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Clausen’s problem and triangular lattices

Joe Higgins∗ Takis Konstantopoulos†
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Abstract

Given an arbitrary triangle ABC, draw a line AA′ meeting side BC at a point A′

so that BA′ : BC = α : (1 − α), for some 0 < α < 1. Repeat, symmetrically, with the
other vertices and consider the triangle formed by the three lines AA′, BB′, CC′. Let ρ
be the ratio of its area and the area of ABC. Then ρ depends on α only and not the
shape of ABC. In particular, ρ(1/3) = 1/7. We explain this in 4 different ways, two
of which are based on counting triangles or hexagons in lattices. We ask the question
how we can relate the computation of ρ(m/n) for integers m and n to lattices in the
plane and find that, for each pair (m,n) of coprime integers, m ≤ n, the formula can be
explained by constructing a sublattice of the standard triangular lattice.

Keywords and phrases. Affine geometry, Clausen’s problem, Planar lattice, Eisen-

stein integer
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1 Introduction

In a wonderful little book by the famous probabilist Kai Lai Chung [2][endnote (20), page
91], the following apparently simple geometrical problem is mentioned.
Statement of the problem. Consider an arbitrary triangle ABC in the plane. Let A′,
B′, C ′ be points on the sides BC, CA, AB, respectively so that the distance of A′ from B
is one 1/3 the distance of A′ from C, etc. (Figure 1). Then the triangle A′′B′′C ′′ formed
by the lines AA′, BB′, CC ′ has area 1/7 the area of ABC.
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Figure 1: BA′ = 1
3BC, CB′ = 1

3CA, AC ′ = 1
3AB
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Kai Lai Chung mentioned this to the famous physicist Richard Feynman. Feynman
“found this unbelievable”, and quickly worked out an approximation, concluding that “it
must be wrong because his approximation did not support it”. Chung also tells us that a
friend of his, Carlo Riparbelli, an aeronautical engineer, later came up with two proofs of
the statement. The earliest appearance of the problem is, to the best of our knowledge, in
a note by Clausen [3]. This is why we refer to it as “Clausen’s problem”.

Elementary geometrical problems like the one above may have more to tell us than
initially meets the eye. In fact, if not seen from the right point of view they may appear un-
believable. Chung does not tell us whether it was the 1/7 that Feynman found unbelievable
or the fact that the ratio is a constant number regardless of the triangle. Regarding the last
point, it is not hard at all to see that the ratio must be constant. Indeed, the fundamental
theorem of Affine Geometry tells us that there is a unique affine transformation that maps
the triangle ABC to any other triangle. Since affine transformations have the property that
ratios of lengths of parallel segments are preserved and ratios of areas of any two sets are
also preserved (see, e.g., Coxeter [4][13.32, Chapter 13]), it follows that the ratio of the area
of A′′B′′C ′′ to ABC is constant. It so happens that the ratio is 1/7, that is, 1 over the
number of non-overlapping triangles that the three lines AA′, BB′, CC ′ split the triangle
ABC. Is that a coincidence?

We will show that it is not. We will give four methods for solving the problem. Each
method tells its own story. As usual in mathematics, different methods shed different light to
the problem. We shall then consider variants of the problem and ask what kind of numbers,
instead of 1/7, we can obtain, that is, what kind of values can ρ(m/n) obtain when m and
n are coprime integers. We show that, for each such pair (m,n) there is a sublattice of the
standard planar triangular lattice on which the computation becomes “visually obvious”.

2 Four methods

2.1 Method 1: by similarity and trigonometry

As explained above, by the fundamental theorem of affine geometry, the ratio of the areas is
constant. So we may consider any triangle. We choose ABC to be an equilateral triangle.
Form the triangle A′′B′′C ′′ as described above. By symmetry (invariance with respect to a
rotation by 120o about the centroid of ABC) the triangle A′′B′′C ′′ is also equilateral. Since

A
C
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Figure 2: Triangles AA′′C ′ and ABA′ are similar

θ := ∠A′AB = ∠B′BC, and ∠C ′A′′A = ∠A′B′′B = 60o, the triangles AA′′C ′ and ABA′
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are similar. Hence
AA′′

AB
=

A′′C ′

BA′
=

C ′A

A′A
=: λ.

Taking, without loss of generality, AB = 1, we have

AA′′ = λ, A′′C ′ = λ/3, C ′A = 1/3.

The law of sines for the triangle AA′′C gives

λ

sinϕ
=

λ/3

sin θ
=

1/3√
3/2

,

and so

sinϕ =
3
√
3

2
λ, sin θ =

√
3

2
λ.

Since ϕ+ θ = 120o, we have

sinϕ cos θ + sin θ cosϕ = sin(120o) =
√
3/2.

We have cos θ =
√

1− sin2 θ because θ is acute, but cosϕ = −
√

1− sin2 ϕ because ϕ is
obtuse. So

3λ
√

1− 3λ2/4− λ
√

1− 27λ2/4 = 1. (1)

(The minus sign is due to the fact that ϕ > 90o.) It is easy to see that λ = 1/
√
7 satisfies

the above. To show that this is the only solution, we observe see that the left-hand side is
a strictly increasing function of λ on the interval 0 < λ < λ∗ , where λ∗ being the largest
value of λ for which both the terms inside the radicals are positive. 1 Thus, the ratio of the
area of AA′′C ′′ and that of ABA′ is λ2 = 1/7 and this implies that the ration of the areas
of A′′B′′C ′′ and ABC is also 1/7. 2

2.2 Method 2: using coordinates

Suppose that the triangle ABC is isosceles with a right angle at A. Introduce Cartesian
coordinates, placing A at the point (0, 0), B at (1, 0) and C at (0, 1). See Figure 3. The
line ℓ0 through A and A′ has equation y = x/2. The line ℓ1 through B and B′ has equation
y = 1− 3x. The line ℓ2 through C and C ′ has equation y = 2(1−x)/3. The point A′′ is the
intersection of ℓ0 and ℓ2. Solving y = x/2 = 1 − 3x gives x = 2/7 and y = 1/7. The point
B′′ is the intersection of ℓ0 and ℓ1 and C ′′ is the intersection of ℓ2 and ℓ1. We find:

A′′ = (2/7, 1/7), B′′ = (4/7, 2/7), C ′′ = (1/7, 4/7).

The parallelogram with sides the vectors
−−−→
A′′B′′ = B′′ − A′′ = (2/7, 1/7) and

−−−→
A′′C ′′ =

C ′′ −A′′ = (−1/7, 3/7) has area twice the area of the triangle A′′B′′C ′′. Hence

2 area(A′′B′′C ′′) = det

(

2/7, 1/7
−1/7, 3/7

)

=
1

7
.

Since the area of ABC is 1/2, the result follows.

1Another way to solve equation (1) is by taking squares twice and, by algebra, show that it yields

91λ4 − 20λ2 + 1 = 0.

This equation has four solutions ±1/
√
7,±1/

√
13. Only the ones with positive sign should be kept. Of those,

1/
√
13 does not satisfy (1). Hence 1/

√
7 is the only solution.

2Alternatively, we have that A′′C′′ = AA′ − λ−C′′A′ = 1

3λ
− λ− λ

3
= 1√

7
.

3



A

A

B

C
B

C

l0

C= (0,1)

B= (1,0)

l2

l1

x

y

A= (0,0)

Figure 3: Assume one angle is right

2.3 Method 3: counting areas

Consider again an equilateral triangle ABC. Mark the 1/3, 2/3 points of side BC by A′,
A′

1, and do the same for the other sides. Let O be the centroid (that is, the intersection of
the medians) of the triangle ABC. Clearly, O is also the centroid of A′′B′′C ′′. Draw a line
through O parallel to BB′. This line cuts A′′C ′′ at a point P and AC at a point Q; see
Figure 4.
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Figure 4
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Figure 6

A

B C
A’1

C’1

B’1
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Figure 7

Since O is the centroid of A′′B′′C ′′, we have PC ′′ = 1
3A

′′C ′′. Since the triangle B′
1OB′ is

similar to ABC, we have that QB′ = 1
3B

′C = 1
3B

′
1B

′. Therefore, QB′/B′
1B

′ = PC ′′/A′′C ′′

and so, by Thales’ theorem, the line B′
1A

′′ is parallel to OQ. Similarly, B′
1P is parallel to

A′′B′′.
Repeat the same process two more times. That is, draw lines through O parallel to the

sides of A′′B′′ and A′′C ′′, then lines through A′
1 and lines through C ′

1. We arrive at Figure
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5. In other words, we rotated Figure 4 by 60o and 1200 and superimposed the lines.
We next draw lines through A′ parallel to B′′C ′′ and to A′′C ′′ and, cyclically, through

B′ and C ′. We obtain Figure 6. We can easily see that several triplets of lines pass through
common points.

Finally, Figure 7 shows that we have thus managed to fit several congruent equilateral
triangles (indicated by gray color) inside ABC. The remaining portion of ABC, not covered
by the gray triangles, consists of 9 congruent triangles (indicated by pink color). If we let
m be the area of each of the equilateral triangles we can see (see Figure 8) that each of the
pink triangles has area 2m because the parallelogram formed by one of the pink triangles
and the union by its image obtained by a half-turn through the mid-point of its longest side
consists of 4 equilateral triangles. There are 9 + 36 = 45 gray equilateral triangles inside

Figure 8: Each pink triangle has area equal to the area of two gray triangles

ABC and 9 pink triangles. Hence

area(ABC) = 45m+ 9× 2m = 63m.

On the other hand,
area(A′′B′′C ′′) = 9m.

Therefore the ratio of the areas of A′′B′′C ′′ and ABC is 1/7.

2.4 Interlude: a visual proof

Since affine mappings do preserve collinearity and ratios of lengths of parallel segments
it follows that the splitting of the triangle into smaller congruent triangles works for an
arbitrary triangle. Figure 9 can thus be classified as a visual proof of the problem statement.

2.5 Method 4: by tiling

Consider a regular hexagon centered at the point O. It is the red-shaded hexagon in Figure
10 below. Let R be its area. Draw 6 identical regular hexagons around it to obtain the red
hexagonal flower indicated in the figure below.

The hexagonal flower is a non-convex polygon with 18 vertices. Label one of them A
and then, moving clockwise, consider every third vertex, marking them by the letters B
through F . Consider now the convex hexagon ABCDEF , indicated as green in the figure.

5



Figure 9: A visual proof of the problem statement for an arbitrary triangle

E

F

B

C

O

Τ

τ

A

D

Figure 10: Hexagonal flower; area of red hexagon =: R; areas of ABCDEF =: G

By symmetry, it is a regular hexagon. Let G be its area. By inspection, we immediately get
that

G = 7R.

Draw the segments OA,OB, . . . , OF , thus splitting the green hexagon into 6 equilateral
(green) triangles, each of area, say, T :

G = 6T.

Draw the (blue) diameters of each small red hexagon, splitting it into 6 (blue) equilateral
triangles of area, say, τ :

R = 6τ. (2)

Combining the above displays we obtain

T = 7τ. (3)

It remains to show that the small blue triangle is situated inside a green triangle as the
triangle A′′B′′C ′′ is situated inside ABC in Method 1. But this is clear from the fact that
the three doted lines split the edge AF into thirds.

2.6 Another visual proof

Finally, it is worthwhile observing that the 1/7 factor can be explained visually by the
following figure showing two ways to tile the plane by regular hexagons.
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Figure 11: Visual explanation of the factor 1/7

3 A generalization

Consider a triangle ABC, just as in Figure 1, but now replace 1/3 by a factor α, that is,
suppose that AA′/BC = BB′/CA = CC ′/AB = α, where 0 ≤ α ≤ 1.

ρ(α) :=
area(A′′B′′C ′′)

area(ABC)
.

So far, we have seen that ρ(1/3) = 1/7. We want to compute ρ(α) for all 0 ≤ α ≤ 1. The
formula for ρ(α) is given by (8) in Section 4 below. But we want to explore the possibility
of making a construction as that of Method 3 or Method 4, for which the value of ρ(α) is
“obvious”.

Let us then see if we can find some the values of ρ(α) by the method of tiling.

3.1 α = 1/M for positive integer M

Consider the hexagonal flower of Figure 10 and to it 12 additional hexagons to create the
bigger flower depicted in the Figure 12. This consists of 7 + 12 = 19 red hexagons. The

O

Τ

τ

A

B

C

D

E
F

Figure 12: A bigger hexagonal flower; area of red hexagon =: R; area(ABCDEF ) =: G

bigger flower is a non-convex polygon with 6× 5 = 30 vertices. We are going to pick every
fifth vertex in order to create a bigger regular hexagon. However, unlike the previous case
(Figure 10), the big hexagonal flower the starting vertex is important because there are
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fewer symmetries than before. Pick the starting vertex one which is farthest away from O,
and call it A. Now, moving clockwise, pick every fifth vertex labeling them B, . . . , F to
construct a large green regular hexagon of area, say, G. Observe that

G = 19R.

Observe also that (2) and (3) still hold (with obvious meaning for the symbols). Finally
notice that (i) the dotted lines split side AF into 5 equal pieces; (ii) there is a side of the
blue-shaded triangle which lies on a straight line through O; (iii) this line cuts AF at a
point whose distance from F is 2/5 the length of AF . Combining these observations and
the definition of ρ, we find

ρ(2/5) = 1/19.

It is now easy to generalize this observation. Recursively construct a sequence of “hexag-
onal flowers” in an obvious manner: having constructed the (n − 1)-th flower (consisting,
say, of κn−1 red hexagons), we obtain a larger flower by surrounding the (n− 1)-th one by
6n additional hexagons. So κn = κn−1 + 6n. With κ0 = 1, we find κ1 = 7, κ2 = 19, and, in
general, κn = 1 +

∑n
k=1 6k = 1 + 3n(n + 1). Forming again a big (green) regular hexagon

with area, say, G, we have
G = (1 + 3n+ 3n2)R.

Upon inspecting the position of the blue triangle in relation to the green one, we find

ρ

(

n

2n+ 1

)

=
1

1 + 3n+ 3n2
.

We summarize some of the values in the table below.

n 1 2 3 4

number of red hexagons in a flower κn = G/R = 3n2 + 3n+ 1 7 19 37 91
number of vertices of a flower vn = 6(2n − 1) 6 18 30 42

αn = n/(2n + 1) 1/3 2/5 3/7 4/9

Since ρ(1 − α) = ρ(α) (this is obvious geometrically) we have computed ρ(αn) for α =
n/(2n+1) and ρ(1−αn). In fact, we have computed ρ(α) for those α for which ρ(α) = 1/M ,
where M is a positive integer:

Lemma 1. If ρ(α) = 1/M , for some positive integer M , then there is a positive integer n
such that M = 3n2 + 3n+ 1 and α = n/(2n+ 1) or α = (n+ 1)/(2n + 1).

The proof of this lemma is in Section 4.

3.2 Another example

We can use our “hexagonal calculator” to compute ρ(α) for other values of α. For example,
in the hexagonal flower of Figure 12 pick vertex A differently, as in Figure 13 below. The
regular hexagon ABCDEF has now moved to a new position and has smaller area: G = 13R.
Consider the blue shaded triangle and let τ0 be its area. We see that it consists of 4 smaller
triangles: τ0 = 4τ . As before, G = 6T and R = 6τ . Hence τ0/T = 4/13. Now the line
containing O and one side of the blue triangle meets AF at a point whose distance from F
is 1/4 the length of AF . We have thus shown that

ρ(1/4) = 4/13.

Can we do something similar for any rational α? The answer is in the next section.

8
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Figure 13: The hexagonal flower of Figure 12 with point A placed differently

3.3 Rational α by the tiling method

The question that naturally arises is whether we can compute ρ(α), for any rational α, by
a tiling method, We will see that the answer is yes, as long as we are allowed to pick the
vertices of ABCDEF also at the centers of small hexagons.

Consider the standard regular triangular tiling T of the plane. That is, T is obtained
by applying reflections to the sides of a unit-length equilateral triangle. Then T tessellates
the plane into congruent equilateral triangles that are called faces of T. The lattice L(T) of
T is the collection of the vertices of all of its faces. We say that another regular triangular
tiling T′ is embedded in T if L(T′) ⊂ L(T).

Definition 1. Let ∆ = ABC be a face of T′ and 0 ≤ α ≤ 1 a rational number. An equilateral
triangle δ contained in ∆ is called α-proper for ∆ if
(i) it is the union of faces of T,
(ii) the lines ℓ1, ℓ2, ℓ3 containing the sides of δ pass through the vertices A,B,C of ∆, and
(iii) line ℓ1 meets AB at a point A′ such that A′B : A′C = α : (1 − α), and, similarly, for
the other sides.

Theorem 1. Let 0 ≤ α ≤ 1 be a rational number. Then there is a triangular tiling T′,
embedded into T, such that each face ∆ of T′ contains an α-proper triangle δ.

We will prove this theorem by using complex numbers. Recall that the straight line
ℓ[z0, u] passing through z0 ∈ C and having direction u ∈ C, u 6= 0 is the set

ℓ[z0, u] = {z ∈ C : uz + uz = uz0 + uz0}.

For z1, z2, z3 ∈ C, let triangle(z1, z2, z3) be the triangle with vertices z1, z2, z3. Recall that if
u ∈ C, |u| = 1 then z 7→ uz is a rotation around the origin, so if

σ = eiπ/3, ϕ = σ2,

then triangle(z0, (1 + σ)z0, (1 + ϕ)z0)) is equilateral.

Proof of Theorem 1. Let T be the triangular tiling obtained by reflections on the sides of
triangle(0, 1, σ)). Its lattice is

L(T) = {m+ nϕ : m,n ∈ Z}. (4)

9



Let σ := 1+ϕ = eiπ/3. The triangle with vertices 0, 1, σ is a face of T. If v is a vertex of T,
define ∆ := triangle(0, v, σv)). This is an equilateral triangle that generates, by reflections
on its sides, a triangular tiling T′ embedded in T with lattice

L(T′) = {mv + nϕv : m,n ∈ Z}.

Suppose
v = a− bϕ, a, b ∈ Z.

Then, since
1 + ϕ+ ϕ2 = 1,

we have
mv + nvϕ = (ma+ nb) + (na+ nb−mb)ϕ,

so L(T′) ⊂ L(T). We now define a triangle δ by letting its sides be segments contained in
the lines

ℓ[0, 1] = {z ∈ C : z = z}
ℓ[v, ϕ] = {z ∈ C : σz − σz = σv − σv}

ℓ[σv, ϕ2] = {z ∈ C : σz − σz = v − v}.

Since the second and third lines are obtained from the first by multiplication by σ and σ,
respectively, it follows that δ is equilateral. Let P = ℓ[0, 1] ∩ ℓ[v, ϕ], Q = ℓ[0, 1] ∩ ℓ[σv, ϕ2],
R = ℓ[v, ϕ] ∩ ℓ[σv, ϕ2] be its vertices. By algebra, we find

P =
σv − σv

σ − σ
, Q =

v − v

σ − σ
, R =

σv + 2σv

σ − σ
.

Since v = a− bϕ, we further have

P = a, Q = b, R = aσ + bσ.

Assuming that 0 < a < b, we have that δ is nontrivial and that δ ⊂ ∆. We show that it is
α-proper for some α. (i) The sides of δ have length b−a, that is b−a times the length of the
side of triangle(0, 1, σ). Hence δ is the union of (b− a)2 congruent copies3 of triangle(0, 1, σ).
(ii) The lines containing the sides of δ pass through the vertices of ∆ by the definition of δ.
We next show that (iii) holds for some rational number α. Let w be the point of intersection
of ℓ[0, 1] with the line ℓ[v, σv − v] containing the side of ∆ with endpoints v and σv. Since
ℓ[v, σv − v] = ℓ[v, ϕv] = {z ∈ C : ϕvz − ϕvz = ϕvv − ϕvv} we have that

w =
ϕ− ϕ

ϕv − ϕv
=

a2 + ab+ b2

a+ b
.

By some further algebra, we have

α =
|w − v|
σv − v

=
b

a+ b
,

a rational number. Hence δ is b/(a+ b)-proper for ∆. To finish the proof of the theorem, if
α = m/n is a rational number with m < n, let a = n−m, b = m and the above procedure
constructs a m/n-proper triangle δ for ∆.

3If the side of an equilateral triangle equals an integer N then the triangle is partitioned in (2N − 1) +
(2N − 3) + · · ·+ 3 + 1 = N2 unit-side equilateral triangles.
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The theorem hence gives us an algorithm for placing an α = m/n–proper triangle δ for
∆. We start with a unit-side triangular lattice T. We let

v = (n−m) +mϕ

∆ = triangle(0, v, σv) = triangle(0, n −mσ,m+ (n−m)σ) (5)

δ = triangle(n−m,m,m+ (n − 2m)σ). (6)

We can now compute ρ(m/n) as the ratio of two areas:

area(∆) =

√
3

4
|n−mσ|2 =

√
3

4
(n2 − nm+m2),

area(δ) =

√
3

4
|m− (n−m)|2 =

√
3

4
(n− 2m)2.

Thus

ρ(m/n) =
(n− 2m)2

n2 − nm+m2
. (7)

So, for any rational 0 ≤ m/n ≤ 1, we can construct a figure as in Figures 10, 12 and 13 and
have a “visual” proof of the formula for ρ(m/n). We mentioned earlier that we may have
to pick the vertices not at the vertices of the hexagonal lattice but at their centers. To see
this, note that v = a− bϕ is at the center of the hexagonal lattice which is the dual of T if
and only if a− b ≡ 0 mod 3 which translates into m+ n ≡ 0 mod 3. In the cases studied
in Figures 10, 12 and 13 we had m/n = 1/3, 2/5, 1/4, respectively, and we could place the
vertices at vertices of hexagons because 1 + 3, 2 + 5, 1 + 4 6≡ 0 mod 3. But, for example, if
m/n = 2/7 then we need to place v at the center of a hexagon.

Rewriting (7) as

ρ(m/n) =
(1− 2(m/n))2

1− (m/n) + (m/n)2
,

we have that

ρ(α) =
(1− 2α)2

1− α+ α2
, α ∈ R, 0 ≤ α ≤ 1.

This is by continuity.

4 Additional remarks

1. To find a general formula for ρ(α) we use Method 2. See Figure 3. The equations for
the lines ℓ0, ℓ1, ℓ2 become y = α

1−αx, y = (1 − α)(1 − x), y = 1 − x
α , respectively. Then

A′′ = ℓ0 ∩ ℓ2, B
′′ = ℓ1 ∩ ℓ0, C

′′ = ℓ2 ∩ ℓ1 have coordinates

A′′ =
1

N

(

α(1− α), α2
)

, B′′ =
1

N

(

(1− α)2, α(1 − α)
)

, C ′′ =
1

N

(

α2, (1− α)2
)

,

where
N := α2 − α+ 1.

We then have

ρ(α) = 2area(A′′B′′C ′′) =
1

N2
det

(

(1− α)(1− 2α) α(1− 2α)
α(1 − 2α) 1− 2α

)

=
(1− 2α)2

α2 − α+ 1
. (8)

(In computing the determinant, we noticed that the matrix above equals 1 − 2α times a
matrix which has determinant equal to N .)
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2. Proof of Lemma 1. The equation ρ(α) = 1/M , where ρ(α) is as in (8), reduces is a
quadratic and so α = (1/2)(1 ± 3/

√
12M − 3). Suppose α = (1/2)(1 − 3/

√
12M − 3). But

α must be rational. Therefore 12M − 3 = Z2 for some integer Z. Hence 3 divides Z. Write
Z = 3W to get 4M − 1 = 3W 2, for some integer W . Since 4M − 1 is odd, W must be
an odd integer. So W = 2n + 1 for some integer n. Hence 4M − 1 = 3(2n + 1)2, which
gives that M = 3n2 + 3n + 1. The expression inside the radical is 4M − 3 = 9(2n + 1)2.
Hence α = (1/2)(1− 1/(2n+ 1)) = n/(2n+ 1). The other case, gives α = 1− n/(2n+1) =
(n+ 1)/(2n + 1).

3. A further proof that ρ(1/3) = 1/7 can be given by using Pick’s theorem [6] (see also
Coxeter [4, 13.51]) that states that in a 2-dimensional lattice, the area of a (not necessarily
convex) polygon whose vertices are lattice points equals 1

2b + c − 1 where b is the number
of lattice points on the boundary of the polygon and c the number of lattice points in the
interior. For the proof, see [4, p. 211, Figure 13.5c]. On the same page, Coxeter claims that
the formula for ρ(α) is obtainable for any α by means of Pick’s theorem, but there is no
proof of this statement. In order to use Pick’s theorem, for α = m/n, we have to construct
triangles δ and ∆, as we did in (5) and (6), and then Pick’s theorem is another way of
computing their areas.

4. The oldest reference to the problem of computing ρ(α) is in [3] by Clausen. A more
general case occurs when the ratios α := BA′/BC, β := CB′/CA. γ := AC ′/AB (see Figure
1) are not identical. This was formulated and solved by Steiner [8, pp. 163-168]. A formula
for the ratio of areas is given in [4, 13.55] and is proved using barycentric coordinates. A
special case gives Ceva’s theorem stating that the lines AA′, BB′ and CC ′ are concurrent
if and only if

α

1− α

β

1− β

γ

1− γ
= 1 (9)

Giovanni Ceva discovered this in 1678, but its dual theorem was one discovered by Menelaus
of Alexandria (70-140 CE). See [4, p. 220] for proofs using barycentric coordinates and [1,
p. 30] for a more elementary high-school level approach.

5. If we denote by Sα(∆) the triangle A′′B′′C ′′ from an arbitrary triangle ∆ = ABC by
using the same ratio α then we can show that, for a sequence αn, n ∈ N, of numbers between
0 and 1, the sequence of triangles Tn := Sαn

(Sαn−1
(· · · Sα1

(∆) · · · )) converges to a single

point, that point being the median of ∆, if and only if
∑∞

n=1
αn(1−αn)
1−2αn)2

= ∞. This follows

from the fact that ∆ and Sα(∆) have the same median and that the distance of the boundary
of Tn from the median is a constant times ρ(α1) · · · ρ(αn) and so this distance converges to
0 if and only if the sum of the logarithms of ρ(ak) is a divergent series. Consequently, Tn

does not converges to the median only if αn converges to 0 very fast.

6. The previous paragraph gives a way to create an infinite sequence of triangles inside a
fixed triangle ∆. Other was of creating such sequences have been considered, even within the
real of probability. See, for example, Diaconis and Miclo [5] and Volkov [9] for recent papers
on this subject. Based on the concepts and problems discussed in our paper, one can study
a sequence random subdivisions or random triangles of a fixed triangle in several ways. For
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example, by letting the triple (α, β, γ) be a random sequence (αn, βn, γn) taking values in
[0, 1]3. This generalizes the idea of Diaconis and Miclo who work under the condition that
all lines pass through the same point, that is if (9) is satisfied for all n. When such kind of
randomness is imposed, geometry becomes harder. Therefore, it is essential that the correct
point of view be chosen and, as we saw, there are several geometric approaches. The point
of view of affine geometry, in particular, should not be underestimated. We hope that our
paper, albeit entirely elementary, can form the basis for these kinds of random geometric
problems.

7. In the Introduction, we referred to the statement that a planar affine transformation
is completely determined by its effect on a triangle as the “fundamental theorem of affine
geometry” and cited Coxeter [4, 13.32]. Calling this statement fundamental relies on the fact
that affine geometry can be axiomatically developed as an extension of ordered geometry
with the addition of two axioms, the parallelism axiom and Desargues’ statement. In such a
mathematical system, an affine transformation is defined as a bijective transformation that
preserves collinearity. The “fundamental theorem of affine geometry” is becomes a theorem
that can be proved. In other approaches to affine geometry, e.g., one based on coordinates
(see, e.g., V.V. Prasolov and V.M. Tikhomirov [7, Chapter 2]), things are the other way
round, that is, the preservation of collinearity is a theorem rather than an axiom [7, p. 39].

8. Algebraically, the lattice (4) is the set of integers in the field Q[ϕ] := {x+yϕ : x, y ∈ Q}.
They and are known as Eisenstein integers and, just like the Gaussian integers m+ n

√
−1,

they form a Euclidean domain under the norm m+ nϕ 7→ n2 −mn+m2. In the preceding
computations, we have been working, essentially, with Eisenstein integers.
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