THE VOLUME OF A BALL IN \mathbb{R}^{n}

SVANTE JANSON

Abstract

This note gives a simple proof of the standard formula for the volume of the unit ball in \mathbb{R}^{n}. We use a modification of the standard argument that integrates $e^{-|x|^{2}}$ over \mathbb{R}^{n} and then uses polar coordinates.

Recall that the Gamma function is defined by

$$
\begin{equation*}
\Gamma(s)=\int_{0}^{\infty} y^{s-1} e^{-y} d y \tag{1}
\end{equation*}
$$

for $s>-1$, and that $\Gamma(s+1)=s \Gamma(s), s>-1$. (This is easily shown by integration by parts.) In particular, when s is a positive integer, induction yields $\Gamma(s)=(s-1)$!. We may thus extend the factorial function by the definition $x!=\Gamma(x+1)$.

Theorem. Let $n \geq 1$. A ball with radius r in \mathbb{R}^{n} has volume $v_{n} r^{n}$, where

$$
\begin{equation*}
v_{n}=\frac{\pi^{n / 2}}{(n / 2)!}=\frac{\pi^{n / 2}}{\Gamma(n / 2+1)} \tag{2}
\end{equation*}
$$

Proof. It is clear by homogeneity that a ball $B\left(x_{0}, r\right)$ of radius r has volume $v_{n} r^{n}$ where v_{n} is the volume of the unit ball.

Write the points in \mathbb{R}^{n+1} as (x, y) with $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}$, and let D be the subset of \mathbb{R}^{n+1} given by $D=\left\{(x, y):|x|^{2}<y\right\}$. Integrate e^{-y} over D, and use Fubini's theorem. Integrating first over $x \in \mathbb{R}^{n}$ yields, using (1),

$$
\begin{equation*}
\int_{y=0}^{\infty} \int_{\left|x^{2}\right|<y} e^{-y} d x d y=\int_{0}^{\infty} v_{n} y^{n / 2} e^{-y} d y=v_{n} \Gamma(n / 2+1) \tag{3}
\end{equation*}
$$

since the inner integral is over the ball $B\left(0, y^{1 / 2}\right)$ of volume $v_{n} y^{n / 2}$.
On the other hand, integrating first over y yields

$$
\begin{equation*}
\int_{x \in \mathbb{R}^{n}} \int_{y=|x|^{2}}^{\infty} e^{-y} d y d x=\int_{x \in \mathbb{R}^{n}} e^{-|x|^{2}} d x=\prod_{i=1}^{n} \int_{-\infty}^{\infty} e^{-x_{i}^{2}} d x_{i}=I^{n} \tag{4}
\end{equation*}
$$

where we define

$$
I=\int_{-\infty}^{\infty} e^{-x^{2}} d x
$$

Consequently, Fubini's theorem shows that the values in (3) and (4) are equal, i.e.

$$
\begin{equation*}
v_{n} \Gamma(n / 2+1)=I^{n} \tag{5}
\end{equation*}
$$

Date: February 27, 2006.

In the special case $n=2$, we have $v_{2}=\pi$. Hence (5) with $n=2$ yields $\pi=I^{2}$ and $I=\pi^{1 / 2}$. Consequently, (2) follows by using (5) again.

Remark. We have also given a proof of the standard formula

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\pi^{1 / 2} \tag{6}
\end{equation*}
$$

again, our argument is a modification of the standard one.
Corollary. The surface area ω_{n} of the unit ball is

$$
\begin{equation*}
\omega_{n}=n v_{n}=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)} \tag{7}
\end{equation*}
$$

Proof. Polar coordinates yields

$$
v_{n}=\int_{0}^{1} \omega_{n} r^{n-1} d r=\frac{\omega_{n}}{n}
$$

Equivalently, computing the area of a sphere with radius r,

$$
\omega r^{n-1}=\frac{d}{d r}\left(v_{n} r^{n}\right)=n v_{n} r^{n-1}
$$

Example 1. In the case $n=1$, the unit ball $B(0,1)$ is the interval $(-1,1)$ of length 2 ; thus $v_{1}=2$. This is by (2) equivalent to $\Gamma\left(\frac{3}{2}\right)=\pi^{1 / 2} / 2$, or, equivalently, to the well-known formula $\Gamma\left(\frac{1}{2}\right)=\pi^{1 / 2}$.
Example 2. For $n=3$ we have, see Example 1, $\Gamma\left(\frac{5}{2}\right)=\frac{3}{2} \Gamma\left(\frac{3}{2}\right)=\frac{3}{4} \pi^{1 / 2}$, and thus the theorem yields $v_{3}=4 \pi / 3$. For $n=4$ we have $v_{4}=\pi^{2} / 2$.

n	1	2	3	4	5	6
v_{n}	2	π	$\frac{4 \pi}{3}$	$\frac{\pi^{2}}{2}$	$\frac{8 \pi^{2}}{15}$	$\frac{\pi^{3}}{6}$
ω_{n}	2	2π	4π	$2 \pi^{2}$	$\frac{8 \pi^{2}}{3}$	π^{3}

TABLE 1. Some numerical values

Department of Mathematics, Uppsala University, PO Box 480, SE-751 06 UppsAla, SWEDEN

E-mail address: svante.janson@math.uu.se
URL: http://www.math.uu.se/~svante/

