A review of Burke’s theorem for Brownian motion
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Abstract

Burke’s theorem is a well-known fundamental result in queueing theory, stating that
a stationary M/M/1 queue has a departure process that is identical in law to the arrival
process and, moreover, for each time ¢, the following three random objects are indepen-
dent: the queue length at time ¢, the arrival process after ¢t and the departure processes
before t. Burke’s theorem also holds for a stationary Brownian queue. In particular, it
implies that a certain “complicated” functional derived from two independent Brown-
ian motions is also a Brownian motion. The aim of this is to present an independent
complete explanation of this phenomenon.

1 Introduction

Consider two independent standard Brownian motions B}, B? and an independent expo-
nential random variable Z with mean 1. The following often comes as a surprise.

Theorem 1. For any A > 0, the process

1
DM = Jinf {AZJr Bl + B} - B2+ \(t — s)} A(BE+Xt), t>0, (1)

1s a standard Brownian motion.

d
Recall that a Brownian motion B; is 1/2-self-similar, meaning that (Bu, ¢ > 0) @
d
(041/ 2By, t > 0), for all a > 0, where @ means equality in distribution (of the two objects
as random elements in the space of continuous functions). But it is not possible to deduce

that Dlg)‘) is 1/2-self-similar directly from the formula. The only thing directly observable

is that
(d)

O™, t>0) <2 DY

>\2t7t Z 0)’

by the 1/2-self-similarity of B{, i = 1,2, implying that proving the theorem for A = 1 proves
it for all A.
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To understand what this formula says it is worth our while playing with it until we realize
its “geometric” meaning. Let x : [0,00) — R be any function representing the motion of a
particle. Let a : [0,00) — R be another function such that a(0) < z(0) and define'
t) :=z(t) — inf — .
(t) = alt) ~ int (a(s) ~ a(s)) A0
Clearly, z(t) > z(t) — (x(t) —a(t)) = a(t) for all ¢, whereas £(t) := — info<s<t(z(s) —a(s)) A0
satisfies £(0) = 0 and £(t1) < L(t2) if t1 < to (¢ is increasing). Now take any increasing
function m : [0,00) — R such that m(0) = 0. Then ¢(t) < m(t) for all ¢ > 0. We call the
function z the reflection of x upwards at « and this conveys a natural physical meaning.
Reversing directions, we can reflect # downwards at some function £ : [0,00) — R, so long
as z(0) < 5(0), via the formula
t) =a(t inf — . 2
w(t) =a(t) + inf (5() = 2(5)) A0 (2)
This is natural: if Ry is the mapping (z,«) — 2z then the mapping R| : (z,58) — w is
obtained by applying R4 to (—x,—a) and then reversing the sign. That is, R (x,) =
—Ry(—x,—B3). We call w the reflection of + downwards at # an can easily ascribe physical
meaning to it.

If we now take a look rewrite the formula for Dﬁ)‘) as
1

N _ (p2 .
DY = (B; —|—)\t)+0g;f§t{>\

Z+B;—(B§+As)}Ao, (3)
we see that Dg)‘) is the reflection of x(t) = B? + M (a Brownian motion with drift \)
downwards at B(t) = %Z + B} (a Brownian motion starting from an independent exponential
random variable with rate A). Why this reflection is a standard Brownian motion, for any
A, is what we will explain later.

But let us look at the limiting cases A — 0 and A — co. When A\ tends to 0, the boundary
process 3(t) tends to +oo (so the effect of reflection vanishes), whereas z(t) tends to BZ.

Hence the process Dlp‘) tends to B?. When \ tends to oo, he boundary process 3(t) tends to
B}, whereas z(t) assumes arbitrarily large drift. The effect of reflection in this case forces

the process to get stuck at the boundary process, that is, DE/\) tends to B}. Thus in either

of the limiting cases, A — 0 or A — oo, DE/\) is a Brownian motion.

The goal of this paper is to summarize existing results. First of all, there is Burke’s
theorem, first presented in [2] for an M/M/1 queue. Second, there is the analog of this
theorem for a Brownian queue. This appeared, in a more general context, in Harrison and
Williams [6] and was expanded by O’Connell and Yor [10]. Instead of proving Theorem 1,
we shall prove its more general version: see Corollary 1. We first review Burke’s theorem
(Section 2), then construct discuss the Brownian queue (Section 3) and finally prove the
Brownian version of Burke’s theorem (Section 4) by reviewing the standard heavy traffic
limit theorem in Theorem 3.

Acknowledgments: 1 would like to thank Sergey Foss, Seva Shneer and Istvan Gyongy for
inviting me at a recent Maxwell Institute workshop to present this overview and Sergey Foss
and Sgren Asmussen for suggesting this writeup.

!To save parentheses, I decided that minimization takes precedence over addition/subtraction, so caAb
means ¢+ (a A b).



2 Burke’s theorem

Consider a single-server queue Q(t), t > 0, that is, @) satisfies

Q) = Q)+ 40 - 5 [ Lot ) ()

where A, S are increasing counting functions with A(0) = S(0) = 0. (By counting function
F' we mean an increasing function with values in the set Z, of nonnegative integers such
that AF(t) := F(t+) — F(t—) € {0,1} for all t.) By convention, we let A and S be right-
continuous. That the solution of (4) is unique follows easily from the fact that A and S
are piecewise constant. A G/M/1 queue is obtained when we let S be a Poisson process
independent of A, both independent of Q(0). In such a case, @ is equal in distribution [3]
to the process

Q) = Q(0) + A(t) - /0 Lu_y0S(du). (5)

We use the same symbol, ), for both the original process and its version. Pathwise, equation
(5) does not describe a queue in the usual sense but a so-called gated queue. That is,
customers arrive according to A and queue up in front of a gate. At the jump times of
S the gate opens instantaneously, a customer is released, and then the gate closes again
immediately. Obviously, (4) and (5) describe different physical phenomena. They happen
to be equal in distribution when S is an independent Poisson process. Rewriting (5)

Q(t) = Q(0) + A(t) — (1) + /0 Lo(uy—0S(du), (6)

we see that .
10 = [ Lopy-oS(an ™

satisfies the following: L(0) = 0, L is increasing, and [;* Q(t—)L(dt) = 0. By a version of
Skorokhod’s lemma (see [1, Lemma 8.1] for the case of one-sided reflection of a continuous
function and see [1, §4] for the more general cases of a two-sided reflection for a function
with discontinuities of the first kind), it follows that
L(t) = — inf (Q(0)+ A(u) — S(u)) A0 (8)
0<u<t

and so Q(t) is the reflection of Q(0) + A(t) — S(t) upwards at 0. Substituting (8) into the
(7) and (6) gives

Q(t) = sup (A(t) — A(u) = S(t) + S(w) vV (Q(0) + A(t) — 5(1)).

0<u<t

Further manipulation of this formula shows that, for 0 < s < ¢,

Qt) = sup (A(t) = A(v) = §(t) + S(w)) v (Qs) + Alt) = As) = (1) + 5(s)).  (9)
Let F,; be the (random) mapping taking Q(s) into Q(t) (that is, Fy.(z) is obtained by
letting Q(s) = « in (9)). Then the family {F,; : 0 < s < t} satisfy the state transition
property Fy, 1, = Fy, 150F} 1,, for t1 < to < t3. Moreover, the law of F,; depends on s,t



only through ¢t — s. Since A and S have independent increments, we obtain that @) has the
Markov property. Indeed, @) is a Markov chain with transition rates

Q<n7n+1):>‘7 Q(n+17n):,u'7 n€Z+7

whereas ¢(i,7) = 0if i # j and |i — j| > 1 and ¢(4,7) = —A — u. To “put @ in steady-state”
we have two options: either do it in law or do it explicitly on some probability space. We
choose the latter. To construct the probability space, extend A and S on the whole of R.
That is, take A, S be two independent stationary Poisson processes on the whole real line
and ask whether there is a stationary process (Q(t),t € R) satisfying Q(t) = F(Q(s)) for
all s < t. The answer is the usual one: such a process exists if and only if A < p and is
given by

Q)= sup (A(t) — A(u) = S(t) + S(u)). (10)

—oco<u<t

The ergodic theorem, together with the assumption that A < p implies that Q(t) is an a.s.
finite random variable. The fact that A, .S have stationary increments implies that @ is a
stationary process. And a little algebra shows that the last formula satisfies (9) Hence the
last formula is a stationary version of the M/M/1 queue. In fact, we also have uniqueness,
i.e., @ is the unique stationary process on the probability space defined by A and S that
satisfies the given dynamics. What we’ve done here is, of course, an application of the
standard Loynes’ scheme. For this process we also have that

Qt) = Q(s) + A(t) — A(s) —/ 1gwu—)>05(du), —oo<s<t<oo.

The point process having points at the jump times of A is the arrival process (and will
still be denoted by A), whereas the point process having points at the times ¢ such that
Q(t—) > 0 and ¢ is a jump time of S is the departure process and will be denoted by D.

Burke’s theorem can now be stated as follows.

Theorem 2 (Burke). For the stationary M/M/1 queue Q, the following three random objects

Q(0)7 A|(0,oo)7 D|(—oo,0)
are independent. Moreover, D is a Poisson process with rate \.
Proof. Tt is based on the observation that @ is time-reversible. That is, (Q(¢),t € R)
has the same finite-dimensional distributions as (Q(—t),t € R). (By making the latter
right-continuous we can also ensure that they have the same law.) Indeed, time-reversing a
stationary process possessing the Markov property gives a stationary process also possessing

the Markov property with the same marginal distributions. It is more than well-known that
the marginal distribution of Q(¢) is geometric:

PQ(t) =) = (\/p)' (L= N p) =:7(i), i€
To check this, note that
m(i)q(i, j) = m(5)a(5,9), i # 4, i.J € Ly,

and this implies that ., (i)q(i,j) = 0, for all j € Z,. It remains to check that the
transition probabilities of the time-reversed process are the same as those of (). Since



transition probabilities are determined by the transition rates (we're in the best possible
situation of all worlds here, since the rate matrix is bounded), we only have to check that the
transition rates are the same for both processes. Fix i,j € Z,, ¢ # j. Then the transition
rate for the reversed process is

qi(ihj) = W(])Q(]J)/ﬂ-(l) = Q(i7j)7

by ?77. By the Markov property, we have that Al ) and D[ ) are independent con-
ditional on Q(0). By the reversibility, we have that the law of (Q(0), D|(_ )) is the same
as the law of (Q(0), Af(,)). Hence, in particular, D|(_, y) has the law of A ) and so
it is a Poisson point process with rate A. By the fact that A has independent increments,
it follows that Q(0) is independent of Af(g ). Therefore, D[ o), Q(0) and Ay are
independent. Since we can replace 0 by any point of time ¢, it follows that D|_. is a
Poisson process with rate A and so D itself is Poisson with the same rate. ]

Usually, Burke’s theorem is stated as saying that the departure process in a stationary
M/M/1 queue is Poisson with the same rate as the arrival process. But the actual theorem
says more: that past departures, future arrivals and current state are independent. This
property is known as quasi-reversibility [7] and, in this case, follows from reversibility.

3 The Brownian queue

Since (10) was obtained under very minimal assumptions, we can replace the increments
A(t) — A(u) and S(t) — S(u) by increments of very general processes X and Y, as long
as we have some kind of joint stationarity and ergodicity. For example, we can let X =
(X2t € R), YP = (Y?,t € R) be two independent Brownian motions with drifts a and b,
respectively. As long as a < b, the random variable

@ = sup (XP—X'—YP+YD), teR, (11)

—oo<u<t

is a.s. finite, the process (¢, t € R) is stationary (by the stationarity of the increments of
X% and Y?) and Markovian; the latter follows by observing that (just as we did in (9))

G = sup (X — X0 —YP+ V)V (g + XP — X2 —YP +YD), teR,  (12)
s<u<t

together with the fact that the processes X and Y have independent increments. (In fact, if
we replace them by any processes with independent increments we can still have the Markov
property for ¢, under the right stability condition, i.e., the analog of a < b.) We call ¢;,
t > 0, a Brownian queue with “arrival” process X and “service” process Y?. The physical
meaning has been lost because (unless in trivial cases) neither X or Y are increasing. But
it will be regained in the next section. The point I wish to make here is this: , unlike in
a real queue, like the one of (4), observing the path of ¢ cannot determine the arrival and
departure processes. Indeed, if we write X = o1 B} +at, Y,? = 09 B? 4 bt, where B! and B?

d
are two independent standard Brownian motions, then X§ — Y @ \oi+ 03B+ (a—Db)t,
where B is a standard Brownian motion, so ¢ can, e.g., be thought of having arrival process

\/oi + o3 By and service process (a — b)t.



However, when we want to talk about the “departure” process from a Brownian queue it
is important to fix the arrival process. That is, of all possibilities that result in the same ¢,
we must pick one and call it arrival process. For instance, let us say that X is the arrival
process. Having made our choice, and since

G@=q+ X' -V, 4+ L, t>0,

where
: a b
_ _ >
Lt = Oi%f;t(qo + Xu ;u) A 0, t 0,

we must define the departure process by

Dt:Y;b—Lt:1@”+Ogif<t(qo+xg—yj)/\o, t>0.

In other words Dy is obtain by reflecting Ytb downwards are go + X§'; see equation (2). The
reader can easily verify that 0 is just a convenient choice and that, since ¢ was defined for
all t € R, it is possible to define the departure process for all t. By this, we understand that
it is the increments D; — D, that have actually been defined. If we choose Dy = 0 then we
have defined the process Dy itself. If t € R, positive or negative, then

CIt:CIO“‘Xf_Dty tER, (13)

and so, having defined (q;,t € R) through (11), the latter gives a formula for D; valid for
allt € R, and Dy = 0.

4 The Brownian Burke’s theorem

Consider now a sequence (M/M/1),, of stationary M/M/1 queues such that the n-th queue
has Poisson service process S with rate u = 1 and Poisson arrival process A, with rate
An :=1—A/y/n. We shall remind the reader how a limit is obtained. Let Q,(t), t € R, be
the queue length process. By (10)

Qn(t) = sup (An(t) - An(u) - S(t) + S(u))

—oo<u<t
Let D, (t), t € R, be the departure process. That is, for all —oo < s <t < o0,

Dy (t) = Dn(s) = S(t) = S(s) = [Ln(t) — Ln(s)]

L,(t) = Ly(s) = — S%r&fgt(Qn(s) + A (u) — Ap(s) — S(u) + S(s)) AO.
Define
@n(t) — Qn(nt) gn(w — M f)n(t) — M teR.

VI Vi

Theorem 3 (heavy traffic limit). The sequence (ﬁn,@n,ﬁn) converges in distribution to
(B!, q,Do‘)) where B' is a standard Brownian motion, q; is a Brownian queue with arrival
process BY and service process B} + \t (with B? being an independent standard Brownian
motion), and DW the departure process from this Brownian queue.



Proof. By stationarity, it suffices to show that the convergence happens when we restrict
all processes to any interval of the form [s,00) and, without loss of generality, we take
s = 0. Since P(Qn(0) > k) = (An/p)¥, we have EQ,(0) = Au(it — \p) = v/n/XA — 1. Since
EQn(0)/y/n — 1/, it follows that Q,,(0) converges in distribution to the law of Z/\, where
7 is a rate-1 exponential random variable: For z > 0, P(Q,(0)/y/n > x) — e, asn — oo.
On the other hand, by a simple modification of Donsker’s theorem, we have that

(S’(nt) —nt  Ap(nt) —nAyt
Voo vn

with B!, B? being two standard Brownian motions. Let

Xn(t) = Qn(o) + An(t) - S(t)

) W, (B!, B?)
t>0

Then
Xn(nt) = Qn(0) + [An(nt) — nAut] — [S(nt) — nt] — Xt/n.

(X"(”t)> ), (Z v Bl - B2 /\t) .
Vn >0 A >0

Qn(nt)  X,(nt) nf Xp(nu)

Therefore,

But (see (6), (7), (8))

vn vn ofust Vvn

and, since the mapping ¢ : z — (info<y,<t z(u) A 0)i>o satisfies ||p(z) — @(y)||7 < ||z — yll7,
where || f{|7 = supg<s<¢ | f(s)], it follows that

A0,

A 0<u<t \ A\

A A
Q:L/(ﬁt)ﬂ)<+Btl_Btg_)‘t>_ inf (+B$—Bg—)\u>A0
n

Z
= sup (B} — Bl — (B? - B?) -\t —u))V <+B§—B§—At>,
0<u<t A

d
where Q) means convergence in distribution when both sides are interpreted as processes.
Let now ¢; be defined by

gt = sup (Xt_Xu_Y;f_f’Yu)v(QO"'_Xt_Xs_Yt+Y5)7
0<u<t

with Xy = B} and Y; = B2+ \t; see (12), and go = Z/\. Since each of the (M/M/1),, queues
is stationary, it follows that ¢ is stationary (its law is invariant under forward shifts). This
means that the unique extension of ¢;, t > 0 to ¢, t € R, is the stationary process defined
by

qt = sup (Xt_Xu_}/t"FYu)

—oco<u<t

Consider now the departure process of the (M/M/1),, system. We have

n Dn - n — . Xn
Do (#) = (nt) — nA,t _ S(nt) —nt A4 inf (nu)

NG vn 0<u<t  /n
VA
D2 4 At + i < +Bl - B2 - )\u> — DY,
0<u<t \ A




where Di’\) is the departure process from the Brownian queue. We have proved that each
entry of the triple (/Tn, @n, En) converges in distribution to the corresponding entry of the
triple (Bl,q,D(/\) ). But, going back to the arguments, we have actually shown that the
triple converges jointly. Moreover, by stationarity, we have shown that the convergence is
actually on the whole of R. ]

Corollary 1 (Brownian Burke’s theorem). Let ¢; be the stationary Brownian queue with
arrival process B} and service process B + At, for some A > 0. That is,

@= swp (Bl -BL-(B?-B)-At-u), teR

—oo<u<t

Let (Dg)‘),t € R) be its departure process. That is,

DY — DY = B! —~ B2+ A(t —s) + inf (g + Bl — Bl — (B2~ B2) — A(u—5)) A0

inf
s<u<t
Then
q0, (Bt17t20)7 (DgA)7t<O)

are independent. Moreover, qu is exponential with rate A and (Dg)‘),t € R) is a standard
2-sided Brownian motion.

Proof. Consider the (M/M/1),, queue defined earlier. By Burke’s theorem (Theorem 2)
n12Q,(0), (An(t),t > 0), (Dn(t),t < 0) are independent. By Theorem 3, the triple
converges in distribution to Z/\, (B}, t > 0), (DIE)‘),t < 0). Since independence is preserved
in the limit, it follows that the Z/\, (B}, t > 0), (Dg)‘),t < 0). By the last assertion
of Burke’s theorem, D,, is a stationary Poisson process with rate A\, = 1 — A\/y/n. By
Donsker’s theorem, 5n converges in distribution to a standard 2-sided Brownian motion.
By Theorem 3 again, D, converges in distribution to D). Therefore D™ is a standard
2-sided Brownian motion. O

We have actually proved Theorem 1 as well. Namely, the process (1) is a standard
Brownian motion regardless of the value A, including the cases A = 0 and A = +oc.

Caveat: By scaling, we can replace B!, B? by zero-mean independent Brownian motions
with the same variance. However, we may not pick different variances. That is,

1
Jinf {)\Z + 1Bl 4 09B? — 09 B% + \(t — s)} A(oaBE +Xt), t>0,

is not a Brownian motion if o1 # os.

Note: The formula

N _ 2 : 1 p2 o 1 p2
D, —Bt+)\t+_ocl>r<1£LSt(Bu B — \u) —oégggo(B“ B; —\u), teR,

also holds and is a 2-sided standard Brownian motion for any A > 0. To see this, use (13)
and (11).



5 Further comments

The idea of quasireversibility, explored in the classic work by Kelly [7], tells us how to
“connect” stable Markovian quasireversible queues (or, more generally, positive recurrent
quasireversible Markov chains) in order to obtain a bigger system that has a simple sta-
tionary distribution. This was a topic of intense research in the past. (See Walrand [11].)
Appropriately connecting quasireversible Brownian queues leads to a network with product
form distribution. One possible way to do this is by connecting the queues in tandem. That
the stationary distribution is product form here is a simple consequence of Corollary 1 1. In
fact, as Lépez [9] shows, when the input to the overall system is a fairly arbitrary stochastic
process, while all other service processes are independent Brownian motions with the same
positive drift, then the output from n queues converges in distribution to a Brownian motion
as n — oo. For what a necessary and sufficient condition on the stationary distribution be-
ing of product form for a general network of Brownian queues see [5]. For failure of product
form if Brownian motions are replaced by Lévy processes see [8]. However, none of the last
two papers actually uses quasireversibility in order to prove their results.
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Figure 1: The figure shows the simulation (done in Maple™ and labeled in
Gimp™ ) of a Brownian motion with drift, X; = B? + \t, and a Brownian
motion started from an exponential random variable, Y; = %—i—Btz. The process

DEM is obtained by reflecting X; downwards at'Y; and is a standard Brownian
motion.
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