CONSTRUCTIBLE NUMBERS AND GALOIS THEORY

SVANTE JANSON

Abstract. We correct some errors in Grillet [2], Section V.9.

1. Introduction

The purpose of this note is to correct some errors in Grillet [2], Section V. 9 (in particular Theorem 9.3 and Lemma 9.4). See also [1].

As in Grillet [2], we define a constructible number to be a complex number such that the corresponding point in the Euclidean plane is constructible from 0 and 1 by ruler and compass (a.k.a. straightedge and compass). Let \mathcal{K} be the set of constructible numbers. Then, as shown in [2, Proposition 9.1 and Lemma 9.2], \mathcal{K} is a subfield of \mathbb{C}, which is closed under taking square roots (i.e., if $z \in \mathcal{K}$, then $\pm \sqrt{z} \in \mathcal{K}$); moreover, \mathcal{K} is the smallest such subfield of \mathbb{C}.

Remark. A complex number is constructible if and only if its real and imaginary parts are constructible [2, Lemma 9.2], so it suffices to study real constructible numbers. However, for the present purpose it is simpler to allow complex numbers.

2. Main Result

Theorem 2.1. The following are equivalent, for a complex algebraic number z :
(i) z is constructible $(z \in \mathcal{K})$.
(ii) There is a chain of field extensions $\mathbb{Q}=F_{0} \subseteq F_{1} \subseteq \cdots \subseteq F_{m}$ with $z \in F_{m}$ and $F_{i}=F_{i-1}\left(z_{i}\right)$ with $z_{i}^{2} \in F_{i-1}$ for every $i \leq m$.
(iii) There is a chain of field extensions $\mathbb{Q}=F_{0} \subseteq F_{1} \subseteq \cdots \subseteq F_{m}$ with $z \in F_{m}$ and $\left[F_{i}: F_{i-1}\right] \leq 2$ for every $i \leq m$.
(iv) There is a chain of field extensions $\mathbb{Q}=F_{0} \subset F_{1} \subset \cdots \subset F_{m}$ with $z \in F_{m}$ and $\left[F_{i}: F_{i-1}\right]=2$ for every $i \leq m$.
(v) $z \in L$, where L is some normal field extension of \mathbb{Q} of degree 2^{k} for some $k \geq 0$.
(vi) The splitting field of the irreducible polynomial $\operatorname{Irr}(z: \mathbb{Q})$ has degree 2^{k} for some $k \geq 0$.
(vii) The Galois group $\operatorname{Gal}(f: \mathbb{Q})$ of the irreducible polynomial $f:=\operatorname{Irr}(z$: $\mathbb{Q})$ has degree 2^{k} for some $k \geq 0$.

Proof. (i) \Longleftrightarrow (ii): By Grillet [2].
(ii) \Longrightarrow (iii): For every $i \leq m, z_{i}$ is a root of $f_{i}(X)=X^{2}-b_{i}$ with $b_{i}:=z_{i}^{2} \in F_{i-1}$ and thus $X^{2}-b_{i} \in F_{i-1}[X]$. Either $z_{i} \in F_{i-1}$, and then $F_{i}=F_{i-1}$, or f_{i} is irreducible over F_{i-1}, and then $\left[F_{i}: F_{i-1}\right]=\left[F_{i-1}\left(z_{i}\right)\right.$: $\left.F_{i-1}\right]=\operatorname{deg}\left(f_{i}\right)=2$.
(iii) \Longrightarrow (iv): Eliminate all repetitions in the sequence F_{0}, \ldots, F_{m}.
(iv) \Longrightarrow (ii): Let $i \leq m$, and take any $\alpha \in F_{i} \backslash F_{i-1}$. Then $F_{i-1} \subsetneq$ $F_{i-1}(\alpha) \subseteq F_{i}$, and since $\left[F_{i}: F_{i-1}\right]=2, F_{i-1}(\alpha)=F_{i}$. Furthermore, $\alpha^{2} \in F_{i}$, and thus (again using $\left[F_{i}: F_{i-1}\right]=2$), $\alpha^{2}=a \alpha+b$ for some $a, b \in$ F_{i-1}. Consequently, $\alpha=a / 2 \pm \sqrt{a^{2} / 4+b}$. Define $z_{i}:=\sqrt{a^{2} / 4+b}$. Then $\alpha=a / 2 \pm z_{i}$, and thus $F_{i}=F_{i-1}(\alpha)=F_{i-1}\left(z_{i}\right)$, and $z_{i}^{2}=a^{2} / 4+b \in F_{i-1}$.
(ii) $\Longrightarrow(\mathrm{v})$: We prove by induction on i that every field F_{i} has an extension L_{i} such that L_{i} is a normal extension of \mathbb{Q} whose degree $\left[L_{i}: \mathbb{Q}\right]$ is a power of 2 . We then take $L=L_{m}$ and observe that $z \in F_{m} \subseteq L_{m}=L$.

To prove this claim, note first that it is trivial for $i=0$. For the induction step, we fix $i \leq m$ and assume that $F_{i-1} \subseteq L_{i-1}$ where L_{i-1} is a normal extension of \mathbb{Q} of degree 2^{k} for some $k \geq 0$. Let $w_{i}:=z_{i}^{2} \in F_{i-1}$ and let $\left\{z_{i j}\right\}_{j=1}^{J}$ be the set of conjugates of z_{i} over \mathbb{Q}. For each $j, z_{i j}=\sigma\left(z_{i}\right)$ for some K-automorphism σ of the algebraic closure $\overline{\mathbb{Q}}$, and thus $z_{i j}^{2}=\sigma\left(z_{i}^{2}\right)=\sigma\left(w_{i}\right)$ is conjugate to $w_{i} \in F_{i-1} \subseteq L_{i-1}$. Since L_{i-1} is a normal extension of \mathbb{Q}, $z_{i j}^{2} \in L_{i-1}$.

Define $L_{i j}:=L_{i-1}\left(z_{i 1}, \ldots, z_{i j}\right)$, and $L_{i}:=L_{i J}$. Thus $L_{i 0}=L_{i-1}$. For $1 \leq j \leq J$, we have $L_{i j}=L_{i, j-1}\left(z_{i j}\right)$ and $z_{i j}^{2} \in L_{i-1} \subseteq L_{i, j-1}$; hence $\left[L_{i j}: L_{i, j-1}\right]=1$ or 2 (as in the proof of (ii) \Longrightarrow (iii) above). Consequently,

$$
\left[L_{i}: L_{i-1}\right]=\left[L_{i J}: L_{i 0}\right]=\prod_{j=1}^{J}\left[L_{i j}: L_{i, j-1}\right]=2^{\ell}
$$

for some ℓ, and $\left[L_{i}: \mathbb{Q}\right]=\left[L_{i}: L_{i-1}\right]\left[L_{i-1}: \mathbb{Q}\right]=2^{\ell+k}$. This proves the induction step, and thus the claim.
$(\mathrm{v}) \Longrightarrow(\mathrm{vi})$: Let $\left\{z_{j}\right\}_{j=1}^{J}$ be the set of conjugates of z. Since L is normal, each $z_{j} \in L$. Define $E:=\mathbb{Q}\left(z_{1}, \ldots, z_{J}\right)$, the splitting field of $\operatorname{Irr}(z: \mathbb{Q})$. Then $\mathbb{Q} \subseteq E \subseteq L$, and thus $[L: E][E: \mathbb{Q}]=[L: \mathbb{Q}]=2^{k}$; hence $[E: \mathbb{Q}]$ is a divisor of 2^{k}, and thus a power of 2 .
(vi) \Longleftrightarrow (vii): A splitting field is a Galois extension (in characteristic 0 , at least), and the degree of a Galois extension equals the order of its Galois group.
(vii) \Longrightarrow (iv): Let E be the splitting field of f, and let G be the Galois $\operatorname{group} \operatorname{Gal}(f: \mathbb{Q})=\operatorname{Gal}(E: \mathbb{Q})$. By Sylow's first theorem (and induction), there is a chain of subgroups $G=H_{0} \supset H_{1} \supset \cdots \supset H_{k}=\{1\}$ with $\left|H_{i}\right|=2^{k-i}$. The fundamental theorem of Galois theory shows that the corresponding sequence of fixed fields $F_{i}:=\operatorname{Fix}_{E}\left(H_{i}\right)$ satisfies $F_{0} \subset F_{1} \subset$ $\cdots \subset F_{k}$ and $\left[E: F_{i}\right]=\left|H_{i}\right|=2^{k-i}$, which yields $\left[F_{i}: \mathbb{Q}\right]=2^{i}$ and $\left[F_{i}: F_{i-1}\right]=2$. Clearly $z \in E=F_{k}$.

Recall that the degree $\operatorname{deg}_{K}(\alpha)$ of an algebraic element α in an extension of a field K is the degree of its irreducible polynomial. Furthermore, $\operatorname{deg}_{K}(\alpha)=[K(\alpha): K]$; see [2, Section V.2].

Corollary 2.2. If z is constructible, then z is algebraic and its degree $\operatorname{deg}_{\mathbb{Q}}(z)=[\mathbb{Q}(z): \mathbb{Q}]$ is a power of 2 .

However, the converse of Corollary 2.2 is not true, as shown by the following example.

Example 2.3. Let α be a root of an irreducible polynomial $f(X) \in \mathbb{Q}[X]$ of degree 4, such that the Galois group $\operatorname{Gal}(f: \mathbb{Q})=S_{4}$ or A_{4}. Since $f=$ $\operatorname{Irr}(\alpha: \mathbb{Q})$, and the order of the Galois $\operatorname{group} \operatorname{Gal}(f: \mathbb{Q})$ is 24 or 12 , and thus not a power of 2 , Theorem 2.1 shows that α is not constructible. On the other hand, $[\mathbb{Q}(\alpha): \mathbb{Q}]=\operatorname{deg}(f)=4=2^{2}$.
(Such polynomials f exist. By [2, Proposition V.5.6], any polynomial of degree 4 such that its cubic resolvent is irreducible will do. $X^{4}+2 X-2$ is an explicit example.)

Remark 2.4. It is easily seen that the following properties are equivalent, for a complex number z.
(i) The degree of z over \mathbb{Q} is a power of 2 .
(ii) The degree $[\mathbb{Q}(z)$: $\mathbb{Q}]$ of $\mathbb{Q}(z)$ over \mathbb{Q} is a power of 2 .
(iii) z lies in an extension E of \mathbb{Q} whose degree $[E: \mathbb{Q}]$ is a power of 2 .

Corollary 2.2 thus says that these conditions are necessary for z to be constructible, but Example 2.3 shows that they are not sufficient. (Cf. Theorem $2.1(\mathrm{v})$, where the extension is assumed to be normal.)

Furthermore, the set S of $z \in \mathbb{C}$ that satisfy (i) (or (ii) or (iii)) is not a field. For example, let α be as in Example 2.3, and let its conjugates be $\alpha_{1}=\alpha, \alpha_{2}, \alpha_{3}, \alpha_{4}$. Then the splitting field of f is $E:=\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$. For every $j, \operatorname{deg}\left(\alpha_{j}\right)=\operatorname{deg}(\alpha)=4$ and thus $\alpha_{j} \in S$. If S were a field, thus $E=\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right) \subseteq S$. However, E is a finite and separable extension of \mathbb{Q}, and thus it is a simple extension: $E=\mathbb{Q}(\beta)$ for some $\beta \in E$. Since E, being a splitting field, is a Galois extension of \mathbb{Q},

$$
\operatorname{deg}_{\mathbb{Q}}(\beta)=[\mathbb{Q}(\beta): \beta]=[E: \mathbb{Q}]=|\operatorname{Gal}(E: \mathbb{Q})|=12 \text { or } 24
$$

which is not a power of 2 ; hence $\beta \notin S$, and thus $E \nsubseteq S$. This contradiction shows that S is not a field.

Remark 2.5. Example 2.3 gives an example of a field extension $E=\mathbb{Q}(\alpha) \supset$ \mathbb{Q} of degree 4 such that there is no intermediate field $\mathbb{Q}(\alpha) \supsetneq F \supsetneq \mathbb{Q}$. (If there were such an F, then $[\mathbb{Q}(\alpha): F]=[F: \mathbb{Q}]=2$, and α would satisfy Theorem 2.1(iv) and thus be constructible, a contradiction.)

3. Some classical applications

The results above are easily applied to the classical problems of construction by ruler and compass. (See also [2, Section V.9].)
3.1. Squaring the circle. In modern terms, the problem is to construct $\sqrt{\pi}$ by ruler and compass. Since π, and therefore also $\sqrt{\pi}$, is transcendental and not algebraic, this is impossible by Corollary 2.2. (The transcendence of π is not so easy to prove; see e.g. [3, Section 11.14].)
3.2. Doubling the cube. The problem is to construct $\sqrt[3]{2}$. This is a root of the irreducible polynomial $X^{3}-2=0$, so its degree is 3 and Corollary 2.2 shows that $\sqrt[3]{2}$ is not constructible.
3.3. Trisecting the angle. The problem is to construct $e^{\mathrm{i} \theta / 3}$ from $e^{\mathrm{i} \theta}$. We choose $\theta=60^{\circ}=\pi / 3$; then $e^{\mathrm{i} \theta}=(1+\mathrm{i} \sqrt{3}) / 2$ is constructible, so the task is equivalent to constructing $\alpha:=e^{\mathrm{i} \theta / 3}=e^{\mathrm{i} \pi / 9}=e^{2 \pi \mathrm{i} / 18}$ from scratch. However, α is a primitive 18 th root of unity, so its irreducible polynomial is the cyclotomic polynomial $\Phi_{18}(X)$, and thus

$$
\operatorname{deg}_{\mathbb{Q}}(\alpha)=\operatorname{deg}\left(\Phi_{18}\right)=\varphi(18)=6
$$

By Corollary 2.2, α is not constructible. Hence trisecting an angle by ruler and compass is in general not possible. (In particular, it is not possible for a 60° angle.)
3.4. Constructing a regular n-gon. This is equivalent to constructing the n :th root of unity $\omega_{n}:=e^{2 \pi \mathrm{i} / n}$. The irreducible polynomial of ω_{n} is the cyclotomic polynomial $\Phi_{n}(X)$, which has degree $\varphi(n)$. The splitting field of $\Phi_{n}(X)$ is $\mathbb{Q}\left(\omega_{n}\right)$ (since all other roots are powers of ω_{n}, and thus belong to $\left.\mathbb{Q}\left(\omega_{n}\right)\right)$. Consequently, Theorem $2.1(\mathrm{vi})$ shows that ω_{n} is constructible if and only if the degree $\varphi(n)$ of $\Phi_{n}(X)$ is a power of 2 .

By simple number theory, see e.g. [3, Section 5.5], if n has the prime factorization $n=\prod_{k} p_{k}^{a_{k}}$, for some distinct primes p_{k} and exponents $a_{k} \geq 1$, then $\varphi(n)=\prod_{k} p_{k}^{a_{k}-1}\left(p_{k}-1\right)$, which is a power of 2 if and only if $a_{k}=1$ for every k with $p_{k} \neq 2$, and $p_{k}-1$ is a power of 2 for every i. This implies that each p_{k} is either 2 or a Fermat number $F_{j}=2^{2^{j}}+1$ for some $j \geq 0$, see e.g. [2, Section V.9] or [3, Section 2.5]. Consequently:
 only if n is a product of a power of 2 and distinct Fermat primes.

The first 5 Fermat numbers $F_{0}=3, F_{1}=5, F_{2}=17, F_{3}=257$ and $F_{4}=65537$ are primes, but no others are known, and it seems likely (but unproven) that these are the only Fermat primes.

We see that, for example, a regular n-gon is constructible for $n=3,4,5$, $6,8,10,12,15,16,17,20$, but not for $n=7,9,11,13,14,18,19$.

References

[1] D. A. Cox, Galois Theory. Wiley-Interscience, Hoboken, NJ, 2004.
[2] P. A. Grillet, Abstract Algebra. 2nd ed., Springer, New York, 2007.
[3] G. H. Hardy \& E. M. Wright, An Introduction to the Theory of Numbers. 4th ed., Oxford Univ. Press, Oxford, 1960.

Department of Mathematics, Uppsala University, PO Box 480, SE-751 06 UppsALA, SWEDEN

E-mail address: svante.janson@math.uu.se
URL: http://www.math.uu.se/~svante/

