �

Remark. The sign (−1)k in (iii) may look strange, but it is easily verified that
it is consistent with (and essentially forced by) the anticommutation rule (3.1).

Exterior differentiation can also be described by coordinate-free explicit for-
mulas.

Theorem 3.2.2. Regarding differential forms as alternating multilinear oper-
ators on X (M), we have for arbitrary vector fields X, Y,X1, . . .

df(X) = Xf, f ∈ C∞(M) = E0(M); (3.4)

dω(X, Y ) = X(ω(Y ))− Y (ω(X))− ω([X, Y ]), ω ∈ E1(M); (3.5)

and more generally, for ω ∈ Ek(M),

dω(X1, . . . , Xk+1) =
k+1∑
i=1

(−1)i−1Xi

(
ω(X1, . . . , X̂i, . . . , Xk+1)

)
+
∑
i<j

(−1)i+j
(
ω([Xi, Xj], X1, . . . , X̂i, . . . , X̂j, . . . , Xk+1)

)
,

(3.6)

where X̂i denotes omitted terms.

Proof. First, (3.4) is the same as Theorem 3.2.1(v).
For (3.5), let us denote the right hand side by d′ω(X, Y ). Consider first the

case when ω = df for some f ∈ C∞(M). Then d′ω(X, Y ) equals, by (3.4),
X(Y f) − Y (Xf) − [X, Y ]f , which vanishes by the definition of [X, Y ]; since
dω = ddf = 0, (3.5) holds in this case.

Next, for any smooth function f and 1-form ω, it is easily seen that

d′(fω)(X, Y )− fd′ω(X, Y )

= X(fω(Y ))− fX(ω(Y ))− Y (fω(X)) + fY (ω(X))

= X(f)ω(Y )− Y (f)ω(X) = df(X)ω(Y )− df(Y )ω(X)

= (df ∧ ω)(X, Y ).

Thus d′(fω) − fd′ω = df ∧ ω = d(fω) − fdω, so if further d′ω = dω, then
d′(fω) = d(fω).

Combining these two steps, and the fact that any 1-form ω locally is a linear
combination

∑
fjdx

j, we see that d′ω = dω.
The proof of (3.6) is similar (but notationally more complicated), and is

omitted. �
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3.3. Closed and exact forms. A differential form ω is closed if dω = 0, and
exact if ω = dω̃ for some differential form ω̃, i.e. if ω ∈ Im(d).

Since d ◦ d = 0, every exact form is closed. For k-forms with k ≥ 1, the
converse is true locally, for example in any open set diffeomorphic to an open
ball in Rn (the Poincaré lemma, see [1, 3] for proofs), but not always globally.
(The case of 0-forms is trivial: there are no exact 0-forms except 0, while every
constant function is a closed 0-form; in a connected manifold the constants are
furthermore the only closed 0-forms.)

Example 3.3.1. Let M = R2 \ {0}. Then ω = (x dy − y dx)/(x2 + y2) is a
closed 1-form that is not exact. This can be verified by direct computations,
but it is more illuminating to observe that in any subset of M where we can
define a continuous branch of arg(x+ iy) = Im log(x+ iy), we have ω = d arg.
This shows that ω is closed (locally and thus globally); it also shows that if
ω = df for some function f , then f would have to be a constant plus a globally
defined continuous branch of arg, which is impossible.

The de Rham cohomology groups are defined as the quotient spaces

Hk(M) = {closed k-forms}/{exact k-forms}.

Thus Hk(M) = 0 if and only if every closed k-form is exact.
It turns out that the cohomology groups are finite-dimensional in many

cases, for example whenever M is compact. In a vague sense, the dimension of
Hk(M) (known as the Betti number) is the number of k-dimensional “holes”
in M .

Remark. For any manifold M , the de Rham cohomology groups are isomorphic
to the singular and Čech cohomology groups (with real coefficients) defined in
algebraic topology, see [3].

Example 3.3.2. Hk(Rn) = 0 for every k ≥ 1.
Hk(Sn) = 0 for 1 ≤ k < n (and trivially for k > n), while Hn(Sn) ∼= R.

3.4. Classical vector analysis. Classically, a vector field on R3 (or on an
open subset) is a (smooth) function into R3, or equivalently a triple (f1, f2, f3)
of smooth real-valued functions. This can be identified with the vector field
(in general differential geometry sense) f1∂/∂x

1 + f2∂/∂x
2 + f3∂/∂x

3.
We can also identify a 1-form f1 dx

1 + f2 dx
2 + f3 dx

3 with the vector field
(f1, f2, f3); this amounts to identifying a 1-form and the vector field obtained
by raising the index as in Sections 1.9 and 2.10.

Moreover, a 2-form may be written f12 dx
1 ∧ dx2 + f13 dx

1 ∧ dx3 + f23 dx
2 ∧

dx3, and we may identify this with the vector field (f23,−f13, f12); the order
and signs of the functions are chosen such that if ω is a 2-form and F the
corresponding vector field, and λ is any 1-form, then

λ ∧ ω = 〈λ, F 〉dx1 ∧ dx2 ∧ dx3. (3.7)

Finally, a 3-form can be written f dx1 ∧ dx2 ∧ dx3 and identified with the
function f .
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With these identifications, the exterior differentiation d yields three classical
operators: d : E0(R3) → E1(R3) becomes the gradient grad : C∞ → X ,
d : E1(R3) → E2(R3) becomes the curl : X → X , and d : E2(R3) → E3(R3)
becomes the divergence div : X → C∞.

The fact that d ◦ d = 0 thus says that the gradient of a function is curl-free,
and that the curl of a vector field is divergence-free. Conversely, the Poincaré
lemma says that (globally or in a suitable, for example convex, subset), every
curl-free vector field is the gradient of some function, and that every divergence-
free vector field is the curl of another vector field.

3.5. Gradient and divergence on Riemannian manifolds. While the curl
studied in Section 3.4 is a special phenomenon in three dimensions, the gradient
and divergence may be defined in any Riemannian manifold M . First, if f ∈
C∞(M), then df is a 1-form, and we define grad f as the corresponding vector
field, obtained by raising the index.

Secondly, if X is a vector field, its covariant derivative ∇X is a tensor
of degree (1,1), and we define divX to be the contraction of ∇X. Thus
grad : C∞(M)→ X (M) and div : X (M)→ C∞(M).

The composition div grad : C∞(M) → C∞(M) is known as the Laplace-
Beltrami operator ∆. Equivalently, ∆f is the contraction of the second covari-
ant derivative ∇∇f ∈ T 0,2(M), and in a coordinate system we have

∆f =
∑
i,j

gijf;ij.

Remark. The divergence can also be described using an isomorphism between
vector fields and (n − 1)-forms as in the case of R3 studied above. More
generally, if M is oriented (otherwise we can work locally), there exists a
unique n-form ω0 such that if (x1, . . . , xn) is any oriented coordinate system,
then

ω0 = (det(gij)ij)
1/2dx1 ∧ · · · ∧ dxn. (3.8)

There are now isomorphisms C∞(M) ∼= En(M) and X (M) ∼= En−1(M) such
that a function f corresponds to the n-form fω0, and a vector field X to the
unique (n− 1)-form ω such that λ ∧ ω = 〈λ,X〉ω0 for every 1-form λ. It may
then be verified that d : En−1(M) → En(M) corresponds to div : X (M) →
C∞(M).

3.6. Pull-backs. Suppose that ϕ : M → N is a smooth mapping between two
manifolds. If f : N → R is a smooth function on N , then f ◦ ϕ is a smooth
function on M . This operation extends in a natural way to differential forms.

Theorem 3.6.1. There is a unique linear map ϕ∗ : E∗(N)→ E∗(M) such that
ϕ∗(f) = f ◦ϕ for f ∈ C∞(M) = E0(N), ϕ∗(dω) = d(ϕX(ω)) and ϕ∗(ω1∧ω2) =
(ϕ∗ω1) ∧ (ϕ∗ω2) for arbitrary differential forms ω, ω1, ω2.

The operator ϕ∗ is known as the pull-back.
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4. Integration of differential forms

Consider an n-form ω on the n-dimensional manifold M . If x = (x1, . . . , xn)
is a coordinate system in an open set U , then ω = f dx1 ∧ · · · ∧ dxn in U for
some smooth function f .

If y = (y1, . . . , yn) is another coordinate system, defined in an open set U ′,
say, then we also have ω = g dy1 ∧ · · · ∧ dyn in U ′. On the intersection U ∩U ′,
dyi =

∑
j
∂yi

∂xj
dxj and thus, by (1.9),

dy1 ∧ · · · ∧ dyn = J dx1 ∧ · · · ∧ dxn,
where J = det

(
(∂yi/∂xj)ni,j=1

)
is the Jacobian of the change of coordinates

y ◦ x−1. Consequently, ω = g dy1 ∧ · · · ∧ dyn = gJ dx1 ∧ · · · ∧ dxn, and thus
f = gJ .

We here regard f , g and J as functions defined on (subsets of) M ; the
coordinate representations are the functions f̄ = f ◦ x−1 defined on x(U),
ḡ = g ◦ y−1 defined on y(U ′), and J̄ = J ◦ x−1 defined on x(U ∩ U ′) (all three
are open subsets of Rn).

Next, let K be a compact (for convenience) subset of U∩U ′. By the standard
formula for a change of variables in a multidimensional integral,∫

y(K)

ḡ dy1 · · · dyn =

∫
x(K)

ḡ ◦ (y ◦ x−1)|J̄ | dx1 · · · dxn

=

∫
x(K)

g ◦ x−1|J ◦ x−1| dx1 · · · dxn

=

∫
x(K)

f ◦ x−1 sgn(J ◦ x−1) dx1 · · · dxn

=

∫
x(K)

f̄ sgn(J̄) dx1 · · · dxn.

Consequently, if the two coordinate systems x and y have the same orientation,
i.e. J > 0, then

∫
y(K)

ḡ =
∫
x(K)

f̄ , while the two integrals differ by sign if the

two coordinate systems have different orientations.
From now on, suppose that M is an oriented manifold. The argument just

given shows that if ω is an n-form and K is a compact subset of M that is
covered by a single coordinate neighbourhood, then we may uniquely define∫

K

ω =

∫
x(K)

f̄ dx1 · · · dxn

for any positively oriented coordinate system x = {e1, . . . , en} defined on K,
with f̄ as above. A routine argument using partitions of K or of ω then shows
that we may (in a natural way, preserving linearity properties) define

∫
K
ω

for any n-form ω and any compact subset K of M , and
∫
M
ω for any n-form

ω with compact support. The compactness conditions may be relaxed to an
integrability condition.

Remark. Note that only n-forms can be integrated over an n-dimensional man-
ifold. However, forms of lower degree can be integrated over submanifolds of
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the corresponding dimension. Thus, if ω is a k-form and N is a k-dimensional
submanifold of M , then the restriction (i.e. the pull-back) of ω to N is a k-form
on N and

∫
N
ω is defined provided, for example, ω has compact support in N .

Similarly, if α : (a, b) → M is a (smooth) curve and ω is a 1-form, the
integral

∫
α
ω is defined (under suitable integrability restrictions) by integrating

the pull-back of ω to (a, b); it is easily verified that this integral is independent
of the parametrization of α. Thus line integrals of 1-forms are defined very
generally.

4.1. Integration on Riemannian manifolds. Every Riemannian manifold
(oriented or not) carries a natural measure, which in a coordinate system
(x1, . . . , xn) is given by

dµ =
√

det((gij)ij) dx
1 · · · dxn. (4.1)

(This equals the n-dimensional Hausdorff measure defined by the metric.)
Thus we may integrate functions on a Riemannian manifold. If M is ori-

ented, and ω0 is the special n-form defined (3.8), then
∫
M
f =

∫
M
fω0, so the

two notions of integration correspond in a natural way.

4.2. Stokes’ theorem. Let M be an oriented manifold. A regular domain
in M is a subset of the form {p ∈ M : f(p) > 0} for some smooth function
f : M → R such that df 6= 0 at every point p with f(p) = 0; equivalently
(as follows by a partition of unity argument), D is an open subset such that
every boundary point p ∈ ∂U has a neighbourhood U with a smooth function
f : U → R such that df 6= 0 in U and D ∩ U = {p ∈ U : f(p) > 0}.

If D is a regular domain, then its boundary ∂D is an (n − 1)-dimensional
manifold, embedded in M . The orientation of M induces an orientation of ∂D;
we choose the orientation such that if p ∈ ∂D and v ∈ Tp(M) \ Tp(∂D) is an
outer tangent vector, meaning that v = α′(0) for some curve α with α(0) = p
and α(t) /∈ M for t > 0, then v1, . . . , vn−1 is an oriented basis in Tp(∂D) if
and only if v, v1, . . . , vn−1 is an oriented basis in Tp(M). Then Stoke’s theorem
may be stated as follows.

Theorem 4.2.1 (Stokes). Let D be a regular domain in an oriented manifold
M of dimension n, and let ∂D have the induced orientation. If ω is an (n−1)-
form on M , and either D̄ or suppω is compact, then∫

D

dω =

∫
∂D

ω.

Proof. Using a partition of unity and suitable coordinate mappings, the theo-
rem is reduced to the case where D is the upper half space in M = Rn and ω
has compact support, which is verified by a simple calculation. �

Corollary 4.2.1. If M is an oriented n-dimensional manifold and ω is an
(n− 1)-form on M with compact support, then∫

M

dω = 0.
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Remark. An essentially equivalent, but sometimes more elegant version of
Stokes’ theorem uses the notion of manifolds with boundary instead of reg-
ular domains, see [1].

This general version of Stokes’ theorem contains several standard results
from calculus.

Example 4.2.1. If D is a bounded regular domain in R2 and ω = f dx+ g dy
is a 1-form, then Stokes’ theorem yields∫

D

(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy =

∫
∂D

f dx+ g dy,

where the left hand side is an ordinary Riemann integral (we may replace
dx ∧ dy by dx dy) and the right hand side is a line integral. This is known as
Green’s theorem.

Example 4.2.2. Let M be a smooth surface in R3, and D a regular domain
in M , i.e. a portion of the surface bounded by smooth curves. Denote the unit
normal to M (suitably oriented) by n. Let ω = f dx+g dy+h dz be a 1-form in
R3, and let F = (f, g, h) denote the corresponding vector field as in Section 3.4.
If ω0 is the special 2-form on M defined by (3.8) and ω̃0 = dx ∧ dy ∧ dz is
the corresponding special 3-form on R3, then ω̃0 = n ∧ ω0 on M . Thus, if
dω = ϕω0, we have n ∧ dω = ϕω̃0. On the other hand, by Section 3.4, in
particular (3.7), n ∧ dω = 〈n, curlF 〉ω̃0; hence ϕ = 〈n, curlF 〉. Consequently,
Stokes’ theorem yields∫

∂D

f dx+ g dy + h dz =

∫
D

dω =

∫
D

〈n, curlF 〉,

where the final integral is an ordinary integral with respect to surface measure,
cf. Section 4.1.

Example 4.2.3. In a Riemannian manifold, for example in Rn, the isomor-
phisms in the remark in Section 3.5 yield the following version of Stokes’ the-
orem, known as the divergence theorem.

Theorem 4.2.2. Let D be a regular domain in a Riemannian manifold M ,
and let, for p ∈ ∂D, n(p) be the outer unit normal to D. If X is a vector field
on M , and either D̄ or suppX is compact, then∫

D

divX =

∫
∂D

〈X,n〉.

Here both integrals are ordinary (Lebesgue) integrals with respect to the
standard measure (4.1) in a Riemannian manifold.
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