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Abstract

This paper extends previous work by the authors. We consider the local time

process L of a strong Markov process X, add negative drift to L, and reflect it

à la Skorokhod to obtain a process Q. The reflection of X, together with Q are,

in some sense, a macroscopic model for a service system with two priorities.

We derive an expression for the joint law of the duration of an excursion, the

maximum value of the process on it, and the time distance between successive

excursions. We work with a properly constructed stationary version of the

process. Examples are also given in the paper.
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1. Introduction

This paper considers a model, special cases of which have been studied in

[19, 16, 15] the motivation of which is a priority queueing system where the

high priority class is a stochastic process denoted by X and the low priority is

a process denoted by Q. Our interest is in studying Q. It turns out that the

problem can be expressed in general terms via an underlying strong Markov
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process X and its local time L at 0, a process which is considered as an input

to Q. For further motivation to the physical problem we refer to [19, 16, 15].

In what follows below, we express the problem in mathematical terms.

Consider a stationary strong Markov process X = (Xt, t ∈ R), defined on

some filtered probability space (Ω,F , P, (Ft, t ∈ R)), with values in R+, a.s.

càdlàg paths, and adapted to (Ft). In this paper, the local time L of the

processX at x = 0 is considered as an (Ft)-adapted stationary random measure

that regenerates jointly with X at every (stopping) time that X hits 0. More

precisely:

(A1) L assigns a nonnegative random variable L(B,ω) to each B ∈ B(R) such
that L(·, ω) is a Radon measure for each ω ∈ Ω.

(A2) For any a.s. finite (Ft)-stopping time T at which XT = 0, the process

((XT+t, L(T, T + t)), t ≥ 0) is independent of FT .

We take the broader perspective with regard to the process L and we allow

for the case that it is a local time of an irregular point (in which case L has

discontinuous paths) as well as the case that 0 is a sticky point (in which case

L is absolutely continuous with respect to the Lebesgue measure with density

c1(Xt = 0) for some c > 0). We refer to [2, Chap. IV] (in particular Corollary

6), [17, Chap. 6], and [5, §V.3] for further discussion. For each s ∈ R define the

inverse local time process with respect to t by

L−1
s;u := inf{t > 0 : L[s, s+ t] > u}, u ≥ 0. (1)

What is important is that, owing to this definition, the inverse of the cumulative

local time is a Lévy process in the following sense:

Lemma 1. If L is continuous then for every a.s. finite (Ft)-stopping time T

such that XT = 0, the process (L−1
T ;u, u ≥ 0) is a subordinator with L−1

T ;0 = 0.

If L is not continuous, that is to say if 0 is an irregular point for X, then this

Lemma is taken as an additional requirement to the definition of L. This is
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easily arranged by choosing L to be a modification of the counting process on

Z, the discrete set of times that X visits 0, so that the inverse is a subordinator.

To do this, we assign, to each element of Z, an i.i.d., unit-mean exponentially

distributed weight. Then let the local time on an interval I to be the sum of

all the weights of the points of Z in I.

We summarise this as an assumption, in addition to (A1)-(A2) above:

(A3) If L is discontinuous then we require that for every a.s. finite (Ft)-stopping
time T such that XT = 0, the process (L−1

T ;u, u ≥ 0) is a subordinator.

We will also need the following assumption:

(A4) The stationary random measure L has finite rate not exceeding 1, i.e.

EL(0, t) = µ t,

where 0 < µ < 1.

Then, as in [19], [16], [23], and [15], we define a stationary process Q =

(Qt, t ∈ R) by

Qt = sup
−∞<s≤t

{L(s, t]− (t− s)} , t ∈ R. (2)

Furthermore, Q is ergodic (its invariant σ-field is trivial.) Notice that Q also

satisfies, pathwise,

Qt = Qs + L(s, t]− (t− s)− inf
s≤r≤t

(

Qs + L(s, r]− (r − s)
)

∧ 0,

= sup
s≤r≤t

(L(r, t]− (t− r)) ∨ (Qs + L(s, t]− (t− s)) (3)

for all −∞ < s < t < ∞. It is worth recalling [15] that if we consider (3) as a

fixed point equation for Q then process defined by (2) is the unique stationary

and ergodic solution of (3). A typical sample path of Q is depicted in Figure

2 below. It consists of isolated excursions away from zero (also called “busy

periods”), followed by intervals of time at which Q stays at zero (called “idle

periods”). In this respect, the process Q is thought of as the workload in a
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stochastic fluid queue. Amongst other things in [16], [23], and [15], expressions

are derived for the marginal distribution of Q and the Laplace transform of the

duration of a typical idle and busy periods.

In this paper, we shall derive an expression for the joint law of three random

variables: the duration of a busy period, the duration of an idle period, and

the maximum of Q over a busy period. The result is formulated as Theorem

1 in Section 3 Formula 16 is new and extends some of the results of [15]. The

result is expressed in terms of the process Λ which is in turn a function of

the underlying Markov process X. Its construction and properties is done in

Section 2. The approach in this paper is new (compared to [15] and [16].) In

Section 4 we use Theorem 1 for finding marginal distributions. Subsequently, in

Section 5, we prove Theorem 2 on the joint law of endpoints of an idle period.

The formula of this theorem appeared in our previous paper [15] but the proof

presented here is new. We then prove Theorem 3 on the joint law of endpoints

of a busy period, together with the maximum of Q over this period. This is a

new result which is also proved by means of applying Theorem 1 together with

Palm calculus.

It is assumed, throughout, that (Ω,F , P ) is endowed with a P -preserving

measurable flow θt : Ω → Ω, t ∈ R, with a measurable inverse θ−1
t = θ−t. In

other words, P (θtA) = P (A), for all A ∈ F , t ∈ R. All stationary random

processes and measures can be constructed on Ω in such a way that the flow

commutes with the natural shift, e.g., Qt(θs◦ω) = Qt+s(ω), and L(B, θsω) =

L(B + s, ω), for all s, t ∈ R, Borel sets B ⊂ R, and ω ∈ Ω. The flow will be

explicitly used in Section 5 to obtain distributions conditional on observing a

positive (or a zero) value of Q0.

2. A closer look at the reflected process

Consider now any a.s. finite (Ft)-stopping time T , such that XT = 0. Then

(L−1
T ;t, t ≥ 0) is a subordinator starting from zero (owing to Lemma 1 or
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assumption (A3)) with law that does not depend on T . It turns out that

the process of interest is ΛT = {ΛT,t : t ≥ 0}, where

ΛT ;t = t− L−1
T ;t, t ≥ 0. (4)

Note that, irrespective of T , the process ΛT has the law of the same bounded

variation, spectrally negative Lévy process which is issued from the origin at

time zero. By (A4), L has rate µ < 1; hence EΛT ;1 = 1 − 1
µ < 0. Since L−1

T ;t

is a subordinator, it has a well-defined, possibly nonzero, drift. If this drift is

larger than or equal to unity then −ΛT is a subordinator and, as it will turn

out, this is a trivial case.

We therefore assume in the sequel that the drift of L−1
T is less than unity or,

equivalently, that

(A5) The drift δΛ of the process Λ defined by (4) is strictly positive.

Under this assumption, the point 0 is irregular for (−∞, 0) for ΛT (this

follows as a standard results for bounded variation spectrally negative Lévy

processes, see Bertoin [2, Chap. VII].)

In addition, under (A5), it is clear that the time taken for ΛT to first enter

(−∞, 0) is almost surely strictly positive. It will be shown below (Lemma 3)

that this implies that the excursions of the process Q, i.e. the busy periods,

have strictly positive length with probability one. It can be intuitively seen,

via a geometric argument involving the reflection of the space-time path of ΛT

about the diagonal (see Figure 1), that the time taken for ΛT to first enter

(−∞, 0) is almost surely equal to the length of the excursion of Q started at

time T .

In this light, note also that ΛT cannot creep downwards because it is spec-

trally negative with paths of bounded variation (cf. Bertoin [2, Chap. VII]).

Hence the overshoot at first passage of ΛT into (−∞, 0) is almost surely strictly

positive. It will turn out (Lemma 1) that this overshoot agrees with the idle

period following the aforementioned excursion of Q.
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Figure 1: The construction of the process (ΛT ;t, t ≥ 0) and related processes, assuming that

T = 0. Note that Λ may have countably many jumps on finite intervals.

The above analysis implies that, on finite intervals of time, Q has finitely

many excursions (busy periods) separated by positive-length idle periods. De-

note by

· · · < g(−1) < g(0) < g(1) < g(2) < · · ·

the beginnings of the idle periods and by

· · · < d(−1) < d(0) < d(1) < d(2) < · · ·

their ends, see Figure 2. We choose the indexing so that g(0) ≤ 0 < g(1). LetNg

(respectively, Nd) be the point process with points {g(n) : n ∈ Z} (respectively,

{d(n) : n ∈ Z}). As Q is a stationary process, Ng and Nd are jointly stationary

with finite, nonzero, intensity [15] denoted by λ (an expression for which is

given by (26) and is derived in §4.3 below). Corresponding to point processes

Ng, Nd we have the Palm probabilities Pg, Pd, respectively. Let us consider Q

under the measure Pd. Then Pd(d(0) = 0) = 1, i.e. the origin of time is placed
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Figure 2: The definition of g(n) and d(n). By convention, the origin of time is between g(0)

and g(1), under the original measure P . Under Pd, the origin of time is at d(0). Under Pg,

the origin of time is at g(0). The random variable Q∗ is the maximum deviation from 0 of Q

within the typical busy period.

at the beginning of a busy period. By the strong Markov property, the “cycles”

Cn := {Qt : d(n) ≤ t < d(n+ 1)} , n ∈ Z,

are i.i.d. under measure Pd. In particular, the pairs of random variables

(

g(n+ 1)− d(n), d(n+ 1)− g(n+ 1)
)

, n ∈ Z,

are i.i.d. under Pd. Consider the triple

(B, I,Q∗) :=

(

g(1)− d(0), d(1)− g(1), sup
d(0)<t<g(1)

Qt

)

, (5)

which is a function of cycle C0. We are primarily interested in the Pd-law

of (B, I,Q∗) Since, under Pd, the origin of time is placed at d(0), we interpret

B, I,Q∗ as the typical busy period, the typical idle period, and the maximum

value of Q over a typical busy period, respectively.

The next lemma is proved in [15]:

Lemma 2. Let D = inf{t > 0 : Xt = 0} and d = inf{t > 0 : Qt > 0}. Then

d = D a.s. on {Q0 = 0}.

We now obtain an alternative expression for B = g(1)− d(0) and I = d(1)−
g(1) in terms of the inverse local time.
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Lemma 3. We have that

B = g(1)− d(0) = inf{u > 0 : L−1
d(0);u > u}, (6)

B + I = d(1)− d(0) = L−1
d(0);g(1)−d(0). (7)

Proof. Since d(0) is the end of an idle period (and the beginning of a busy

period), we have Qd(0)− = 0. Using then expression (3) we obtain

Qt = L[d(0), t]− (t− d(0)), d(0) ≤ t < g(1),

which gives

B = g(1)− d(0) = inf{t > 0 : L[d(0), d(0) + t] = t}.

Consider now L−1
d(0);u, defined by (1). By Lemma 2, d(0) is a point of increase of

the function t 7→ L[d(0), d(0)+ t]. Hence g(1) > d(0). Also, when L[d(0), d(0)+

t]− t decreases, it does so continuously. Therefore,

B = inf{t > 0 : L[d(0), d(0) + t]≤t}.

Notice also that, for all t, x > 0,

L[d(0), d(0) + t]≤x ⇐⇒ t≤ L−1
d(0);x+ε, for all ε > 0.

It follows that,

B = inf{t > 0 : L−1
d(0);t > t},

by the right continuity of t 7→ L−1
d(0);t. To prove the expression for B+ I, notice

that L does not charge the interval [g(1), d(1)) because, by definition, Q is zero

for all t in this interval. �

Henceforth it will be convenient to work with the process Λ = (Λt, t ≥ 0)

where

Λt := t− L−1
d(0);t, t ≥ 0.

Note also that d(0) is an (Ft)-stopping time at which X takes the value 0 and

hence in our earlier notation Λt = Λd(0);t.
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From the expression (6), and as discussed in the introduction of Section 2,

we see that B is simply the first time at which Λ enters (−∞, 0),

B = inf{t > 0 : Λt < 0}, (8)

which is necessarily strictly positive thanks to the irregularity of 0 for (−∞, 0)

for Λ. From (6) and (7) we see that

I = L−1
d(0);g(1) −B = L−1

d(0);B −B = −ΛB, (9)

i.e. I is, in absolute value, equal to the value of Λ at the first time it becomes

negative. Again we recall from the discussion at the beginning of Section 2 that

Λ cannot creep downwards and hence I > 0 almost surely.

Consider now the random variable Q∗ = supd(0)<t<g(1)Qt. If we define

τx := inf{t > 0 : Λt > x} = inf{t > 0 : Λt = x} (10)

we immediately see that

{Q∗ < x} = {B < τx}. (11)

3. The triple law

Recall that Pd is the Palm probability with respect to the point process

{d(n), n ∈ Z}. The function

H(α, β, x) = Ed

[

e−αB−βI
1(Q∗ ≤ x)

]

characterizes the joint law of the triple (B, I,Q∗) under Pd. Since Pd(d(0) =

0) = 1, we have that

Λt = t− L−1
0;t , with Λ0 = 0, Pd-a.s. (12)

Recalling the expressions (8), (9) and (11) for B, I and Q∗, respectively, we

write

H(α, β, x) = Ed

[

e−αB+βΛB
1(B ≤ τx)

]

. (13)



10 Takis Konstantopoulos, Andreas E. Kyprianou, Paavo Salminen

Since our primary object is the process Λ defined in (12), and in view of (4)

and (13), it makes sense to consider the process on its canonical probability

space and denote its law by P0. Then

H(α, β, x) = E0

[

e−αB+βΛB
1(B < τx)

]

. (14)

The latter function may now be expressed in terms of so-called scale functions

for spectrally negative Lévy processes. To define the latter, let

ψΛ(θ) := logE0e
θΛ1 , θ ≥ 0,

be the Laplace exponent of Λ under P0. Then the, so-called, q-scale function

for (Λ,P0), denoted byW (q)(x), satisfiesW (q)(x) = 0 for x < 0 and on [0,∞) it

is the unique continuous (right continuous at the origin) monotone increasing

function whose Laplace transform is given by

∫ ∞

0
e−θxW (q)(x)dx =

1

ψΛ(θ)− q
, for β > ΦΛ(q), (15)

where

ΦΛ(q) = sup{θ ≥ 0 : ψΛ(θ) = q}

is the right inverse of ψΛ. (See for example the discussion in Chapter 9 of [17]).

Theorem 1. Let Λ be the process defined by (12), B its first entry time to

(−∞, 0) as in (8), and τx the first hitting time of {x} as in (10). For α, β, x ≥ 0

we have

H(α, β, x) = E0

[

e−αB+βΛB
1(B < τx)

]

= 1− 1

δΛ

1 + (α− ψΛ(β))
∫ x
0 e

−βyW (α)(y)dy

e−βxW (α)(x)
. (16)

Proof. Let Gt := σ(Λs, s ≤ t) and define, for all β ≥ 0, the exponential

(Gt)-martingale

Mβ
t := eβΛt−ψΛ(β)t, t ≥ 0.
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Let, on the canonical space of Λ, P
β
0 be a probability measure, absolutely

continuous with respect to P0 on Gt for each t, with Radon-Nikodým derivative

dPβ0
dP0

∣

∣

∣

∣

∣

Gt

:=Mβ
t .

Notice that Λ is still a Lévy process under Pβ0 with Laplace exponent

ψβΛ(θ) = logEβ0e
θΛ1 = ψΛ(β + θ)− ψΛ(β). (17)

It is straightforward to check from the above formula that, under P
β
0 , Λ is

spectrally negative, with bounded variation paths and drift coefficient equal to

δΛ. Since on the stopped σ-field GB we have (dPβ0/dP0)
∣

∣

GB

= Mβ
B, we may

substitute

eβΛB =Mβ
Be

ψΛ(β)B

in the equation (14) for H to obtain

H(α, β, x) = E0

[

Mβ
Be

ψΛ(β)Be−αB1(B < τx)
]

= E
β
0

[

e−(α−ψΛ(β))B
1(B < τx)

]

.

Let

q := α− ψΛ(β),

and assume that q ≥ 0. It follows from [17, Thm, 8.1(iii)] that

H(α, β, x) = E
β
0

[

e−qB1(B < τx)
]

= Z
(q)
β (0)− Z

(q)
β (x)

W
(q)
β (0)

W
(q)
β (x)

, (18)

where W
(q)
β is the q-scale function for (Λ,Pβ0 ) and Z

(q)
β is given by

Z
(q)
β (x) = 1 + q

∫ x

0
W

(q)
β (t)dt.

It is easy to see [17, Lemma 8.4] that the Laplace transform of W
(q)
β (·) is the

Laplace transform of W (q)(·) shifted by β and this ensures that

W
(q)
β (x) = e−βxW (α)(x). (19)



12 Takis Konstantopoulos, Andreas E. Kyprianou, Paavo Salminen

Moreover, since Λ still has drift coefficient δΛ under Pβ0 , [17, Lemma 8.6] tells us

that, irrespective of the value of q and β, W
(q)
β (0) = 1/δΛ. Putting the pieces

together, this gives us the desired expression for α ≥ ψΛ(β). However [17,

Lemma 8.3], since W (q)(x) is analytic in q, the condition on α can be relaxed

to α ≥ 0 by using a straightforward analytic extension argument. �

In view of (8), (9), (11), and (13), we get the following corollary.

Corollary 1. (Joint law of typical B, I and Q∗.) Assume that (A1)–(A5) hold.

Then the joint law of the length B of a typical busy period, the length I of a

typical idle period, and the maximum Q∗ of Q over the typical busy period is

expressed by the formula

Ed[e
−αB−βI

1(Q∗ ≤ x)] = 1− 1

δΛ

1 + (α− ψΛ(β))
∫ x
0 e

−βyW (α)(y)dy

e−βxW (α)(x)
(20)

where α, β, x ≥ 0.

4. Marginal distributions

Clearly, formula (20) can be used to extract more detailed information about

typical behaviour of Q. Let us first derive the distribution (Laplace transform)

of the pair (B, I) under the measure Pd. We have

Ed[e
−αBe−βI ] = E0[e

−αBeβΛB ] = lim
x→∞

H(α, β, x).

To derive the limit, let us temporarily assume that q = α − ψΛ(β) > 0 and

β ≥ 0. Consider (16) in the form (18) and use the limiting result

lim
x→∞

Z
(q)
β (x)

W
(q)
β (x)

=
q

ΦβΛ(q)
,
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from [17, Exercise 8.5] where the function ΦβΛ is the right inverse of ψβΛ. That

is to say

ΦβΛ(q) = sup{θ ≥ 0 : ψβΛ(θ) = q}

= sup{θ ≥ 0 : ψβΛ(θ) = α− ψΛ(β)}

= sup{θ ≥ 0 : ψΛ(θ + β) = α}

= ΦΛ(α)− β.

This gives

Ed[e
−αBe−βI ] = 1− 1

δΛ

α− ψΛ(β)

ΦΛ(α)− β
. (21)

To remove the restriction that α > ψΛ(β) in (21) and replace it instead by just

α ≥ 0, one may again proceed with an argument involving analytical extension

taking care to note for the case that α = ψΛ(β),

lim
|α−ψΛ(β)|→0

α− ψΛ(β)

ΦΛ(α)− β
= lim

|α−ψΛ(β)|→0

ψβΛ(ΦΛ(α)− β)

ΦΛ(α)− β
= ψβΛ

′
(0+) = ψ′

Λ(β).

4.1. Busy period

Letting β = 0 in (21), we find the Pd-law of B. That is to say,

Ed[e
−αB] = 1− 1

δΛ

α

ΦΛ(α)
.

This formula is consistent with the result of [15, Prop. 8] and, moreover, we see

that the mean duration of the busy period is given by

Ed[B] =
1

δΛΦΛ(0)
. (22)

4.2. Idle period

To find the Pd-law of I we need to set α = 0. Recall however from the

beginning of Section 2 that Ed(Λ1) < 0. This implies that ΦΛ(0) > 0 and

hence we have

Ed[e
−βI ] = 1− 1

δΛ

ψΛ(β)

β − ΦΛ(0)
. (23)

It follows that the mean idle period is thus equal to

Ed[I] =
−ψ′

Λ(0+)

δΛΦΛ(0)
, (24)
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where ψ′
Λ(0+) = Ed(Λ1) < 0.

4.3. Rates

A cycle of the process Q is defined as the interval from the beginning of a

busy period until the beginning of the next busy period. We therefore have

mean cycle length = Ed[B + I] =
1− ψ′

Λ(0+)

δΛΦΛ(0)
. (25)

We can express the common rate, λ, of Ng and Nd as the inverse of the mean

cycle length:

λ := ENd(0, 1) = ENg(0, 1) =
1

Ed[B + I]
=

δΛΦΛ(0)

1− ψ′
Λ(0+)

. (26)

4.4. The maximum over a busy period

We now derive the Pd-distribution of Q∗. Letting α = β = 0 in (16) we

obtain

Pd(Q
∗ ≤ x) = 1− 1

δΛW (x)
,

where W (x) ≡W (0)(x) is defined through its Laplace transform
∫ ∞

0
e−θxW (x)dx =

1

ψΛ(θ)
, for θ > ΦΛ(0). (27)

An immediate observation is that limx→0 Pd(Q
∗ ≤ x) = 0, since W (0) =

limθ→0 θ/ψΛ(θ) = 1/δΛ. So under Pd, the random variable Q∗ has no atom

at zero–which is, of course, expected.

We now show that Q∗ has exponential tail under Pd and derive the precise

asymptotics. To do this, let

β∗ := ΦΛ(0).

Then (27) gives that the Laplace transform of x 7→ e−β
∗xW (x) is θ 7→ 1/ψΛ(β

∗+

θ). From the final value theorem for Laplace transforms,

lim
x→∞

e−β
∗xW (x) = lim

θ→0

θ

ψΛ(β∗ + θ)
=

1

ψΛ
′(β∗)

,

where we used the fact that ψΛ(β
∗) = 0. It follows that

Pd(Q
∗ > x) ∼ ψ′

Λ(ΦΛ(0))

δΛ
e−ΦΛ(0)x
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as x→ ∞.

5. Cycle formulae

We now show how the use of cycle formulae of Palm calculus enable us to

find (Proposition 2 below) the joint law of the endpoints of an idle period

conditional on the event that the idle period contains the origin of time. Also

(Proposition 3 below) we characterise the joint law of the endpoints of a busy

period, together with the maximum of Q over this busy period, conditional on

the event that the busy period contains the origin of time.

Let (Ω,F , P ) be endowed with a P -preserving flow (θt, t ≥ 0) (see end of

Section 1). Consider a random measure M with finite intensity λM , and a

point process N with finite intensity λN such that M(B, θtω) = M(B + t, ω),

N(B, θtω) = N(B + t, ω), for t ∈ R, B Borel subset of R, and ω ∈ Ω. (In other

words, M,N are jointly stationary.) Then, for any nonnegative measurable

Z : Ω → R, we have

λMEM [Z] = λNEN

∫ Tk+1

Tk

Z◦θt M(dt), (28)

where PM , EM (respectively, PN , EN ) denotes Palm probability and expecta-

tion with respect toM (respectively, N), T0 is the first atom of N which is ≤ 0,

and Tk, Tk+1 are any two successive atoms of N . (See [20] for a special case.)

The next result can be found for some special cases in [16] (diffusions), [15]

(Lévy processes), and in [23] the general expression is derived. Here we offer a

new proof in the general case based on (28).

Theorem 2. (Joint law of endpoints of idle period.) Assume that (A1)–(A5)

hold. Then, conditional on Q0 = 0, the left end-point, g(0), and right end-point,

d(0), of the idle period containing t = 0 have joint Laplace transform given by

E[e−αd(0)+βg(0) | Q0 = 0] =
ΦΛ(0)

−ψ′
Λ(0+)

· 1

α− β

(

ψΛ(α)

α− ΦΛ(0)
− ψΛ(β)

β − ΦΛ(0)

)

,

for non-negative α and β (α 6= β).
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Proof. LetMI be the restriction of the Lebesgue measure on the idle periods:

MI(A) =

∫

A
1(Qt = 0)dt, A ∈ B(R).

Then EMI
[Z] = E[Z|Q0 = 0] for all nonnegative random variables Z. Apply

(28) with M =MI , N = Nd, and Z = e−αd(0)+βd(0):

λMI
EMI

[e−αd(0)+βg(0)] = λEd

∫ d(0)

d(−1)
e−αd(0)◦θt+βg(0)◦θt MI(dt).

Here λ is the rate of Nd and is given by (26). The rate λMI
is given by

λMI
=

Ed[I]

Ed[B + I]
.

Hence
λ

λMI

=
1

Ed[I]
=

δΛΦΛ(0)

−ψ′
Λ(0+)

,

where we used (24) and (25). Now, Pd(d(0) = 0) = 1. To compute the integral

above, note that MI is zero on the interval (d(−1), g(0)), and that, Pd-a.s., for

g(0) ≤ t ≤ d(0) = 0, we have d(0)◦θt = −t, and g(0)◦θt = g(0)− t. So, Pd-a.s.,
∫ d(0)

d(−1)
e−αd(0)◦θt+βg(0)◦θt MI(dt) =

∫ 0

g(0)
e(α−β)t−αg(1) dt =

eβg(0) − eαg(0)

α− β
.

Combining the above we obtain

E[e−αd(0)+βg(0) | Q0 = 0] =
ΦΛ(0)

−ψ′
Λ(0+)

· Ed[e
βg(0)]− Ed[e

αg(0)]

α− β
.

Since Ed[e
βg(0)] = Ed[e

−βI ], the result is obtained by using (23). �

Theorem 3. (Joint law of endpoints of busy period and maximum over it.)

Assume that (A1)–(A5) hold. Then, conditional on Q0 > 0, the left end-point,

d(0), and right end-point, g(1), of the busy period containing t = 0, together

with the maximum of Qs for s ranging over this busy period have a joint law

which is characterised by

E[e−αg(1)+βd(0)1(Q∗ ≤ x) | Q0 > 0]

=
ΦΛ(0)

α− β

(

1 + α
∫ x
0 W

(α)(y)dy

W (α)(x)
− 1 + β

∫ x
0 W

(β)(y)dy

W (β)(x)

)

, (29)

for non-negative α and β (α 6= β).
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Proof. Let MB be the restriction of the Lebesgue measure on the busy

periods:

MB(A) =

∫

A
1(Qt > 0)dt, A ∈ B(R).

Then EMB
[Z] = E[Z|Q0 > 0] for all random variables Z ≥ 0. Apply (28):

λMB
EMB

[e−αg(1)+βd(0)1(Q∗ ≤ x)]

= λEd

∫ d(1)

d(0)
e−αg(1)◦θt+βd(0)◦θt1(Q∗

◦θt ≤ x) MB(dt)

= λEd

∫ g(1)

0
e−α(g(1)−t)−βt1(Q∗ ≤ x) dt

= λEd

[

1(Q∗ ≤ x) e−αg(1)
e(α−β)g(1) − 1

α− β

]

=
λ

α− β

(

Ed[e
−βg(1)

1(Q∗ ≤ x)]− Ed[e
−αg(1)

1(Q∗ ≤ x)]

)

=
λ

α− β
(H(β, 0, x)−H(α, 0, x)), (30)

where H(α, β, x) is the right-hand side of (20). Using (26), (25) and (22), we

have
λ

λMB

=
1

Ed[B]
= δΛΦΛ(0).

Combining the above we obtain the announced formula. �

Proposition 3 yields the next corollary which recovers a result obtained in [23]

using different methods (for special cases, see [16] and [15]). Clearly, Corollary

2 could also be proved analogously as Proposition 2.

Corollary 2. Assume that (A1)–(A5) hold. Then, conditional on Q0 > 0, the

left end-point, d(0), and right end-point, g(1), of the busy period containing

t = 0 have joint Laplace transform given by

E[e−αg(1)+βd(0) | Q0 > 0] =
ΦΛ(0)

α− β
·
(

α

ΦΛ(α)
− β

ΦΛ(β)

)

,

for non-negative α and β (α 6= β).
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Proof. The argument proceeds as in the proof Proposition 3 by omitting

the factor 1(Q∗ ≤ x), i.e. by formally replacing x with +∞. The last line of

(30) will give λ
α−β (H(β, 0,∞)−H(α, 0,∞)), where H(α, β,∞) is given by the

right-hand side of (21). �

Corollary 3. Assume that (A1)–(A5) hold. Then, conditional on Q0 > 0, the

maximum of Q over the busy period containing t = 0 has distribution

P (Q∗ ≤ x | Q0 > 0) = ΦΛ(0)
W (x)

∫ x
0 W (y)dy −

∫ x
0 W (x− y)W (y)dy

W (x)2
(31)

for x ≥ 0.

Proof. Letting α, β → 0 in (29) yields

P (Q∗ ≤ x | Q0 > 0) = ΦΛ(0) lim
α→0

∂Ĥ

∂α
(α, 0, x),

where

Ĥ(α, 0, x) = 1− 1 + α
∫ x
0 W

(α)(y)dy

W (α)(x)
.

Next recall that for each x > 0, W (α)(x) is an entire function in the variable α

and in particular

W (α)(x) =
∑

k≥0

αkW ∗(k+1)(x)

where W ∗(k+1)(x) is the (k + 1)-th convolution of W (cf. Bertoin [3]). From

this one easily deduces that

∂

∂α
W (α)(x)|α=0 =

∫ x

0
W (y)W (x− y)dy.

The result now follows from straightforward differentiation. �

6. Example: Local time storage from reflected Brownian motion with

negative drift

Let X = {Xt, t ∈ R} be a reflected Brownian motion with drift −c < 0 in

stationary state living on I = [0,∞), and let P0 denote the probability measure
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associated with X when initiated from 0 at time 0. Its local time (at 0) for

s < t is given by

L(s, t] := lim
εց0

1

2ε

∫ t

s
1[0,ε)(Xu) du. (32)

It is a standard result that the law of (L(0, t], t ≥ 0) coincides with the law of

(− inf0≤s≤tXs, t ≥ 0). (This is the reason we have the factor 1/2 in front of

the integral (32).) Let Q be the stationary process defined as in (2):

Qt := sup
s≤t

{L(s, t]− (t− s)}.

This particular example of fluid queues was introduced and analysed in [19]

and further studied in [16] and [15].

Recall that E0L(0, 1] = c, and, hence Q is well-defined if and only if 0 <

c < 1. Here we make this example more complete by finding the α-scale function

associated with process Λt := t− L−1
t , t ≥ 0, where

L−1
t := inf{s : L(0, s] > t}, t ≥ 0.

is the inverse local time process. As seen from formulae (31) and (16), the

α-scale function is the key ingredient needed for computing the distribution of

the maximum of Q over a busy period and related random variables.

To begin with, we recall some basic formulae. When normalising as in (32),

see [10, pg. 214], [6, pg. 22] it holds that

E0(exp{−θL−1
t }) = exp

{

−t
∫ ∞

0
(1− e−θu)

1√
2πu3

e−c
2u/2 du

}

= exp

{

− t

Gθ(0, 0)

}

, (33)

where

Gθ(0, 0) :=
1√

2θ + c2 − c

is the resolvent kernel (Green kernel) of X at (0, 0); see [6, pg. 129]. Conse-

quently, we have

E0 (exp{θΛt}) = exp

{

t

(

θ − 1

Gθ(0, 0)

)}

= exp{tψΛ(θ)},
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where

ψΛ(θ) := θ −
√

2θ + c2 + c, θ ≥ 0.

Recall (cf. (15)) that the α-scale function (α ≥ 0) associated with Λ is

defined for x ≥ 0 via

∫ ∞

0
e−θxW (α)(x)dx =

1

ψΛ(θ)− α
; (34)

for x < 0 we set W (α)(x) = 0. The 0-scale function is called simply the scale

function and denoted W. For the next proposition introduce

Erfc(x) :=
2√
π

∫ ∞

x
e−t

2

dt,

and notice that Erfc(0) = 1, Erfc(+∞) = 0, and Erfc(−∞) = 2.

Proposition 1. The α-scale function W (α) of Λ is for x ≥ 0 given by

W (α)(x) =
e−c

2x/2

λ1 − λ2

(

λ1e
λ2
1 x/2 Erfc(−λ1

√

x/2)

−λ2eλ
2
2 x/2 Erfc(−λ2

√

x/2)
)

, (35)

where

λ1 := 1 +
√

(1− c)2 + 2α, λ2 := 1−
√

(1− c)2 + 2α (36)

In particular,

W (x) =
e−c

2x/2

2(1− c)

(

(2− c) e(2−c)
2x/2 Erfc(−(2− c)

√

x/2)

−c e c2x/2 Erfc(−c
√

x/2)
)

, (37)

and W (0) = 1.

Proof. From (34) we have

∫ ∞

0
e−θxW (α)(x)dx =

1

θ −
√
2θ + c2 + c− α

. (38)
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To invert this Laplace transform, introduce λ := 2θ + c2. With this notation,

1

θ −
√
2θ + c2 + c− α

=
2

λ− 2
√
λ+ 2(c− α)− c2

=
2

(
√
λ− λ1)(

√
λ− λ2)

(39)

=
2

λ1 − λ2

(

1√
λ− λ1

− 1√
λ− λ2

)

,

where λ1,2 are the roots of the equation z2 − 2z + 2(c− α)− c2 = 0, i.e., as in

(36). Next, recall the following Laplace inversion formula (cf. Erdélyi [7, pg.

233])

L−1

(

1√
λ+ β

)

=
1√
πx

− β eβ
2x Erfc(β

√
x) (40)

valid for λ− β2 > 0. Since
∫ ∞

0
e−θxW (α)(x)dx =

∫ ∞

0
e−λyec

2 yW (α)(2y)2dy

we obtain using (40)

2ec
2 yW (α)(2y) =

2

λ1 − λ2

(

λ1e
λ2
1 y Erfc(−λ1

√
y)− λ2e

λ2
2 y Erfc(−λ2

√
y)
)

,

which is formula (35). In particular, when α = 0 it holds λ1 = 2− c and λ2 = c

yielding formula (37). �

Using the scale function W and the fact

ΦΛ(0) = sup{θ > 0 : ψΛ(θ) = 0} = 2(1− c)

formula (31) yields the distribution of the maximum Q∗ over an observed busy

period (i.e. over a busy period containing the origin of time).

Proposition 2. Let 0 < c < 1. The distribution of the maximum Q∗ over an

observed busy period of a reflected Brownian motion (with drift −c) local time

storage is given by

P (Q∗ ≤ x | Q0 > 0) = 2(1− c)

∫ x
0 W (y) (W (x)−W (x− y)) dy

W 2(x)
, (41)

where the scale function W is given by (37).
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Figure 3: The density of Q∗ conditional on {Q0 > 0} for the example corresponding to

Brownian motion with drift −c = −1/2.

We plot the derivative of (41) for c = 1/2 in Figure 3 below.

We recall some formulas from [16]. First

E
(

eθd(0)−βg(1) |Q0 > 0
)

=
8(1− c)

√

2θ + (1− c)2 +
√

2β + (1− c)2

× 1

(
√

2θ + (1− c)2 + 1 + c)(
√

2β + (1− c)2 + 1 + c)

=: F (θ, β; 1− c), (42)

and

E

(

eθg(0)−βd(0) |Q0 = 0
)

= F (θ, β; c). (43)

Setting β = θ in the right-hand side of (42) and (43), respectively, we get

E
(

e−θ(g(1)−d(0)) |Q0 > 0
)

=
4(1− c)

√

2θ + (1− c)2(
√

2θ + (1− c)2 + 1 + c)2
, (44)

and

E
(

e−θ(d(0)−g(0)) |Q0 = 0
)

=
4c√

2θ + c2(
√
2θ + c2 + 2− c)2

, (45)

Taking the inverse Laplace transform of (44) (cf. Erdélyi [7, pg. 234]) we obtain

the density of the length of the busy period g(1)− d(0), given Q0 > 0, as

fg−b(v) = 2(1− c)e−(1−c)2v/2
(

√

2v/π − (1 + c)ve(1+c)
2v/2Erfc((1 + c)

√

v/2)
)
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Note that the density of the length of the idle period d(0) − g(0), given that

Q0 = 0, is obtained from fg−b(v) by substituting c for 1 − c. In Figure 4 we

have ploted fg−b(v) for three different values of c. We notice also that the mean

Figure 4: The density of length of the busy period, given that Q0 > 0 for three different values

of c.

busy period length has a simple expression:

E[g(1)− d(0) | Q0 > 0] =
2− c

(1− c)2
.

The joint density of d(0) and g(1) is given by

P(−d(0) ∈ dx, g(1) ∈ dy |Q0 > 0) = 2(1− c)e−(1−c)2(x+y)/2

×
(

√

2/(π(x+ y))− (1 + c)e(1+c)
2(x+y)/2Erfc((1 + c)

√

(x+ y)/2)
)

and, again, the density for (g(0), d(0)) is obtained by substituting c for 1− c.

Next we find the density of g(1) (recall that −d(0) is identical in law with

g(1)) by inverting the Laplace transform (obtained from (42) by choosing θ =
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0):

E
(

e−βg(1) |Q0 > 0
)

=
4(1− c)

(

√

2β + (1− c)2 + 1− c
)(

√

2β + (1− c)2 + 1 + c
) . (46)

Letting λ := 2β + (1− c)2 we rewrite (46) as

E
(

e−βg(1) |Q0 > 0
)

=
2(1− c)

c

(

1√
λ+ 1− c

− 1√
λ+ 1 + c

)

.

From (40)

L−1

(

1√
λ+ 1− c

− 1√
λ+ 1 + c

)

= (1 + c) e(1+c)
2x Erfc

(

(1 + c)
√
x
)

− (1− c) e(1−c)
2x Erfc

(

(1− c)
√
x
)

. (47)

Consequently,

2e−(1−c)2xfg(1)(2x) =
2(1− c)

c

(

(1 + c) e(1+c)
2x Erfc((1 + c)

√
x)

− (1− c) e(1−c)
2x Erfc((1− c)

√
x)
)

, (48)

where fg(1) denotes the density of g(1) conditioned on {Q0 > 0}. From (48) we

obtain

fg(1)(x) =
(1− c) e−(1−c)2x/2

c

(

(1 + c) e(1+c)
2x/2 Erfc

(

(1 + c)
√

x/2
)

− (1− c) e(1−c)
2x/2 Erfc

(

(1− c)
√

x/2
))

. (49)

Moreover, the density fd(0) of d(0) conditional on {Q0 = 0} is obtained from

(49) by substituting c instead of 1− c :

fd(0)(x) =
c e−c

2x/2

1− c

(

(2− c) e(2−c)
2x/2 Erfc

(

(2− c)
√

x/2
)

− c ec
2x/2 Erfc

(

c
√

x/2
))

. (50)

It is striking how similar formulae (37) and (50) are.
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Remark 1. The scale function formulae (35) and (37) are clearly valid for all

c ≥ 0. In case c = 0 the process {L(0, t] ; t ≥ 0} is a version of the Brownian

local time, and the α-scale function W
(α)
0 of the corresponding process Λ is

given by

W
(α)
0 (x) =

e(1+α)x

2
√
1 + 2α

(

(1 +
√
1 + 2α) ex

√
1+2α Erfc

(

−(1 +
√
1 + 2α)

√

x/2
)

− (1−
√
1 + 2α) e−x

√
1+2α Erfc

(

−(1−
√
1 + 2α)

√

x/2
))

.

In particular,

W0(x) = e2x Erfc(−
√
2x). (51)

In case c = 1 it holds λ1,2 = 1 ±
√
2α and for α 6= 0 formula (37) can be used

directly. For the 0-scale function we need to take the limit as c→ 1 in (37):

W1(x) = (1 + x) Erfc(−
√

x/2) +

√

2x

π
e−x/2. (52)

Remark 2. Here we display some formulae for Laplace transforms apparent

from above and point out a misprint in Erdélyi et al. [7].

First, from (38), (39), and (52) we have the following Laplace inversion

formula valid for λ > 1:

L−1

(

1

(
√
λ− 1)2

)

= (1 + 2x) ex Erfc(−
√
x) +

2
√
x√
π
, (53)

and this can be “extended” (for a > 0) to

L−1

(

1

(
√
λ− a)2

)

= (1 + 2a2x) ea
2x Erfc(−a

√
x) +

2a
√
x√
π
. (54)

Furthermore, it can be checked that (54) is valid for all a < 0 by evaluating

the Laplace transform of the right-hand side. This can be done term by term

by using, e.g., Erdélyi et al. [7, pp. 137, 177] (well-known formulae):

L
(√
x
)

=

√
π

2
λ−3/2,

L
(

ea
2x Erfc(a

√
x)
)

= λ−1/2 (λ1/2 + a)−1,
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and

L
(

xea
2x Erfc(a

√
x)
)

= − ∂

∂λ
L
(

ea
2x Erfc(a

√
x)
)

= − ∂

∂λ
λ−1/2 (λ1/2 + a)−1

=
1

2a

(

λ−3/2 − λ−1/2 (λ1/2 + a)−2
)

.

We remark that formula (10) in [7] p. 234:

L−1

(

1

(
√
λ+

√
b)2

)

= 1− 2
√

bx/π + (1− 2bx) ebx
(

Erf(
√
bx)− 1

)

. (55)

is not correct since it does not coincide with formula (54) (for a < 0). Indeed,

because

Erf(x) :=
2√
π

∫ x

0
e−t

2

dt,

the right-hand side of (55) is zero at zero but the right-hand side of (54) is 1

at zero.

7. Further examples

In the previous example we derived a local time process from a given Markov

process. However, it is also possible to consider examples where just the local

time process L, or equivalently the subordinator L−1, is specified. Indeed the

subordinator that will play the role of L−1 in this example has no drift and has

Lévy measure given by

Π(x,∞) =
γν

Γ(ν)
xν−1e−γx + ϕ

γν

Γ(ν)

∫ ∞

x
yν−1e−γydy,

where the constants ϕ, γ > 0 and ν ∈ (0, 1). Note in particular then that L−1 is

the sum of two independent subordinators, one of which is a compound Poisson

process with gamma distributed jumps, the other has infinite activity and is of

the so called tempered-stable type. Clearly Π also describes the Lévy measure

of −Λ too.
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According to [9], the process Λ belongs to the Gaussian Tempered Stable

Convolution class and moreover,

ψΛ(θ) = (θ − ϕ)

(

1−
(

γ

γ + θ

)ν)

for θ ≥ 0. In particular δΛ = 1 and ΦΛ(0) = ϕ. It is a straightforward exericse

to show that

E(Λ1) = ψ′
Λ(0+) = −ϕν

γ

and this implies that

µ =
1

1 + ϕν/γ
< 1,

as required.

From [9] we also know that

W (x) = eϕx + γνeϕx
∫ x

e−(γ+ϕ)yyν−1Eν,ν(γ
νyν)dy

where

Eα,β(x) :=
∑

n≥0

zn

Γ(αn+ β)

is the two parameter Mittag-Leffler function.

We may now deduce from the theory presented earlier that, for example,

Pd(Q
∗ ≤ x) =

1− e−ϕx + γν
∫ x

e−(γ+ϕ)yyν−1Eν,ν(γ
νyν)dy

1 + γν
∫ x

e−(γ+ϕ)yyν−1Eν,ν(γνyν)dy

and

Pd(Q
∗ > x) ∼

(

1−
(

γ

γ + ϕ

)ν)

e−ϕx.
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