Summaries of the Lectures of the
Dimitsana Summer School on Stochastic
Analysis and Optimization in Finance
July 9 - July 21, 2001

1 F. Delbaen: Introduction to Mathematical F'i-
nance

We introduce the basic principles of elementary mathematical finance:
1) no transaction costs
2) full information for everybody
3) no restrictions on selling and buying.

Information is described using a filtered probability space

(2 (Fo<t» P) s Fuo =\ Fi.

0<t

We suppose the usual assumptions to be satisfied (Fy contains all null sets of
Foo, and Fy = Ny Fy for all t). Prices are described by cadlag processes adapted
to the filtration (F;),.,. For these lectures we suppose that prices are locally
bounded (or even continuous in most cases). By cleverly extending filtrations
one can show that discrete time can be embedded in this continuous time setting.
The time horizon is co. But this is more a matter of notation. Prices are denoted
by (5’0, e S'd), i.e. there are d + 1 assets. Locally bounded means there exists

a sequence (7,),~, of stopping times so that

sup HS}H <K, and T, ~oo.

t<T,

The asset 0 plays a special role. It is the bank account. We suppose SO to be
continuous, of finite variation and, most importantly, SY > 0 almost surely. In
many cases

_ _ t
S =exp(rt) or S)=exp (/ rudu> ,
0

where 7 ((ry)y<,) is the interest rate (interest rate process). We suppose S§ = 1
for simplicity. Strategies are described using predictable processes. Elementary
strategies are of the form:

N
H = Z fkl(Tk,Tk+1] )
k=0



where 0 < Ty < T} < ...Tyy1 < oo are stopping times. fr : Q — R? are
Fr,-measurable, and fj, denotes the number of stocks (1 — d) kept during the
interval (T, Ty+1]. To exclude obvious money making strategies we conclude that
(a) All transactions are financed through the bank account. Therefore f; is not
defined. — self-financing.
(b) Transactions at times 7; are done at new prices S;; and not at their left
limits. This is the reason why we take (7, Tx+1] and not [T, Tk11)-
It turns out that the discounted prices are better to make the calculations.

2 M. Yor: Introduction to Stochastic Calculus

-) After defining “fair”, “unfair” and “extra-fair” processes, as the processes
(X:) adapted to a filtration (F;), which satisfy respectively:

Vt> s, B[X,|F]=X,: B[X,|F] < X,; BE[X,|F,] > X,,

I gave their usual terminology: martingale, supermartingale and submartingale,
following Doob (1953) and relations between these processes and (resp.) harmon-
ic, superharmonic and subharmonic functions.

-) I then recalled the (additive) Doob-Meyer decomposition theorem.

-) The vector space of processes discussed above forms the space of (F;, P)
semimartingales. Stochastic calculus may be considered as a means / search(?) of
understanding how the nature (martingale, etc.) of these processes is transformed
under changes of probability, filtration, “time calendar”, space (i.e. (X;) —
(f(X%)), which is solved via the famous It6 formula)

-) I introduced Brownian motion from a series expansion:

B(f) =>_(f,€n)Gn,

in terms of A/ (0, 1) independent variables (G,,), then showed it has quadratic vari-
ation equal to ¢, hence infinite variation. I then constructed stochastic integrals
( I3 o(u, w)dBu) for predictable processes ¢ which satisfy:

E [/Ot g02(u)du] < 00

and finished with a presentation of Lévy’s characterization of BM.
Note: Iintend in the final version of this lecture to give some historical elements
about the development of the notion of semimartingale.

3 T. Konstantopoulos: Notions of Stochastic
Models

We give several arguments for the necessity of stochastic modelling (randomness
in physics, complexity of various systems, convenience and computation tools,
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etc.) and contrast it to deterministic modelling. We explain the passage from
microscopic to macroscopic description and, as a simple example, present an alter-
native construction of Brownian motion via Donsker’s theorem (here, we explain
in some detail, the notion of weak convergence on C[0, c0), scaling properties of
Brownian motion, and the Radon-Nikodym theorem). The “simplest” stochastic
models can be seen to possess the Markov property which “lifts” the semigroup
property from the dynamical system level to the level of probability kernels. A
stochastic version of a simple deterministic system (& = A\ — ux) is discussed, and
Poisson processes are introduced. The latter processes are used to construct the
stochastic version via the integral equation

Xt:XO+Nt_Mfths'
0 8
The related equation
t
Xt:Xo—i—Nt—c/ X, dM, (0<c<1)
0

is also discussed.

4 F. Delbaen: Basic Models in Finance

Using the elementary strategy H, the final (discounted) value of the portfolio is
given by

N
Vot (H-8)y =Vo+ X fi (Snip — S1)
k=0

where scalar product is taken and
Sy Q— RY
is defined by N
-
S} = 55 (discounting!).
St

Vb is the initial investment at time 0. The standard example is
1
S, = Sy exp ((,u —r)t+oB; — 50215) ,

where B is a Brownian motion or more generally a Lévy process.

We call a strategy H admissible if H is predictable, if (H - S) can be defined as
a stochastic integral, if (H - S)_ exists as a limit lim;_, (H - S), almost surely
and if there exists a real constant a > 0 such that (H - S) > —a as a process.

K={(H-S), : H admissible}

is only a cone. The no-arbitrage assumption reads X N L% = {0}.
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5 T. Konstantopoulos

The basic theory of martingales, first in discrete time, is presented. Emphasis is
given given on
(i) optional stopping theorems and
(ii) convergence theorems.
The upcrossing inequality is proved, and the basic convergence theorem is ex-
plained in terms of gambling (< impossibility of making money in a fair game of
chance, using a predictable strategy). We also discuss “discrete-time stochastic
integrals”
n
(H-X),=> Hp(Xp — Xp1) ,
k=1
where Hy, € Fr_1Vk. We present several inequalities and prove the basic maximal
inequality

P [ max X, > )\] < E[lX]]
0<n<N 2\

for submartingales. We pass on to continuous time (semi-)martingales and con-
struct X;; and X;_. We discuss the role of completeness of the filtration. Also,
we discuss the existence of a cadlag modification under the usual assumptions.
Examples given:
Random walk and exponential martingales (— Chernoft’s bound), Brownian mo-
tion and exponential martingales (— exponential inequality), Brownian motion
stopped at T, A Ty.
We also explained the role of uniform integrability for extending a martingale
from (X,,n € IN) to (X,,n € NU {oco}). Finally, we presented the theorem that
characterizes a martingale via the constancy of its expectation over all bounded
stopping times.

6 WM. Yor: Brownian Motion

-) I discussed several basic properties of Brownian motion, such as: scaling,
time inversion, time reversal, Markov property, martingale property, .. ..

-) I gave several presentations of the Brownian bridge, i.e. (By,u < t) condi-
tioned to be at 0 at time £. In particular, I showed, using time-inversion, that
if

g =sup{s<t: B;=0},

Bug,
yu<1
V3t

then

is a standard Brownian bridge.



-) T also gave the semimartingale decomposition of the Brownian bridge
(by,u < 1)

as:

u b
bo=fu— [ ds .
P o 0 )
References
-) Lévy (1939): Sur certains processus stochastiques homogenes. Comp. Math.
-) Jeulin, Yor (1979): Inégalité de Hardy, Semimartingales, et faux-amis. Sém.

Proba. XIII, Lecture Notes in Mathematics 721.

7 T. Konstantopoulos: Stochastic Integrals and
Brownian Motion

We first explained some previously discussed points:
(i) the construction of a Brownian bridge via sampling without replacement;
(ii) its relation to BES(3);
(iii) the uniform integrability of

{E[X|G],GCF} when E[X]|] <.

We then introduced local martingales

(example: ﬁ(‘%) is a local martingale but not a martingale) .
We defined the predictable and optional o-algebras on IR, x 2. We defined
quadratic variation and showed how it can be constructed for a continuous bound-
ed martingale. We proved its uniqueness, explained why <XT> = (X )T, for
stopping times 7', and extended it to local martingales. We discussed in detail
the covariation (bracket) process (X,Y) and some of its properties. We started
stochastic integration, as usual, by first integrating simple predictable processes,
and showed their martingale property. We concluded the lecture by reminding
the audience of the definition of [ f(¢)dB; (f € L?, deterministic, B Browni-
an motion) via an L2(IR) <+ L%(2) isometry and promised that the idea will
be generalized and used for the definition of more general stochastic integrals
J HidX;.

8 F. Delbaen: Theorems of Finance

The fundamental theorem of asset pricing (FTAP) is stated using the (NFLVR)-
condition, i.e.



(a) No arbitrage

(b) K; is bounded in probability,
where IC; is the set of outcomes of 1-admissible strategies.
We discuss the equivalent formulation

if H™ are admissible f* = (H" - §)_ > —¢n,6, \( 0, then f* 5 0.
We discuss weaker concepts that lead to the assumption that S must be a semi-
martingale in order to avoid weak forms of (NFLVR). (H - S)_, exists as otherwise
we could profit from the oscillation using “buy low - sell high” strategies (com-
pare to the proof of the limit theorem for martingales).

Theorem: Under (NFLVR) there exists a @@ ~ P such that S is a local martin-
gale under Q). (The converse also holds and is much easier.)

We discuss the relation between (a) and (b) in (NFLVR) without giving details.

9 T. Konstantopoulos: Stochastic Integration

We explain the isometry between the Banach space of bounded continuous mar-
tingales X with norm

sup E [X7]
t

and the space of predictable processes H with norm

\/E [/OOOHSQd(X>S].

This isometry, together with the fact that simple predictable processes are dense
in the second space, allows for our first extension of the stochastic integral. We
then prove various properties, including

(H-X,K-Y)=HK-(X,Y)

and the Kunita-Watanabe inequality

[ ae v, < [ ma), [k,

Finally, we extend the integral H - X = [° H,dX, to local martingales X and
predictable processes H such that [; H2d (X), < co Vt, a.s. We then show how
to approximate (H - X), by using “Riemann-It6” sums (when H is continuous)

of the form
> Hy (X, — X71) .

We discuss the Stratonovitch integral and compute [} X,dX,, using Riemann-Ito
sums.



10 T. Konstantopoulos: 1t6’s Formula

We prove It6’s formula

PO = 500 + [ FO0ax+ 5 [ F)a ),

for a continuous local martingale X, and f € C?, using Riemann-It6 sums ap-
proximation and Taylor’s expansion for f. We introduce semimartingales, their
bracket processes, and discuss the basic properties

(H-X,K-Y)y=HK-(X,Y) and H-(K-X)=(HK)-X.

We prove Itd’s formula for IR%-valued semimartingales, by first proving the prod-
uct formula
XiVp = XoYo + (X V), + (V- X), + (X, V), ,

and then by approximating by polynomials. We discuss several applications:

1) Exit problem for Brownian motion in R%: f(z) = E, [f(B,)]

2) Laplace’s and the heat equation

3) Recurrence properties for Brownian motion in IR, IR? and R¢ (d > 3)

4) The Dol’eans-Dade martingale
Finally, we define the concept of an F;-Brownian motion and prove Lévy’s char-
acterization theorem for the Brownian motion in IR

11 F. Delbaen: Option Pricing

In a complete market (i.e. where Vg € L* 3¢y € R, H so that (H - S) is bounded
and g = go+ (H - S),,) we can price every contingent claim by Eq [g] = go, where
Q@ is the unique local martingale measure for S. Of course, we suppose first
g € L, then g > 0.

Standard example: Samuelson’s model = Black-Scholes formula for option:

C(S0, T, 0,7, K) = Eq [(ST Kem)"

— Eq KSO exp {oﬁN - %GZT} - Ke_’T> +] — SyB(dy) — Ke " Td(dy) .

By differentiation under the expectation (allowed!) we get without effort the
Greeks. We discuss that

Eq [(ST — I((fTT)Jr Ift] = f(Si1)

is a martingale and get, using It0, the differential equation. Going back (“undis-
count”), we get the differential equation for C(S;,T — t, 0, r, K) (Exercise).
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12 M. Yor: Stochastic Differential Equations

-) As a comment on the preceding lecture no. 11, I discussed briefly the convex
set, of probability measures:

M ={P on C(R,,R) |under P, (X;(w) = w(t),t > 0) is a local martingale} .

and proved that the extremal points of M are those for which the “replication
property” holds

-) Then I discussed Girsanov’s theorem, which plays an important role in the
study of SDE’s.

-) My discussion of SDE’s:

(i) Pathwise solutions and solutions in law were defined.

(ii) Concerning pathwise solutions, I started with the very standard fact that
if 0,b: IR — IR, are Lipschitz functions, then:

t t
(12.1) X, =z +/ o(X,)dB, +/ b(X,)ds, >0,
0 0

has a unique strong solution, obtained by (e.g.) Picard’s iteration procedure.

(iii) Pathwise Uniqueness implies that the solution is strong (i.e. adapted with
respect to the filtration of (B;)), and there is uniqueness in law. This is the
famous Yamada-Watanabe theorem.

(iv) It is quite remarkable that we can go quite further than the “standard”
Lipschitz condition to solve (12.1), i.e. it suffices that o be Holder(3), and b be
bounded Borel.

(v) I then gave a number of examples, including the Ornstein-Uhlenbeck pro-
cess, the “bang bang” process, and finally a proof that

1 t
sinh (B;) ( a:W) / exp (B;) dCs, for fixed t,
0

where B and C denote two independent Brownian motions.

References:
-) Any book on stochastic integration (KS, RY, RW, ...) contains these discussions
on SDE’s.
-) Oksendal, Kloeden-Platen, Gand present a number of explicitly solvable SDE’s.
-) A nice discussion of diffusions is in: Varadhan: Handbook of Statistics, Vol.
19 (2001).

13 F. Delbaen: Stochastic Differential Equation-
s in Finance

We discuss the American call option and show that because of the submartingale
property of (S; — Ke™™)" early exercise is not interesting. The problem of the
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American put is then treated. (Ke ™ — S,)" is not a submartingale.

We discuss the price of the perpetual American put and show how to get the
solution. The smooth fit condition is obtained using an argument based on local
time.

Time constraints did not permit to introduce alternative models based on s-
tochastic differential equations.

It can be shown that

dSt = /,L(St)dt + O'(St)dBt

yields equivalent martingale measures if “tractable” conditions on p and o are
fulfilled (not treated in the lecture).

14 M. Yor: Relations between SDE and PDE

-) Following my lecture no. 12, I started with the discussion of the Markov
property of (X3), solution of (12.1), under uniqueness conditions.

-) Then, followed naturally a discussion of the semigroup (P;) associated with
(X¢), as well as the infinitesimal generator A. Omne obtains the Kolmogorov
equation:

PS(@) = f@)+ [ dsP(AS) @),

for functions f € D(A).
-) The classical Doob h-transform is then discussed, as well as computation
of the transform of the infinitesimal generator A under even more general trans-

forms, i.e.
o () [ () ) 5

-) Finally, I discussed the Feynman-Kac formula for Brownian motion

References:
Over the years, I found out that both Durret and Karatzas-Shreve have a nice
discussion of the relations between SDE and PDE. But, again, almost every book
on stochastic differential equations will offer such discussions.
Should probably look at A. Friedmann
Stroock’s book (Camb. Univ. Press): Probability from an analyst’s point of
view.



15 F. Delbaen: Advanced Alternative modelling
with Brownian motion

devoted to the discussion of the American put and the details to calculate the
exercise boundary for the perpetual put. see remark for lecture no. 13 morning.

16 T. Konstantopoulos: Optimization and Con-
trol in Finance

Concepts of optimal stochastic control, decision-making in a random environ-
ment. First simple application: the secretary problem. The principle of dynamic
programming is based on

max g(u) + h(u, v)] = max [g(u) + max(u,v)] , 9,5 > 0.

Dynamic programming equation (recursion) for discrete-time deterministic recur-
sions. Introduction to Markov chains and the dynamic programming equation for
a discounted reward. Application: gambling (maximize log(final fortune) when
playing a (p, ¢)-coin). Controlled stochastic differential equations:

dXt = b(t, Xt, Ut)dt + O'(t, Xt, Ut)dBt .

Letting T be the exit time from a domain G C IR, x R¢,
T
JU(37 ac) = Es,x [/ F(t, Xt, Ut)dt + K(T, XT)l{T<oo} s

we derive for the value function ®(y) = sup, JY(y), the Hamilton-Jacobi-Bellman
equation

sup {Fl,U)+ (4Y®)(y)} =0,y € G,

and discuss its meaning and applicability. We solve the optimal portfolio selection
problem, as a simple application.

17 F. Delbaen: Complete and Incomplete Mar-
kets

A model is incomplete < M*® (the set of equivalent local martingale measures)
contains more than one element.
We discuss the relation (for g > 0)

sup Eglg] =inf{a|3f e K, a+ f>g}.
QeMe
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In case this expression is finite, inf = min whereas the sup is not necessarily a
max, see further.

We ask the students to find out the relation with linear programming. Primal
and dual program! Take €2 finite to avoid surprises from functional analysis. We
introduce in various stages the following concepts and results (Ansel-Stricker and
Delbaen-Schachermayer):

f € K is called maximal if g € K, g > f implies g = f.

Let f € K. Equivalent are:

(a) f is maximal.
(b) 3Q € M° 3H admissible with f = (H - S)_ and (H - S) is a Q-martingale
which is uniformly integrable.
(c) 3Q € M* Eq[f] = 0.
We remark that this does not imply E¢ [f] = 0 VQ' € M°.
From this we deduce that g > 0 can be hedged < 3Q € M*°

Eq[g] = sup Eq [g] .
QeM
hedged means 3go € IR 3H 3Q € M€ with g =go+ (H - S),, and (H-S) is a
@-uniformly integrable martingale or g = gy + f with f maximal in K.
The latter is a definition which does not use a specific measure and is therefore
conceptually better.

18 M. Yor: Poisson and Lévy processes

-) I presented the Poisson process in detail, insisting in particular on the con-
struction of associated martingales, which finally yield:

(a) Watanabe’s characterization of the Poisson process;

(b) the property that the “Poisson Market” is complete, i.e. every square
integrable martingale may be written as

t
c—i—/o ms (ANs — cds) ,

for some suitable predictable (ms, s > 0).

-) This then led me to the construction of Poisson random measures with given
intensity measures, which I compared to Gaussian measures.

-) Poisson point processes are obtained from Poisson random measures on E x
IR, with intensity v(de)dt.

-) This allows to construct Lévy processes.

References
This presentation is close to Chapters 0 and 1 of Bertoin’s book: Lévy processes.
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19 P. Cheridito: Gaussian Random Vectors

Definition: We call a d-dimensional random vector X Gaussian if
. 1
E [emTX] = exp (—EUTCU + iuTm) ,u € R,

for some m € R? and a symmetric, positive semi-definite d x d-matrix C.
Proposition: Let (X1,...,X;, X;41,...,X4) be a Gaussian random vector.
a) If
Cov (Xj, Xk) =0
forallj=1,...,land k=1+1,...,d, then (Xi,...,X;) and (X;41,...,Xq)
are independent.

b)
d—1
E[Xq|X,..., Xaa] =) a; X5,
i=1

for constants a, ..., aq,-

Proposition: Let X be a d-dimensional Gaussian random vector and A an m X d-
matrix. Then AX is an m-dimensional Gaussian vector.

Theorem: Let {X"} 7 | be a sequence of d-dimensional Gaussian random vec-
tors that converges to a d-dimensional random vector X in probability. Then X
is Gaussian and the convergence is also in L*.

References
-) Fernique (1995): Fonctions aléatoire gaussiennes, vecteurs aléatoire gaussiens.
Sherbrooke Univ.
-) Ibragimov and Rozanov (1978): Gaussian Random Processes. Springer-Verlag.
-) Neveu (1968): Processus aléatoires gaussiens. Presses Univ. Montréal.

20 F. Delbaen: Minimum Variance and Markowitz
Theory

This concept is different from the previous lectures in the sense that the proba-
bility P is important. We make the following assumption:

(¥) 3Qo € M*® such that % €L’

The space K? is the L? closure of elements f obtained by (H - S),, where H is
elementary and (H - S) bounded. Kabanov-Stricker showed that under (x),

{Q\%ELQ}
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is L!(P)-dense in M.
NFLVR = 1 ¢ K2? and let ¢ be the orthogonal projection of 1 on K? =
1 —¢q L K% We get after some calculation

Bplf] = Bp ldo(F)p(f,0)
a(q)
where o denotes standard deviation and p correlation. This relation is the market
line relation in mean-variance theory of Markowitz.
Exercise: rewrite this relation in undiscounted terms.
We discuss the generality of the argument: No utility function (only no-arbitrage)
and no assumption of normal distributions.
We end the discussion with the following theorems:
(a) Schweizer: if S is continuous , then ¢ <1 a.s.
(b) Delbaen-Schachermayer: ¢ < 1 a.s. if S is continuous.
the guess
l—¢q
1—Ep|[q]

as the equivalent minimal variance martingale measure.

21 M. Yor: Basic Theory of Lévy Processes

a) I “read” from the Lévy-Khintchine formula the decomposition of a generic
Lévy process (X;,t > 0) taking values in R:

X, = at + /gB, + X7V + X=Y,

where a € R, ¢ > 0, (B;,t > 0) is a Brownian motion,

X7 = > AXax, 51}

s<t

XY = lim {Z AXlie<iax,|<1) —t/V(dﬂﬂ)xl{sSwlsu} -

s<t

b) I illustrated the LK formula with a number of examples: -) Compound
Poisson process (whose Lévy measures are finite), -) Gamma process (I'y,t > 0),

. . , (d) .
: Iy — S ,
-) Difference of two Gamma processes: [ I V2fr,, which led me to the
discussion Of Bochner Subordination:

Zt:XYt,

where (X,) is a Lévy process, independent of the subordinator (Y, ¢ > 0), which
is an increasing Lévy process.
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c¢) In particular, the (increasing) stable process (Tt(a),t > 0), (0 < a < 1),

among which the stable (1/2) process, obtained from hitting times of levels of
one-dimensional Brownian motion allow to construct, by taking X, = f,, a
Brownian motion independent of 7(®), all symmetric stable processes:

Zt("’“):ﬁn@,tzo, (0<20<2).

d) Introducing the local time for Brownian motion, and its inverse (), I showed
how to obtain many subordinators from:

(/()Ttdsf(Bs),tz(]).

22 P. Cheridito: Gaussian Systems and Frac-
tional Brownian Motion (fBm)

Definition: Let A be a set. (X)),c, : @ — R" is a Gaussian system if and
only if for all d € IN and {1, ..., \¢} C A, (Xy,,...,X),) is a Gaussian random
vector. We call a Gaussian system (X,),., a Gaussian process if A =IN,Z,IR,
or IR.

Theorem:
a) Let (X»),c, be a Gaussian system. Then

I‘f\(u =Cov (X, X,) , A, peA,

is symmetric and positive semi-definite.
b) For all (m)),., € IR* and all symmetric, positive semi-definite (Taw)apen €

R, there exists a Gaussian system (X) xen With
E[X)\] =My, /\EAa

and
Cov (X,\,Xu) = F/\N’ A€ A.

Definition: A fBm with Hurst paramter H € (0,1], is a continuous centred
Gaussian process (BtH ) with
telR

1
H pH\ _ L (142H °H |, 2H
Cov(Bt,Bs)_2(|t\ +sP =t =) t,seR.
For H = 1, B¥ can be represented as

Bl =t£,teR,

14



where ¢ is a standard normal random variable. For H € (0,1) Mandelbrot and
Van Ness gave the following representation:

t
Bf:CH/

[t = )"7% = Loy (—u) 5] W,
where (W}),cp is a two-sided Brownian motion and cy a normalizing constant.

References:
Gaussian processes:
-) Hida and Hitsuda (1993): Gaussian processes, AMS

fBm:

-) Kolmogorov (1940): Wienersche Spiralen und einige andere interessante Kur-
ven im Hilbertschen Raum. Doklady, 26.

-) Mandelbrot and Van Ness (1968): Fractional Brownian motions, fractional
noises and applications. SIAM Review, 10.

-) Decreusefond Ustiinel (1999): Stochastic analysis of the fractional Brownian
motion. Potential Anal. 10.

-) Lin (1995). Stochastic analysis of fractional Brownian motion. Stochastics and
Stochastics Reports 55.

23 F. Delbaen: Coherent Risk Measures

We introduce coherent risk measures and compare them with VaR (Value at
Risk). In credit risk situations we show how unsuitable and dangerous the ap-
plication of VaR can be. Different examples of coherent risk measures are given
using the characterisation of coherent risk measures.

References:
-) http://www.math.ethz.ch/~delbaen
-) lecture notes of Scuola Normale di Pisa (see the Friday July 20 summary for
the theorems presented)

24 T. Konstantopoulos: Fluctuation Theory

Let X be a Lévy process (we exclude the compound Poisson case).

Sy = sup X, V0,7, =85 —X;:

0<u<t

(Strong) Markov property, and Skorohod reflection. Assuming that 0 is regular
for Z, we let L be the local time of Z and L~ its right-continuous inverse, which
is seen to be a subordinator. Moreover, the ladder process

(L7(2), Sy = H(2))

z2>0

15



is Lévy in ]RfL .
Problem: Compute

E [exp (—ozL_l(x) — BSL_l(z))] =exp(—zK(a,5)) ,a>0,8>0.

We discuss excursion theory, and the compensation formula
B[S Ao = B[ [z [ Fieintae)]
p 0 £

and use it to derive the law of (GT, S(T)), where 7 ~ exp(¢q), independent of X,
and G, = last zero of Z on [0, 7]:

K(q,0)

Elexp (—aG,; — 8S;)] = —————.
e )= Ka+eH)
We prove the Wiener-Hopf factorization

(indep.)

(Ta XT) = (G'ra S’T) + (T - GT; X, — ST)
(infinitely divisible distributions), which leads to:

E [¢?¥] = qfw — TN, (A).

We obtain
K(a, ) = K exp ( /0 ” [ (et =) 1P [X, € dal dt) ,

and the interesting formula

E [e_)‘GT] = exp (/000 (e_’\t - 1) e "P[X; > 0] dt)

(c.f. Sparre Andersen’s formula for discrete time random walks). Finally, we

derive the generalized arcsine law for %, when P [X; > 0] = constant.

25 P. Cheridito: Fractional Finance Models

We showed that fBm has the following properties:
1) The increments of B are independent if H = %
H e (%, 1], and negatively correlated if H € (0, %)
2) The increments of B¥ exhibit long-range dependence < H € (%, 1].
3) B is self-similar.

, positively correlated if

We presented the following models for the evolution of a stock price:

16



fractional Bachelier model:
StzSo—l—Vt-i—aBtH.
fractional Samuelson model:
S; = Spexp (Vt + O'Bfl) )
fractional stochastic volatility model:

dSt = St (,U;dt + O'tdBt)
do, = —X(oy—b)dt+ a1dB, + axdBY

We defined “FLVR”, “arbitrage” and “strong arbitrage”.

We showed that for H € (0,3) U (3,1), B¥ is not a semimartingale.
We introduced the notion of p-variation and showed that for all p > +. almost

H?
all paths of B¥ are of bounded p-variation.

We recalled the definition of the Riemann-Stieltjes integral and presented the
following

Theorem: If f : [a,b] — IR is continuous and of bounded p-variation for some
p€[1,2), h € C'(IR) and k' is locally Lipschitz, then

RS—/abh'ofdf:hof(b)—hof(a).

References:
Mathematical Finance:
-) Bachelier (1900): Théorie de la spéculation. Ann. Sci. Ecole Norm. Sup. 17.
-) Samuelson (1965): Rational theory of warrant pricing. Ind. Manag. Rev. Vol.
6, No. 2.
-) Delbaen and Schachermayer (1994): A general version of the fundamental
theorem of asset pricing. Math. Ann. 300.

Finance with fBm:
-) Cutland, Kopp and Willinger (1995): Stock price returns and the Joseph effect:
a fractional version of the Black-Scholes model. Progress in Probability 36.

26 P. Cheridito: Arbitrage in fBm Models

Theorem: For all H € (0,%) U (3,1], the fractional Bachelier model and the
fractional Samuelson model have FLVR in O ,4p,

Q28 (J:BH )

sf,adm

Theorem: For all H € (0, 1), the fractional Bachelier model and the fractional

(FB") and strong arbitrage in
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Samuelson model have no arbitrage in ©%(FB").

References:
-) Rogers (1997): Arbitrage with fractional Brownian motion. Mathematical
Finance 7.
-) Shiryaev (1998): On arbitrage and replication for fractal models. Research
Report no. 20, MaPhySto.
-) Salopek (1998): Tolerance to arbitrage. Stoch. Pro. Appl. 76.
-) Cheridito (2000): Arbitrage in fractional Brownian motion models.
www.math.ethz.ch/~dito

27 M. Yor: Brownian Excursions: Theory and
Applications

a) Following lecture no. 24 on fluctuation theory, when specialized to Brownian
motion, I first recalled and proved Lévy’s theorem:

(My— By, My, t>0) (laZW)(|Bt|,Lt7tZO),

where M; = sup,., Bs, and (L;) is the local time of Brownian motion at 0, with
the help of Skorohod’s lemma. This result can be extended to Bf = B, + ut on
the LHS, while on the RHS (B;) is replaced by the bang-bang process, which is
the solution of

dX; = df; — psgn(X;)dt.

b) I proved It6’s representation theorem of Brownian excursions as a Poisson
point process, as well as D. Williams representation of the characteristic It
measure, either in terms of an integral (over lengths v) of the laws of the BES(3)
bridges with lengths v, or in terms of an integral (over heights m) of the laws of
two BES(3) processes put back to back as they reach level m.

¢) I finally discussed the following results, obtained using excursion theory:

(M*(b))2 (la:w) T£3) ,

2
and 1 o
(O () = (e 0)* + (M*(6)
where b is a standard Brownian bridge, M*(b) = sup,; [b(s)|, e a standard ex-

cursion and M*(e) = sup,; [e(s)|.

References:
-) Chung (1976)
-) Revuz and Yor, Chap. XII
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28 P. Cheridito: Regularized fBm and Option
Pricing

We showed that if ¢ : IR — IR is a measurable function that satisfies
(R1) ¢(0) =0 for z < 0.
(R2) [ [t —u) — o(—u)]>du < o0, Vt € R.
(R3) ¢(t) = ¢(0) + J§ ¢(u)du, t > 0, for some 3 € L*(IRy).
Then
Xf = [ lp(t—w) = p(-u)dW,, t > 0,

is a semimartingale. If ¢©(0) = 0, then X% is a FV-process. If ©(0) # 0, then, for
all 7' > 0, the law of (X{),,<r is equivalent to Wiener measure.

We introduced the regularized fBm R¥%¢ and discussed option prices in the
model

SY = 1,t€l0,T]
Sy = Spexp (Vt—f-oRtH’U’d) ,t€[0,7].

References:
-) Cheridito (2000): Regularized fractional Brownian motion and option pricing.
www.math.ethz.ch/~dito
-) Cheridito (2001): Sensitivity of the Black-Scholes option price to the lo-
cal path behaviour of the stochastic process modelling the underlying asset.
www.math.ethz.ch/~dito

29 F. Delbaen: Capital Allocation and Risk Mea-
sures

We continue the study of the relation between VaR and coherent risk measures
and show the minimality of TailVaR in the class of distribution invariant coherent
risk measures dominating VaR. This result has been improved by Kusuoka.

The extension of coherent risk measures to the space L° of all random variables
is discussed and necessary and sufficient conditions are given for this extension
to take values in IR U {oo} (avoiding —o0).

The capital allocation problem is dealt with through the help of the subgradient
(more precisely, the weak * subgradient). Results of Aubin, Artzner-Ostroy,
Billera-Heath are put in this context.

The extension of coherent risk measures to multi-period models was not treated.
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30 M. Yor: Stochastic Calculus with Lévy pro-
cesses

-) From the decomposition of a Lévy process presented in lecture no. 21, any
Lévy process is a semimartingale, hence stochastic integration with respect to a
semimartingale can be used for a Lévy process.

-) As an application, I discussed the integro-differential form of the infinitesimal
generator of a Lévy process, as:

Af(@) = af @)+ 5 7"(@) + [ v(dy) (f(@+y) = F(2) = F@)yliisn) -

In the second half of the lecture, I discussed:
(i) the Escher transform for subordinators, and in particular the Gamma sub-
ordinator: for all a > 0,

E[F (aly, u<t)] = E[F (Tu, u < 1) eq (T, t)]

(exercise: find e,!).
(ii) the Lamperti transform:

exp (&) = X fot dsexp(&s)’

where (&, t > 0) is a Lévy process, and (X3, h > 0) the associated semi-stable
Markov process (see Lamperti, TAMS (1972)).

(iii) the generalized Ornstein-Uhlenbeck process, associated to two (indepen-
dent, for simplicity) Lévy processes (&;,n;), as:

U =exp(&) (s+ [ exp(=¢,.)an)

(a new Markov process).

Both (ii) and (iii) may be applied successfully to obtain the law of [;° ds exp (&5),
when this variable is finite. These variables (perpetuities) are particularly im-
portant in Insurance. A well known particular case is Dufresne’s result, which
is: - .

/ dsexp (2(Bs — ps)) is distributed as —— (x> 0).
0 2r',

Finally, I presented the result (obtained with J. Bertoin) that, for a subordi-

nator (&), the perpetuity

1= ["dsexp (=€)

satisfies 1
e IR,
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where on the LHS, e is exp(1), and on the RHS, I and R are independent, with

k!

Elf] = 3(1)... (k)

., B[R] =0(1)... o).

References:
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