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Complex numbers

Consider the (very simple) map on pairs of real numbers

(x, y) 7→ (−y, x).

Note that applying it twice gives

(x, y) 7→ (−y, x) 7→ (−x,−y).

So if z is the pair (x, y) then the tranformation applied twice gives −z. Let i denote this
transformation. We have i◦i = −id where id is the identity. It is easy to see that i−1 is
given by

(x, y) 7→ (y,−x).

Also, it is easy to see that the set

x id+yi, x, y ∈ R, xy 6= 0

forms an abelian group under composition because it is closed under it, i.e.

(x id+yi)◦(x′ id+y′i) = (xx′ − yy′) id+(x′y + xy′)i,

(and this identity is invariant if we replace x, y by x′, y′, respectively), it is associative, it
has id as neutral element and every element has an inverse as can be checked by the unique
solution x′, y′ of

xx′ − yy′ = 1

x′y + xy′ = 0

in terms of x, y, as long as xy 6= 0. It is even easier to see that x id+yi, x, y ∈ R is
an abelian group under addition. Also, composition distributes over addition because we
are talking about linear transformations. Hence this set is a field which includes the real
numbers if we think of an x ∈ R as x id+0i. We call the elements of of this field complex
numbers, we denote the field by C, and we change notation and denote id by 1, so that
x id+yi = x1 + yi or, simply x+ yi or x+ iy.

Since C is a 2-parameter field, we can think of it as R
2, i.e. as a vector space over R, in

which case it has dimension 2. But if we think of it as a vector space over itself then it has
dimension 1.

The algebra on C is most easily aided by the introduction of conjugation: if z = x+ iy then
its conjugate z is given by

z = x− iy.
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We also let
|z| =

√
x2 + y2.

We can then express z−1 as
z−1 = zz/|z|2.

We define zn, inductively, by zn = z◦zn−1, n ≥ 1, where z0 := 1, and z−1 := 1/z. Since
i◦i = −1, we define √

−1 = i.

We can now solve quadratic equations in C. For example, to solve z2 = w, where w = u+iv,
we write z = x+ iy and observe that

z2 = (x2 − y2) + i2xy

so we must solve

x2 − y2 = u

2xy = v.

These are easily solved and yield two solutions:

x = ±

√
u2 +

√
u2 + v2

2

y = ± sgnu

√
u2 +

√
u2 + v2

2

where sgnu = u/|u| if u 6= 0 and sgn 0 = 0. We let z =
√
w denote one of the solutions, e.g.

the one with the + sign.

Next we can solve more general quadratic equations For example, az2 + bz + c = 0, with
a 6= 0 always has a root. Its roots are (−b±

√
b2 − 4ac)/2a.

It will later be proved that any polynomial equation

P (z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 = 0

has exactly n roots in C. Incidentally, division amongst polynomials works as in R: If P (z),
Q(z) are polynomials and Q(z) is not trivial, then there are unique polynomials A(z), R(z)
such that

P (z) = A(z)Q(z) +R(z)

and the degree of R(z) is less than the degree of Q(z). Therefore, if z0 is a root of P (z) = 0
we have P (z) = (z − z0)P1(z) for some (necessarily unique) polynomial P1(z).

Note that a polynomial has real coefficients if and only if P (z) = P (z).

When z = x + iy, we refer to x as the real part ℜz and to y as the imaginary part ℑz,
observing also that ℜz = 1

2(z + z), ℑz = 1
2i(z − z).
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Analysis on C

By identifying C with R2, we give C the usual topology of R2. Moreover, we give C the
metric structure of R2 with the Euclidean norm: If z = x+ iy then

|z| :=
√
x2 + y2.

Thus, a sequence zn converges to z iff |zn−z| → 0 and, by completeness of R2, zn convrerges
to some element of C iff for all ε > 0 there exists a N ∈ N such that |zn−zm| < ε ifm,n ≥ N .

We can talk of functions f : C → C. We can talk of the continuity of f at z0 and by this we
mean that for any ε > 0 there is δ > 0 such that |f(z)− f(z0)| < ε if |z − z0| < δ. We can
talk by the continuity of f on an open set U by requiring that it is continuous at any point
of U . Continuity of f on an arbitrary set A ⊂ C means that there is an open set U ⊃ A
such that f is continuous on U . We lose nothing, when speaking about continuity (except,
perhaps, ink), if we think of any f : C → C as f : R2 → R

2.

So far, Analysis on C is identical to that of R2 and even Geometry on C is identical to that
of R2 considered as Euclidean space.

The one-point compactification C is important and will be constructed later explicitly by
means of a stereographic projection. The geometry of C then changes.

Euclidean Geometry

The elements of C are called points. A straight line is a set of the form {(x, y) : αx+βy = γ}
for some α, β, γ ∈ R where αβ 6= 0. We can express the line αx+ βy = γ as

az + az = γ

where a = 1
2(α+ iβ). So the set of lines is the set {az + az = γ, |a| 6= 0, γ ∈ R}.

The line az + az = γ contains the point γ/2a and is parallel to the line az + az = 0, the
latter being a line passing through 0 and containing any point of the form tia, t ∈ R. We
say that the line az+ az = γ passes through the point γ/2a and is parallel to the vector ia.
Alternatively, the line az + az = γ is the set

{
γ

2a
+ tia : t ∈ R

}
.

Two distinct points define a unique line: there is only one line passing through z1, z2 when
z1 6= z2 and this is the line az + az = 1 with a = ±(z1 − z2)/(z1z2 − z1z2). Two distinct
lines either have an empty intersection (and are called parallel) or intersect at a singleton
(a one-point set).

A circle with center a ∈ C and radius r > 0 is the set

|z − a| = r
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The circle |z| = 1 is the unit circle S1. We can identify S1 with R/2πZ (where π is, for
the time being, an arbitrary positive real number–its value will be fixed later) by the map
z 7→ θ(z) where θ(z) is any real number satisfying cos θ(z) = (z + z)/2|z|. Necessarily, any
two such θ differ by an integer multiple of 2π. We let arg z denote the set of all these θ. If
z 6= 0 then arg(z) = arg(z/|z|). Hence arg(tz) = arg z if t > 0. Also, arg(−z) = arg(z) + π.
We can check that arg(z1z2) = arg(z1) + arg(z2). The arg of 0 is undefined. All equalities
are understood to be mod 2π. The unique element of arg z lying in [0, 2π) is the principal
argument and, occasionally, we denote it by Arg z. Thus, Arg z is a real number defined by

{Arg z} = arg z ∩ [0, 2π).

The unique element of arg z lying in (−π, π] is the typical element of arg z and we denote it
by ∠(z). The angle between z1 and z2 is defined by ∠(z1, z2) = ∠(z2/z1). Thus, ∠(z1, z2) is
a real number defined by

{∠(z1, z2)} = arg(z2/z1) ∩ (−π, π].

The tangent space Cw of C at w is the set Cw = {(w, z) : z ∈ C} inheriting the structure
of C. The angle between (z, z1), (z, z2) in Cz is the angle between z1 and z2.

Note that the equations of a circle and a line are invariant under conjugation. The lines
az+ az = γ and bz+ bz = δ are orthogonal if Arg(a/b) = π/2, i.e. if a/b is purely imaginer.
They are parallel if Arg(a/b) = 0, i.e. is a/b is real.

The equation of the line passing through a point z0 and being parallel to u 6= 0 is

z = z0 + tu, t ∈ R

or, equivalently, the set of points z for which

ℑ[(z − z0)/u] = 0

which gives
uz − uz = uz0 − uz0.

Notice that, for any nonzero k ∈ C the map

Hk : z 7→ kz

preserves angles (both in magnitude and in sign) because ∠(kz1, kz2) = ∠(z1, z2). It also
scales distances by the same factor |k| because |k(z1 − z2)| = |k||z1 − z2|. Such a mapping
is called homothetic transformation. Two sets A,B are called homothetic if B = Hk(A) for
some k. In such a case, A = H1/k(B).

The map
Hk : z 7→ kz

also scales distances but preserves angles only in magnitude. A similarity transformation is
a map of the form Hk or Hk.

A

B

B’
B = H  (A)

B’ = H  (A)

k

k
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Projective Geometry

The complex projective line CP is the set C
2 with two points (z1, z2), (z

′
1, z

′
2) identified if

there is z ∈ C, z 6= 0, such that z2 = zz1, z
′
2 = zz′1. We use the notation (homogeneous coor-

dinates) (z1 : z2) to denote any of the points (zz1, zz2) when z ∈ C. A linear transformation
in homogeneous coordinates is given by

(z1 : z2) 7→ (w1 : w2),

w1 = az1 + bz2

w2 = cz1 + dz2,

the well-posedness of which is easily verified. Since, when z2 6= 0, (z1 : z2) = (z1/z2 : 1), we
have that (z1 : z2) 7→ (w1/w2 : 1), where

w1

w2
=

a(z1/z2) + b

c(z2/z2) + d
,

in other words, the mapping (z : 1) 7→ (w : 1) is given by

w = S(z) =
az + b

cz + d
.

If this is viewed as a mapping from C to C then it is called fractional linear transformation
or, simply, linear transformation, or Möbius transformation. Conversely, any Möbius trans-
formation on C defines a linear transformation on CP. We will thus immediately identify

S(z) with the matrix

(
a b
c d

)
. We thus have that S1◦S2 of two such maps is also of the same

form and the coefficients can be computed by matrix multiplication. We are interested in
invertible such maps, which amounts to the determinant condition

ad− bc 6= 0.

We let SL(2,C) be the set of 2× 2 matrices

(
a b
c d

)
with determinant

ad− bc = 1.

As such, it is a group under multiplication. We let P (1,C) be the set of Möbius transfor-
mations with ad− bc = 1. As such it is a group under composition. Clearly, the two groups
are isomorphic. We extend the action of each S ∈ P (1,C) by considering the point at ∞
and by letting S(∞) = a/c, S(−d/c) = ∞.

Three special group elements are worth identifying, both as elements of P (1,C) and as
elements SL(2,C):

Translation: Tb(z) = z + b,

(
1 b
0 1

)
, b ∈ C,

Homothecy: Ha(z) = az,

(
a 0
0 1

)
, a ∈ C− {0},

Inversion: J(z) = 1/z,

(
0 1
1 0

)
.
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It can be checked that an arbitrary S(z) is the composition of at most four of these special
elements. A homothety Ha with |a| = 1 is called rotation. Note that T−1

b = T−b, H
−1
a =

H1/a, J
−1 = J . So (Tb, b ∈ C) is isomorphic to the additive group (C,+), (Ha, a 6= 0)

is isomorphic to multiplicative group (C − {0}, 0), whereas the subgroup (Ha, |a| = 1) is
isomorphic to the unit circle with the standard group structure.

Note that conjugation z 7→ z on C cannot be lifted to a Möbius transformation on CP and
is thus not considered. Another ‘bad’ thing is, as will be seen later, that z 7→ z is continuous
but not differentiable.

Cross ratios

If we fix 3 distinct points z2, z3, z4 in C we can find a unique Möbius transformation S carry-
ing them to 1, 0,∞, respectively. Assuming that none of the points is ∞, this transformation
is given by

Sz =
z − z3
z − z4

:
z2 − z3
z2 − z4

.

If z2, z3 or z4 = ∞ it is

Sz =
z − z3
z − z4

,
z2 − z4
z − z4

,
z − z3
z2 − z3

,

respectively.

Mnemonics: It is easy to remember how to write this transformation in all cases. First
consider sending a, b ∈ C to 0,∞ respectively by some ransformation z 7→ w. It is clear that
this must be of the form

w = k
z − a

z − b
,

for some k ∈ C− {0}. We find the value of k by requiring that we send a third point c ∈ C

to 1, i.e.

1 = k
c− a

c− b
,

and thus

w =
z − a

z − b
:
c− a

c− b

as required. When one of the points a, b, c is ∞ we cancel the terms that contain this point.
So, if c = ∞, we have w = z−a

z−b , as justified, say, by taking a limit as c → ∞. When a = ∞,

we have w = 1
z−b : 1

c−b = c−b
z−b as justified, again, by taking a limit as a → ∞.

The cross ratio (z1, z2, z3, z4) of the 4 points is defined to be equal to Sz1, where S is the
unique Möbius transformation such that z2 7→ 1, z3 7→ 0, z4 7→ ∞.

Theorem: If T is a Möbius transformation then T preserves the cross ratio:

(z1, z2, z3, z4) = (Tz1, T z2, T z3, T z4)
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Proof. Let Sz := (z, z2, z3, z4) be the unique Möbius transformation such that (z2, z3, z4) 7→
(1, 0,∞). But T−1S : (Tz2, T z3, T z4) 7→ (1, 0,∞). So, using our notation, ST−1z =
(z, Tz2, T z3, T z4). In particular, ST−1(Tz1) = (Tz1, T z2, T z3, T z4). But ST−1(Tz1) =
Sz1.

Application: There is a unique Möbius transformation carrying a triple of distinct points
(a, b, c) into another triple (a′, b′, c′) and this is given by z 7→ w where

(w, a′, b′, c′) = (z, a, b, c).

For example the only Möbius transformation that carries (a, b, c) into (0, 1, i) is

w =
i(b− c)(z − a)

(a− c)(z − b)− i(a− b)(z − c)
.

Theorem: The cross ratio (z1, z2, z3, z4) is real if and only if the 4 points are collinear or
cocentral.

Proof. The cross ratio is linear if and only if its argument is 0 or ±π. But

arg(z1, z2, z3, z4) = arg
z1 − z3
z1 − z4

− arg
z2 − z3
z2 − z4

Elementary geometry then shows the truth of the claim.

z 1

z2

z 3

z 4

z 1

z2

z 3

z 4

z 1

z 3

z2

z 4

Actually if we accept the argument of elementary geometry as valid and if we agree to con-
cider a straight line as a circle then we have shown that circles remain circles under Möbius
transformations. First of all, there is only once circle C passing through a triple of distinct
points a, b, c (the circle is a straight line if the points are collinear). Let Sz = (z, a, b, c) be,
as above, the unique Möbius transformation carrying a, b, c into 0, 1,∞, respectively. If z
lies on the circle defined by a, b, c then Sz is a real number, i.e. Sz lies on the line L defined
by 1, 0,∞. So the image of the circle C defined by a, b, c is the straight line L passing

S z

z

a

b

c

1 0through 1, 0,∞. Because we can map any other three distinct points a′, b′, c′ into 1, 0,∞ by
the Möbius transformation Tz = (z, a′, b′, c′), it follows we can map the circle C ′ defined by
a′, b′c′ onto the straight line L. So the transformation T−1S maps C onto C ′. Since T−1S is
as arbitrary as any Möbius transformation it follows that any Möbius transformation maps
circles into circles.

We can thus map a circle (or line) C to another circle C ′ by a Möbius transformation. The
Möbius transformation is by no means unique. It becomes unique if we specify 3 distinct
points on C and their 3 images on C ′.

It can be seen that only Möbius transformation which maps R into itself must have real
coefficients.

Proof. Let H be such a Möbius transformation mapping the real line into itself. Say H(z) =
az+b
cz+d . Then H(x) is real if x is real, i.e. H(x) = H(x), which gives

ax+ b

cx+ d
=

ax+ b

cx+ d
.
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Then
(ac− ac)x2 + (ad+ bc− ad− bc)x+ bd− bd = 0.

This gives that ac is real, i.e., assuming a 6= 0, c = α/a for α ∈ R. Also, bd is real, i.e.,
assuming b 6= 0, d = β/b for β ∈ R. And ad+ bc is also real. But ad+ bc = β(a/b)+α(b/a).
So a/b must be a real multiple of b/a. This means that a/b is real or imaginary. If it is real,
then a = λb for real λ. Combining with the above we get that c = α/a = α/λb = (α/λβ)d,
i.e. c = µd for real µ. ThenH(x) = b

d
λx+1
µx+1 and b/dmust be real, soH(z) has real coefficients;

etc.

It is NOT true that a Möbius transformation which maps a circle into itself is real. To see this
(and to see an example of a nontrivial transformation which is not a rotation or reflection)
consider mapping the unit circle into itself by mapping 1, i,−1 into 1, i− i, respectively. If
z 7→ w then

(w, 1, i,−i) = (z, 1, i,−1)

i.e.
w − i

w + i
:
1− i

1 + i
=

z − i

z + 1
:
1− i

1 + 1

which gives

w =
(3i− 1)z + (i+ 1)

(i− 1)z + (3i+ 1)
.

This map is algebraically simpler than a rotation (in that it is a ratio of linear maps) but
it has screwed up the plane completely. For example, the center 0 has been moved to 1− i.
To see how much screwing is done by Möbius transformations, we have to examine families
of circles called Steiner circles (see later).

Conjugation and symmetry

Here is another definition that extends the concept of conjugation. Recall that z and z are
symmetric with respect to the real line. Let C be an arbitrary circle (or straight line). We
say that

w
C∼ w∗

(w, w∗ are symmetric with respect to C if there is a Möbius transformation S : C → C with
S(C) = R such that Sw = Sw∗. To make sure this is well-defined, we need to show that
the concept does not depend on the choice of S. Let T be another Möbius transformation
such that T (C) = R. We need to show that Tw and Tw∗ are conjugates of one another.
But w = S−1z and w∗ = S−1z. Therefore Tw = TS−1z and Tw∗ = TS−1z. Now the
transformarion TS−1 leaves the real axis invariant, i.e. TS−1z = TS−1z which means that
Tw = Tw∗.

Hence any particular transformation which carries C onto the real line can be used to
define symmetry. For example, if a, b, c are 3 points on C we can use the transformation
w 7→ (w, a, b, c). Thus,

z

z

w

w*

S T

w
C∼ w∗ ⇐⇒ (w∗, a, b, c) = (w, a, b, c) for any 3 distinct points a, b, c on C.
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Case 1: C = L is a straight line. Choose a, b be two points on it (they define the straight
line) and c = ∞. Then (w, a, b,∞) = w−b

a−b . Hence

For L a straight line, w∗ L∼ w ⇐⇒ w∗ − b

a− b
=

w − b

a− b
for any 2 distinct points a, b on L.

This implies that
|w∗ − b| = |w − b|

for all b ∈ C and so w,w∗ are equidistant from C.

w*

w

C

Case 2: C is a veritable circle: |z − z0| = R. Let a, b, c be 3 points on C. Then for any
w ∈ C, Then

(w, a, b, c) = (w − z0, a− z0, b− z0, c− z0) [z − z0 is a Möbius transformation]

= (w − z0, a− z0, b− z0, c− z0)

=

(
w − z0,

R2

a− z0
,

R2

b− z0
,

R2

c− z0

)
[(a− z0)(a− z0) = R2, etc.]

=

(
R2

w − z0
, a− z0, b− z0, c− z0

)
[1/z is a Möbius transformation]

=

(
R2

w − z0
+ z0, a, b, c

)
.

Hence

w∗ =
R2

w − z0
+ z0.

And so we have

When C is the circle |z − z0| = R, w∗ C∼ w ⇐⇒ (w∗ − z0)(w − z0) = R2.

And this implies, first, that
|w∗ − z0| |w − z0| = R2,

and, second, that
w∗ − z0
w − z0

=
(w∗ − z0)(w − z0)

(w − z0)(w − z0)
=

R2

|w − z0|2
> 0.

The latter means that z0, w, w
∗ lie on a straight line with w,w∗ on the same half line from

z0. The former means that w∗ can be constructed by a simple geometrical construction.

w*

z0 C

w

In either case (line or circle), reflection is the result of a Möbius transformation followed
by conjugation. Therefore reflection always carries (generalised) circles into (generalised)
circles but is not analytic (as will be seen later, because conjugation is not analytic).

The symmetry principle: Möbius transformations preserve symmetry. So if T is a Möbius
transformation,

w∗ C∼ w ⇐⇒ Tw∗ TC∼ Tw.

The reason is simple. Assume w∗ C∼ w. To show that Tw∗ TC∼ Tw, pick 3 points a, b, c on

TC. Since T−1a, T−1b, T−1c lie on C and since w∗ C∼ w, we have

(w∗, T−1a, T−1b, T−1c) = (w, T−1a, T−1b, T−1c).
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Since cross-ratios are preserved by Möbius transformations,

(w∗, T−1a, T−1b, T−1c) = (Tw∗, a, b, c), (w, T−1a, T−1b, T−1c) = (Tw, a, b, c),

and so
(Tw∗, a, b, c) = (Tw, a, b, c),

showing that Tw∗ TC∼ Tw.

Fact: Given 3 distinct points a, b, c there is a unique circle C passing through C such that
b = a∗, where a∗ is the symmetric of a with respect to C. To see this, notice that we can
solve (a∗ − z0)(a− z0) = R2 uniquely for z0 and R.

An application: To find Möbius transformations carrying a circle C onto another circle C ′

(such transformations are plenty) the method we described so far requires that we pick 3
distinct points a, b, c on C and 3 distinct points a′, b′, c′ on C ′ and define a map z 7→ w by

(w, a′, b′, c′) = (z, a, b, c).

But we may as well specify a point z1 on C and two points z2, z3 not on C such that z3 = z∗2
with respect to C. Let w1 be a point on C ′ and w2, w3 two points not on C ′ such that
w3 = w∗

2 with respect to C ′. There is a unique Möbius transformation T : z 7→ w carrying
(z1, z2, z

∗
2) into (w1, w2, w

∗
3):

(w,w1, w2, w
∗
3) = (z, z1, z2, z

∗
2).

Necessarily, this T must carry C onto C ′.

Angles and orientation

An orientation of a circle C is determined by an ordered triple (z1, z2, z3) of distinct points on
C. For example, the triple (1, 0,∞) defines positive orientation for the ‘circle’ defined by the
real line; notice that if the cross ratio (z, 1, 0,∞) equals z which means that ℑ(z, 1, 0,∞) >
0 for points on the upper half plane and < 0 for points on the lower half plane. Two
triples (z1, z2, z3), (z′1, z

′
2, z

′
3) determine the same orientation for C if ℑ(a, z1, z2, z3) and

ℑ(a, z′1, z′2, z′3) have the same sign, where a is a specific point not on C, say the centre of
the circle.

A point z not on C is said to be to the right of C with respect to the triple A = (z1, z2, z3)
if ℑ(z, z1, z2, z3) > 0 and to the left of C if ℑ(z, z1, z2, z3) < 0. Let RA (resp. LA) be the
points to the right (resp. left) of C with respect to A. If A′ = (z′1, z

′
2, z

′
3) is another triple

on C then either RA = RA′ , LA = LA′ or RA = LA′ , LA = RA′ .

If the Möbius transformation S carries the oriented (through a triple A = (z1, z2, z3)) circle
C into C ′ then we use the triple SA = (Sz1, Sz2, Sz3) to orient C ′. Since cross ratio is
preserved by S, we have SRA = RSA, SLA = LSA.

If C is a circle, not a straight line, then we can give it the usual orientation by requiring
that ∞ be to the right of C. The points that are to the right of C with respect to this
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orientation are the points outside of C and those that are to the left are the points inside
C.

It remains to show that if C is the circle |z − a| = R then the points inside C with respect
to the usual orientation are the points z such that |z − a| < R. To show this, consider the
following triple

(z1, z2, z3) = (a+R, a+ iR, a−R)

of points on C and notice that the cross ratio

(∞, z1, z2, z3) =
z1 − z3
z1 − z2

=
2

1− i
= 1 + i,

whose imaginary part is positive and thus ∞ is to the right of C with respect to this triple.
So this triple determines the usual orientation. Now let z be a point not on C such that

ℑ(z, z1, z2, z3) < 0.

We shall show that |z − a| < R. Letting z = a+Rw, we have

(z, z1, z2, z3) =
z − z2
z − z3

:
z1 − z2
z1 − z3

=
w − i

w + 1
(1 + i) =

(w − i)(w + 1)(1 + i)

|w + 1|2 .

The imaginary part of (z, z1, z2, z3) has thus the same sign as the imaginary part of

(w − i)(w + 1)(1 + i) = |w|2 + 1 + (w + w) + i(w − w) + i(|w|2 − 1).

The first 3 terms on the right are real. Thus, the sign of the imaginary part is the sign of
|w|2 − 1 which is negative if |w| < 1 i.e. if |z − a| < R.

Steiner circles

A way to visualise a Möbius transformation is through their action on families of circles
known as Steiner circles. Let w = S(z) be any Möbius transformation and let a, b be two
points in C. First of all notice that if S(a) = a′, S(b) = b′ then w = S(z) is of the form

w − a′

w − b′
= k

z − a

z − b
.

Any circle C1 passing through a, b is necessarily transformed into a circle C ′
1 passing through

a′, b′. Notice that the sets
|z − a|
|z − b| = λ ∈ R

are also circles that do not pass through a, b. (Algebraically, it is easy to see they are
circles–a geometric proof will follow.) Each such circle is called circle of Apollonius with
limit points a, b. Any such circle C2 is transformed into another Appolonius circle C ′

2 with

1C
2C

1C’

2C’

a a’
b b’

a
b

a’

b’

limit points a′, b′:
|w − a′|
|w − b′| = λ|k|.

We are free to choose the points a, b (or the points a′, b′) in any way we like and we may
even take them to be 0 or ∞.

11



Suppose it is possible to pick a, b be such that a′ = 0, b′ = ∞, i.e. the transformation is
given by

w = k
z − a

z − b
.

Then any straight line in the w-plane passing through the origin (being a circle passing
through 0,∞) is the image of a circle passing through a, b, i.e. a circle of type C1. On the
other hand, any circle in the w-plane centred at the origin, i.e. |w| = ρ for ρ > 0, must be
the image of a circle (Möbius transformations map circles into circles) which shows that the
set of points

|z − a|
|z − b| = ρ/|k|

is a circle (a geometric proof of the fact that any set of type C2 ia a circle–an Appolonius
circle). Since straight lines through 0 are orthogonal to any circle centred at 0, and since
any Möbius transformation is conformal (i.e. it preserves angles on the whole place except,
possibly, on at most two exceptional points), it follows that circles of type C1 are orthogonal
to circles of type C2.

0

1C
2C

1C’

2C’

a
b

a
b

The collection of circles C1 and C2 is called the Steiner net determined by a, b. The Steiner
net thus depends only on the positions of a and b. The idea is to see how it is transformed
through a Möbius tranformation to getter a better picture of how the transformation screws
up the plane. Some properties of the net:

To each z0 ∈ C distinct from a, b there is exactly one C1 and one C2 passing through z0.
Indeed, z0, a, b determine a unique C1 circle. And the C2 circle is the locus of points z such
that

|z − a|
|z − b| =

|z0 − a|
|z0 − b| .

Fix C1 and C2 and let z ∈ C2. Then z∗
C1∼ z then z ∈ C2. Furthermore, if z∗

C∼ z for some
C then C is a C2.

Yet another choice for a, b is to take them so that they are fixed points:

S(a) = a, S(b) = b.

Then w = S(z) has the form
w − a

w − b
= k

z − a

z − b
,

so that the Steiner net remains invariant. However, the nature of k determines how indi-
vidual circles will be mapped to one another.

If k is real the transformation is said to be hyperbolic and each C1 maps into itself with the
orientation preserved if k > 0 or reversed if k < 0.

If k is complex with |k| = 1 the transformation is said to be elliptic and each C2 maps into
itself.

A Möbius transformation with two distinct fixed points is the product of an elliptic and a
hyperbolic transformation.

If the fixed points coincide the transformation is said to be parabolic.

A Möbius transformation that is neither elliptic, hyperbolic or parabolic is called loxodromic.
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Derivative

Consider a function f : C → C. We say that the derivative of f at z0 exists if (f(z) −
f(z0))/(z− z0) has a limit as z → z0, when z moves on the complex plane C, in other words
if there exists a complex number A such that for all ε > 0 there exists δ > 0 so that if
|z − z0| < δ then |(f(z)− f(z0))/(z − z0)− A| < ε. This A is denoted by f ′(z0) and is the
derivative of f(z) at z0:

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
.

If f has derivative at z0 then f is continuous at z0 because f(z0 + h)− f(z0) = h · 1
h(f(z0 +

h) − f(z0)) and h → 0, while 1
h(f(z0 + h) − f(z0)) → f ′(z0), as |h| → 0, therefore f(z0 +

h)− f(z0) → 0 · f(z0) = 0.

Note that, to even define the derivative at z0 we must have f defined on some (arbitrarily
small) disk around 0. More generally, we must have f defined on some open set. Since any
open set can be written as the disjoint union of its connected components, it is no loss of
generality to consider open and connected sets.

A domain (or region) Ω in C is an open and connected set. (A simple domain is open and
simply connected: more on this later.) A function f from Ω into C is called analytic (or
holomorphic) if it has derivative on each point on which it is defined, i.e. on each z ∈ Ω.
Thus, a function which is analytic on Ω is continuous on Ω: O(Ω) ⊂ C (Ω). In fact, we will
prove the fundamental result that if f is analytic then f ′ is analytic and so every derivative
f (n) is analytic. The space of analytic functions O(Ω) will turn out to be a strict subset of
C∞(Ω).

The derivative f ′(z) at a point z of can be expressed in many ways. Let u = ℜf , v = ℑf .
Moving along the real axis, we get

f ′(z) =
∂f

∂x
= ux + ivx

Moving along the imaginary axis, we get

f ′(z) = lim
y→0

1
iy (f(z + iy)− f(z)) = vy − iuy.

Consequently, the partial derivatives at z = x+ iy satisfy

ux = vy, uy = −vx.

If u, v are C 2 then
uxx + uyy = 0 = vxx + vyy,

because, uxy = uyx for a C 2 function u. Thus, the real and imaginary parts of an analytic
function are harmonic functions.
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Symbolics

We can formally think of analytic function f(x, y) as a function of z, z, through x = 1
2(z+z)

and y = 1
2i(z − z). Since

∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
,

∂f

∂z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
= 0,

it follows that f cannot depend on z.

For instance, we can immediately tell that zez is analytic but zez is not.

Let f(z) be analytic and consider the function f(z). This is surely not analytic (unless f(z)
is a constant.) Since, as a formula, f(z) depends only on z, the function f(z), as a formula,
depends only on z. Write

f̃(z) := f(z).

But u = 1
2(f + f). Therefore

u(x, y) = 1
2 [f(x+ iy) + f̃(x− iy)].

This is a symbolic tautology; therefore we expect it to hold under the substitution x = z/2,
y = z/2i which cancels the argument of the second function:

u(z/2, z/2i) = 1
2 [f(z) + f̃(0)].

We then have
f(z) = 2u(z/2, z/2i) + const.

The use of this is twofold: (i) it enables us to recover f(z) from its real part u; (ii) it enables
us to find the conjugate v of u, i.e. a function that satisfies the CR relations.

Power series

To every sequence an in C we associate the sequence of functions

Ak(z) :=
k∑

n=0

anz
n

whose limit, as k → ∞, if it exists, defines the power series

A(z) =
∞∑

n=0

anz
n.

We want to study the set of z for which A(z) is defined, as well as the properties of the

function A(z). For example, if an ≡ 1 then
∑k

n=0 z
n = 1−zk

1−z and, if |z| < 1, this converges,
as k → ∞, to 1/(1− z), i.e.

∞∑

n=0

zn =
1

1− z
, |z| < 1.
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If |z| ≥ 1, then, obviously, the series diverges.

Define R ∈ [0,∞] by
1/R := lim

n→∞

n
√
|an|.

If R = 0 then, for any K > 0, |an| ≥ Kn, eventually, so the series
∣∣∑ anz

n
∣∣ is dominated

from below by
∑

Kn|z|n which diverges if |z| ≥ 1/K. Since K is arbitrary it follows that∣∣∑ anz
n
∣∣ diverges for all values of z other than z = 0.

Suppose 0 < R ≤ ∞. Suppose |z| < R. Pick ρ such that |z| < ρ < R. Then limn→∞
n
√
|an| <

1/ρ and so |an| < 1/ρn eventually, i.e. |anzn| < (|z|/ρ)n eventually which means that∑
n anz

n is absolutely dominated by
∑

n(|z|/ρ)n which converges if |z| < ρ. Hence
∑

n anz
n

converges if |z| < R. We show that the convergence is uniformin |z| ≤ ρ for all ρ < R. To
this end, pick ρ′ such that ρ < ρ′ < R and observe that |an| < 1/ρ′n eventually, so that
if |z| < ρ, we have |anzn| < (ρ/ρ′)n. But then |Ak+m(z) − Ak(z)| ≤

∑k+m−1
n=k (ρ/ρ′)n ≤

(ρ/ρ′)k/(1− (ρ′/ρ)) which shows that An(z) is a Cauchy sequence on |z| ≤ ρ and as such it
converges uniformly to A(z). Since each An(z) is a continuous function we have that A(z) is
continuous on |z| ≤ ρ for each ρ < R. In other words, A(z) is continuous on |z| < R. (But
convergence is uniform only on compact subsets of |z| < R.) If |z| > R, then, as earlier, we
can argue that An(z) diverges.

We call R the radius of convergence of the power series.

We now look at the derived series
∑

nanz
n. We have limn→∞

n
√
n|an| = 1/R, hence the

radius of convergence is the same. Let B(z) :=
∑

nanz
n, a function which is continuous on

|z| < R. We will show that A(z) is analytic on |z| < R with A′(z) = B(z). Write

A(z) = An(z) + rn(z), B(z) = Bn(z) + r̃n(z) = A′
n(z) + r̃n(z).

We then have

A(z + h)−A(z)

h
−B(z) =

An(z + h)−An(z)

h
−A′

n(z)− r̃n(z) +
rn(z + h)− rn(z)

h
.

Assume |z|, |z + h| < ρ < R. It is easy to see that we can make the last term ≤ ε if
n ≥ n0 (regardless of z, h). There is also n1 = n1(z) such that |r̃n(z)| ≤ ε if n ≥ n1(z).
Fix n ≥ n0 ∨ n1(z). By the definition of the derivative at the fixed point z, we can make∣∣∣∣
An(z+h)−An(z)

h −A′
n(z)

∣∣∣∣ ≤ ε if |h| < δ = δ(ε, n1(z)). This shows that B(z) = A′(z). This is

true for all |z| < ρ for all ρ < R and so A(z) is analytic on |z| < R.

So we have shown that, if R > 0 then A(z) :=
∑∞

n=0 anz
n is an analytic function on |z| < R

whose derivative A′(z) is obtained by differentiating term by term and has the same radius
of convergence. The procedure can be continued ad infinitum, showing that all derivatives
A(k)(z) exist, they all have the same radius of convergence and they can be obtained by
differentiating the terms inside the summation. By induction we can show that

A(k)(z) =
∞∑

n=k

n!

(n− k)!
anz

n.
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In particular, A(k)(0) = k!ak. In other words, ak = A(k)(0)/k!, so that A(z) can also be

written as A(z) =
∑∞

n=0
A(n)(0)

n! zn, an expression known as Taylor-Maclaurin. We repeat
that this gives a representation of a function A(z) which is a priori defined as a power series;
it is by no means a proof of the general theorem that an analytic function can be represented
by power series. There is a long way to go to prove this more general theorem.

Abel’s limit theorem

Suppose thatR = 1 (no loss of generality) and that
∑

n an converges. ThenA(z) :=
∑

n anz
n

converges to A(1) as z → 1 in such a way that |1− z|/(1− |z|) remains bounded.

Proof. W.l.o.g. suppose
∑

n an = 0 (else change a0). Let

An(z) :=

n∑

k=0

akz
k, |z| < R = 1.

By assumption, An(1) → 0. Summation by parts gives

An(z) = (1− z)
n−1∑

k=0

Ak(1)z
k +An(1)z

n.

Since |An(1)z
n| ≤ |An(1)| → 0, we have

A(z) = (1− z)
∞∑

n=0

An(1)z
n.

We will show that A(z) → 0 as z → 1 while |1− z|/(1− |z|) remains bounded, say |1− z| ≤
K(1− |z|). Pick m so that |Am(1)| < ε for all n ≥ m. Then

|A(z)| ≤ |1− z|
∣∣∣∣
m−1∑

n=0

An(1)z
n

∣∣∣∣+ |1− z|
∑

n≥m

ε|z|n

≤ |1− z|
∣∣∣∣
m−1∑

n=0

An(1)

∣∣∣∣+ |1− z| ε

1− |z|
≤ K1|1− z|+Kε.

As z → 1, we have lim |A(z)| ≤ Kε. This is true for any ε > 0, and so A(z) → 0 as z → 1,
while |1− z|/(1− |z|) remains bounded.

The stereographic projection

The representation of the compactification C ∪ {∞} of the complex plane as a sphere is
fundamental importance.
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Consider the unit sphere S2 in 3 dimensions and let Π be a plane bisecting the sphere
into two pieces. Let N,S be the points on S2 farthest from Π (North and South pole,
respectively). The stereographic projection is a map is a bijection ϕ : S \ {N} → Π defined
as follows: If x is a point on S2 other than N consider the straight line joining N and x and
let ϕ(x) be the point of its intersection with Π.

Concretely, let S2 ⊂ R
3 be the set of x = (x1, x2, x3) such that x21 + x22 + x23 = 1, and take

N = (0, 0, 1). Let Π be the plane x3 = 0, identified with C. Let z = ϕ(x). Then it is easy
to see that

z =
x1 + ix2
1− x3

.

The inverse map is given by

x1 =
z + z

|z|2 + 1
, x2 =

z − z

i(|z|2 + 1)
, x3 =

|z|2 − 1

|z|2 + 1
.

Note that the unit circle |z| = 1 remains fixed. The disk |z| < 1 is mapped into the southern
hemisphere. The set |z| > 1 is mapped into the northern hemisphere. Note that orientations
in the southern hemisphere are preserved. But in the northern hemisphere they are reversed.

17



We can define the point at ∞ of C to be ϕ(N).

In this way, we can consider C = C ∪ {∞} as a metric space with metric

d(z, w) = ||ϕ−1(z)− ϕ−1(w)||

where ||x|| =
√
x21 + x22 + x23. Note that the topology induced by d, when restricted to C, is

identical to the usual topology of C. A sequence zn converges to ∞ if d(zn,∞) → 0. Note
also that sets of the form |z| ≥ R are compact.

There are other stereographic projections. For example, if we may let Π be a tangent plane
to the sphere S2 and let N be the point on S2 farthest from the plane. Any point x ∈ S2

is mapped into the point z of the intersection of the straight line joining N and x with Π
This projection does not reverse orientations.

z

x

N

The square root

Consider the solution to w2 = z. We have w = ±√
z. The function

√
z is multi-valued. By

letting z range over the domain
Ω = C− R−

and requiring that
ℜ√z > 0

we obtain a branch of the square root function, namely a function from Ω into H+ (the
open right-half plane). This function is analytic, one-to-one and onto. In other words, it is
a bijection between Ω and H+:
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This branch of
√
z is an an-

alytic bijection f(z) between
Ω = C − R− and the open
right-half plane H+. It has
derivative f ′(z) = 1/2

√
z ≡

1/2f(z).

But we could equally well require that

z ∈ Ω, ℜ√z < 0

in which case we obtain another branch:

This branch of
√
z is an an-

alytic bijection between Ω =
C− R− and the open left-half
plane H−. It has derivative
−1/2f(z).

When defining a branch of a multi-valued function, we have to be careful with the restrictions
on both z and its image w. So if we agree that f(z) is the principal branch of

√
z, defined

by the requirements z 6≤ 0, ℜw > 0, then we can be sloppy and use the notation
√
z for this

function. In which case, the derivative of this analytic function is 1/
√
z.

If we choose the second branch, then
√
z refers to the map g(z) = −f(z) and g maps Ω

onto H−. Its derivative is g′(z) = −f ′(z) = −1/2f(z) = 1/2g(z). So if we decide to use the
sloppy notation

√
z in lieu of g(z) then we still get the formula D

√
z = 1/2

√
z.

Geometrically, it is easy to see what each of these maps does. Let us look at f(z). First we
cut the plane (by a pair of scissors) on its negative real axis and removed it (removing 0 as
well) and then opened the cut widely. Thus the map halves the plane.

We now realise that there is nothing kosher about the two choices we considered so far. We
can do many other things. For instance, let γ(t) be a simple curve such that γ(0) = 0,
γ(1) = ∞, let [γ] be its image and let Ω = C \ [γ]. Let B := f([γ]) ∪ (−f([γ])) be the
image of [γ] under the principal branch f(z) of

√
z considered above together with its image
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under −f(z). This B ‘splits’ the plance into two regions. By deciding to consider one of
the regions we have chosen yet another branch of the function

√
z.

Let us call h(z) the latter branch which is an analytic bijection between U = C \ [γ] and V
one of the regions defined by f [γ].

We maintain that the formula h′(z) = 1/2h(z) still holds. Indeed, locally, h(z) either equals
f(z) or −f(z). (Check details!)

The common characteristic between the branches f(z), g(z), h(z) is that they are ‘maximal’
in the sense that we cannot enlarge their domains without losing single-valuedness. Of
course, we can restrict any of them to subdomains and, in certain subdomains they may
coincide.

The analogy can be seen even in Real Analysis. Consider, for instance, the function f(x) =
cosx. Its inverse function is multi-valued unless we make restrictions. Let g(y) = arccos y.
Let us require that −1 < y < 1 and 0 < x < 2π. Then g is a smooth bijection between
(−1, 1) and (0, 2π). It is a maximal branch of g. But we can also require that

The exponential (and trigonometric) function

There is a unique function f(z) that is entire and satisfies f ′(z) = f(z), f(0) = 1. To find
it, assume f(z) =

∑∞
n=0 anz

n, differentiate and equate coefficients to get, by induction, that
an = 1/n!. Since limn→∞

n
√
1/n! = 0, it follows that the radius of convergence is ∞. So the

function defined by this power series is entire. Denote it by ez:

ez =
∞∑

n=0

zn

n!
.

We showed that ez is entire, (ez)′ = ez, e0 = 1. So we have one solution.

Notice that for any constant c ∈ C, the derivative ezec−z is identically 0. Hence ezec−z is
constant:

ezec−z = ec, z, c ∈ C.

In other words,
ea+b = eaeb, a, b ∈ C.
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In particular,
eze−z = 1, z ∈ C.

Hence ez is never zero. To show that there is no other entire function f(z) with the properties
f ′(z) = f(z), f(0) = 1, consider one such function and let h(z) := f(z)/ez. But then
h′(z) = (f ′(z)ez − f(z)ez)/e2z ≡ 0. Hence h(z) is constant. But h(1) = 1, hence h(z) ≡ 1
and so f(z) ≡ ez.

If z = x ≥ 0 then ex is precisely the real exponential function. If z = iy, where y ∈ R then

eiy =
∞∑

n=0

(iy)n

n!
=

∑

n even

(iy)n

n!
+

∑

n odd

(iy)n

n!

Using the Taylor series expansion for the functions cos and sin from Real Analysis we obtain

eiy = cos y + i sin y, y ∈ R.

So we have
ez = ex(cos y + i sin y), z = x+ iy ∈ C.

We next define

cos z :=
eiz + e−iz

2
, sin z :=

eiz − e−iz

2i
, z ∈ C

and notice that

cos z = 1− z2

2!
+

z4

4!
− · · ·

sin z = z − z3

3!
+

z5

5!
− · · · ,

which shows that if z = x ∈ R then cos z = cosx, sin z = sinx where cosx, sinx are the
real trigonometric functions. The functions cos z, sin z are entire. We can easily show the
algebraic identity

cos2 z + sin2 z = 1.

Hence |eiy| = 1 for all y ∈ R. Conversely, if |z| = 1 then z = eiy for some real y.

We can also show that there are complex numbers c such that ez+c = ez for all z ∈ C

and that each such c is purely imaginary. In fact, there is a smallest positive number ω0

such that each c = niω0, n ∈ Z. The number ω0 is also denoted by 2π and this defines π.
Hence the function eiz is periodic with smallest positive period equal to 2π. So, the analytic
definition of π is:

π := min{ω > 0 : ei2ω = 1}.
Using the Taylor expansion of ez we can approximately solve the equation ei2π = 1 to find
π = 3.14159 . . ..
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Algebraically, the function h(t) := ei2πt, h : Z → S1 is a homomorphism between the
additive group (Z,+) and the multiplicative group (S1, ·) where S1 = {z ∈ C : |z| = 1}.

We also define the hyperbolic cosine and sine by

cosh z :=
ez + e−z

2
, sinh z :=

ez − e−z

2
, z ∈ C

These are entire but not one-to-one functions and we can study them through

cosh z = cos(iz), sinh z = −i sin(iz).

From this we see that cosh z is obtained by rotating z by π/2 and then taking the cosine;
and sinh z by rotating z by π/2, taking the sine followed by the inverse rotation. So, whereas
cos and sin are periodic with basic period 2π, their hyperbolic counterparts cosh and sinh
are periodic with basic period i2π.

The logarithm

The function ez is not one-to-one so its inverse is not a function. However, we define a
multi-valued function w = log z to be any solution of the equation ew = z. We notice
that, for fixed w 6= 0, the possible solutions of ew = z are of the form log |z| + iϕ, where
ϕ = ϕ0 +2πn, with n ranging over the integers. and where log |z| is the real logarithm. So:

log z = {log |z|+ i(ϕ0 + 2πn), n ∈ Z}.

So it is only the imaginary part of log z which is multi-valued. This imaginary part is called
argument of z:

arg z := ℑ log z,

and is understood to be a set. Since the difference of any two elements of arg z is an integer
multiple of 2π it follows that there is only one element of arg z on every semiopen interval of
length 2π. Choosing such an interval fixes a specific element of arg z and so arg z (and thus
log z) becomes a single-valued function. We refer to such a function as a branch of arg z (or
of log z). Thus, the principal branch of arg z is specified by −π < arg z ≤ π.

Correspondingly, the principal branch of w = log z is specified by

−π < ℑw < π.

Since the only numbers z ∈ C with w = log z having imaginary part ±π are real and
negative, it follows that the above restriction immediately places the restriction z 6=< 0.
Also, we cannot have z = 0. So we add (with a bit of redundancy)

z 6≤ 0

to specify the principal branch of w = log z.

The principal branch of the logarithm is an analytic bijection ℓ(z) between Ω := C\{z ≤ 0}
and S := {−π < ℑw < π}. Its derivative is ℓ′(z) = 1/z.
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The algebraic property of ea+b = eaeb translates to

arg(w1w2) = argw1 + argw2,

and this should be interpreted as equality between sets. Alternatively, if we use a specific
branch of argw, then the equality should be interpreted as

arg(w1w2) = argw1 + argw2 mod 2π.

Similarly,
log(w1w2) = logw1 logw2

is equality between sets.

Later it will be shown that it is impossible to define a single-valued analytic branch of logw
on certain domains. Certainly, such a domain must not contain 0. But still, this is not
sufficient. For example, the annulus 1 < |z| < 2 does not contain 0 but it is impossible to
define a single-valued analytic branch of log z on this annulus.

It can be seen that we can define other branches of the logarithm as long as we exclude from
its domain a simple curve that joins 0 and ∞.

Inverse cosine

Since cosw = 1
2(e

iw + e−iw), we can define w = arccos z by solving cosw = z, which is a
quadratic in eiw:

(eiw)2 − 2weiw + 1 = 0.
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We obtain
eiw = z ±

√
z2 − 1.

Hence
w = arccos z = −i log(z ±

√
z2 − 1).

Again, arccosw defines a set of numbers. If eiw = z +
√
z2 − 1 then, as obtained by the

quadratic equation, e−iw = z −
√
z2 − 1. So the numbers z +

√
z2 − 1, z −

√
z2 − 1 are

inverses of one another and so we can write the above set as

arccos z = ±i log(z +
√
z2 − 1).

We further notice that we can drop the minus sign and lose no value from the set. The
reason is that if we replace z by −z in z +

√
z2 − 1 then the minus sign pops out. Hence,

arccos z = i log(z +
√
z2 − 1)

is the same set of numbers.

How can we obtain a (reasonable and maximal) analytic branch of arccos z?

First, we want arccos z to reduce to the usual arccosx when z = x is real, −1 < x < 1. We
have

i log(x+
√

x2 − 1) = i log(x+ i
√
1− x2).

The complex number x + i
√
1− x2 ≡ ρ(x)eiθ(x) has modulus ρ(x) = 1 and argument θ(x)

such that cos θ(x) = x, sin θ(x) =
√
1− x2 and so θ(x) = arccosx, restricted so that

0 < θ(x) < π.

For complex z, we have to first define a branch of
√
z2 − 1. Let u = z2− 1. A branch of

√
u

is obtained by the requirements u ∈ C − {u ≤ 0}, ℜ√u > 0. But u = x2 − y2 − 1 + i2xy.
So if we want to exclude the real and negative values of u we must exclude the numbers
z for which x2 − y2 − 1 ≤ 0 whenever y = 0. So we must exclude all z for which x2 ≤ 1.
But this would not be compatible with the restriction of arccos z on z ∈ R. So we take
another branch obtained by the requirement u ∈ C − {u ≥ 0}. This is most easily done as
follows. Let f(u) =

√
u be the usual principal branch of the square root. Define the branch

f1(u) := if(−u). Clearly, f1(u)
2 = i2f(−u)2 = (−1)(−u) = u and if the restriction on the

argument of f is that it is positive if its is real, the restriction on the argument of f1 is
that it is negative when it is real. This translates into the restriction that |z| < 1 when
z = x ∈ R, as required.

In addition to that, we have to make sure that the appropriate restrictions on the logarithm
are taken care of. These may impose additional requirements. But on the domain

Ω := C− {z ∈ R : |z| ≥ 1}

the numbers z2 +
√
z2 − 1 are never real, so there is no additional requirement if let log be

the principal branch of the logarithm.

We have thus defined a single-valued analytic branch of arccos z on the domain Ω. We can
check that arccos(Ω) = {w ∈ C : 0 < ℑw < π}. It is better to write

arccos z = i log(z + i
√
1− z2)
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where the notation used is that
√· is the principal branch of the square root and log(·) is

the principal branch of the logarithm, So arccos(·) is obtained as the composition of analytic
functions. We can then comfortably differentiate it to obtain

D arccos z = i
1

z + i
√
1− z2

(
1 + i

1

2
√
1− z2

(−2z)

)
=

1√
1− z2

.

Conformality

A transformation (between Euclidean spaces or Riemannian manifolds) which preserves
angles locally is called conformal We are interested in conformal maps on C. For example,
every homothety z 7→ az with a 6= 0 is conformal. More generaly, every analytic function is
locally conformal at any point z0 at which f ′(z0) 6= 0. Indeed, let γ(t) be a curve passing
through z0 at t = t0 and let γ′(t0) be nonzero. Then

(f◦γ)′(t0) = f ′(z0)γ
′(t0)

and so
arg(f◦γ)′(t0) = arg γ′(t0) + arg f ′(z0).

This implies that if u, v are vectors tangent to two curves passing through the point z0 and
having angle θ between them then the images of these curves have tangent vectors at f(z0)
with angle again θ.

Another kind of conformality is scale-conformality in that, locally at z0, the function scales
by |f ′(z0)|. In other words, whenever f ′(z) 6= 0, the analytic function f behaves like a
homothety.

By, say, the inverse function theorem, conformality at a point z0 of a function f(z) means
that f is a local diffeomorphism between a neighbourhood U of z0 and a neighbourhood V
of f(z0).

A problem of importance is to find a way to map a domain Ω1 conformally onto another
domain Ω2.

We can aid our visualisation of a conformal map w = f(z) by seeing how a certain system
of coordinates in the z-plane transforms in the w-plane. If we have a system (X,Y ) of
orthogonal coordinates on the z-plane then, by conformality, they transform into a system
(U, V ) of orthogonal coordinates on the w-plane.

Standard conformal mappings

It appears that when we say we want to map a domain Ω1 conformally into a domain Ω2 we
really mean conformally and isomorphically (in a topological sense). Indeed, a mapping can
be conformal at all points of Ω1 but may not be one-to-one (schlicht, univalent). For instance,
the map f(z) = ez is entire with non-vanishing derivative, i.e. conformal everywhere, but
it is not one-to-one. In other words, we are looking for global diffeomorphisms between Ω1

and Ω2 which, moreover, are complex analytic maps.

+ε

−
e z

z

0
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Some examples:

w = z2 wraps the plane around twice because argw = 2arg z. So the upper half x > 0 plane
maps onto C except the positive real axis. More generally, a sector S(ϕ1, ϕ2) containing all
z with ϕ1 < arg z < ϕ2, maps into the sector S(2ϕ1, 2ϕ2), which could be a half plane or
could be covering the whole plane more than once. The Cartesian net on the w-plane is
transformed into a system of two families of mutually orthogonal hyperbolas.

z

w = z2

The reason is that z2 = (x2 − y2) + i2xy so the families of hyperbolas are

x2 − y2 = u0, 2xy = v0.

w = ez maps the Cartesian net on the z-plane onto polar net on the w-plane. A line x = x0
is mapped into a circle |w| = ex0 . A line y = y0 is mapped into a half line w = exeiy0 , or
w = teiy0 , t > 0. A horizontal strip y1 < y < y2 is mapped onto an angular sector which
does not cover the plane if y2 − y1 ≤ 2π. Otherwise, it wraps around and covers the plane.
A vertical strip x1 < x < x2 maps onto an annulus ex1 < |w| < ex2 . A parallelogram
x1 < x < x2, y1 < y < y2 is thus mapped onto a part of an annulus cut by an angular sector
(which could be the whole annulus wrapped around more than once.

w =
z − 1

z + 1
maps, of course, (generalised) circles into (generalised) circles. In particular, it

maps the right half-plane x > 0 onto the disk |w| < 1. To see this, observe that x = 0 is
mapped into w = iy−1

iy+1 which has modulus one, i.e. it is the unit circle |w| = 1. The point
z = 1 is mapped into w = 0 and so x > 0 maps inside the circle. The upper half-plane
y > 0 maps into itself. Indeed, y = 0 maps into w = x−1

x+1 which is real, i.e. the real axis.
Also, z = i maps into a point with positive imaginary part. We thus find that the psotive
orthant xy > 0 maps onto the upper half-disk |w| < 1,ℑw > 0. The point 1 is mapped to 0
and −1 to ∞, so the transformation shrinks the right half-plane into the unit disk.

w =
ez − 1

ez + 1
is the result of z1 = ez, followed by w = z1−1

z1+1 . Consider the strip |y| < π/2.

This is mapped to ℜz1 > 0 and this to |w| < 1.

z

z1 = ez

z1

w =
z1 − 1

z1 + 1

w
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Circular wedge with endpoints a, b is contained within two circles passing through a, b. The

Möbius transformation z1 = z−a
z−b sends a, b to 0,∞, and so the circular wedge is mapped

into an angular sector. The subsequent map w = zα1 , for appropriate α maps the angular
sector onto a half plane.

z

a

b
z1 =

z−a
z−b

z1

w = zα1

w

Tangent circles Suppose that a circle C1 is tangent to C2 at the point a. Then we can map

the region between them onto a parallel strip by the tranformation z1 = 1/(z − a), because
this is a Möbius transformation that sends a to ∞.

z

a

w = 1
z−a

w

Circular triangle with two right angles Suppose that cirles C1, C2 meet C at right angles
at the points A,B and let a, b be the common points of C1, C2. We can map the circular
triangle aAB via z1 = z−a

z−b onto a circular sector 0A1B1. Using z2 = zα1 we can map the
circular sector onto a half circle. The half circle is a special case of a circular wedge with

endpoints A2, B2 which can be mapped onto a half plane via w =
(
z2−A2
z2−B2

)β
.

A B

a

b

z

z1 =
z−a
z−b

1

1

1

0

A

B

z

z2 = zα1

2

2

2

0

A

B

z

w =
(
z2−A2
z2−B2

)β

w

The full transformation here is: w =
(

(A−b)α(z−a)α−(A−a)α(z−b)α

(B−b)α(z−a)α−(B−a)α(z−b)α

)β
.

Segment of a straight line between two point, say, −1,+1. We want to map this to a

circle. If we first use z1 = z+1
z−1 , we send +1,−1 to ∞, 0, respectively and the segment to

the negative real axis. If we then use z2 =
√
z1 we halve the plane and map it to the right

half-plane. Finally, w = z2−1
z2+1 maps the right half-plane onto |w| < 1.

z
z1 =

z+1
z−1

z1

z2 =
√
z1

z2

w = z2−1
z2+1

w

Riemann surfaces

A Riemann surface is a 2-dimensional real analytic manifold that is used, roughly speaking,
to transform a multi-valued function into a single-valued one.
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It is easier to give examples that involve single-valued but not schlicht (univalent, one-to-one)
finctions w = f(z). For such functions, we extend their range from C to some appropriate
Riemann surface so that the extended function becomes schlicht and hence invertible.

A picture is worth 1000 words, so here is how the Riemann surface for the range of the
non-schlicht function w = exp z is obtained.

−

+

10

The picture should be read column-wise, like a motion picture. The first image is the strip
−π < ℑZ < π, −∞ < ℜz < 1 in the z-plane. This strip is transformed into the region
|w| < 1 but whith the points {w : ℑw = 0, ℜw < 0} excluded; see the pre-last image. To
“obtain” this, we can envision a transformation of the strip that opens up while bringing
the point −∞ (green area) into a finite point and, finally, mapping it onto the origin. The
red lines represent the upper and lower boundaries of the strip; they rotate arounf until rhey
finally coincide as the negative real axis becomes the so-called branch-cut for the Riemann
surface. If we extend the strip above its upper level then the final image keeps turning
and starts overlapping. Instead of overlapping on the same plane we move it on a higher
plane and start creating a helicoidal surface. This is the Riemann surface that extends
the range of w. If we let z range over the strip extended up and down indefinitely (i.e.
−∞ < ℑz < + < ∞, −π < ℑz < + < π) we obtain a helix with infinitely many spirals. If
finally we let ℜz extend to the right beyond the point +1, we obtain a helix with unbounded
spirals.
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We now describe the Rieman surface for w = cos z = 1
2(e

iz + e−iz). To find out what is
going on, we cover the z-plane with two families of curves and see how they are transformed
in the w-plane.

Notice that cos z is periodic with fundamental period 2π and that cos(z + π) = − cos z. So
it suffices to see what is going on in the strips 0 ≤ x ≤ π and π ≤ x ≤ 2π.

Consider the curve x = 0. It is transformed to w = 1
2(e

−y + ey) = cosh y, y ∈ R. Similarly,
x = π is transformed to w = − cosh y, y ∈ R.

Consider now the curves x = x0 for 0 < x0 < π. They transformed into w = 1
2(e

ix0e−y +
e−ix0ey), y ∈ R. In other words, u = cosx0 cosh y, v = − sinx0 sinh y. Since 0 < x0 < π, we
have cosx0 > 0, sinx0 > 0 and so dv/du ≈ 1 as y → −∞, while dv/du ≈ −1 as y → +∞.
For π < x0 < 2π, the curve x = x0 is transformed into the mirror image of the above with
respect to the imaginary axis.

Next consider y = y0. This is transformed into w = 1
2(e

ixe−y0+e−ixey0), x ∈ R. If y0 = 0 we
obtain w = cosx, x ∈ R, whose image is the segment −1 ≤ u ≤ 1, v = 0. When y = y0 > 0
we obtain a curve in the upper half-plane that starts from the right and moves to the left.
When y = y0 < 0 we obtain a curve in the upper half-plane that starts from the left and
moves to the right.

It is clear that the region 0 < x < π, y < 0 is transformed into the half-plane, while 0 < x <
π, y > 0 into the lower half-plane. The opposite happens with the regions π < x < 2π, y < 0
and π < x < 2π, y > 0.

So the strip 0 < x < π is transformed into the whole plane. Continuing with the strip
π < x < 2π we see that it is transformed into the whole plane again, but “in reverse
orientation”.

Each strip Sk = {z : (k − 1)π < x < kπ} is a fundamental region for cos z in that it maps
onto the whole plane with the exception of a cuts. By sewing the regions cos(Sk), k ∈ Z,
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appropriately together, we obtain the Riemann surface for cos z. It is impossible to do the
sewing in R

3 in an honest way. We need an extra dimension for this. In other words, the
Riemann surface for cos z is embaddable only in 4 dimensions and up.

Integration

A curve γ is a function from some interval [a, b] ⊂ R into C. The point γ(a) is the initial
point of the curve, while γ(b) is the final point. There is a natural ordering of the elements of
γ[a, b]: we say that γ(s) precedes γ(t) if s ≤ t. Let π be a partition a = t0 < t1 < · · · < tn = b
of [a, b]. For each such π define

L(π) =
n∑

k=1

|γ(tk)− γ(tk−1)|

The length of the curve is defined as L = supπ L(π). We say that γ is rectifiable if L < ∞.
Equivalently, γ is rectifiable iff ℜγ and ℑγ are functions of bounded variation. A curve is
differentiable of its real and imaginary parts are differentiable. We let γ′(t) be the derivative

of a differentiable curve at the point t. Then its length is given by L =
∫ b
a |γ′(t)|dt. A curve

is piecewise differentiable if it is differentiable everywhere except a finite number of points;
its length is given by the same expression. For a continuous function f : Ω → R, a curve
γ : [a, b] → Ω, and a partition π of [a, b], define

I(f, π) :=
n∑

k=1

f(tk)[γ(tk)− γ(tk−1)].

Let also ||π|| be the largest tk − tk−1, for k = 0, . . . , n. Then there is a number A ∈ C such
that for all ε > 0 there is δ > 0 such that if ||π|| ≤ δ then |I(f, π)−A| ≤ ε. The number A
is denoted by

∫
γ f(z)dz and is called the complex integral of f along γ. We can prove that

if we defined I(f, π) =
∑n

k=1 f(tk−1)[γ(tk) − γ(tk−1)] the limit is the same. If the curve is
piecewise differentiable, we have

∫

γ
f(z)dz =

∫ b

a
f(γ(t))γ′(t)dt.

Many results regarding curves do not depend explicitly on the parametrisation of the curve.
The integral is one of them. A parametrisation of the curve is an order preserving piecewise
differentiable map τ from some [α, β] into [a, b]. Then

∫ b

a
f(γ(t))γ′(t)dt =

∫ β

α
f(γ(τ(s)))γ′(τ(s))τ ′(s)ds =

∫ β

α
f((γ◦τ)(s))(γ◦τ)′(s))ds.

We let −γ be the curve obtained by an order-reversing parametrisation, e.g. by τ(t) = −t.
Then ∫

−γ
f(z)dz = −

∫

γ
f(z)dz.

When we have a curve γ and pick points γ(t0), . . . , γ(tn), where a = t0 < · · · < tn = b, we
can split γ into the subcurves γk with endpoints γ(tk−1), γ(tk), k = 1, . . . , n. We write,
symbolically,

γ =
n∑

k=1

γk
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and then we have ∫

γ
f(z)dz =

n∑

k=1

∫

γk

f(z)dz.

When p, q are real-valued functions on C, we can define of the integral

∫

γ
pdx+ qdy

as the integral of the 1-form ω = pdx+ qdy, where x, y are cartesian coordinates of R2, over
the curve γ through the pullback operation:

∫

γ
ω =

∫

(a,b)
γ∗ω,

i.e. by referring to the natural parameter space (=time). Associated to a continuous function
f = u+ iv we have two 1-forms:

ω := udx− vdy, η := udy + vdx.

We can then easily show that

∫

γ
f(z)dz =

∫

γ
ω + i

∫

γ
η.

Formally, this is due to

fdz = (u+ iv)(dx+ idy) = (udx− vdy) + i(vdx+ udy).

We can also define integral with respect to the measure induced by the length. In case of a
piecewise differentiable curve, we have:

d|γ| := |γ′(t)| dt.

It is customary to write ∫

γ
f |dz| :=

∫

γ
f d|γ|.

We can then easily prove the inequality

∣∣∣∣
∫

γ
fdz

∣∣∣∣ ≤
∫

γ
|f | |dz|.

Finally, we define ∫

γ
f dz :=

∫

γ
fdz

and
∫

γ
fdx =

1

2

(∫

γ
fdz +

∫

γ
f dz

)

∫

γ
fdy =

1

2i

(∫

γ
fdz −

∫

γ
f dz

)
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Dependence on endpoints

Suppose f(z) is continuous on Ω. When does
∫
γ fdz depend only on then endpoints of the

curve γ for every γ in Ω? The answer is that both forms udx− vdy and vdx+ udy must be
closed, i.e. there must exist functions A, B such that udx− vdy = dA, vdx+ udy = dB, or
u = Ax,−v = Ay, v = Bx, u = By, which necessitates that Ax = By, −Ay = Bx. So A,B
form a conjugate pair. Equivalently then, there must be an analytic function F = A + iB
on Ω, such that u+ iv = Ax +Bx = By − iAy, which further means that f(z) = F ′(z). We
have thus proved:

∫
γ fdz depends only on then endpoints of the curve γ for every γ in Ω if and

only if there exists F (z), analytic on Ω, such that f(z) = F ′(z).

This statement is further equivalent to:

For every closed curve γ in Ω,
∫
γ fdz = 0.

Notes: We must stress that this result does not require that Ω be simply connected. Whether
an anlytic function f(z) has a primitive (i.e. is the derivative of an analytic function) is of
importance and depends both on f(z) and on Ω. For instance, the function f(z) = 1/z has
no primitive on {|z| < 1} because

∫
γ(1/z)dz = 2πi (see below) for any circle γ enclosing the

origin. However, if we take Ω = {|z− 2| < 1}, say, then 1/z does have a primitive on Ω. On
the other hand, any other integer power of z, i.e. any function of the form f(z) = zp with
p ∈ Z−{−1} has an antiderivative on a punctured neighbourhood {0 < |z| < 1} of zero. If,
moreover, p ∈ Z+ then zp has antiderivative everywhere.

Some simple integrals

Since (z− a)n, for n ∈ Z+, is the derivative of the analytic function (n+1)−1(z− a)n+1, we
have, for every closed curve γ, ∫

γ
(z − a)ndz = 0.

For n = −1, the function (z − a)−1 is not the derivative of an analytic function (it is the
derivative of log(z − a) which is neither analytic–it has a singularity at a–not a function–it
is multivalued). So the integral can only be decided, for the time being, by computation.
For instance, if γ = C(a, r), a circle with centre a and radius r, we have

∫

C(a,r)

dz

z − a
=

∫ 2π

0

ireit

reit
dt = 2πi.

If n = −m ≤ −2 then (z−a)−m is the derivative of −(m−1)−1(z−a)−(m−1). This functions
is analytic everywhere except a. Therefore it is analytic on the domain Ω− {a}. So if γ is
a curve in Ω, not passing through a, then, for any integer m ≥ 2,

∫

γ

dz

(z − a)m
= 0.

The difference with the m = −1 case is that the log(z − a) cannot be made analytic by the
removal of a, simply because it will not be a function.
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Simple form of Cauchy’s theorem

We first prove that
A. If f(z) is analytic on a closed rectangle R (meaning that it is analytic on some domain
containing R) then

∫
∂R f(z)dz = 0.

We shall use this to prove that
B. If f(z) is analytic on an open disk ∆ then

∫
γ f(z)dz = 0 for any closed curve γ in ∆. Ω

R

R

We first indicate the passage from A to B. Suppose A has been proved and that f(z) is
analytic on ∆. We prove that f(z) = F ′(z) for some analytic function F (z) on Ω. This is
precisely the theorem that says that if a form is closed then it is exact. So we may view the
fact that

∫
∂R f(z)dz = 0 over each rectangle R as that both forms udx− vdy, vdx+udy are

closed and therefore exact, which means that f(z) is the derivative of some analytic F (z),
as argued above, which further means that

∫
γ f(z)dz = 0.

Alternatively, we can ignore the forms point of view and do a bare-hands proof. Fix z0 =
x0 + iy0, z = x + iy ∈ ∆ and consider the rectangle R with vertices z0, z and sides parallel
to the axes. Let γ1 be the curve consisting of the segment joining z0 to (x0, y), followed by
the segment joining (x0, y) to z. Let F (x, y) =

∫
γ1
f(ζ)dζ. Let γ2 be the curve consisting of

the segment joining z0 to (x, y0), followed by the segment joining (x, y0) to z. The fact that∫
∂R f(ζ)dζ = 0 translates into F (x, y) =

∫
γ1
f(ζ)dζ =

∫
γ2
f(ζ)dζ. Taking derivative with

respect to x in F (x, y) =
∫
γ1
f(ζ)dζ we find that f(z) = ∂F

∂x (x, y) and taking derivative with

respect to y in F (x, y) =
∫
γ2
f(ζ)dζ we find that f(z) = −i∂F∂y (x, y). Hence ∂F

∂x = −i∂F∂y ,

which means that ℜF , ℑF satisfy the CR relations and so F (z) is analytic; furthermore,
f(z) = F ′(z). z 0

z

γ
1

γ
2

To prove A we argue as follows: First, let

η(S) =

∫

∂S
fdz

for any rectangle S. Split R into 4 equal subrectangles S1, S2, S3, S4 and write

η(R) =
4∑

j=1

η(Sj),

whence |η(Sj)| ≥ 1
4 |η(R)|, for some j = 1, 2, 3, 4. Split Sj into 4 further subrectangles Ω

R

Sjk, k = 1, 2, 3, 4 and conclude that |η(Sjk)| ≥ 1
4 |η(Sj)| ≥ 1

42
|η(R)| for some k = 1, 2, 3, 4.

Continuing this way, we have: There is a sequence of nested rectangles R ⊃ R1 ⊃ R2 ⊃ · · ·
such that

|η(Rn)| ≥ 1
4n |η(R)|, n ∈ N.

Furthermore, ∩nRn is a singleton {a}. Since f(z) is analytic at a, if we fix ε > 0, we can
find δ(ε) such that

|f(z)− f(a)− (z − a)f ′(a)| ≤ ε|z − a|
provided that z ∈ B(a, δ(ε)). In fact, choose ε so small so that B(a, δ(ε)) ⊂ Ω, and choose
an n so large so that Rn ⊂ B(a, δ(ε)). Then write

η(Rn) =

∫

∂Rn

f(z)dz =

∫

∂Rn

[f(z)− f(a)− (z − a)f ′(a)]dz,
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simply because
∫
∂Rn

zkdz = 0, for k = 0, 1. We then have

|η(Rn)| ≤ ε

∫

∂Rn

|z − a| |dz| ≤ ε diam(Rn) length(∂Rn).

But diam(Rn) = 2−n diam(R), length(∂Rn) = 2−n length(∂R). Hence

|η(Rn)| ≤ ε

∫

∂Rn

|z − a| |dz| ≤ ε4−n diam(R) length(∂R).

Combining with the first inequality, we have

|η(R)| ≤ ε diam(R) length(∂R),

and since ε is arbitrarily small, we have η(R) = 0.

Removable singularities

Suppose f(z) is analytic on Ω−{z0}. We say that f(z) has a removable singularity at z0 if

lim
z→z0

(z − z0)f(z) = 0.

The point is that f(z) may fail to be analytic on z0 but the lack of analyticity is of a
very benign nature. For instance, f(z) = sin(z)/z is not defined at 0 but has a removable
singularity at 0. We will later see that a function with removable singularity at a point z0
is the restriction of a unique analytic function on Ω. But, given that we don’t know this,
we need to prove that functions with removable singularities still satisfy Cauchy’s theorem.

First, let R be a rectangle and f(z) a function which is analytic on R with the exception of
removable singularities ζ1, . . . , ζk in the interior of R. We show that

∫

∂R
fdz = 0.

Suffice to prove this if we assume that there is only one removable singularity ζ. Let R0 ⊂ R
be a rectangle centred at ζ, so small that

|f(z)| ≤ ε

|z − ζ| ,

for all z ∈ R0 − {ζ}. But ∫

∂R
fdz =

∫

∂R0

fdz,

and so ∣∣∣∣
∫

∂R
fdz

∣∣∣∣ ≤ ε

∫

∂R0

|dz|
|z − ζ|

Let α be the length of the side of R0. Then |z − ζ| ≥ α/2, for all z ∈ ∂R0, while the length
of ∂R0 is 4α. Thus ∫

∂R0

|dz|
|z − ζ| ≤

4α

α/2
= 8.

We thus have that
∣∣∫

∂R fdz
∣∣ ≤ 8ε for all ε > 0 and we are done.

The theorem can be adopted to the case of a general closed curve in a disk:

If f(z) is analytic on an open disk ∆ with the exception of finitely many removable singu-
larities, then for any closed curve γ in ∆, we have

∫
γ fdz = 0.
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Curve windings

Suppose that γ is a (piecewise differentiable) closed curve. Then for any a not lying on the
curve, ∫

γ

dz

z − a
= 2πin,

for some n ∈ Z.

Proof. Suppose γ : [α, β] → C. Then

∫

γ

dz

z − a
=

∫ β

α

γ′(s)ds

γ(s)− a
.

Let

h(t) :=

∫ t

α

γ′(s)ds

γ(s)− a
, α ≤ t ≤ β.

We have

h′(t) =
γ′(t)

γ(t)− a
,

and so
d

dt
e−h(t) (γ(t)− a) = 0.

Thus, e−h(t) (γ(t) − a) is a constant. So e−h(β) (γ(β) − a) = e−h(α) (γ(α) − a). But
γ(α) = γ(β) and h(α) = 0, so

eh(β) = 1.

This means that h(β) is 2πi times an integer.

This motivates the definition of the index (or winding number) of a closed curve γ with
respect to a point a:

n(γ, a) :=
1

2πi

∫

γ

dz

z − a
.

Clearly, n(−γ, a) = − n(γ, a). If γ lies in a disk ∆ and a lies in the interior of the complement
γ

a
b

c

n(γ, a) = 0
n(γ, b) = 1

n(γ, c) = −1

of ∆ then n(γ, a) = 0 because 1/(z − a) is then analytic on ∆. The connected components
of the interiors of the sets {a ∈ C : n(γ, a) = n} for various values of n ∈ Z are regions
determined by γ. We prove that n(γ, a1) = n(γ, a2) if the curve does not meet the segment
with endpoints a1, a2. Indeed, the function log[(z−a1)/(z−a2)] is single-valued and analytic
off this segment. Hence its derivative must integrate to zero over γ:

∫

γ

(
1

z − a1
− 1

z − a2

)
dz = 0,

which gives what we want. One of the regions determined by γ is unbounded. So if a is in
this region then γ is contained in an open disk ∆ and a is contained in the complement of
the closure of ∆. And so n(γ, a) = 0 for all a in the unbounded region.
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Integral formula

If f(z) is analytic on an open disk ∆ and γ is a closed curve in ∆ then, for any a not lying
on γ, ∫

γ

f(z)

z − a
dz = 2πi n(γ, a)f(a).

Proof. Consider the function F (z) = f(z)−f(a)
z−a . Since (z − a)F (z) = f(z) − f(a) → 0 as

z → a, the point a is a removable singularity for F (z), therefore
∫
γ F (z)dz = 0.

a γ

∆

N.B. The integral formula holds even in presence of removable singularities as long as they
do not belong to the curve γ nor the point a is one of them.

Representation formula

For any z in the domain of analyticity of f(z) and any closed curve γ for which n(γ, z) = 1,
we have

f(z) =
1

2πi

∫

γ

f(ζ)dζ

ζ − z
.

In particular, if γ = C(z, r), we have

z

∆

f(z) =
1

2πi

∫

C(z,r)

f(ζ)dζ

ζ − z
=

1

2π

∫ 2π

0
f(z + reit)dt.

Derivatives

If f(z) is analytic then the representation formula holds. We can differentiate the represen-
tation formula with respect to z and pass the derivative inside the integral sign, by DCT.
This gives a representation formula for the derivative:

f ′(z) =
1

2πi

∫

C

f(ζ)dζ

(ζ − z)2
.

This immediately shows that the function f ′(z) is also analytic and its derivative satisfies

f ′′(z) =
1

πi

∫

C

f(ζ)dζ

(ζ − z)3
.

Continuing in the same manner we have that an analytic function possesses derivatives of
all orders, which are all analytic functions and

f (n)(z) =
n!

2πi

∫

C

f(ζ)dζ

(ζ − z)n+1
.

Cauchy’s estimate:

|f (n)(z)| ≤ n!

2π

∫

C
|f(ζ)| |dζ|

|ζ − z|n+1
≤ n!

2π
max{|f(ζ)| : ζ ∈ C} length(C)

rn+1
=

n!

rn
max

|ζ−z|=r}
|f(ζ)|.
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Morera’s theorem

If f(z) is a continuous function on some domain Ω such that
∫
γ fdz = 0 for all closed curves

γ in Ω then f(z) is analytic.

Proof. If
∫
γ fdz = 0 for all closed curves γ in Ω then f(z) is the derivative of an analytic

function and hence it is itself analytic. Conversely, if f(z) is analytic then
∫
γ fdz = 0 for

all closed curves γ in Ω.

Liouville’s theorem

If f(z) is entire (analytic on the whole C) and bounded then it is a constant.

Proof. Let M be a global bound for f(z). Then, by Cauchy’s estimate,

|f ′(z)| ≤ 1

r
M,

for all r > 0. Hence f ′(z) = 0, i.e. f(z) is a constant.

The fundamental theorem of Algebra

If P (z) is a nonconstant polynomial then it has a zero.

Proof. If not, then 1/P (z) is an entire function (analytic on C). If m is the degree of P (z)
then, for |z| > 1 we have |P (z)| ≥ c|z| for some c ∈ C. Therefore P (z) → ∞ as z → ∞ and
so 1/P (z) → 0. The function 1/P (z) is thus bounded on C and so it must–by Liouville’s
theorem–be constant, in violation to the assumption.

Of course, we can continue and show that every polynomial of degree m has exactly m zeros
(not necessarily distinct) a1, . . . , am, and that P (z) = b(z − a1) · · · (z − am). Indeed, by the
fundamental theorem of Algebra, P (z) has a zero a and so P (z) = (z − a)Q(z) where Q(z)
is a polynomial of degree m− 1. The result follows by induction.

The removable singularities can be removed

Suppose f(z) is analytic on Ω − {a} where a is a removable singularity. Then there exists
a unique analytic function on Ω which coincides with f(z) on Ω− {a}.
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Proof. Let r be such that B = {z : |z − a| < r} ⊆ Ω. Define

g(z) :=
1

2πi

∫

∂B

f(ζ)dζ

ζ − z
, z ∈ B,

a function which is analytic on B, and

F (z) :=

{
g(z), z ∈ B

f(z), z ∈ Ω \B
,

a function which is analytic on Ω. Since the integral formula is valid in presence of removable
singularities, we have

f(z) =
1

2πi

∫

∂B

f(ζ)dζ

ζ − z
= g(z), z ∈ B − {a}.

Hence f(z) = F (z) for all z ∈ Ω− {a}.

Taylor’s formula

If f(z) is analytic in a neighbourhood Ω of a point a then, for all n ∈ N, there is an analytic
function fn(z) such that

f(z) =
n−1∑

k=0

f (k)(a)

k!
(z − a)k + fn(z)(z − a)n.

Proof. Let
F (z) = (f(z)− f(a))/(z − a), z ∈ Ω− a.

Then a is a removable singularity for F (z). Since F (z) → f ′(a) as z → a, the function

f1(z) :=

{
f(z)−f(a)

z−a , z ∈ Ω− a

f ′(a), z = a

is an analytic extension of F (z). By induction, define, for n = 2, 3, . . .,

fn(z) :=

{
fn−1(z)−fn−1(a)

z−a , z ∈ Ω− a

f ′
n−1(a), z = a

,

functions which are all analytic on Ω. Unraveling this, we have

f(z) = f(a) + (z − a)f1(z) = f(a) + (z − a)[f1(a) + (z − a)f2(z)]

= f(a) + (z − a)f1(a) + (z − a)2f2(z) = f(a) + (z − a)f1(a) + (z − a)2[f2(a) + (z − a)f3(z)]

= f(a) + (z − a)f1(a) + (z − a)2f2(z) + (z − a)3f3(z)

· · ·
= f(a) + (z − a)f1(a) + (z − a)2f2(z) + · · ·+ (z − a)nfn(z).
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Differentiate this expression n times and set z = a to get

f (n)(a) = n!fn(a),

whence the result.

Note that, since fn(z) is continuous at a, the last term (=remainder) can be written as
O(|z − a|n) or as o(|z − a|n−1), as z → a.

There is a usefule formula for the remainder, obtained by applying the representation formula
for fn(z). Let BR := {ζ : |ζ − a| < R} ⊆ Ω. Then

fn(z) =
1

2πi

∫

∂BR

fn(ζ)dζ

ζ − z
, z ∈ B.

But ζ

za

R

fn(ζ) =
f(ζ)

(ζ − a)n
− f(a)

(ζ − a)n
− f1(a)

(ζ − a)n−1
− · · · − −fn−1(a)

ζ − a
.

We have ∫

∂BR

dζ

(ζ − a)(ζ − z)
=

1

z − a

∫

∂BR

(
dζ

ζ − z
− dζ

ζ − a

)
= 0

The LHS is an analytic function of a and so if we differentiate k times, we still get 0, showing
that ∫

∂BR

dζ

(ζ − a)k(ζ − z)
= 0.

Therefore,

fn(z) =
1

2πi

∫

∂BR

f(ζ)dζ

(ζ − a)n(ζ − z)
.

The structure of zeros and poles

Suppose f(z) is analytic on the domain Ω. We say that a ∈ Ω is a zero of f(z) if f(a) = 0.

Suppose f(z) is analytic on Ω− a. The point a is a POLE if f(z) → ∞ as z → a.

By definition, a pole is an isolated singularity (i.e., by definition, there are no other singu-
larities in a neighbourhood of a pole). A pole is a singularity, but it is not a bad singularity
because the assertion says that the limit exists (it is infinitity but, at least, it exists). Since
the function f(z) is continuous and tends to ∞ as z → a, we have that f(z) 6= 0 in a
neighbourghood Ω′ of a. Hence the function 1/f(z) is analytic on Ω′ − a, with a zero at a.
We can thus treat poles of f(z) as zeros of 1/f(z) in a sufficiently small neighbourhood of
the pole.

We show that if a is a zero of f(z) and the function f(z) is not trivial then only finitely
many derivatives of f can vanish at a. That is,
If a is a zero then

h := min{n ∈ N : f (n)(a) 6= 0}
is a well-defined natural number, called the order of the zero.
Correspondingly, we may talk about the order of a pole.
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Proof. Suppose that a is a zero for which f (n)(a) = 0 for all n. We will show that f(z) is
the constant function. By Taylor’s theorem, we have

f(z) = (z − a)nfn(z), ∀n ∈ N,

with fn(z) being all analytic on Ω. Consider the integral expression for fn(z). Let M be
the maximum of |f(ζ)| on ∂BR. Then, for z ∈ BR, ζ ∈ ∂BR, we have |ζ − a| = R, and
|ζ − z| ≥ |ζ − a| − |z − a| = R− |z − a|, so

|fn(z)| ≤
M

Rn−1(R− |z − a|) , z ∈ BR.

Hence

|f(z)| = |fn(z)(z − a)n| ≤
( |z − a|

R

)n MR

R− |z − a| , z ∈ BR, n ∈ N.

Letting n → ∞, we get f(z) = 0, for all z ∈ BR.

So if a is a zero of f(z) of order h then f(z) = (z − a)hfh(z), where fh(a) 6= 0, and
since fh is continuous, it is nonzero in a neighbourhood of a, meaning that f(z) is nonzero
in a neighborhood of a, meaning that there can be no other zero in a sufficiently small
neighbourhood of a. In other words, the zeros of an analytic function in Ω are isolated in
Ω.

Incidentally, this provides another proof of the fact that if a polynomial P (z) has a zero at
a then z − a divides P (z). Indeed, P (z) being an analytic function, we have, by the above,
that P (z) = (z−a)Q(z) where Q(z) is also anlytic. Necessarily, Q(z) must be a polynomial.

Hence: If f(z), g(z) are analytic function such that f(z) = g(z) for all z ∈ A, where A has
an accumulation point in Ω, then f coincides with g. Proof: If not, then the seto of zeros
of the function f(z)− g(z) would have an accumulation point in Ω and this is not possible.

A function is called meromorphic on Ω if it is analytic except for poles (which are isolated
singularities, by definition). Linear combinations of meromorphic functions are meromor-
phic. Products and quotients of meromorphic functions are meromorphic.

Let a be a point in Ω such that

lim
z→a

(z − a)pf(z) = 0

for some p ∈ R. Then limz→a(z−a)p+εf(z) = 0 for all ε > 0. So for some m ∈ Z, limz→a(z−
a)mf(z) = 0. Then (z− a)mf(z) has a removable singularity at a and vanishes at a. Unless
f(z) is trivial, (z−a)mf(z) has a zero at a of finite order k. Thus, (z−a)mf(z) = (z−a)kg(z)
where g(z) is analytic, g(a) 6= 0. Hence f(z) = (z − a)k−mg(z). So limz→a(z − a)pf(z) = 0
for all p > m− k, while limz→a(z − a)pf(z) = ∞ for all p < m− k. The point here is that
if limz→a(z − a)pf(z) = 0 for some p ∈ R then

(*) there exists h ∈ Z such that the function (z − a)hf(z) is analytic and does
not vanish at a and so limz→a(z− a)−h+εf(z) = 0, limz→a(z− a)−h−εf(z) = ∞,
for all ε > 0.
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Let a be a point in Ω such that f(z) is analytic on Ω− a and

lim
z→a

(z − a)pf(z) = ∞

for some p ∈ R. The same conclusion (*) holds. The number h can be any integer. If h = 0
there is nothing to say. If h < 0 then a is a zero of order |h|. If h > 0 then a is a pole of
order h and because (z − a)hf(z) is analytic, we have, by Taylor’s theorem,

(z − a)hf(z) = Bh +Bh−1(z − a) + · · ·+B1(z − a)h−1 + ϕ(z)(z − a)h,

where ϕ(z) is analytic. Thus,

f(z) = Bh(z − a)−h + · · ·+B1(z − a)−1 + ϕ(z).

This is the development of f(z) around a pole of order h. It is the sum of an analytic
function ϕ(z) and a so-called singular part (a rational function of order h).

Suppose that f(z) is defined and analytic on a neighbourhood of ∞. We say that ∞ is a
removable singularity (resp. zero or pole) for f(z) if 0 is a removable singularity (resp. zero
or pole) for f(1/z).

Essential singularities

If f(z) is analytic on Ω−a then a is called essential (isolated) singularity if neither limz→a(z−
a)pf(z) = 0 for some p ∈ R nor limz→a(z − a)pf(z) = ∞ for some p ∈ R. For instance,
z = 0 is an essential singularity for sin(1/z).

The theorem of Weierstraß says that if a is an essential singularity for f(z) then for any
open set U containing a we have f(U) = C.

Suppose that f(z) is defined and analytic on a neighbourhood of ∞. We say that ∞ is
an essential singularity for f(z) if 0 is an essential singularity for f(1/z). The theorem of
Weierstraß applies in this case as well.

Number of zeros

Suppose f(z) is a nontrivial analytic function on a disk ∆ and let z1, z2, . . . be its zeros (each
zero counted as many times as its order). Then for any closed curve γ in ∆ not passing
through a zero we have

∑

j

n(γ, zj) =
1

2πi

∫

γ

f ′(z)

f(z)
dz,

and the sum has only finitely many terms.

Proof. Suppose there are only finitely many zeros: z1, . . . , zn. Then

f(z) = (z − z1) · · · (z − zn)g(z),
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where g(z) is analytic with no zeros in ∆. Then

f ′(z)

f(z)
=

1

z − z1
+ · · ·+ 1

z − zn
+

g′(z)

g(z)
,

for all z 6= zj . Let γ be a cclosed curve in ∆ not passing through a zero. By Cauchy’s
theorem,

∫
γ g

′(z)/g(z) dz = 0, while
∫
γ dz/(z − zj) = 2πi n(γ, zj). If there are infinitely

many zeros then since they have no accumulation points in ∆, we can find disk ∆′ ⊆ ∆
containing γ such that only finitely many zeros lie in ∆′ and apply the same reasoning.

Consider now the mapping z 7→ w = f(z), under which zj 7→ 0. Let Γ = f◦γ. Then Γ is a
closed curve and, by a change of variables,

∫

γ

f ′(z)

f(z)
dz =

∫

Γ

dw

w
.

But
∫
Γ

dw
w = n(Γ, 0) the number of times that Γ winds around zero. Thus, the theorem

above can be interpreted as:

n(Γ, 0) =
∑

j

n(γ, zj)

meaning that if γ is a closed curve then its image Γ = f◦γ winds around 0 as many times
as the zeros contained in γ. In particular, if γ encloses no zeros of f(z) then Γ does not
encircle zero.

Another application is: z0f(  )

z0

γ

Γ = f γ

f 

If the order of z0 as
a zero of the function
f(z)−f(z0) is n then any
curve γ around z0 has an
image f◦γ which winds n
times around f(z0).

#{roots of f(z) = a enclosed by γ} =
1

2πi

∫

γ

f ′(z)dz

f(z)− a
.

This also reads:

#{times Γ = f◦γ winds around a} = #{roots of f(z) = a enclosed by γ}.

It is necessary to assume, in both cases, that γ does not pass through any root of the
equation f(z) = a.

Local correspondence

If z0 is a zero of order n of the function f(z) − f(z0) then a small perturbation does not
change the number of zeros. Precisely, letting w0 = f(z0) we have that ∀ε > 0 ∃δ = δ(ε) > 0
such that if |a − w0| < δ(ε) then the equation f(z) = a has exactly n roots in the disk
|z − z0| < ε.

w0

z
0

(ε)δ

ε

Proof. Suppose the order of z0 as a zero of f(z) − w0 is n. Since zeros are isolated, let
ε be so small that the circle γ with radious ε and centred at z0 contains no other zero of
f(z)−w0. Then Γ = f◦γ winds n times around w0. Choose δ so that the δ-neighbourhood
of w0 is not intersected by Γ. Pick a in this neighbourhood. Then n(Γ, a) = n, also. Since
this neighbourhood is contained in the image of the interior of the circle γ under f , we have
that the equation f(z) = a has roots inside γ. In fact, if we pick ε so small that f ′(z) has

w
0

Γ = f γ

a
δ

f 
γz0

ε

no zero for 0 < |z − z0| < ε (possible because the zeros of f ′(z) are isolated) then whatever
roots the equation f(z) = a has they must be simple.
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Further properties of analytic functions

Any analytic function is an open map, i.e. it maps open sets into open sets.

Proof. Let w0 = f(z0). Let ε be so small we can find an open disk ∆(z0, ε) so that z0 is the
only zero of f(z) = w0 and f ′(z) does not vanish on this disk. Then there is a δ > 0 such
that for each a ∈ ∆(w0, δ) the f(z)− a has exactly one zero in ∆(z0, ε).

If f(z) is analytic at z0 and f ′(z0) 6= 0 then f maps a neighbourhood of z0 conformally and
diffeomorphically onto some domain.

Proof. As argued above, the inverse function f−1 exists locally. It is thus analytic. And its
derivative at f(z0) is also nonzero. Hence f−1 is also conformal.

The maximum principle

If f(z) is analytic on Ω then |f(z)| has no maximum on Ω.
First proof. It is due to the fact that Ω is an open map. If there is z0 ∈ Ω such that
|f(z0)| ≥ |f(z)| for all z ∈ Ω, then consider an open disk ∆(z0, ε) ⊆ Ω. Its image V is an
open set containing f(z0). Therefore there is a point w ∈ V such that |w| > |f(z0)|. Since
w ∈ V = f(∆(z0, ε)), there a z ∈ Ω such that w = f(z). So |f(z)| > |f(z0)| and this is
impossible.

More generally,

No open map f from R
d into R

d can be such that |f | attain a maximum in the
interior of an open set.

Second proof of the maximum principle. Let ∆(z0, r) be a disk centred at z0 ∈ Ω with radius
r such that ∆(z0, r) ⊂ Ω. Consider the representation formula on the boundary of the disk:

f(z0) =
1

2π

∫ 2π

0
f(z0 + reiθ)dθ.

If |f(z0)| were a maximum then

|f(z0 + reiθ)| ≤ |f(z0)|, 0 ≤ θ < 2π.

If, even for a single θ the equality were strict, then, by continuity and compactness, the
inequality would be strict for all θ, and so

∫ 2π

0
|f(z0 + reiθ)|dθ < 2π|f(z0)|.

But

|f(z0)| ≤
1

2π

∫ 2π

0
f(z0 + reiθ)dθ,

and so we would obtain the contradiction |f(z0)| < |f(z0)|.

43



Lemma of Schwarz

Suppose f(z) is analytic on {|z| < 1} and
(i) |f(z)| ≤ 1 for all |z| < 1;
(ii) f(0) = 0;
(iii) |f ′(0)| ≤ 1.
If |f(z)| = |z| for some z 6= 0, or if |f ′(0)| = 1, then

f(z) = cz

for some c ∈ C with |c| = 1.

Proof. Let

f1(z) :=





f(z)

z
, z 6= 0

f ′(0), z = 0
.

If |z| = r < 1 then |f1(z)| = |f(z)|/r ≤ 1/r. Then |f1(z)| ≤ 1/r for |z| ≤ r as well. As
r → 1, we obtain |f1(z)| ≤ 1 for |z| < 1. If |f(z0)| = |z0| for some z0 6= 0, or if |f ′(0)| = 1,
then |f1(z0)| = 1 of f1(0)| = 1. Thus, at some point, |f1(z)| attains its maximum value 1.
By the maximum principle, f1(z) ≡ c, where c is a constant. Necessarily, |c| = 1.

Chains and cycles

Recall that a chain in Ω is a formal linear combination

γ = α1γ1 + · · ·+ αnγn

of distinct curves γj in Ω, with coefficients αj ∈ N. Note that γ1−2γ2 stands for γ1+2(−γ2),
so there is no restriction in requiring all αj to be positive.

A cycle is a chain such that all the γj are closed curves. Integration over chains is defined
by ∫

∑
j αjγj

fdz :=
∑

j

αj

∫

γj

fdz.

The index of a cycle γ with respect to a point a ∈ C is defined by

n(γ, a) =
1

2πi

∫

γ

dz

z − a

and so, by the definition of the integral over a chain and the index of a closed curve, we
have

n(γ, a) =
∑

j

αj n(γj , a), if γ =
∑

j

αjγj .
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Simple connectivity

A special way, valid only in 2 dimensions, to define simple connectivity of a domain Ω is
to require that Ωc be connected, i.e. that it cannot be written as the disjoint union of two
nontrivial closed sets. As a matter of fact, this is a definition valid on a sphere. If Ω ⊂ C then
we have to think of C as the image of the sphere under the Riemann projection, including
the point at infinity. Thus, a strip Ω = (a, b)× R is simply connected.

Theorem: A domain Ω is simple connected if and only if

n(γ, a) = 0, for all cycles γ in Ω, and all a ∈ Ωc.

Proof. Suppose Ω is simply connected, i.e. Ωc is connected. Let γ be a closed curve in Ω.
Consider the regions R1, R2, . . . , Rm (disjoint open sets) determined by γ. All except one of
them are bounded. Let R1 be the unbounded region. Since the curve belongs to Ω we have
that Ωc ⊂ R1 ∪ R2 ∪ · · · ∪ Rm. Since ∞ ∈ Ωc and ∞ ∈ R1 and since Ωc is connected, we
have Ωc ⊂ R1. Therefore, if a ∈ Ω then a ∈ R1. But for any a in the unbounded component
of the curve, we have n(γ, a) = 0. Since the result holds for a closed curve, it also holds for
a cycle contained in Ω.
Conversely, assume that n(γ, a) = 0 for all cycles in Ω, and assume that Ωc = A∪B, where
A,B are closed sets, A ∩B = ∅. We show that this is impossible. Let

δ = min{|z − w| : z ∈ A,w ∈ B}.

Consider a grid G of closed squares of side δ/
√
2 extending over the whole space. Call

the squares Qj . Chose the grid so that a lies in the centre of a square, say square Q1.
Each square Qj has a boundary denoted by ∂Qj which can be considered as a closed curve
oriented in the positive direction. Now consider the cycle

γ =
∑

j:Qj∩A 6=∅

∂Qj .

Hence
n(γ, a) =

∑

j:Qj∩A 6=∅

n(∂Qj , a) = n(∂Q1, a) +
∑

j 6=1:Qj∩A 6=∅

n(∂Qj , a) = 1,

because n(∂Q1, a) = 1 but n(∂Qj , a) = 0 for every Qj not containing a. But now observe
that the cycle γ is actually a closed curve (after we perform all cancellations). By the choice
of δ this closed curve does not meet A and it does not meet B either. Hence γ lies in Ω.
But this violates our hypothesis that the index of any cycle in Ω with respect to a point not
in Ω is zero.

Homology

Let γ be a cycle in an open set Ω. Say that γ is homologous to 0 with respect to Ω if
n(γ, a) = 0 for all a ∈ Ωc, and write

γ ∼ 0 mod Ω.
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If γ1, γ2 are two cycles in Ω we say that they are homologous with respect to Ω if γ1−γ2 ∼ 0
mod Ω i.e. if n(γ1, a) = n(γ2, a) for all a ∈ Ωc, and write this as

γ1 ∼ γ2 mod Ω.

Of course, if γ1 ∼ 0 mod Ω and γ2 ∼ 0 mod Ω then γ1 ∼ γ2 mod Ω but the point is that
the former is only a sufficient condition for the latter. Note that, for all integers λ, λ′,

γ1 ∼ γ2 & γ′1 ∼ γ′2 ⇒ λγ1 + λ′γ′1 ∼ λγ2 + λ′γ′2.

Indeed, for all a ∈ Ωc, n(λγ1 + λ′γ′1, a) = λ n(γ1, a) + λ′
n(γ′1, a) = λ n(γ2, a) + λ′

n(γ′2, a) = Ω
γ1

γ2

γ3

γ4

γ5

6
γ

γ1 ∼ γ2
γ3 ∼ γ4
γ4 6∼ γ5
γ6 6∼ γ3

n(λγ2 + λ′γ′2, a). Also,

γ ∼ 0 mod Ω ⇒ γ ∼ 0 mod Ω′, if Ω′ ⊃ Ω.

The idea is that γ1 ∼ γ2 mod Ω if γ1 can be continuously transformed to γ2 within Ω.

General form of Cauchy’s theorem

Let Ω be an open set and f(z) analytic on Ω. If γ is a cycle in Ω such that γ ∼ 0 mod Ω
then

∫
γ f(z)dz = 0. The same remains true in presence of removable singularities.

Proof. Suppose that Ω is a bounded open set. Let δ > 0 and let Qδ = {Q1, Q2, . . .} be the
collection of all closed squares of the form [mδ, (m+ 1)δ]× nδ, (n+1)δ], where m,n ∈ Z. If
δ is sufficiently small then

J := {j : Qj ∈ Qδ, Qj ⊂ Ω}.
Also note that, due to the boundedness of Ω, the set J is finite. Let

Ω
Γ

γ

δΓδ :=
∑

j∈J

∂Qδ, Ωδ := (∪j∈JQj)
o .

Also, let γ be a cycle in Ω such that γ ∼ 0 mod Ω. Let δ be even smaller if necessary so
that γ is a cycle in Ωδ. Then γ ∼ 0 mod Ωδ, i.e. n(γ, a) = 0 for all a 6∈ Ωδ. In particular,

n(γ, ζ) = 0, for all ζ on Γδ.

Let f(z) be analytic on Ω. Then

∫

Γδ

f(ζ)dζ

ζ − z
=

∑

j∈J

∫

∂Qj

f(ζ)dζ

ζ − z

If z ∈ ∪j∈JQ
0
j then, since the union is disjoint, there is only one j ∈ J so that z ∈ Qo

j and,
for this j, ∫

∂Qj

f(ζ)dζ

ζ − z
= 2πif(z),

whereas
∫
∂Qj

f(ζ)dζ
ζ−z = 0 for all other j, from the simple form of Cauchy’s theorem on a

rectangle. Therefore,

f(z) =
1

2πi

∫

Γδ

f(ζ)dζ

ζ − z
.

46



for all z ∈ ∪j∈JQ
0
j . Since both sides are continuous functions of z, we have that this equality

remains true for all z ∈ Ωδ.
(Comment: Essentially what he have done is this: Regardless of the connectedness properties

of Ω we argued that there is a (simple) closed curve (Γδ) for which f(ζ)
ζ−z integrates to zero

as ζ moves on this curve. We did that by taking a regular δ-covering of Ω and looked at
the boundary of the largest region of it contained in Ω. Having found one closed curve over
which the integral of this function is zero, we will pass on to arbitrary closed curved γ which
are homologous to 0.)
Consider then the closed curve γ in Ωδ which is homologous to 0. We integrate both sides
of the above over γ:

∫

γ
f(z)dz =

1

2πi

∫

γ
dz

∫

Γδ

f(ζ)dζ

ζ − z
=

1

2πi

∫

Γδ

f(ζ)dζ

∫

γ

dz

ζ − z
,

where integrals were interchanged by virtue of the joint continuity of f(ζ)/(ζ − z), ζ ∈ Γδ,
z ∈ γ. But ∫

γ

dz

ζ − z
= − n(γ, ζ) = 0,

since ζ ∈ Γδ. If Ω is unbounded, then let ∆ be a disk that contains γ in its interior and let
Ω∗ = Ω∩∆. If a ∈ Ω∗c then n(γ, a) = 0, so γ ∼ 0 mod Ω∗. Hence, by the above argument,∫
γ fdz = 0.

Cauchy’s theorem on simply connected domains

If Ω is open and simply connected then, as we proved, any cycle γ is homologous to 0 and
so

∫
γ fdz = 0 for any analytic function f(z).

One consequence of this is that any analytic function f(z) on a simple domain Ω has an
analytic antiderivative, i.e. there is an analytic (single-valued!) function F (z) on Ω such
that F ′(z) = f(z) for all z ∈ Ω.

A consequence of the consequence is that if f(z) is analytic on a simple domain Ω and f(z) 6=
0 for all z ∈ Ω, then we can pick a single-valued analytic, on Ω, branch of log f(z). Indeed,
under our assumptions, f ′(z)/f(z) is analytic on Ω. Hence it has an antiderivative F (z),
i.e. there is an analytic, on Ω, function F (z) such that F ′(z) = f ′(z)/f(z). Define h(z) :=
f(z)e−F (z). Then h′(z) = f ′(z)e−F (z) − F ′(z)f(z)e−F (z) = f ′(z)e−F (z) − f ′(z)e−F (z) = 0,
for all z ∈ Ω. This means that h(z) is constant. Fix z0 ∈ Ω Hence h(z) = h(z0) for all
z ∈ Ω, i.e. f(z)e−F (z) ≡ f(z0)e

−F (z0), or f(z) ≡ eF (z)−F (z0)f(z0). Pick log f(z0) to be one
of the infinitely many possible values for this specific point z0. We have f(z0) = elog f(z0).
So f(z) ≡ eF (z)−F (z0)+log f(z0). Therefore, we DEFINE, log f(z) ≡ F (z)−F (z0) + log f(z0).
The right-hand side is well-defined (because we picked a specific value for the constant
log f(z0)) and is analytic because F (z) is analytic. Therefore log f(z) is well-defined for all
z ∈ Ω, single-valued, and analytic. It is a branch of the logarithm because, by the way it
was defined, the exponential of the right-hand side equals f(z).
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Locally exact 1-forms

A 1-form ω = pdx + qdy is locally 1 exact in a domain Ω if for each open disk there are
functions U, V such that p = ∂U

∂x q = ∂V
∂y on the disk. In general, p, q are allowed to be

complex-valued.

It is easy to see that a 1-form is locally eaxact iff
∫
∂R ω = 0 for all rectangles R ⊂ Ω.

If f(z) is analytic on Ω such that, for each disk, it has analytic antiderivative F (z) on the
disk then ω = f(z)dz is exact. This is a consequence of (the simple form of) Cauchy’s
theorem:

∫
∂R f(z)dz = 0 for all rectangles R ⊂ Ω. It is useful to notice

f(z)dz = (u+ iv)dx+ (−v + iu)dy.

Also,
f(z)dz = F ′(z)dz = F ′(z)dx+ iF ′(z)dy.

Since F ′(z) = ∂F
∂x = ∂F

∂(iy) , we have

f(z)dz =
∂F

∂x
dx+

∂F

∂y
dy.

Now, if F = U + iV then Fx = Ux + iVx, Fy = Uy + iVy. But Ux = Vy, Uy = −Vx. Hence
Fx = Ux − iUy, Fy = Uy + iUx. So we can also write

f(z)dz = (Ux − iUy)dx+ (Uy + iUx)dy

= (Uxdx+ Uydy) + i(Uxdy − Uydx).

Using V instead of U we also have

f(z)dz = (Vydx− Vxdy) + i(Vxdx+ Vydy).

So we have
f(z)dz = ξ + iη

where the real and imaginary parts,

ω = Uxdx+ Uydy, η = Vxdx+ Vydy,

are both (real) exact differentials.

Conversely, given an exact real differential ω = pdx + qdy = Uxdx + Uydy we can find
another exact real differential η = Vxdx + Vydy so that ξ + iη = f(z)dz, where f(z) is
analytic, provided that U is harmonic: ∆U = 0. But this is too restrictive for an aribtrary
exact differential.

Nevertheless, we can prove that if ω is any locally exact differential then for any cycle γ in
Ω such that γ ∼ 0, ∫

γ
ω = 0.

Thus, we can lift the local property
∫
∂R ω = 0 to a global one.
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Multiply connected regions

We say that a domain Ω has finite connectivity n if Ωc has n connected components. Let
A1, . . . , An be the components, with An being the unbounded one.

As above, we can find cycles γ1, . . . , γn−1 such that

n(γj , a) =

{
1 if a ∈ Aj

0 if a ∈ Ak, k ∈ {1, . . . , n} − {j}.

Indeed, the cycle Γδ constructed earlier is written simply as

Γδ = γ1 + · · ·+ γn−1 + γn,

and the cycles we are interested in are the first n− 1. Notice that any cycle γ in Ω satisfies

γ
3

γ
2

γ
1

γ ∼
n−1∑

j=1

cjγj mod Ω

where
cj := n(γj , a), a ∈ Aj .

Therefore,
∫

γ
fdz =

n−1∑

j=1

cj

∫

γj

fdz.

We say that γ1, . . . , γn−1 is a homology basis for Ω. The numbers

Pj :=

∫

γj

fdz

are called periods. Notice that Pj does not depend on the specific choice for γj , but only
on the function f . So, to compute an integral over a cycle, we need (a) to find the indices
of the cycle with respect to the components Aj and (b) to find the periods of f .

Next consider a curve γ(z0, z) with endpoints z0, z. It is easy to see that, if γ′(z0, z) is
another such curve, then

∫

γ(z0,z)
f(ζ)d(ζ)−

∫

γ′(z0,z)
f(ζ)d(ζ) =

n−1∑

j=1

ℓjPj .

That is, the function F (z) :=
∫
γ(z0,z)

f(ζ)d(ζ) is determined up to multiples of the periods.

In other words, the dependence of F (z) :=
∫
γ(z0,z)

f(ζ)d(ζ) is through the endpoints and

through the windings of the curve. If the periods vanish (and this depends only on the
function) then

∫
γ(z0,z)

f(ζ)d(ζ) depends only on endpoints and thus a single-valued analytic
indefinite integral is determined on Ω.
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Example: an annulus

Suppose that Ω := {z : r1 < |z| < r2}. Then Ω is doubly connected since Ωc = A1 + A2,
A1 = {z : |z| ≤ r1}, A2 = {z : |z| ≥ r2}. Any homology basis has one element, for example
the circle C with center 0 and radius r ∈ (r1, r2). Any cycle γ satisfies γ ∼ nC, where
n ∈ Z. So for any analytic function f(z) on Ω, we have

∫
γ fdz = nP , where P =

∫
C fdz. If

P = 0 then an indefinite integral F (z) exists on Ω. This does not mean that the function
can be analytically extended on the disk {z : |z| < r2}. Indeed, let, for example, f(z) =
1/z2 on the ‘annulus’ 0 < |z| < ∞. Let C be the circle around 0 with radius 1. Then
P =

∫
C f(z)dz =

∫ 2π
0 e−2itieitdt = i

∫ 2π
0 e−itdt = 0. So f(z) = F ′(z) for some function F (z),

analytic on 0 < |z| < ∞. Of course, we know that F (z) = −1/z. Neither f(z) nor F (z) are
analytic on C.

Integral formula in a multiply connected domain

Let Ω be an n-connected domain and let γ be a cycle such that γ ∼ 0 mod Ω. Then, for
any function f(z), analytic on Ω,

1

2πi

∫

γ

f(z)dz

z − a
= n(γ, a)f(a).

The proof of this is as in the case of a disk: Let F (z) := f(z)−f(a)
z−a . This is analytic on Ω− a

with removable singularity at a. Hence Cauchy’s theorem holds:
∫
γ F (z)dz = 0, and this

gives the integral formula.

a γ

Calculus of residues

Consider the case where f(z) is analytic on

Ω′ = Ω \ {a1, . . . , an},

where Ω is a domain. Let Cj be a circle with centre aj and radius δj > 0, small enough to
be contained in Ω without wnclosing any other point ak. Any cycle γ in Ω′, such that γ ∼ 0
mod Ω must satisfy

γ ∼
n∑

j=1

n(γ, aj)Cj mod Ω′.

Therefore if f(z) is analytic on Ω′,

a

a

a

a

a a a a

γ

γ

1

2

3

4

Ω’ 1 2 3 4, , ,{   }= Ω −

Ω

~ 0 mod Ω

∫

γ
fdz =

n∑

j=1

n(γ, aj)

∫

Cj

fdz.

The periods Pj =
∫
Cj

fdz, j = 1, . . . , n are what need to be computed.

Note that the function

fj(z) := f(z)− Pj/2πi

z − a
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satisfies ∫

Cj

fj(z)dz = 0

and therefore fj(z) has an indefinite intergral on the annulus 0 < |z − aj | < δj , i.e. there is
a function Fj(z), analytic on 0 < |z− aj | < δj , such that F ′

j(z) = fj(z) on 0 < |z− aj | < δj .
It is customary to define the residue of f(z) at an isolated singularity aj by

Resz=aj f(z) :=
1

2πi

∫

Cj

fdz.

In view of this notation, the previous display is written

1

2πi

∫

γ
fdz =

n∑

j=1

n(γ, aj)Resz=aj f(z).

Computing residues

Recall that if a is an isolated singularity of f(z) thenR = Resz=a f(z) is such that f(z) = R
z−a

has analytic antiderivative on 0 < |z − a| < δ for some δ > 0.

If a is a pole of order h then (z − a)hf(z) is analytic around a and so, by Taylor-expanding
(z − a)hf(z) around a we obtain

(z − a)hf(z) = Bh +Bh−1(z − a) + · · ·+Bh(z − a)h−1 + (z − a)hϕ(z),

where ϕ(z) is analytic around a, and so

f(z) = Bh(z − a)−h + · · ·+B1(z − a)−1 + ϕ(z),

Since all terms (z − a)−k with k 6= 1 have analytic antiderivative on 0 < |z − a| < δ, we see
if we subtract B1(z− a)−1 from f(z) we obtain a function which has analytic antiderivative
on 0 < |z − a| < δ. Hence, here,

Resz=a f(z) = B1.

Alternatively, since B1 is the (h− 1)-th coefficient in the Taylor expansion of (z − a)hf(z)
we have

Resz=a f(z) = B1 =
1

(h− 1)!

dh

dzh−1
(z − a)hf(z)

∣∣∣∣
z=a

.

In particular, for a simple pole (h = 1), Resz=a f(z) = (z − a)f(z)
∣∣
z=a

.

Special cases of the residue theorem

1. The integral formula: If f(z) is analytic on the domain Ω then, for a ∈ Ω, f(z)/(z − a)

has a pole at a with residue f(a). So 1
2πi

∫
γ

f(z)dz
z−a = 1, for any cycle γ in Ω, homologous to

0, not passing through a.
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2. Number of zeros of analytic function on a disk: If f(z) is analytic on the disk ∆ and
if aj are its zeros, then f ′(z)/f(z) is meromorphic on ∆ with poles at aj . The residue
of f ′(z)/f(z) at aj equals the order of the zero. Hence, for anyy for any cycle γ in Ω,

homologous to 0, not passing through any aj , we have that 1
2πi

∫
γ

f ′(z)
f(z) dz equals the sum of

the residues, i.e. the total number of zeros in ∆ (counting multiplicities).

The argument principle

If f(z) is meromorphic on Ω with zeros aj and poles bk then

1

2πi

∫

γ

f ′(z)

f(z)
dz =

∑

j

n(γ, aj)−
∑

k

n(γ, bk),

for any cycle γ in Ω not passing through any zeros or poles, and such that γ ∼ 0 mod Ω.

Proof. If f(z) is meromorphic on Ω with zeros Aj (distinct) and poles Bk (distinct) then we
can write

f(z) =
∏

j

(z −Aj)
hj

∏

k

(z −Bk)
−dkg(z),

where g(z) is analytic with no zeros and where hj is the order of Aj and dk the order of Bk.
Hence

f ′(z)

f(z)
=

∑

j

hj
z −Aj

−
∑

k

dk
z −Bk

+
g′(z)

g(z)
.

The function f ′(z)/f(z) is also meromorphic on Ω with poles Aj , Bk. The residue at Aj is
hj and at Bk is −dk. So, by the residue theorem, if γ is any cycle in Ω homologous to 0,
not passing through any Aj or Bk, we have

1

2πi

∫

γ

f ′(z)

f(z)
dz =

∑

j

n(γ,Aj)hj −
∑

k

n(γ,Bk)dk.

If (aj) is a listing of the (Aj) counting their multiplicities (similarly, (bk) for (Bk)) then the
result follows.

Rouché’s theorem

Suppose γ ∼ 0 mod Ω such that n(γ, z) ∈ {0, 1} for all z ∈ Ω − γ. Suppose f(z), g(z) are
analytic on Ω such that

|f(z)− g(z)| < |f(z)|, z ∈ γ.

Then f(z) and g(z) have the same number of zeros enclosed by γ.
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Weirstraß’ theorem

Suppose that fn(z) is analytic on Ωn and there is a function f(z) defined on some domain
Ω such that fn(z) → f(z) as n → ∞ uniformly on compact subsets of Ω. Then f(z) is
analytic. Moreover, f ′

n(z) converges to f ′(z) uniformly on compact subsets of Ω.

Note: It is implicitly understood that, for each compact K ⊂ Ω, we have K ⊂ Ωn eventually.

Weirstraß’ theorem for series

If fn(z) are analytic on Ω and if
∑∞

n=1 fn(z) = f(z) uniformly on compact subsets of Ω then
f(z) is analytic and f ′(z) =

∑∞
n=1 f

′
n(z).

Hurwitz’ theorem

If fn(z) are zero-free, analytic on Ω, and fn(z) → f(z) uniformly on compact subsets of Ω
then either f(z) is zero-free or identically equal to zero.

Taylor series

If f(z) is analytic on Ω, z0 ∈ Ω, then

f(z) =
∞∑

n=0

f (n)(a)

n!
(z − z0)

n

uniformly on each closed disk centred at z0 and contained in Ω.

Proof. All we have to do is show that the remainder in Taylor’s formula converges to 0
uniformly over compact circles contained in Ω and centred at a. Taylor’s formula reads

f(z) =
n∑

k=0

f (k)(a)

k!
(z − a)k + fn+1(z)(z − a)n+1,

where

fn+1(z) =
1

2πi

∫

∂BR

f(ζ)dζ

(ζ − a)n+1(ζ − z)
.

where BR = {|z − a| ≤ R}. Then, for all z ∈ BR,

|fn+1(z)(z − a)n+1| ≤ M |z − a|n+1

Rn(R− |z − a|) =
MR

R− |z − a|

( |z − a|
R

)n+1

For each r < R, the last term tends to 0 uniformly over |z − a| ≤ r. Hence f(z) =
∑∞

n=0
f (n)(a)

n! (z − z0)
n uniformly over compact circles contained in Ω and centred at a.
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Laurent series

A Laurent series is an expression of the form

∑

n∈Z

anz
n,

i.e. a power series with positive and negative powers, understood to be defined for the values
of z for which the series ∑

n≥0

anz
n,

∑

n<0

anz
n

converge. The first series converges u.o.c. in |z| < R2, where R2 is the radius of convergence.

R2

1R

The second series can be considered as a power series in the variable 1/z, and so it converges
when |1/z| < R1. Hence a Laurent series always converges on an annulus

R1 < |z| < R2

where R1, R2 ∈ [0,∞]. If R1 = ∞ or R2 = 0 then the Laurent series does not converge at
all. More generally, we can, of course, consider Laurent series around a point z0, i.e.

∑

n∈Z

an(z − z0)
n.

Such a series converges on an annulus R1 < |z − z0| < R2.

Now let f(z) be an analytic function on some domain Ω and assume that

{z : R1 < |z − z0| < R2} ⊂ Ω.

We shall show that f(z) can be represented as a Laurent series. Let Cr be the circle with
centre z0 and radius r ∈ (R1, R2) and define

g(z) =
1

2πi

∫

Cr

f(ζ)

ζ − z
dζ, |z − z0| < r.

Clearly, g(z) is analytic and g(z) does not depend on r as long as |z − z0| < r < R2. Hence
g(z) is analytic on |z − z0| < R2. Define also

h(z) =
1

2πi

∫

−Cr

f(ζ)

ζ − z
dζ, |z − z0| > r.

Clearly, h(z) is analytic and h(z) does not depend on r as long as |z− z0| > R1. Hence g(z)
is analytic on |z − z0| > R1.

Since g(z) is analytic on Ωg = {|z− z0| < R2} and h(z) is analytic on Ωh = {|z− z0| > R1}
we have that g(z) + h(z) is analytic on Ωg ∩ Ωh = {z : R1 < |z − z0| < R2}. We show that
g(z)+h(z) = f(z). Let z be such that R1 < |z−z0| < R2. Pick R1 < r1 < |z−z0| < r2 < R2.
Since Cr1 − Cr2 ∼ 0 mod Ωg ∩ Ωh we have, by the general integral formula,

n(Cr1 − Cr2 , z)f(z) =
1

2πi

∫

Cr1−Cr2

f(ζ)

ζ − z
dζ.
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But n(Cr1 −Cr2 , z) = 1. On the other hand, g(z) = 1
2πi

∫
Cr1

f(ζ)
ζ−z dζ, h(z) =

1
2πi

∫
−Cr2

f(ζ)
ζ−z dζ.

We have

g(z) =
∞∑

n=0

An(z − z0)
n, An =

1

2πi

∫

Cr

f(ζ)

(ζ − z0)n+1
dζ.

Since h(z) is analytic on Ωh = {|z − z0| > R1}, we change variable by

z = z0 +
1

z′
.

Then Ωh is mapped onto |z′| < 1/R1. The function

h′(z′) = h(z0 + 1/z′)

From the definition of h(z), note that h(z) → 0 as z → ∞, so h′(0) = 0. By ordinary
Taylor’s theorem,

h′(z′) =
∞∑

n=1

Bnz
′n, |z′| < 1/R1, Bn =

1

2πi

∫

|ζ′|=1/r

h′(ζ ′)dζ ′

ζ ′n+1
.

Changing variables we have

h(z) =
∞∑

n=1

Bn(z − z0)
−n, |z − z0| > R1, Bn =

1

2πi

∫

|ζ−z0|=r
f(ζ)(ζ − z0)

n−1dζ.

Combining the above, we have (by setting An := B−n for n < 0):

f(z) =
∞∑

n=−∞

An(z−z0)
n, R1 < |z−z0| < R2, An =

1

2πi

∫

Cr

f(ζ)(ζ−z0)
−n−1dζ, n ∈ Z.

Partial fractions

The ratio of two polynomials (rational function) can be written as a sum of partial fractions
(by applying the algorithm of division). If we specify the zeros and the poles (together with
their orders) for a rational function then we have specified (up to a constant) the function.
A similar result is possible for meromorphic functions.

Suppose that f(z) is meromorphic on Ω. Thus it has isolated poles. Each pole b has finite

order o(b). By considering a Laurent development around b we have f(z) =
∑o(b)

n=1Bn(z −
b)−n+f+(z), where f+(z) is analytic around b. The first part is called singular part of f(z) at
z = b. So, for each pole bν there is a polynomial Pν such that f(z)−Pν(1/(z−bν)) is analytic
around bν . It is tempting to stipulated that if, from f(z), we subtract the sum of all singular
parts then we will obtain a function that is analytic on Ω, i.e. that f(z)−∑

ν Pν(1/(z− bν))
is analytic on Ω. Unfortunately, this is not true in general.
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