ON MOMENTS OF THE LIMITING RANDOM VARIABLE FOR A SUPERCRITICAL GALTON-WATSON PROCESS

SVANTE JANSON

Abstract

Consider a supercritical Galton-Watson process $\left(Z_{n}\right)_{0}^{\infty}$ with offspring distribution ξ and finite offspring mean $\lambda:=\mathbb{E} \xi$. Assume the standard condition $\mathbb{E} \xi \log \xi<\infty$. It is well-known that then $Z_{n} / \lambda^{n} \xrightarrow{\text { a.s. }}$ W for some non-trivial random variable W. We give a simple probabilistic proof of the result by Bingham and Doney (1974) that the r :th moment $\mathbb{E} W^{r}$ is finite if and only if $\mathbb{E} \xi^{r}$ is, for any real $r>1$.

1. Introduction

Consider a Galton-Watson process $\left(Z_{n}\right)_{0}^{\infty}$ with $Z_{0}=1$ and offspring given by independent copies of a random variable ξ (Thus, $\xi \stackrel{\text { d }}{=} Z_{1}$.) We denote the mean number of children by $\lambda:=\mathbb{E} \xi$. We assume that the process is supercritical, i.e., $\lambda>1$; moreover, we assume that $\lambda<\infty$.

It is well-known that then $W_{n}:=\lambda^{-n} Z_{n}, n \geqslant 0$, is a martingale, which converges a.s. to a limit W; furthermore, if $\mathbb{E} \xi \log \xi<\infty$ then $\mathbb{E} W=1$ and $W_{n} \rightarrow W$ also in L^{1}, but if $\xi \log \xi=\infty$, then $W=0$ a.s., see e.g. [1, Section I.10] or [5, Section 2.7]. We consider here only the first case.

The distribution of the limit W can usually not be found explicitly, but various properties of it can be shown. In particular, Bingham and Doney [3, Corollary to Theorem 5] proved the following result on existence of moments of W.

Theorem 1 (Bingham and Doney). Consider a Galton-Watson process with notation as above. Assume that $1<\lambda<\infty$ and $\mathbb{E} \xi \log \xi<\infty$. Then, for any real $r>1$,

$$
\begin{equation*}
\mathbb{E} W^{r}<\infty \Longleftrightarrow \mathbb{E} \xi^{r}<\infty \tag{1.1}
\end{equation*}
$$

The proof in [3] uses Laplace transforms. We give here a simple probabilistic proof.

Remark 2. Bingham and Doney [3] prove also more general results on the existence of $\mathbb{E}\left[W^{r} L(W)\right]$, where $L(x)$ is a slowly varying function; these results will not be discussed here.

We split the proof of Theorem 1 into necessity and sufficiency of the condition $\mathbb{E} \xi^{r}<\infty$, and the latter into the two cases $r \leqslant 2$ and $r \geqslant 2$.

Let $\|X\|_{r}:=\left(\mathbb{E}|X|^{r}\right)^{1 / r}$ for $r>0$ and a random variable X. Also, let $\xi^{\prime}:=\xi-\lambda$, so $\mathbb{E} \xi^{\prime}=0$. C denotes various finite constants, not necessarily the same each time; these may depend on the distribution of ξ, but not on n.

Date: 6 September, 2019.
Partly supported by the Knut and Alice Wallenberg Foundation.

Proof of Theorem 1, \Longrightarrow. This is easy. Since $\left(W_{n}\right)_{0}^{\infty}$ is a martingale which converges in $L^{1}, W_{1}=\mathbb{E}\left(W \mid W_{1}\right)$, and thus (all variables are non-negative)

$$
\begin{equation*}
\mathbb{E} W_{1}^{r} \leqslant \mathbb{E} W^{r}<\infty \tag{1.2}
\end{equation*}
$$

Moreover, $\xi \stackrel{\mathrm{d}}{=} Z_{1}=\lambda W_{1}$ and thus $\mathbb{E} \xi^{r}=\lambda^{r} \mathbb{E} W^{r}<\infty$.
Proof of Theorem 1, $\Longleftarrow, 1<r \leqslant 2$. Conditioned on Z_{n}, we have that Z_{n+1} is a sum of Z_{n} independent copies of ξ. Hence,

$$
\begin{equation*}
Z_{n+1}-\lambda Z_{n}=\sum_{i=1}^{Z_{n}}\left(\xi_{i}-\lambda\right)=\sum_{i=1}^{Z_{n}} \xi_{i}^{\prime} \tag{1.3}
\end{equation*}
$$

where ξ_{i}^{\prime} are conditionally independent copies of ξ^{\prime}. Hence, by the von Bahr - Esseen inequality [2, Theorem 2],

$$
\begin{equation*}
\mathbb{E}\left(\left|Z_{n+1}-\lambda Z_{n}\right|^{r} \mid Z_{n}\right) \leqslant 2 \mathbb{E}\left|\xi^{\prime}\right|^{r} Z_{n}=C Z_{n} \tag{1.4}
\end{equation*}
$$

and thus, by taking the expectation,

$$
\begin{equation*}
\mathbb{E}\left|Z_{n+1}-\lambda Z_{n}\right|^{r} \leqslant C \mathbb{E} Z_{n}=C \lambda^{n} \tag{1.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\left\|Z_{n+1}-\lambda Z_{n}\right\|_{r} \leqslant C \lambda^{n / r} \tag{1.6}
\end{equation*}
$$

Since $W_{n+1}-W_{n}=\lambda^{-n-1}\left(Z_{n+1}-\lambda Z_{n}\right)$, this yields

$$
\begin{equation*}
\left\|W_{n+1}-W_{n}\right\|_{r}=\lambda^{-n-1}\left\|Z_{n+1}-\lambda Z_{n}\right\|_{r} \leqslant C \lambda^{-n(1-1 / r)} \tag{1.7}
\end{equation*}
$$

We have assumed $r>1$, and thus $1-1 / r>0$. Hence, by Minkowski's inequality, for any finite n,

$$
\begin{equation*}
\left\|W_{n}\right\| \leqslant\left\|W_{0}\right\|+\sum_{k=0}^{n-1}\left\|W_{k+1}-W_{k}\right\| \leqslant 1+C \sum_{k=1}^{\infty} \lambda^{-k(1-1 / r)}=C \tag{1.8}
\end{equation*}
$$

Since $W_{n} \xrightarrow{\text { a.s. }} W$, Fatou's lemma yields $\mathbb{E} W^{r} \leqslant C$.
Proof of Theorem 1, $\Longleftarrow, r \geqslant 2$. We again condition on Z_{n} and have (1.3). This time we use Rosenthal's inequality [4, Theorem 3.9.1] and obtain

$$
\begin{align*}
\mathbb{E}\left(\left|Z_{n+1}-\lambda Z_{n}\right|^{r} \mid Z_{n}\right) & \leqslant C Z_{n} \mathbb{E}\left|\xi^{\prime}\right|^{r}+C\left(Z_{n} \mathbb{E}\left|\xi^{\prime}\right|^{2}\right)^{r / 2}=C Z_{n}+C Z_{n}^{r / 2} \\
& \leqslant C Z_{n}^{r / 2} \tag{1.9}
\end{align*}
$$

Hence, using also the Cauchy-Schwarz inequality,

$$
\begin{equation*}
\mathbb{E}\left|Z_{n+1}-\lambda Z_{n}\right|^{r} \leqslant C \mathbb{E} Z_{n}^{r / 2} \leqslant C\left(\mathbb{E} Z_{n}^{r}\right)^{1 / 2} \tag{1.10}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\left\|Z_{n+1}-\lambda Z_{n}\right\|_{r} \leqslant C\left\|Z_{n}\right\|_{r}^{1 / 2} \tag{1.11}
\end{equation*}
$$

and Minkowski's inequality yields

$$
\begin{equation*}
\left\|Z_{n+1}\right\|_{r} \leqslant \lambda\left\|Z_{n}\right\|_{r}+C\left\|Z_{n}\right\|_{r}^{1 / 2} \tag{1.12}
\end{equation*}
$$

Let

$$
\begin{equation*}
A_{n}:=\left\|W_{n}\right\|_{r}=\lambda^{-n}\left\|Z_{n}\right\|_{r} \tag{1.13}
\end{equation*}
$$

and note that $A_{n} \geqslant\left\|W_{n}\right\|_{1}=\mathbb{E} W_{n}=1$. Then (1.12) and (1.13) yield

$$
\begin{align*}
A_{n+1} & \leqslant \lambda^{-n}\left\|Z_{n}\right\|_{r}+C \lambda^{-n}\left\|Z_{n}\right\|_{r}^{1 / 2}=A_{n}+C \lambda^{-n / 2} A_{n}^{1 / 2} \\
& \leqslant A_{n}+C \lambda^{-n / 2} A_{n}=\left(1+C \lambda^{-n / 2}\right) A_{n} \tag{1.14}
\end{align*}
$$

Hence, by induction, noting $A_{0}=\left\|Z_{0}\right\|_{r}=1$,

$$
\begin{equation*}
A_{n} \leqslant \prod_{k=0}^{n-1}\left(1+C \lambda^{-k / 2}\right) \leqslant \exp \left(\sum_{k=0}^{n-1} C \lambda^{-k / 2}\right) \leqslant C \tag{1.15}
\end{equation*}
$$

since $\sum_{k=0}^{\infty} \lambda^{-k / 2}<\infty$.
We have shown $\mathbb{E} W_{n}^{r}=A_{n}^{r} \leqslant C$, and, as in the case $r \leqslant 2$, Fatou's lemma yields $\mathbb{E} W^{r}<\infty$.

References

[1] Krishna B. Athreya \& Peter E. Ney: Branching Processes. SpringerVerlag, Berlin, 1972.
[2] Bengt von Bahr \& Carl-Gustav Esseen: Inequalities for the r th absolute moment of a sum of random variables, $1 \leqslant r \leqslant 2$. Ann. Math. Statist. 36 (1965), 299-303.
[3] N. H. Bingham \& R. A. Doney: Asymptotic properties of supercritical branching processes I: The Galton-Watson process. Advances in Appl. Probability 6 (1974), 711-731.
[4] Allan Gut: Probability: A Graduate Course, 2nd ed., Springer, New York, 2013.
[5] Peter Jagers: Branching Processes with Biological Applications. Wiley, London, 1975.

Department of Mathematics, Uppsala University, PO Box 480, SE-751 06 Uppsala, SWEDEN

Email address: svante.janson@math.uu.se
URL: http://www.math.uu.se/svante-janson

