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1 Introduction

This is a set of notes I wrote while teaching courses in circuit theory for undergraduate electrical engineering
students. They can be read in connection with any good standard book on the subject. They basically contain
the essence of a large chunk of a circuit theory course. Circuit theory is, of course, obtained by making an
idealization of Maxwell’s equations in the absence of charges and when we can ignore magnetic fields. From
a mathematical point of view, circuit theory can be seen as a topic in graph theory, a topic in linear algebra,
but also a topic in discrete harmonic analysis. The benign set of Kirchoff’s laws and Ohm’s laws, familiar to
any electrical engineer, in other words a mere set of linear equations, contains, in disguise, a lot of physical
and mathematical beauty. The point of the notes is to first explain why a circuit can be solved, and, second,
present the standard methods for doing so (variants of whichexist in common software packages for circuit
simulation).

2 From a circuit to its graph

The first thing we do here is to identify thegraphof the circuit. That is, we identify the set ofverticesV , and
the set ofedgesE. The graph isG = (V,E). Next, each edge is given an arbitraryorientation. If the edge
between verticesk andℓ is considered unoriented, it is denoted by{k, ℓ}. If it is oriented it is designated as
(k, ℓ), wherek is thestart-vertexandℓ is theend-vertex. For example, here is a circuit and its graph.
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Figure 1: ACIRCUIT AND ITS GRAPH

The set of vertices isV = {1, 2, 3, 4, 5}. The set of edges isE = {e1, e2, e3, e4, e5, e6, e7, e8}. The edge
orientation is entirely arbitrary. For example, ife5 is considered as unoriented, it is denoted bye5 = {2, 3}.
Taking into account the orientation, we writee5 = (2, 3). We say that an edge{k, ℓ} is incidentto a vertex if
this vertex isk or ℓ. We do not consider self-edges, that is edges that start and end at the same vertex.

Much of what we say holds for circuits containing dependent sources, transformers, and other linear
elements. However, to make the exposition simple, we imagine that we have only resistors (which could take
complex values) and independent voltage and current sources. This is not a restriction of generalit! Also, we
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arrange so that there is at most one edge per pair of vertices (by introducing, if necessary, additional nodes).
So, again, assuming that there is at most one edge per pair of vertices is no loss of generality. A word on
terminology: an edge is sometimes calledbranch, and a vertex is callednode, especially if we refer to the
actual electrical circuit. The graph of Fig. 1 isplanar, in that it can be drawn on the plane, without edge
intersections. On the contrary, the graph below (Fig. 2) is non-planar. The reason is that, no matter how you
redraw it, at least two of its edges will intersect.
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Figure 2: ANON-PLANAR GRAPH

The nice thing about graphs, is that they contain the minimalinformation about the “topological structure”
of the circuit, which is responsible for the writing of the two circuit laws: Kirchhoff’s Current Law (KCL)
and Kirchhoff’s Voltage Law (KVL). It is often nice and pleasing to reduce a model into its bare minimum
so we can see exactly how much we can say about it, without getting confused by redundant information.

3 Currents and voltages

A current configuration, or simply current, for a graphG = (V,E) is a collectioni = (ie, e ∈ E) of numbers
ie associated to edgese so that they satisfy KCL. That is, for each vertexk look at all edgese incident tok,
let bk,e be+1 is k is a start-vertex ofe or−1 if k is an end-vertex ofe and write

∑

e

bk,eie = 0. (1)

If we definebk,e to be0 if e is not incident to vertexk, then the above summation can be extended over all
e ∈ E.

Next, we turn to KVL. Acycle(or loop) ℓ of G is a collection of distinct verticesk1, . . . , kj , such that
{k1, k2}, {k2, k3}, . . . , {kj−1, kj}, {kj , k1} are all edges of theunorientedgraph. Thecycle orientationof
cycle ℓ is the orientation at which we traverse its vertices. The actual orientation of a particular edgee of
ℓ may or may not agree with that ofℓ. We define numbersaℓ,e as follows: if e does not belong to cycleℓ
thenaℓ,e = 0; if e belongs toℓ ande has the same orientation asℓ, thenae = +1; otherwise,ae = −1. A
voltage configurationv = (ve, e ∈ E) is an assignment of numbersve to the edgese of G in a way that KVL
is satisfied. KVL, for a given cycleℓ, says that

∑

e

aℓ,eve = 0. (2)

4 From graphs to matrices

We can encode KCL by using the language of matrices. For this purpose, we define theincidence matrixB
of the graphG = (V,E) (whose edges have been given an arbitrary orientation) as a matrix whoserows are
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indexed by verticesandcolumns by edges. The entry ofB corresponding to row (vertex)k and column (edge)
e is simply taken to bebk,e as defined above. For instance, in the first example, we have

B =




0 −1 −1 1 0 0 0 0
0 0 0 −1 1 1 0 0
−1 0 1 0 −1 0 −1 0
1 0 0 0 0 0 0 −1
0 1 0 0 0 −1 1 1




1
2
3
4
5

e1 e2 e3 e4 e5 e6 e7 e8

Thus, column3 of B has1 at position3 and−1 at position1, meaning that edgee3 starts at vertex3 and
ends at vertex1. If we thus leti = (i1, i2, i3, i4, i5, i6, i7, i8)

T be a column of a current configuration, we can
encode KCL as follows:

Bi = 0. (3)

Indeed, if, e.g., we multiply the second row ofB by i we get−i4 + i5 + i6 = 0, which is KCL at vertex2.

We can encode KVL (1) by introducing thecycle matrixA, whoserows are indexed by oriented cycles
andcolumns by oriented edges, and whose typical element, corresponding to row (cycle)ℓ and column (edge)
e is aℓ,e, as defined above. For instance, in the example of Fig. 1, we have the cycles(1, 2, 5), (2, 3, 4, 5), etc.
There are too many cycles, so I’m not going to list them all. The cycle matrix is

A =




0 1 0 1 0 1 0 0
−1 0 0 0 1 −1 0 −1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .




cycle(1,2,5)
cycle(2,3,4,5)

· · ·

e1 e2 e3 e4 e5 e6 e7 e8

Again, I only listed its first two rows, corresponding to the cycles(1, 2, 5) and(2, 3, 4, 5). KVL (2) now reads

Av = 0. (4)

So, with the identification of a graph and the introduction ofthe matricesB andA, we managed to encode
the relevant information of the circuit and express KCL and KVL in the form of (3) and (4). Let us see what
we can say about these two laws, before we introduce any additional constraints, i.e., before we take into
account the actual identity of the circuit elements sittingat the various branches of the circuit.

A WORD ON NOTATION: Suppose thatA is am × n matrix. We will useAT to denote thetransposeof
A, i.e. then×m matrix whose rows are the columns ofA. If B is anothern× k matrix then the rule for the
transpose of the product says that(AB)T = BTAT. The set alln-vectorsx such thatAx = 0 is denoted by
N(A):

N(A) := {x : Ax = 0}.

The set of allm-vectorsy such thaty = Ax for some vectorn-vectorx is denoted byR(A):

R(A) := {y : y = Ax for somex}.

Note then, that every suchy is a linear combination of the columns ofA. In other words,R(A) contains all
linear combinations of the columns ofA. In the same vein, the set containing all linear combinations of the
rows ofA is denoted byR(AT) (because rows ofA are columns ofAT).

5 Spaces of circuit variables

We identify four spaces and use the following notation/terminology:
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1. CURR-SP (current space): It is the set of all current configurations,i.e. all i satisfying (3). Thus,
CURR-SP = N(B).

2. VOLT-SP (voltage space): It is the set of all voltage configurations,i.e. all v satisfying (4). Thus,
VOLT-SP = N(A).

3. CYCL-SP (cycle space): It is the set of all linear combinations of cycles, that is, of rows ofA. Thus,
CYCL-SP = R(AT).

4. VERT-SP (vertex space): It is the set of all linear combinations of rows ofB. Thus,VERT-SP = R(BT).

These spaces are not unrelated. In this, and the following few sections, we will study their relations. This
study will turn out to be quite fruitful because, as by-products, it will give us some general methods for
solving circuits, it will tell us what energy conservation actually means, and it will essentially exhaust the
study of circuits.

First, observe that every row ofA (i.e. every cycle vector) is a valid current configuration, i.e., that every
row of A satisfies (3). To see this, consider a vertexk and a loopℓ. Eitherk does not belong toℓ, in which
case the contribution ofℓ to the KCL atk is zero, ork belongs toℓ; in the latter case, there are two edges in
ℓ Fig. tok, one ending atk and one starting atk; Hence the contribution ofℓ to the KCL atk is −1 + 1 = 0.
In matrix notation,

BAT = 0. (5)

A consequence of (5) is that the cycle space is contained in the current space:

CYCL-SP ⊂ CURR-SP . (6)

Indeed, a vector in the cycle space is, by definition, of the form ATx. But thenB(ATx) = 0. SoATx is also
in the current space. Now we can take transpose in (5) to get

ABT = 0, (7)

which means that the node space is contained in the voltage space:

VERT-SP ⊂ VOLT-SP . (8)

In fact, we claim that the opposite inclusions in (6) and (8) also hold. To show this, we need a bit more of
graph theory.

6 Spanning trees: VOLT-SP = VERT-SP

Assume that the graph isconnected(the general case follows easily), withn vertices andm edges. Since
every vertex is connected by an edge to some other vertex, we have

m ≥ n− 1.

A tree is a connected graph that has no cycles at all. Aspanning treeof G is a tree that contains all the
vertices ofG. Consider then a fixed spanning treeT = (V,ET ) of G. Here is a spanning tree (Fig. 3) for our
example of Fig. 1. Its edge set isET = {e2, e5, e6, e8}. These are thetree branches. The remaining edges
are calledchords.

It is easy to see that every spanning tree hasn − 1 branches. We are going to show that every voltage
configurationv can be written as a linear combination of rows ofB. This is nothing else but the familiar
idea that every voltage configuration on the edges ofG can be defined by means of apotential configuration
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Figure 3: ASPANNING TREE

on the vertices ofG. The spanning treeT helps to rigorously prove that. Pick a vertex ofT and call it the
root or theground node. Now, for any vertexk, there is a unique path onT connectingk to the root. Define
the orientation of this path to be that from the root tok. Define the potentialpk of vertexk to be the sum
of the voltages over all edges of this path, with the correct sign. That is, if edgee of the path has the same
orientation as the path, then addve with sign+1, or else, with sign−1. It is now easy to check that for any
edgee = (k, ℓ) (not necessarily inT ) the voltageve is just

ve = pk − pℓ, (9)

i.e., the difference of the potential of the start node minusthat of the end node. Indeed, ife is inT , then this is
obvious. Ife = (k, ℓ) is a chord, then lets be the vertex at which the path ofk and the path ofℓ first intersect,
and apply KVL at the obvious cycle containing verticess, k, ℓ. (See Fig. 4.)
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Figure 4: SHOWING THAT ve = pk − pℓ

Now check that the above display (9) can be written, in matrixnotation, as

v = BTp.

In other words, ifv is a voltage configuration, then we showed that there is a vector p (a potential configura-
tion) such thatv = BTp. This means that every voltage configuration is a linear combination of rows ofB,
or that

VOLT-SP ⊂ VERT-SP . (10)

Putting (8) and (10) together we arrive at the result thatVOLT-SP is identical toVERT-SP .

A byproduct of our discussion is that every voltagev can be defined by means ofn − 1 numbers, the
potentials of the vertices other than the root vertex. HenceVOLT-SP is an(n− 1)-dimensional linear space:

dimVOLT-SP = n− 1.
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Next, we want to show that the reverse inclusion in (6) also holds. We can do this in two ways. Either we
can use another graph argument (and talk about chords and fundamental cycles) or use algebra and deduce it
from (10). We prefer the latter. (We are going to talk about the former approach in connection to the general
methods for solving circuits later.)

7 A bit of algebra: CURR-SP = CYCL-SP

We claim that this last inclusion (10) implies the opposite inclusion of (6). Leti be some current configuration
andv some voltage configuration. Hencev = BTp andBi = 0. This gives

iTv = iT(BTp) = (Bi)Tp = 0 · p = 0.

By the way, this relationship between a current configuration i and a voltage configurationv is called
Tellegen’s theoremand it is a generalization of theprinciple of energy conservation.

We now do the following trick: pick set of linearly independent columns ofA. Call these columns
a1, a2, . . . , ar. (We can achieve this by starting with the first column ofA, then picking the next column that
is not a multiple ofa1 and call ita2, then the next one that is not a linear combination ofa1, a2, and so on.)
Suppose thataj occurs at thep-th position ofA. Let uj be a unit column, with1 at thep-th position and0
everywhere else. Then

aj = Auj , j = 1, . . . , r.

Next pick a maximal set of linearly independent voltage configurations. This is easy to do: every row ofB
is a voltage configuration. Anyn − 1 rows (for example all but the last row) are linearly independent. Call
these rowsvT

1, . . . , v
T
n−1. We claim thatu1, . . . , ur, v1, . . . , vn−1 are linearly independent. Indeed, suppose

that there are numbersλ1, . . . , λr, µ1, . . . , µn−1, such that

r∑

j=1

λjuj +
n−1∑

k=1

µkvk = 0.

Then, by applyingA to both sides (and remembering thatAuj = aj , andAvk = 0), we find

r∑

j=1

λjaj = 0.

But the aj ’s have been chosen to be linearly independent; thusλj = 0 for all j = 1, . . . , r. But then∑n−1
k=1 µkvk = 0, and, since thevk are linearly independent, we haveµk = 0, for all k = 1, . . . , n− 1.

Now fix a column vectorx = (xe, e ∈ E) and consider the productAx. This is really a linear combination
of the columns ofA. Since every column is a linear combination of the columnsa1, . . . , ar chosen above,
we have thatAx itself is a linear combination of these columns. We can thus write

Ax =

r∑

j=1

λjaj .

Using the same coefficientsλj , define the column

y =
∑

j=1

λjuj .

We havex = (x − y) + y, andA(x − y) = Ax − Ay = 0. Hencex − y ∈ N(A)VOLT-SP . Thus, any
m-vectorx can be written as a sum of a vector inVOLT-SP and a vectory which is the linear combination of
r unit vectors. Remembering thatdimVOLT-SP = n− 1, we have

m = (n− 1) + r.
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Instead of using theu1, . . . , ur, we can, instead, user linearly independent rows ofA. Call these rows
wT

1, . . . , w
T
r. The vectorsv1, . . . , vn−1, w1, . . . , wr are linearly independent and anym-vectorx can be

written as a linear combination of these(n − 1) + r = m vectors. In particular, this is true for a current
configurationi: we can writei = v + w, wherev is a linear combination ofv1, . . . , vn−1, andw is a linear
combination ofw1, . . . , wr. Sincev ∈ VOLT-SP , we know thatiTv = 0. Hence0 = (v+w)Tv = vTv+wTv.
But w = ATu, for someu, becausew ∈ CYCL-SP . SowTv = (ATw)Tv = wTAv = 0. SovTv = 0, and
this means thatv = 0, so thati = w, and soi ∈ CYCL-SP . We thus proved anyi from CURR-SP is also
contained inCYCL-SP .

CURR-SP ⊂ CYCL-SP . (11)

Putting (6) and (11) together we arrive at the result thatCURR-SP is the same asCYCL-SP . In particular, we
have shown that

dimCURR-SP = m− n+ 1.

MNEMONIC RULE: The V-spaces (VOLT-SP andVERT-SP ) are identical, and so are the C-spaces (CURR-SP and
CYCL-SP ).

8 The node and loop methods

If a spanning treeT is chosen then then − 1 potentialspk on every vertexk other than the root define all
voltages. This was explained above. This actually leads to the node methodfor circuit analysis. In this
method, we consider then− 1 potentials as the unknowns and, for each vertexk which is not root, we write
KCL.

The dual to this method is theloop method. In class, we explained how to pick meshes in a planar graph.
If the graph is not necessarily planar, then the way we pick “linearly independent” cycles (loops) is again
by considering a spanning treeT . Each edgee which is not inT (called chord) defines a cycle, in the
following manner: if we adde to T then a unique cycle is formed, called thefundamental cycleof the chord
e. For example, in Fig. 3, if we adde1 to the tree we obtain the cycle(4, 3, 2, 5). We give the fundamental
cycle the orientation of the chord that defines it. We showed earlier (11) thatCURR-SP ⊂ CYCL-SP . This
means that every current configurationi is a linear combination of cycles. But we never said which is this
linear combination. This is achieved by letting the currents je on each chord (on each fundamental cycle)e
undefined, and by expressing the vectori as a linear combination of theseje’s. These variables are called
fundamentalloop currents. For instance, Fig. 3 can be redrawn as follows (Fig. 5). Thisfigure shows the
fundamental cycles and their currents.
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Figure 5: FUNDAMENTAL CYCLES AND CURRENTS
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Now, a current on a branch of the tree can be expressed as combination of the loop currents for each
fundamental loop containing this branch. So we have

i1 = j1 i5 = −j1 + j3 − j7

i2 = j4 − j3 i6 = j1 − j3 + j4 + j7

i3 = j3 i7 = j7

i4 = j4 i8 = j1

Another way to think of these is as follows. Each branch of thetree separates it into two upon its removal.
Let V1, V2 be the set of vertices of each part. For instance, by removinge6 we haveV1 = {1, 4, 5} and
V2 = {2, 3}. The removed edge together with the chords fromV1 to V2 form a fundamental cut, and each of
the above equations is nothing else but KCL for this fundamental cut. For example, the fundamental cut of
e6 containse1, e7, e4, e3 ande6. The equationi6 = j1 − j3 + j4 + j7 is KCL for this cut. Next observe that
we can write the equations above in matrix form as follows:




i1
i2
i4
i5
i6
i7
i8




= j1




1
0
0
0
−1
1
0
1




+ j3




0
−1
1
0
1
−1
0
0




+ j4




0
1
0
1
0
1
0
0




+ j7




0
0
0
0
−1
1
1
0




In matrix notation,
iT = jTÃ,

whereÃ is thereduced cycle matrix

Ã =




1 0 0 0 −1 1 0 1
0 −1 1 0 1 −1 0 0
0 1 0 1 0 1 0 0
0 0 0 0 −1 1 1 0




In general, the reduced cycle matrix̃A is obtained from the cycle matrixA by eliminating all rows except a
maximal set of linearly independent ones. It thus hasm− n+ 1 rows andm columns.

One then considers them − n + 1 loop currents as unknowns and requires that, for each fundamental
loop, a KVL be written. It leads tom− n+ 1 linearly independent equations inm− n+ 1 unknowns.

In practice, choosing the right method, or picking a spanning treeT in a “correct” way are both matters
that require some experience.

9 Tellegen’s theorem

This was proven earlier: any current configurationi is orthogonal to any voltage configuration:

iTv = 0.

Notice that the only requirement is that bothi andv refer to the same graph. We have not used the identity
of the circuit elements. And, although this can be interpreted as the energy conservation principle, it is a fact
that reflects simply the geometry of the spaces of variables.
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10 General solution

We present the solution to “any” linear circuit. First, we assume that the circuit is well-defined. We leave this
notion vague, but what we mean is that the circuit should not contain, for example, current sources connected
in a way that they violate KCL, neither voltage sources violating KVL. By source transformations we can
then reduce the circuit so that each branche contains a resistorre in series with a voltage sourcege. (See Fig.
6.) We then have

g
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Figure 6: ATYPICAL BRANCH

ve = reie + ge,

for each edgee. In matrix notation,
v = Ri+ g, (12)

whereR is a diagonal matrix containing the resistances. Now letB̃ be the reduced incidence matrix, that is,
the matrixB with the last row omitted. This has now the property that all its rows are linearly independent.
Then choose a spanning treeT , as explained earlier. Finally, arrange the edges in two sets, those inT , and
those not inT , and permute the columns of both̃B andÃ to reflect that splitting. For instance, in the earlier
exaple,Ã is rewritten as

Ã =




0 −1 1 1 1 0 0 0
−1 1 −1 0 0 1 0 0
1 0 1 0 0 0 1 0
0 −1 1 0 0 0 0 1


 = (ÃT ÃN )

Notice thatÃN is the identity matrix. Similarly, writẽB = (B̃T B̃N ), i = (iT , iN ), v = (vT , vN ). We
write (5) as:

0 = B̃T Ã
T
T + B̃N ÃT

N = B̃T Ã
T
T + B̃N .

SinceB̃T hasn− 1 rows andn− 1 columns, and its rows are linearly independent, it is invertible. Hence

ÃT
T = −B̃−1

T B̃N .

Next, KCL (3) is written as

0 = B̃i = (B̃T B̃N )

(
iT
iN

)
= B̃T iT + B̃N iN .

Hence
iT = −B̃−1

T B̃N iN = ÃT
T iN .

This means that

i =

(
ÃT

T

ÃT
N

)
iN = ÃTiN .

Now write KVL (4) together with the branch equations (12).

0 = Ãv = Ã(Ri+ g) = ÃRÃTiN +Ag.

9



Observe that̃ARÃT is a square matrix of sizem−n+1 with linearly independent rows. Hence it is invertible.
So

iN = −(ÃRÃT)−1Ãg.

And so, the complete solution of the circuit is

i = −ÃT(ÃRÃT)−1Ãg.

Actually, in this section, not only we have produced a solution, but we have also shown that a solution always
exists and is unique.

11 Minimum norm interpretation

If all resistances are equal to1, then KVL together with (12) yields

Ai = −Ag.

The solutioni = −ÃT(ÃÃT)−1Ãg is the minimum Euclidean norm solution. In fact,̃AT(ÃÃT)−1 is the
pseudo-inverse ofA. See exercises.

12 Circuits with one independent source: combinatorial solution

The principle of superpositionsays that the general solution to a circuit containingk independent sources
is obtained by adding the solutions ofk circuits. Each circuit is formed by setting all but one independent
source to zero.

It is thus not a great restriction to consider a circuit with just a single source. Suppose that this source is
a current source and suppose that current enters at vertexs (the source) and leaves at vertext (the sink), as in
the example of Figure 7.
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Figure 7: ACIRCUIT WITH A SINGLE CURRENT SOURCE

Let us consider the graphG of the circuit, omitting the current source. We assume that the graph is
connected. We also assume thatall resistances are equal to one Ohmand thatthe current source sends
current of one Ampere. LetN be the total number of spanning trees. For each edge{a, b}, wherea, b are two
distinct vertices, welet N(s, a, b, t) be the number of spanning trees ofG that containa, b and, in addition,
the path that starts ats and ends att containsa andb in this order. Then the following is a beautiful formula
that gives the currentia,b on each edge(a, b):

ia,b =
N(s, a, b, t)−N(s, b, a, t)

N
.
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Since resistances are all1, we haveva,b = ia,b. To prove that this is correct, we need to check that KCL are
satisfied and then that KVL are satisfied.

Consider KCL ats. We need to show that
∑

x∼s is,x = 1, where the sum is over all neighborsx of s, i.e.,
thatN =

∑
x∼s N(s, s, x, t) −

∑
x∼s N(s, x, s, t). Clearly,N(s, x, s, t) = 0 because no tree can contain

(s, x) and(x, s). On the other hand, every spanning treeT contains exactly one neighborx of s. Hence
N =

∑
x∼s N(s, s, x, t).

To check KCL att amounts to the same reasoning.

To check KCL at a vertexa other thans or t, we need to show that
∑

x∼a ia,x = 0, or that

∑

x∼a

N(s, a, x, t) =
∑

x∼a

N(s, x, a, t).

Let T (s, a, t) be the set of spanning treesT such that the unique path froms to t of T containsa. Each
T ∈ T (s, a, t) there is exactly onex ∼ a such that(a, x) is on the path ofT from s to t and with the same
orientation. Hence,

|T (s, a, t)| =
∑

x∼a

N(s, a, x, t).

Similarly,
|T (s, a, t)| =

∑

x∼a

N(s, x, a, t).

To check KVL, we need to consider an oriented cycleC and show that
∑

(a,b)∈C ia,b = 0, or that

∑

(a,b)∈C

N(s, a, b, t) =
∑

(a,b)∈C

N(s, b, a, t),

which is further equivalent to

∑

T∈T

∣∣{(a, b) ∈ C : T ∈ T (s, a, b, t)}
∣∣ =

∑

T∈T

∣∣{(a, b) ∈ C : T ∈ T (s, b, a, t)}
∣∣.

(Here,T is the set of all spanning trees.) Fix a treeT and an oriented cycleC, and let(a, b) be en edge which
belongs toC and to the path ofT from s to t, respecting both orientations. If we remove the edge(a, b), then
the tree is split into two components, one containings–call it Ts, and one containingt–call it Tt. The edge
(a, b) is oriented fromTs to Tt. The cycleC must contain another edge, say(x, y), oriented fromTt to Ts.
If we pick the “earliest possible such edge” after(a, b) onC, then, by replacing{a, b} by {x, y} we obtain
another treeT ′ such thatT ′ ∈ T (s, y, x, t). This proves the validity of the formula.

Let us now consider the example of Figure 7. Fig. 8 below depicts all spanning trees in the first column.
There are 11 of them. Each of the other columns concerns a particular edge and lists the appearances of this
edge on the trees. For example,(a, b) appears twice and(b, a) once. Thus,N(s, a, b, t) = 2,N(s, b, a, t) = 1.
The current on the edge(a, b) is thus equal to(2− 1)/11 = 1/11. Similarly, we find

is,d = 1, id,c = 4/11, ic,b = 4/11, id,a = 7/11, ia,b = 1/11, ib,t = 5/11, ia,t = 6/11.

We can extend the formula to the case where the resistances are not necessarily equal. In this case, define
the weight of a spanning tree to be the product of the inversesof the resistances of its edges. Then define
N(s, a, b, t) to be the sum of the weights of all trees at which(a, b) appears. With this new definition, the
previous formula remains valid. See exercises.
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Figure 8: COMPUTING CURRENTS USING THE COMBINATORIAL FORMULA

Exercises

To solve these exercises, you need to have understood the material here, but also have the physical intuition
obtained in the circuit theory class.

1. Show that every connected graph has a spanning tree (easy).

2. If a circuit graph is planar then it can be embedded (=drawn) in the plane. A face is a cycle which
contains no edges inside. Show that the rows of the cycle matrix A corresponding to cycles which are
not faces are linear combinations of the rows which correspond to faces.

3. We claimed that considering graphs where there is at most one edge per pair of vertices is no loss of
generality. Explain how more general circuits (with two or more edges corresponding to at least one
pair of vertices) can be reduced to the previous case. Hint: introduce new vertices.

4. Prove that the rank of the incidence matrix is never equal to the number of edges.
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5. Explain whyABT = 0 implies thatVERT-SP ⊂ VOLT-SP .

6. Suppose that the circuit contains other linear, but dynamic, elements, such as capacitors and induc-
tors. If the system is in sinusoidal steady state (that is, ifall the sources are sinusoids with the same
frequency) and if the system is in steady state, then explainhow, by using complex, rather than real,
resistances, one can reduce the study of this circuit to the one considered here.

7. Explain how, by using operators instead of resistances, one can actually extend our discussion to even
more general circuits (not necesserily sinusoidal sources).

8. Show, by considering the circuit directly, that every rowof B is a valid voltage configuration. Then
observe that this means thatBAT = 0.

9. Since KVL, KCL and Ohm’s law are linear, the principle of superposition follows: if there circuit is
driven by a number of sources, then, by considering a family of circuits, one for each source (when the
rest are removed), we can find the general solution by, simply, adding the individual solutions. Prove
this.

10. Use the principle of superposition to give another proofof the fact that, for every circuit, there is at
most one solution. Hint: if there are two, then we can find a nontrivial solution for a circuit that
has no external sources. Physically this is impossible. Show that it is also mathematically (logically)
impossible.

11. Generalize the combinatorial formula for the case of general resistances.

12. Show how the combinatorial formula, together with the principle of superposition, imply uniqueness
of solution.

13. Explain why it is no loss of generality to consider circuits with sources of one kind only (either current
or voltage sources, but not both).

14. For every pair of verticesa, b, define the equivalent resistanceRab = Rba as the voltage induced at the
edgeab, when a unit current source is applied. Observe that the symmetric matrix[Rab] consisting of
all equivalent resistances provides the full solution to the circuit (every quantity can be computed in
terms of this matrix).

15. Consider a graph whose vertices and edges are those of a cube. Each edge contains a resistance in
series with (a possibly zero) voltage source. Explain why itis better to use the loop method, rather than
the node method, to solve the circuit.

16. Find a circuit for which the node method is easier than theloop method.

17. Consider an arbitrary circuit with unit resistances. Show that

i = −ÃT(ÃÃT)−1Ãg

achieves the minimum in
min{‖i‖2 : Ai = −Ag},

where‖i‖2 :=
∑

e i
2
e. In other words, among all possible current configurations,the one that nature

chooses is the one which has least energy.

18. Generalize the above to an arbitrary circuit, i.e., formulate and prove a minimum energy theorem.
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