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Abstract

We give a stand-alone simple proof of a probabilistic interpretation of the
Gaussian binomial coefficients by conditioning a random walk to hit a given

lattice point at a given time.
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Introduction

The Gaussian binomial coefficients (also known as g-binomial coefficients) [4] are generalizations

of classical binomial coefficients and are usually defined as

ny (1-g")(1=g"1)(1 - gmm*1)

m (I-g)(1-¢?)(1-qm)

The term “generalization” is justified, e.g., by the fact that limg_1[,;]q = (Z), which becomes
obvious if we divide each term in the numerator and denominator of the last display by 1 — ¢ and
expand the ratio into a power series with finitely many terms. The Gaussian binomial coefficients
turn out to be polynomial functions of the variable ¢ and satisfy many analogs of the usual properties

of binomial coefficients. We refer, e.g., to the textbook of Kac and Cheung [5].

Originally, they appeared in combinatorics, so it is not surprising that they are nowadays very
important in random polymer models which have strong connections to algebraic combinatorics;
see, for example, the recent work on the g-weighted version of the Robinson-Schensted algorithm

introduced by O’Connell and Pei [6]. In the study of random graphs, Gaussian binomial coefficients
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are present, for instance, in the distributions of the sizes of the transitive closure and transitive
reduction of node 1 in a random acyclic digraph with n nodes, see [3] and [2]. Another application
is in integer-valued random matrices; see, for example, [1] where the distribution of the m-rank of a

random matrix is expressed in terms of these coefficients.

The purpose of this note is to give a short proof of a probabilistic interpretation of the Gaussian
coefficients which, not surprisingly, is very similar to their combinatorial interpretation, given by
Pélya [7], as counting the number of nondecreasing paths in a rectangle in the 2-dimensional integer
lattice that leave a fixed area below them. The probabilistic proof given below (Theorem 1) is
different than Pdlya’s. The note is stand-alone in that everything discussed is proved, including
Heine’s formula (see (4) below) that is needed at the end of the proof of Theorem 1. The probabilistic
interpretation gives a natural meaning to several identities and properties satisfied by the coefficients

(see end remarks).

The statement and proof

Consider nondecreasing paths in the standard 2-dimensional integer lattice Z?2, that is, finite
or infinite sequences g, x1, ... of elements of Z? such that n; = x; — x;_; is either e; or ey, where
e1 = (1,0), es = (0,1), the standard unit vectors. Let r,s be nonnegative integers. By a random
nondecreasing path from (0,0) to (r, s) we mean a finite nondecreasing path that starts at z¢ = (0,0)

and ends at ., = (r,8), and that is chosen uniformly at random among the set of all such paths.

T+S8

. ) such paths, the increments sequence (71, ...,7,) is assigned probability equal

Since there are (
to (7).
Theorem 1. Consider a random nondecreasing path from (0,0) to (r,s). This path splits the
rectangle [0,7] x [0, s] into two regions. Let A, s be the area of the region under the path. Then

r+s +
Eq*re = /(r S).
r T

q

Proof. Toss a fair coin independently and let e; represent heads and ey tails. Denote by &1, &o, . ..
the successive outcomes, a random independent sequence with P(&; =¢;) =1/2, i =1,2, t > 1. Let
X0=0,X; =&+ +&, t > 1. If it takes T,.,1 coin tosses until the (r + 1)-th head occurs for the first
time then, conditional on the event that we have seen s tails up to 7,1, the sequence (&1,...,&1.,,-1)
(of length Tyy1 —1 =5+ (r+1)-1=s+r, under the conditioning) has uniform distribution. Thus,
conditional on the same event, the path (Xg, X1,...,Xr,,,-1) is a random nondecreasing path from

(0,0) to (r,s). Let N;(t) be the number of heads/tails seen up to the ¢-th toss:

Ni(t)= ¥ 1 =i, P12
k=1
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and consider the stopping times
To:=0, Tp:=inf{t>1: Ni(t)=m}, m>1.

Since T1,T5s,... is an increasing sequence of stopping times in i.i.d. Bernoulli trials, the random
variables Z; = No(Tj41) — No(T}), i =0,1,2,..., are i.i.d. geometric: P(Z; = j) = (1/2)7*, j >0, and
so Ep% = %(1 -0/2)71, |0] < 2. Simply putting it, the Z; count the number of up-steps of the path
between two successive right-steps and so

T

V=No(Tp1) =Y. %

i=0

is the total number of up-steps up to 7,,1. The distribution of V is

IP)(VZS):(%)7~+s+1(7‘+s)7 $30. (1)

r

The area A = A, 5 under the path (Xo, X1,...,X7,,,-1) is then
A=rZy+(r-1)Zy+-+ Z,_1.
Letting ¢, 0 be variable with, say, |g|, 0] < 2, we have

Eq?0" =E[(¢"0)% (¢"7'0)" --(¢0) "1 67"]
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where the C, 4(¢) are defined by the right-hand side as coefficients in the Taylor expansion in the
variable #/2. On the other hand,

Eq?0V = Y 0°P(V = s)E[¢*|V = s]. (3)
s=0
Equating coefficients in (2) and (3), also taking into account (1), gives
T+S
sl =s1 -t [(77°),

It remains to show that the C, ;(¢) are Gaussian binomial coefficients. To this end, we prove that if

B =1 = 3 Coal)a” @

jol-¢dz I

then the recurrence relation

1 r+Ss

1-¢g°

Cr,s(Q) = CT,S—l(q) , s21, (5)

holds. This follows quite easily from the observation that

(1-¢"'2)Fo(qz) = (1 - 2)F.(2).
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Indeed, if, in this identity, we replace F.(qx) and F,.(z) by their series, from the right-hand side of
(4), and equate coefficients of similar powers, we obtain (5). Since, clearly, C, o(q) = F,(0) = 1, we

can iterate (5) to obtain

_ qr+s 1- qr+s—1 1- qr+1 ~ r+s

1
Cr,s(q): 1-¢° 1-g¢*! " 1-¢ =

r

This completes the proof.

Remarks

1. Since ["#*], is proportional to E¢”™ we have that ["#*], is a polynomial in g.

2. Formula (4) with C,. s(¢) the Gaussian binomial coefficients is known as Heine’s formula [5]. When
q =1 it corresponds to the Taylor series (Newton’s formula) (1-2)™" = ¥ 0 (7)(-2)* = Zes0 ("5%)2*.
3. By symmetry, the area above the random nondecreasing path has the same distribution as the
area below, i.e., the random variables A, ; and rs— A, s have the same distribution. This is equivalent
to the identity ["7°], = ¢"* [ |1/q-

4. By the definition of the random variable A, ; as the area under a random nondecreasing path
from (0,0) to (r,s) we see, by conditioning on the last edge of this path, that A, ; is in distribution
equal to A, ;1 with probability s/(r +s) or to A,_1 s+ s with probability »/(r + s). Using then the

result of Theorem 1, the well-known recursion [ 775 ], = ["*571], + ¢°[ #5711 ], follows.

T T T
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