A PROOF OF A HYPERGEOMETRIC IDENTITY

SVANTE JANSON

1. Introduction

Johan Kåhrström discovered the following identity experimentally in 2006, checking a large number of cases with computer:

$$
\begin{equation*}
\sum_{i=\max (0,2 k-l-n)}^{\min (k, m-l)}(-1)^{i} \frac{(m-i)!(n-k+i)!}{i!(k-i)!(m-l-i)!(n+l-2 k+i)!}=(-1)^{k+l} \tag{1}
\end{equation*}
$$

for all integers k, l, m, n with $0 \leq l \leq k \leq \min (m, n)$.
Some reformulations are given in (2)-(4) below. For the background and application to certain bilinear froms on $\mathfrak{s l}_{2}$-modules, see [2].

Johan Kåhrström (then a graduate student) and his supervisor Volodymyr Mazorchuk proved several special cases and then asked for a general proof. Several different proofs were quickly (and independently) found by Herbert Wilf \& Doron Zeilberger, Christian Krattenthaler, Tobias Ekholm, Ganna Kudryavtseva and myself, see [2] for brief descriptions. The purpose of this note is to present my elementary proof.

2. Some Reformulations

The identity (1) may be rewritten in several ways; we give some here.
The version first presented to me was

$$
\begin{equation*}
\sum_{i=\max (0, l+k-m-n)}^{\min (k, l)}(-1)^{i} \frac{(n-i)!(m+i)!}{(n+m-k-l+i)!(k-i)!(l-i)!i!}=(-1)^{n+k+l} \tag{2}
\end{equation*}
$$

for all integers k, l, m, n with $m \geq 0$ and $n \geq l \geq n-k \geq 0$.
If we first substitute $l \rightarrow n-l$ and $m \rightarrow m-k$ in (2) and then interchange m and n, we obtain (1) so the two versions are equivalent. (The conditions on k, l, m, n also translate.)

If we in (2) substitute $k=b+c, l=b+d, n=b+c+d, m=a$, we have $a=m$, $b=k+l-n, c=n-l, d=n-k$, and the conditions translate to $a, b, c, d \geq 0$. Hence, letting also $i=b+j$, (1) and (2) are also equivalent to the symmetric formula

$$
\begin{equation*}
\sum_{j=-\min (a, b)}^{\min (c, d)}(-1)^{j} \frac{(a+b+j)!(c+d-j)!}{(a+j)!(b+j)!(c-j)!(d-j)!}=1, \quad a, b, c, d \geq 0 \tag{3}
\end{equation*}
$$

Date: 10 January 2011 (original proof 28 October 2006).

The summation limits in (1)-(3) make all arguments of the factorials nonnegative integers. However, we can allow negative arguments in the denominator, with the standard interpretation $1 / i!=0$ for $i<0$; thus we may change the lower limit in (1) or (2) to, for example, 0 , and the upper limit to, for example, $k, m-l$ or m in (1) and k, l or n in (2); the value of the sum will not change since all additional terms are 0 .

The ratios of successive summands in (1)-(3) are rational functions of i, and the summands can thus be seen as hypergeometric terms [1, Section 5.7]. If further $2 k \leq n+l$, we can rewrite (1) as the hypergeometric evaluation [2]

$$
{ }_{3} F_{2}\left(\begin{array}{c|c}
n-k+1,-k, l-m & 1 \tag{4}\\
-m, n+l-2 k+1 & 1
\end{array}\right)=(-1)^{k+l} \frac{k!(m-l)!(n+l-2 k)!}{m!(n-k)!}
$$

for all integers k, l, m, n with $0 \leq l \leq k \leq \min (m, n)$ and $2 k \leq n+l$, where the hypergeometric function on the left hand side is a polynomial of degree $\min (k, m-$ $l)$.

3. Proof of the identity

We show (2), which is equivalent to (1) and (3) by simple changes of variables, see Section 2.

Let

$$
p(i)=\frac{(n-i)!}{(l-i)!}=\prod_{j=1}^{n-l}(l-i+j)
$$

and

$$
q(i)=\frac{(m+i)!}{(n+m-k-l+i)!}=\prod_{j=1}^{k+l-n}(n+m-k-l+i+j)
$$

these are polynomials in i of degrees $n-l \geq 0$ and $k+l-n \geq 0$ with leading terms $(-1)^{n-l} i^{n-l}$ and i^{k+l-n}, respectively. The product $p(i) q(i)$ is thus a polynomial in i of degree k with leading term $(-1)^{n-l} i^{k}$.

Let the sum in (2) be denoted by S. As discussed in Section 2, we can change the summation limits to \sum_{0}^{k}, and then the sum may be written

$$
\begin{equation*}
S=\frac{1}{k!} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} p(i) q(i) \tag{5}
\end{equation*}
$$

Let Δ be the difference operator $\Delta f(x)=f(x+1)-f(x)$, and note that if f is any polynomial of degree k with leading term $a_{k} x^{k}$, then $\Delta^{k} f(x)=a_{k} k$! for every
x. Thus $\Delta^{k}(p q)(x)=(-1)^{n-l} k$! and, by (5),

$$
\begin{aligned}
S & =\frac{1}{k!} \sum_{i=0}^{k}(-1)^{i}\binom{k}{i} p(i) q(i) \\
& =\frac{1}{k!}(-\Delta)^{k}(p q)(0) \\
& =\frac{1}{k!}(-1)^{k}(-1)^{n-l} k! \\
& =(-1)^{k+l+n}
\end{aligned}
$$

References

[1] R.L. Graham, D.E. Knuth \& O. Patashnik, Concrete Mathematics. 2nd ed., Addison-Wesley, Reading, Mass., 1994.
[2] Johan Kåhrström, Bilinear forms on $\mathfrak{s l}_{2}$-modules and a hypergeometric inequality. Tech. report 2007:8, Dept. of Mathematics, Uppsala University.

Department of Mathematics, Uppsala University, PO Box 480, SE-751 06 Uppsala, Sweden

E-mail address: svante.janson@math.uu.se
URL: http://www2.math.uu.se/~svante/

