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LIMIT THEOREMS FOR A RANDOM DIRECTED SLAB GRAPH!'

BY D. DENISOV, S. FOSS AND T. KONSTANTOPOULOS
Cardiff University, Heriot—Watt University and Uppsala University

We consider a stochastic directed graph on the integers whereby a di-
rected edge between i and a larger integer j exists with probability p;_;
depending solely on the distance between the two integers. Under broad con-
ditions, we identify a regenerative structure that enables us to prove limit the-
orems for the maximal path length in a long chunk of the graph. The model
is an extension of a special case of graphs studied in [Markov Process. Re-
lated Fields 9 (2003) 413-468]. We then consider a similar type of graph but
on the “slab” Z x I, where [ is a finite partially ordered set. We extend the
techniques introduced in the first part of the paper to obtain a central limit
theorem for the longest path. When [ is linearly ordered, the limiting distri-
bution can be seen to be that of the largest eigenvalue of a |/| x |/| random
matrix in the Gaussian unitary ensemble (GUE).

1. Introduction. Consider a random directed graph with vertex V = Z, the
integers. A pair of integers (i, j) is declared to be an edge, directed from i to j,
with probability p;_; which depends only on the difference j — i, and this is done
independently from pair to pair. We assume that py = 0 for all k¥ <0, so there
are no directed edges from a larger integer to a smaller one. We are interested in
limit theorems (law of large numbers and central limit theorem) for the maximum
length T'[1, n] of all paths from 1 to n, as n — oo. The problem as such is related
to last-passage percolation.

Unlike nearest-neighbor graphs [3, 29], the quantity T'[1, n] does not have a
direct subadditive property. It turns out that a related quantity, namely, the maxi-
mum L[1, n] of all paths in the restriction of the graph on {1, ..., n}, has an almost
subadditive property [see (2)] and, thus, L[1,n]/n — C, almost surely, for some
deterministic constant C < 1. In fact, it will be shown that there exist random ver-
tices 1, J, with I < J a.s., such that, a.s., if i < I and j > J, then vertex i is
connected to vertex j by a path. From this, it follows that T[1, n] has the same
asymptotic properties as L[1, n]. The minimal condition we need to carry out our
program is

d(=py)-- (1= p) <oo.
k=1

Received May 2010; revised April 2011.
1Supported in part by EPSRC Grant EP/E033717/1 and by the Isaac Newton Institute for Mathe-
matical Sciences.
MSC2010 subject classifications. Primary 05C80, 60F17; secondary 60K35, 06A06.
Key words and phrases. Random graph, partial order, functional central limit theorem, GUE, last
passage percolation.

702


http://www.imstat.org/aap/
http://dx.doi.org/10.1214/11-AAP783
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html

LIMIT THEOREMS FOR A RANDOM DIRECTED SLAB GRAPH 703

Under this condition, we can identify a random subset . (we call it “skeleton”)
of Z whose points form a stationary renewal process (see Sections 4 and 5) over
which the graph regenerates and has the property that any element v of . is con-
nected by a path (directed either toward v or away from it) to any other vertex in Z.
The quantity L[1, n] becomes additive over the regenerative set ., enabling us to
prove, under the stronger condition

> k(= p) (1= pg) < oo,
k=1

a (functional) central limit theorem. The latter condition implies finiteness of vari-
ance of the longest path between two successive points of .. To prove the latter
assertion, we provide a rather nontrivial algorithmic construction of the last non-
positive element of .. This construction is related to the so-called coupling-from-
the past method for perfect simulation [19, 34] and is the topic of Section 7 which
is based on the properties of two stopping times studied in Section 6. The central
limit theorem is proved in Section 8.

We then consider an extension of the random graph on the vertex set Z x I,
where [ is a partially ordered set under some partial order < possessing a min-
imum and a maximum element. We let an edge from (x,i) to (y, j) exist with
probability that depends on y — x and on i and j, and only when y — x > 0 and
i < j. We let Ly be the length of the longest path in the restriction of the graph
on {0,..., N} x I and show that the law of Ly, appropriately normalized, sat-
isfies a functional central limit theorem such that the limit process (Z;, t > 0) is
a 1/2-self-similar, non-Gaussian, continuous process with Z; having the law of
the largest eigenvalue of an a || x || random matrix in the Gaussian Unitary
Ensemble (GUE) [2].

The case where all the p; are equal to p corresponds to a directed version of
the classical Erd6s—Rényi graph [5]. Indeed, let G, be the Erd6s—Rényi graph
on the set of vertices {1, ..., n}. To each {i, j} which is an edge in G, ), we give
an orientation from i A j to i Vv j. The directed graph thus obtained is precisely the
restriction of our graph on the set {1, ..., n}. This model was also studied in [18].
In this paper, among other things, sharp estimates for the C = C(p) as a function
of p were obtained. Besides purely mathematical interest, this model is motivated
by applications in Mathematical Biology (community food webs) [14, 31, 32], in
Computer Science (parallel processing systems) [23] and in Physics. Allowing the
connectivity probability to depend on the distance between two vertices i and j
means larger modeling flexibility, on one hand, while making the model more
realistic on the other.

In [18] a generalization of Borovkov’s theory of renovating events [9-13] was
developed in order to construct a Markov chain in infinite dimensions describing
the “weights” of vertices. As a matter of fact, in [18], the random graph was a spe-
cial case of a more general stochastic dynamical system (the “infinite bin model”)
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with stationary and ergodic input. In this paper, we follow a different approach,
one, that is, applicable specifically for cases where there is independence between
links. In such a case, the approach has the advantage that it is more elementary
using, essentially, renewal theory and coupling between renewal processes.

2. The line model. We are given a set of numbers (p;, j € N), such that
0< pj < 1, ] eN,

and consider («;, j,i, j € Z,i < j) as a collection of i.i.d. random variables with
common law

P((XOJ = 1) =1- ]P)(O(O,l = —oo) =pj—i
Based on this collection, we build a directed random graph G on Z with edges
Ez{(l,,]) el x7:i <j,0{l"j = 1}

We shall occasionally refer to the restriction G[i, j] of the graph on the vertex set
{i,i +1,...,j} (deleting all edges with either of the endpoints not in this set).
We are interested in the behavior of the longest paths. A path 7 is an increasing
sequence of vertices © = (ig, i1, - . . , i¢g) successively connected by edges, that is,
Qjyiy =+ =0, ,,i; = 1. The number ¢ = || of edges is the length of this path.
If i =i and iy = j, we say that this is a path from i to j. We denote this event
by i ~» j and may also express it by saying that i leads to j or that j is reachable
fromi.

For any £ > 1 and any increasing sequence (ig, i, ..., i¢) of vertices, we con-
veniently define

(1) |(i0a ila ey l@)l = (ai(),il +ai1,i2 + - +aig,1,ig)+-

Clearly, this quantity is O if one of the summands takes value —oo; otherwise, it
equals £. In other words, |(ig, i1, ..., i¢)| > 0 if and only if (ig, i1, ..., i¢) is a path.
We let T'[i, j] be the maximum length of all paths from i to j. Unlike nearest-
neighbor directed graph models (see, e.g., [28]), this quantity does not have a sub-
additivity property. To remedy this, we let L[i, j] be the maximum length of all
paths from some i’ > i to some j' < j, that is,
Lli,jl= max T[', .
i<i’'<j'<j
That is, L[i, j] is the longest path of the restricted graph G[i, j]. Clearly, L[i, j]
has the same law as L[0, j — i]. It is also clear that L[i, j] is subadditive in the
sense that

(2) Lli,k] < L[i, j1+ LI[j, k1 + 1, i<j<k.

Indeed, if 7 is a path of maximal length in G[i, k], then its restriction 7’ on G[i, j]
has length at most L[i, j] and its restriction 7”7 on G[j, k] has length at most
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L[j, k]. Now the length of 7 is equal to the length of 7" plus the length of 7"
plus, possibly, 1, if j is not a vertex of 7. By the subadditive ergodic theorem [26],
page 192, there exists a deterministic C € [0, 1] such that

3) P(jli)n;oL[i,j]/j =c) =1.

3. A stationary-ergodic framework. We now define the model on an ap-
propriate probability space. We do this because it becomes clear what we mean
by ergodicity and also because some of the results below (e.g., the existence of a
skeleton—see Section 4) do not depend on the independence assumptions between
the random variables «; ;. We do this as follows. To each i € Z we assign a vector

80 = (8;0 , J € Z) with {—o0, 1}-valued components. Let 2 contain elements of
the form

w= (S(i),i €EZ),
where
i @
80 =5}, jex)
consisting of 65-0 € {—o00,1}. So @ = ({—o0, 1}4)% = {—o00, 1}2%Z, and is

equipped with the product sigma-field. A natural shift 6 on €2 is the map defined
by

(4) w=(ir> 8D > b = (i > §0TV).

Assume that we equip 2 by a probability measure IP which preserves 0, namely,
P A) =P(A) for all measurable subsets A of €2, and that 6 is ergodic. We also
assume that

P =—o0)=1, k<O.

We define random variables «; ; by

a; j(w) = 5§-il,~.
Hence,
i+1 i+1
o j(0w) =870 =507 ) =i ().
The object of interest is the directed graph G (w) = (Z, E(w)) with (i, j) € E(w)
iff oei,j(a)) =1.
The random variables L[, j] are all defined explicitly on €2 via
Lli,j1= _ max  [(o,.... i)l
ISip<U) <<y =<]
where |(ip, ..., i¢)| is the random variable defined by (1). The subadditive ergodic

theorem holds under this general framework and so (3) is valid.

A word on notation: If (A,,n € Z) is a collection of events of Q2 and 7 is a
Z-valued random variable on €2, then A; denotes the event containing all w € Q2
such that w € A7 ().
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4. The skeleton. The framework here is that of the previous section. Recall
the shorthand {i ~~ j} = {T'[i, j] > 0} for the event that there is a path from i to j.
Consider, for each n € Z, the events

A,J{ = ﬂ {n ~» j} = {any j > n is reachable from n},

j>n
Al = ﬂ {j ~» n} = {n is reachable from any j < n}.
j<n
We are interested in the random set

(5) F(@):={nel:we Al NA;},

and refer to it as the skeleton of the random graph. The terminology is supposed to
be reminiscent of a point of view described next.

Let #(E) C Z x 7 be a partial order [i.e., if (i, j) € Z(E) and (j, k) € P (E),
then (i, k) € &(E)] which contains the set of edges E. In fact, take & (E) to be
the smallest such set. Necessarily, Z(E) = {(i, j) € Z X Z:i ~> j}. A subset U of
Z is totally ordered under the partial order ~~ if for any distinct i, j € U we either
have i ~» j or j ~» i. We say that a totally ordered subset U is special if it has
the stronger property that for all distinct i, j with i € U and j € V, we either have
i ~ jor j~i.Clearly, the union of special totally ordered subsets is special and
totally ordered; thus, we can speak of the maximal special totally ordered subset;
we refer to it as the skeleton of the partial order. Adopting this definition, it is now
clear that the set . defined by (5) is the skeleton of the partial order ~~ on Z.
In [1] the elements of .¥ are referred to as posts. In fact, [1] uses .% in order to
derive limit theorems of the number N, of linear extensions of the random partial
order ~ on {1, ...,n}.

For a general partially ordered set, a skeleton may not exist. However, in our
case, the condition IP’(A(J)r NAg) > 0is sufficient for . to be almost surely infinite.

LEMMA 1. IfA:= IP’(A(J)r N Ag—) > 0, then . is an a.s. infinite set.

PROOF. Let 6 be the shift defined by (4). Then, for all w, . (w) = ¥ (Ow).
Since P is f-invariant, the result follows. [

Assuming that A = IP’(A(J)r NAy) > 0, we may then, equivalently, consider .7 as
a stationary-ergodic point process on the integers with rate A because A = P(0 €
). We let ')y, n € Z, be an enumeration of the elements of . according to the
following convention:

o<y <Tp=<0<T <y <.

In particular, Ty is the largest nonpositive element of ..
We can now strengthen the subadditivity property (2) for L:
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LEMMA 2. For all integers m < n,

L[Fm» l_‘n] = L[Fma Fm—l—l] +--- 4+ L[Fn—l’ 1—‘n]-

PROOF. To see this, consider the interval [I"1,T",] and a path 7* of length
L[I'1, ['y]. Then this path must visit all the intermediate skeleton points I'y, ...,
I",,. Indeed, suppose this is not the case and 7* does not visit, say, I';, for some 1 <
[ < n. Consider an edge (i, j) belonging to 7*, with i <T'; < j. By the definition
of I'7, both (i, I';) and (I', j) are edges of the random graph G. Therefore, we can
increase the length of 7* by 1 if we replace the edge (i, j) by two edges (i, I';)
and (I";, j). This leads to contradiction since 7 * has length L[I"{, I';;] which is, by
definition, maximal. [

5. Regenerative structure. We shall henceforth specialize to the i.i.d. case.
Specifically, assume that

0, if j <0,

) _ _
;7 =1)= {p,, ifj >0,

and that (§),i € Z) are i.i.d.
Throughout, we make use of the following two conditions:
(Cl) O0<p;<l,
o0
(€2 Y (I=p)---(1—pp) < oo
k=1
We also sometimes write ¢; =1 — p;. For each j € Z we consider its immediate
neighbors:
() = minfk > j:ajx = 1,
(6) ~ . . .
E(j):=max{i < j:o;;=1}.
See Figure 1. The distances of these vertices from j are denoted as follows:

n(j) =1 —J,

£(j) =] —E().
@ O O O O Q O o O @
36)) nG)

FIG. 1. Notation used: E(j) is the first vertex below j, that is, connected to j; correspondingly,
7(J) is the first vertex above j connected to j.
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Notice that (£(j), j € Z) and (n(j), j € Z) are identically distributed sequences,
and that each one is a sequence of i.i.d. random variables. Furthermore, for each
jEZ,

EGDEG=D,..) L (().n(j+D),...).

Henceforth, we shall let & be a random variable with distribution the common
distribution of £(j) and n(j):

P& >n)=P(&0) >n)=P(n0)>n)=1—p1)---(1 — pn), neN.

For integers u < v, define the events

v v—1

(7) Afy= () u—j) A=~

Jj=u+l Jj=u
for which, clearly,

+ — —
A;_,v ) Au,v+1’ Au,v 2 Aufl,v’

with
) Jim AT, =47, lim AL, =A
Furthermore,
)] A;UﬂAIw CA,tw ifu<v<w,

a property we shall use in Section 7. Observe also the following:

LEMMA 3. For all integers u < v,

v j—1 v
A= Uli~jt= ) W=y
j=u+li=u j=u+1
v—1 v v—1
A=) U i~it= @m0 v,
j=ui=j+1 j=u
j—1 _
A= Uli~jt=N=<Ey
j>ui=u j>u
Ay= U U~it=NnG) <v).
j<vi=j+l1 j<v

PROOF. We prove the first equality. That A} C Nizut1 U,j;} {i ~» j}isim-
mediate from the definition (7). To prove the opposite inclusion, assume that v >
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u + 1 (otherwise there is nothing to prove) and that for all integers j € [u + 1, v]
there exists an integer i € [u, j — 1] such that i ~» j. Fix j > u and pick i to be
the largest among the vertices between u and j — 1 such that i; ~» j; necessarily,
a;,,j = 1. Then pick the largest vertex i, among the vertices between u and i — 1
such that i» ~~ i1, and continue this way. Since i1 > iy > --- > u, it follows that this
process terminates with some iy = u. Since (u = i, ifx+1,...,11, j) 1S a path, we
have that u ~~ j. The second equality for A;fv now follows from the definition (6).
The relations for A, follow similarly. The third (resp., fourth) line is obtained by
sending v to 400 (resp., u to —oo) in the first (resp., second) one. [

This lemma tells us that A;v is the intersection of v — u independent events.
Indeed, since £(j) = j — &(j), we have
(10) Af, =@+ D) <L Ew+2) <2,...,6() <v—ul},
and the random variables & (u + 1), ..., §(v) are i.i.d. Similarly, for A, ,,
(1 A= =v—u,....nv-=2)<2,nv—-1) =< 1}.
Moreover, since

(E@+1),E@+2), ..., E@)E (v —1), 700 —=2),...,nw),

we have that IP’(AIU) =P(A, ). Similarly, both A;l" and A, are intersections of
infinitely many independent events:

(12) Af = (&G <j—n},
j>n

(13) Ay =(nG)<n—j},
j<n

and IP’(A,T) =P(A,)). The skeleton (5) can be expressed as follows:

(14) y:[nez:supﬁ(i)gng mfé(j)}.
i<n J=n
Regarding . as a point process, we see that it has rate
o0 2 o
A=P0e.”)=PA])’ = (]_[ PEG) < j)) =101 -PE© > g
j=1 j=1
Since
(15)  PEO) > j)=Pla1=-=a0;=0)=10—p1)---(1-pj),
we have

(16) r=J[1-a=p)---(1—ppHP*

j=1
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and so
(C2) <= 1>0 <+ E[£0)]<oo.

Consider now two successive skeleton points I'y and I'y4 and let G (w) be the
restriction of w on [I'g, ['k41):

G = (6(”),Fk§n<rk+1), kel

we refer to it as the kth “cycle.” We next show that the sequence of cycles has a
regenerative structure in the following sense:

LEMMA 4. The cycles (6y, k € Z) are independent and (¢y, k € Z. — {0}) are
identically distributed.

Intuitively, Lemma 4 is based on the following observation. Suppose that O is a
skeleton vertex (i.e., condition on the event Ay N AJ). Then £(1) > 0, £(2) > 0,
etc. In other words, £(1) =0, £(2) € {1,2}, £3) € {0, 1,2}, etc. To determine
the location of the next skeleton vertex after 0, we need to find the first vertex
Jj > 0 which is connected with every vertex between 0 and j — 1. This means that,
conditional on 0 being a skeleton vertex, the location of the first skeleton vertex
larger than O does not depend on the 8™, n<0).

PROOF OF LEMMA 4. We show that, for all j € Z, the cycle ¢ is independent

of (¢;,..., %j_ 1) forany i < j. By stationarity, it suffices to show that, conditional
on {I'g = 0}, the cycle %) is independent of (¢_;,...,%-1) for any i > 0. Fix
integers

yoi<---<y_1<p=0<y.
Pick events
Brea (8™, e <n <yit1)
and let
Co :={I't =y1} N By,

C_j={_j=y_;}NB_;, j=1,...,1.

We will show that
P(C_;,...,C_1;Co|lTg=0)=P(C_;,...,C_1|Tog=0)P(Cy|T9 =0).

Assume that I'g = 0 (i.e., O is a skeleton vertex). Then, by (14),

(17) s T(=2), (1) <0< E(1),E(2), ...



LIMIT THEOREMS FOR A RANDOM DIRECTED SLAB GRAPH 711

In view of the latter inequality, we have

' 1 =max{n < O:lA;mA;r =1}

= max{n <O0:sup7n(i) <n< jnfg(i)}

i<n L=n

= max{n <0:supn(i) <n < max ?(i)] =T_4,

i<n n<i<0
\/yhere the last serves as a definition of a new random variable f_l. Observe that
I'_; is measurable with respect to .~ = 0(6(”), n < 0). Similarly, for £ <0, on
the event I'y = 94, the random variable T’y is equal to some .% ~-measurable
random variable ['1. We also define

[ :=min{n > 0:75(0),....,7(n— 1) <n<Emn+1),En+2),...},

and observe that Fl is measurable with respect to .F T := 0(6(”), n > 0) and that,
on the event {I"g = 0}, the random variables I"; and fl coincide. These obser-
vations and the facts that .# 1, .Z~ are independent, {I'y = 0} = Ay N ABL , and
A(:)IE € .7+ justify the following:

P(Ciy ... Co1; Collo =0) = P(C“'"”E;(CA‘_I;‘E(;’ 4a.40)
0“0
_P(Ci,....C_1, Ay) P(Co, AY)
- P(Ag) P(A)
_P(Ci,....C_1, Ay A P(Co, AF . AY)
B P(Ay, AY) P(Ag, Ag)
=P(Ci,....,C_1 | To=0)P(Co | T'o=0),

as needed. [

COROLLARY 1. The bivariate random variables
(I'j = To, L[T0, T';]), Jj=1 (To—T—;, L[To,'—;]), Jj=1,
are i.i.d. and independent of (I'1 — I'g, L[I'1, T'o]).

We note that the set . with elements (I'y, k € Z) forms a stationary renewal
process. That it is stationary is clear from the general setup.

6. Two stopping times. In this section we study properties of the following
two random variables:

u = inf{i >0:1A:0=O},

v:=inf{i > O:lA:’O =1}
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These random variables are important in the algorithmic construction of Section 7.
Note that —v is the first vertex < O with the property that every vertex in the
interval (—v, 0] is reachable from —v:

v=inf{i >0:—v~0,—v~s—1,...,—v~ —v+1}.
Also, —pu is the first vertex < 0 such that O is not reachable from —u:
w=inf{i > 0:—i + 0}.

We will show that u is a defective random variable, that is, that P(iu = o0) > 0,
with conditional tail P(u > n|u < 00) comparable to the integrated tail of &£. We
will also show that v is an a.s. finite random variable with the same number of
moments as &.

Note first that both © and v are stopping times with respect to the filtration
(Z; .k <0). Observe that

(18) (u=o00}=()AZ,0=4;.
i>1
Since condition (C2) is equivalent to P(A;’) > 0, we have
P(u =o00) > 0.
On the other hand,

fv=o00}= (A%, )",

n=1

and, as we shall see below, this event has probability zero:
(19) P(v = o0) =0.

Let us first focus on the law of u, conditional on {t < oo}. This can be com-
puted easily, from the definition of w, and equations (11), (18) and (15):

P(n < pu < o00) =P(n(—k) <k forall 1 <k <n)P(n(—m) > m for some m > n)

=[P~k <k) <1 - [T P(=m) < m))
(20) k=1 m=n+1

= —-q(-q192)--- (1 —q192---qn)
x(l— I1 (1—q1qz~-qm)>.
m=n-+1

Conditional on {t < 00}, the random variable u has a tail comparable to the inte-
grated tail of &:
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LEMMA 5. Suppose that (C1) and (C2) hold. There exist constants 0 < C| <
Cy < o0 such that, for all n > 0,

C1 ) P(E>m)<P(u>nlu<o0)<Cr )y PE>m).

m>n m>n

PROOF. Since p; < 1, we have A < 1 [see (16)] and so
P <oo)=1—1"72>0.
Using (20), we have
1 s 1 e
P(u>n|u<oo)§w Z P(n(m)>m):m Z P > m).

m=n+1 m=n+1

Hence, C; = 1/(1 — A172). To obtain a bound from below, note that
[Tizi P(n(—k) < k) = P(u = 00) and so (20) gives

P(n < pu < o00) > Al/z(l — l_[ P(n(—m) < m))
m=n-+1

Zkl/z(l—exp(— > P($>m)>>

m=n+1

>APgEE) Y PE >m),

m=n+1

where g(x) = (1 — e™¥)/x. Hence, C, = g(E&)AY2/(1 —a1Y/2). O

We next prove something stronger than (19), namely, that v has the same num-
ber of moments as &.

LEMMA 6. [IfE&" < oo for some r > 1, then Ev" < oo.

PROOF. By the definition of v and equation (10), we have
v=inf{n > 1:£0) <n,&(-1)<n—1,...,§(—(n—1)) <1}.
Define a sequence of nonnegative random variables xg, x1, X2, ... by xo = 0 and
xp =max{§0) —n, (=) —(n—1),....§(—(n — 1) — 1}, n>1.
Then
v=inf{n > 1:x, =0}.
The x, satisfy

Xp4+1 =max(x,, §(—n)) — 1, n=>0,
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and, since the £(—n) are i.i.d., (x,, n > 0) is a Markov chain in Z. . We now make
two observations that imply the statement of the lemma. First, if x,, > K > 0, then

Xpp1 —Xn = (E(—n) —x,) T — 1< (E(-m) — K)" — 1.

But E[(§ — K)™] < 1 for sufficiently large K. Therefore, after the Markov chain
leaves the interval [0, K] (for sufficiently large K), it is majorized from above
by a random walk with increments distributed like (§ — K)™ — 1 whose mean
is negative. By standard properties of random walks, this implies that the return
time Tk to the set [0, K] satisfies ETy < oo if E((§ — K)T —1)" < oo; and the
latter is equivalent to E&” < oco. The second observation is that the Markov chain
(xp) returning to the set [0, K| eventually hits point O after a geometric number of
trials. [J

COROLLARY 2. If (C2) holds, then Ev < oo.

7. Algorithmic construction of I'y. In this section we give a method for con-
structing a specific skeleton point, for example, the first one which is to the left
of the origin. This is the point I'g. Besides the theoretical interest, such a con-
struction will be used later for proving a central limit theorem; it can also be
used in connection to a perfect simulation algorithm for estimating the value of
C =1lim,_ 0 L[1,n]/n (see remarks at the end of the section).

The idea for the construction of I' is this: recall that —v is the first vertex < 0
which is connected to every point between —v and 0. We check whether —v is
also reachable from every point from the left. If it is, we declare that —v is a silver
point and stop the procedure. If not, there is a first vertex before —v which fails
to be connected to —v. Using the shift operator 6 defined in (4), this vertex is at
distance w00~ from —v; in other words, this distance is the functional u applied
to the shifted w, when the origin is placed at —v. We then set u[1]=v+ pno67",
which is the location of the previous vertex, and v[1] = v and this finishes the first
step of the procedure.

The second step of the algorithm is similar to the first one: we search for the first
vertex —v[2] before —u[1] which is connected to every vertex between —v[2] and
—v[1]. We know that we can find such a vertex with probability one. If it also
happens that —v[2] is reachable from any point from the left, we stop and declare
—v[2] as our silver point. Otherwise, there will be a first vertex, —u[2] < —v[2],
which fails to be connected to —v[2].

The procedure continues in the same way, until the first silver point is found, and
it will be found with probability one. This first silver point will have the property
that it is reachable from every point from the left and is connected to every point
up until the origin; see Lemma 9 below. The distribution of this first silver point is
well understood and this is the content of Lemma 8. In fact, we will show that there
are infinitely many silver points which form a (delayed) renewal process backward;
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see Lemma 11. Finally, in Theorem 1 we show that among the infinitude of silver
points we can pick a gold one, namely, the point I'g.

To define the algorithm explicitly, we consider a sequence of N U {+o00}-valued
stopping times relative to the filtration (%, k > 1), defined as follows. Let

v[l]:=v,
2D
ulll:==v+po6 " =inf{j >v:1,- =0},

—J,—V

and, recursively, for k > 2,

v[k] :=inf{j > ulk — 1]: lAtj.—v[kfll =1},

(22)
ulk] := vk + p o 6" = inf{; > v[kl:1,- =0},

J—vlk]
where 6 is the natural shift (4). It is understood that if for some k£ we have u[k] =

oo, then v[j] = u[j] = oo forall j > k+ 1. We thus obtain an increasing sequence
of stopping times

v=v[l]<ulll<v2] < u2] <v[3] < u[3]<---

which [since P(u = 0o) > 0] is eventually equal to infinity. It is convenient to
think of these stopping times as the points of an alternating point process (the -
points and the v-points). In words, the sequence of these stopping times is defined
by first laying a v-point in location v[1]. Then, as long as n(—(v[1] +i)) <i
for i =1,2,..., we place no point in location v[1] + i. At the first instance i
at which n(—(v[1] +i)) > i, we place a p-point in location v[1] 4+ i and call it
u[1]. The random variables (n(—(v[1] +1i)),i > 1) are independent of v[1], and
so the event that we place a u-point in a finite location is independent of v[1]
and has probability P(1 < oo) = 1 — A!/2. The procedure continues in the same
way: having placed v[k] < oo, we decide, independently of the past (i.e., %\ik]),
whether to create a new p-point or not (i.e., place it at infinity). If we do create a
new p-point u[k], then, clearly, v[k + 1] is also finite and v[k + 1] — v[k] has the
same distribution as v[2] — v[1] conditional on u[1] < oco. Thus, for each w, the
recursion stops at the index

(23) K :=inf{k > 1: u[k] = oo}.
From the discussion above we immediately obtain the following:

LEMMA 7. Assume that (C1) and (C2) hold. Then K is a geometric random
variable with

P(K > k) = (1 — A2k, k> 0.

By definition, u[K] = oo but u[K — 1] < oo. Hence,

V[K] <0 a.s.
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NOTE 1. We stop for a minute to point out that the whole purpose of the con-
struction of these random variables is the random variable v[K]. In other words,
for each w € 2, we apply recursion (21)—(22) to obtain the alternating sequence of
v- and p-points, through them we define the index K as in (23) and, finally, v[K].
Thus, v[ K] is a well-defined (measurable) function of w. We refer to —v[ K] as the
first silver point before 0.

Although K depends on the whole alternating process (v[k], u[k]), k > 1), we
can identify the law of v[K] as follows:

LEMMA 8. On a new probability space, let K, V1, V2, V3, . .. be independent
random variables with distributions

P(K > k)= (1 — A2k k>0,
Y
Y = (2] —v[1] | n[1] < 00)

Il

v,

IS

EY

= (inf{j > pu: lA* _1}|/1,<oo), i>2.
Then, assuming (C1) and (C2),

K—1
(24) VKT L9+ 3 visr.

i=l

PROOF. It follows from
K—1
v[K1=v[1]+ Y O[i + 11— v[i]),
i=1
using a simple probabilistic argument as described above. []

The reason we are interested in the random variable v[K] is the following:

LEMMA 9. Assume (C1) and (C2) hold. Then for P-a.e.
(25) we€A kN Ai—v[K],O‘

Note that replacing the index n in a sequence of events A, by a random in-
dex N amounts to defining the event Ay = {w € 2: there exists n such that n =
N(w)and w € A,}.

The meaning of (25) is that the vertex v[ K ] of the random graph has the property
that there is a path from every j < v[K] to v[K] and there is a path from v[K] to
every i such that v[K] < i <0. Our goal is to identify a skeleton point. Whereas
V[K] is not a skeleton point for sure, there is a positive probability that it is.
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PROOF OF LEMMA 9. If K =k, for some k > 1, then u[k] = oo but ulk —
1] <oo,sov[k] <ocoand 1 ,- = 0 for all j > v[k]. Hence,
Ti-

v[k
(K=Kkc (] AT y=ATuuwp
J>vik]
by (8). Also, if K =k, then v[k], v[k — 1], ..., v[]1] < oo and so

_ + + + +
{K=k} CAZ iy —ok—11 VAL =11 —oik—21 NV NV A 1.0 € AL k00

by (9). But K is a geometric random variable and, hence, K < 0o, a.s. [
We also have the following result concerning moments of v[K]:

LEMMA 10. Assume (C1) and (C2) hold. If, in addition, there exists r > 1
such that EE"™! < oo, then Ev[K ] < oo.

PROOF. We have that Ev[K]" < oo if EV' < oo and E(u” | < 00) < 00. The
latter holds if E€"+! < oo, and this is a simple consequence of Lemma 5. On the
other hand, Ev" < oo holds if E£" < oo, as proved in Lemma 6. [J

Whereas (C1) and (C2) imply P(v[K] < 00) = 1, we need finite variance for &
in order that we have finite expectation for v[K].
We next construct a further sequence of stopping times,

olll<o2]<---,

as follows. Assume that (C1) and (C2) hold. Recall that the random variable v[ K]
is a.s. finite; it maps €2 into N. Hence, we can define v[K] o0 6" for any n € Z and
also vV[K] 08" for any measurable J : 2 — Z. We define o [j], j > 1, recursively:

(26) .
olj+11=0[jl+v[Kloo™°Ul  j>1.

Intuitively, given w, we first construct v[K] by (21)—(22) and place a point o[1]
at v[K]. We then shift the origin to —v[K] and repeat the recursion with o' =
6~ IX)(w) in place? of w, thus obtaining a new random variable, v[K] o K],
We place another point o [2] at distance® v[K] o0 6 IX] from o [1]. The procedure

26()/ — gfle(u))](a)) (w)
Iv[K10 67K (@) = v[K (@)](@') = v[K @K@ (@)) ] VK @1 (o)),
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continues in the same way. We refer to —o’[1], —o[2], ... as the sequence of silver
points.

LEMMA 11. Assume that (C1) and (C2) hold. Define the point process with
points aljl, j =1, as in (26). This is a renewal process on N, that is, the ran-
dom variables o[1], o[2] —o[1], o[3] —o[2], ... are i.i.d. with common distribu-
tion (24).

We are now ready to construct the first gold point I'y.

THEOREM 1. Assume that (C1) and (C2) hold. Define the sequence (v[k],
wlkl, k > 1) through (21)—(22) which is used to define the random variable v[K].
Based on this, define the sequence (o |j], j > 1), through (26). In addition, let

M := sup{§(i) — i},

i>1
J:=inf{j > 1:0[j] > M}.
Then
[o=—0ol[J].
Before proving the theorem, let us observe that the random variables defined

in the theorem statement are a.s.-finite. By (C2), that is, that E§ < oo, implies
M < o0, a.s.,

P(M >m) =P(£(i) — i > m, forsomei > 1)

27) <Y PEG) =i+m)
i=1

(28) < Y PEGH=i)<EEE>m—>0  asm— oo.
i=m+1

By standard renewal theory, it is easy to see that J, the first exceedance of M by
the random walk (o [j], j > 1), is also a.s.-finite and, hence, o[J] is an a.s.-finite
random variable.

PROOF OF THEOREM 1. Owing to Lemma 9, we have that
. - +
(29) for all j € N, a)EA_a[j]ﬂA_U[j]’o, P-a.e. w € Q2.
Also,
(30) M<olJl}={&) <o[J]+1,EQ)<ol[J]+2,...}.
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Fix n € N and observe that, from the definition of M and the expressions (10), (12)

for AJ_“n o and Aan, respectively,

AT, NAT, (N{M <n}
=AT,NAT, (NED <n+1,EQ <n+2,..}
=AZ,N{EEFEn+D<1,....60<n 1) <n+1,§2)<n+2,...}
=AZ,NAT,
={ne.”}.
Combining this with (29) and (30), we obtain
—olJ]es a.s.

It is clear, from the algorithmic construction (21)—(22) of the sequence (v[k],
ulk], k > 1), from the algorithmic construction (26) of the (o [j], j > 1), and the
definition of J, that there can be no point of .¥ between —o [J] and 0. Therefore,
—o[J] is the largest negative point of .. [J

REMARK 1. Possible extensions: The algorithmic construction proposed
above may be used in a general stationary ergodic framework. In particular, one
can easily generalize first-order results (the functional strong law of large num-
bers). Under reasonable assumptions, one can again prove the finiteness of £(0).
This will imply the finiteness of 1(0) and, in turn, the existence of the station-
ary skeleton. Then the functional strong law of large numbers will follow using
well-known tools.

REMARK 2. Simulation and perfect (exact) simulation of the value of the
limit C: This depends in a complex way on an infinite number of variables, and
one cannot expect an analytic closed form expression. But one can estimate it by
running an MCMC algorithm. One can also use the regenerative structure of the
model to run the simulation in backward time using the idea of “cycle-truncation”
that leads to a simple implementation scheme; cf. [20] for more details. However,
each such algorithm gives a biased estimator of the unknown parameter, in general.

In [18], we considered the homogeneous case (p; = p, for all j). In particu-
lar, in [18], Section 10 (see also [18], Section 4, for theoretical background), we
obtained a stronger result by proposing an algorithm for the perfect simulation of
a random sample from an unknown distribution whose mean is the limit C under
consideration. The standard MCMC scheme provides an unbiased estimator for
this limit.

The ideas behind that algorithm may be efficiently implemented in a number
of similar models, for example, in models with long memory (see, e.g., [15]). In
fact, in [18], we developed the algorithm for a more general model (we called it
“infinite-bin model”) and under general stochastic ergodic assumptions.
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8. Central limit theorem for the maximum length. Assume now that (C1)
holds and

(€3) Y k(l=pp)--- (1= pp) < oo
k=1

From (15) we see that this is equivalent to

(C3) E&? < oo.
LEMMA 12. If (C1) and (C3) hold, then E|T'y| < oo.

PrROOF. By Theorem 1, |I'g| = o[J] = min{o[j]:j > 1,0[j] > M}. Re-
call that o[1] < o[2] < --- are points of a renewal process. This renewal pro-
cess is clearly independent of M = sup;..{{£(i) — i}. By standard renewal theory,
Eo[J] < o0 if EM < co. But the tail of M was estimated in (28). The same in-
equalities now show that E£% < oo is sufficient for EM < co. [

The maximum length L, of all paths from some i > 0 to some j < n satisfies
the following central limit theorem.

THEOREM 2. Suppose (C1) and (C3) hold. Let
o= var(L(I";, 2] — C(T2 — T')).
Define

t>0,neN.

Then the sequence of processes £, in the Skorokhod space DI[0, c0) equipped
with the topology of uniform convergence on compacta [7], converges weakly to a
standard Brownian motion.

PROOF. By Lemma 12 we have E|I'g| < co. Hence, EI'; < oco. But the I',,
form a stationary renewal process. Therefore, EI'| < oo implies that the variance
of ', — I'y is finite. Since L(I'1, 2] < ', — ', we have 62 < 0o. The constant C,
defined as the a.s.-limit of L, /n [see (3)], is also finite and nonzero. Lemma 2
shows that (L,,n > 0) is a (stationary) regenerative process. The result then is
then obtained by reducing it to Donsker’s theorem. This is standard, but we sketch
the reduction here for completeness. Let &, be the cardinality of . N [0, n] (the
number of I'; in the interval [0, n]):

@, :=1N[0,n]|=) LO<T; <n).
JjEZ
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So Fq;n <n< F¢n+1- Write
L[nt] = {L[nt] - LF(D[,,”]} + qu)[nt] ’
nt ={nt — Top,} 4+ Top,-

The quantities in brackets on both lines are tight and so they are negligible when
divided by +/n. So instead of £, (¢), we consider

G(t) = Elou — Lo
n
Mo /n
€2)) o
_ Lr,—CTy 1 (1]

P Wzoﬁg{Lm,l,ri]—C(ri—FH)}.

The last term is the one responsible for the weak limit of Zn (and hence of ¢,,). To
save some space, put

xi =L@i—1, Ti]—=CT —Ti-1).

Donsker’s theorem says that

( }Zx,,u>0):>(3u,u>0)

weakly in D[0, 00), as n — oo, where B is a standard Brownian motion. Let

on(t) = Rl Y
n
Since ¢, converges weakly, as n — o0, to the deterministic function (Az, ¢ > 0)
and since composition is a continuous operation, the continuous mapping theorem
tells us that

1 ney (1) d
< > xi,uzO):»(BM,uzO)ﬂ“ZB,
ovn i3

and this readily implies that the last term in (31) converges weakly to a Brownian
motion. [J

It is now easy to see how the quantity 7'[i, j], the maximum length of all paths
from i to j, behaves. A sufficient condition for T'[i, j] to be positive is that there
is a skeleton point between i and j. Therefore, keeping i fixed, the probability that
eventually for all j sufficiently large T'[i, j] > O is at least equal to the probability
that eventually there is a skeleton point in [i, j], and this is certainly equal to one.
So, eventually, any two points are connected, a.s.

Moreover,

rr;,r;l=_L[T;, ;]
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Indeed, I'; is connected to every larger vertex and any vertex smaller than I'; is
connected to I';. Thus, if a path from some u > I'; to some v < I'; has length
L[T';, T';], we necessarily have u = I'; and v =I'; and this shows the equality of
the last display.

If n is large enough so that there is at least one skeleton point in [0, n], we have
that 0 ~~» n and

LT, 9,1 =T[0,n] < L[To, I, +11,

where ®,, is the number of skeleton points in [0, n]. Therefore, we immediately
obtain the following:

THEOREM 3. If (C1) and (C2) hold, then T[0,n]/n — C, as n — 00, a.s.
The same rationale shows the following:

THEOREM 4. Suppose (C1) and (C3) hold. Then Theorem 2 holds with T in
place of L.

9. Directed slab graph. Recall that we started with vertex set V = Z and
introduced a random partial order ~~ by means of a random directed graph:
i~jifi<jandIdi=ig<i|<---<ipg=]
(32)
such that o) ;) = -+ =04, j = 1.

A natural generalization is to replace the total order < on the vertex set V by a
partial order < and substitute the i < j requirement in (32) above by the require-
ment that i < j. We here provide an example of such a generalization. A major
role in our analysis has been played by the assumption that the underlying prob-
ability measure is invariant by some shift 6. Our example will also satisfy this
assumption.

Let (1, <) be a finite partially ordered set. We assume that / has a minimum and
a maximum, denoted by 0 and M, respectively. In other words, for all i, j, k € I:

(@ 0=xixixM,

(b) ifi < j <itheni =],

(c) ifi < j<ktheni <k.
Consider V = Z x I. We call this vertex set a cylinder. In the case [ =
{0, 1, ..., M}, with the usual ordering, we call V a slab. Elements of V will be

denoted by (x,i), (v, j), etc. We introduce the component-wise partial ordering
< onV by

DLWy, j) = &D#F(,j) and x=<y,i=j],
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and write (y, j) > (x, i) for the same thing. Next, we assign an edge ((x, i), (v, j))
to each pair of vertices such that (x, i) < (y, j) with probability r,_, ; ;, indepen-
dently from pair to pair. This is done by means of random variables a(y ;) (y, j):

Pletri).(y.) =0) = 1 = P(a(x.iy.(y.j) = —00)y—x.i.j-

We shall make this more formal in the sequel. The problem is, again, the behavior
of a longest path from (x, i) to (y, j). This length is denoted by T'[(x, i), (v, j)I.
We also define L[(x, i), (¥, j)] to be the maximum length of all paths starting from
some (x’,i") > (x, i) and ending at some (y’, j') < (v, j).

An appropriate probability space for the model is now described. Let § =
(8x,i,j» X € Z,1,j € I) be a collection of independent {—o0, 1}-valued random
variables with

P@x,i,j=1) =rxij,

assuming that r, ; ; =0 if x <0 orifi > j. Next, let S(X), x € Z, be a collection
of i.i.d. copies of §. The probability space 2 is defined to contain infinite vectors
o= (8™, x €Z). In other words, let 2 = ({—o0, 1}2*I*1)Z with {—o0, 1}£xIx!
be the space of values of each 8™, and with P being a product measure. A shift 6
on 2 is taken to be the natural map

(33) w= (x = 6()6)) = 0w = (x s S(X—H)),
Clearly, P is preserved by 6. The random variables oy ;) (y, j) are now given by

)
O (x,i), (y, ) (@) =87

and it is easy to check their 6-compatibility: ct(x ;),(y, j) (0®) = A(x11,i),(y+1, j) (@).
We introduce the following assumptions on the probabilities 7y ; ;:
(DO) ryii=: pyforalliel,
D1) O0<p; <1,

D2) > d=p)-(1—py) <00,
x=1

o0

(D2) Y x(l—p1)---(1=py) <oo,

x=1
(D3) foralli, j el withi < j, wehaverg; ;> 0.
Of these, the last one is not an essential condition. It is only introduced for

convenience. We will comment on it later. Of course, (D2') is stronger than (D2)
and it will be used for the proof of the CLT.
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9.1. The random graph G|x, y]. The random directed graph G = (V, E) with
V =7 x I and E consisting of all ((x, i), (y, j)) such that a(y ;) (y,j) = 1 isnow a
well-defined object. Let G[x, y] be the restriction of G on the vertex set [x, y] x [
where x < y are two integers. Let
Llx,yl:= max L[(x",i), (Y, )]
X=x'=y'=y
i,jel

be the maximum length of all paths in G[x, y]. We have 6-compatibility
Lix,ylo0=L[x+1,y+1],

and, by an argument analogous to the one used to obtain (2), we have the subaddi-
tivity property

Llx,z] < L[x,y]l+ L[y, z] +1, x<y<z.
Therefore,
Ly/N:=L[0,N]/N —C asn — o0, a.s.,

for some deterministic constant C which, under the assumption (D1), is positive.
One can show that, under assumptions (D0)—(D3), the constant C is identical to
the one of (3) for the line graph.

9.2. The random graph G®. Let G be the restriction of G on the vertex
set V x {i}, i € I. It is clear that each G is a line model as studied earlier. In
fact, the G, i € I are i.i.d. We denote by L®[x, y] the maximum length of all
paths of G) from some vertex x’ > x to some vertex y’ < y. We shall let .7 be
the skeleton of G, Then, assuming (D1) and (D2), each .”) forms a stationary
renewal process with a nontrivial rate. Moreover, (D1) implies that this renewal
process is aperiodic.

10. Central limit theorem for the directed cylinder graph. We first de-
scribe the limiting process. To do this, we need the following. First, let (BD(), 1>
0), i € I, be i.i.d. standard Brownian motions, all starting from 0. Second, let
H (I, <) be the Hasse diagram [16] corresponding to the partially ordered set /.
This is a directed graph with vertex set / and an edge from i to j, with i < j, if
there is no k, distinct from i and j, such thati <k < j.Lett = (¢9,t1,...,tr) be a
path in H (I, <) starting from ¢y = 0 and ending at ¢, = M. The length of the path
is r = |t|. For each such path ¢, define the stochastic process (Z O(), 1> 0) by

Z(L)(t) — Sup{B(‘O)(to) + [B(“)(tl) _ B(”)(t())] + ...
+[BU (1) = BUD (1) ]},

where the supremum is taken over all 0 <79 <#; <--- <1, =t. Then let

(34)

(35) Z(1) := max ZW(),
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where the maximum is taken over all paths ¢ from the minimum to the maximum
element in the Hasse diagram H (1, <).
The main theorem of this section is as follows:

THEOREM 5. Let G be a directed cylinder graph and assume that (D0), (D1),
(D2), (D3) hold. Let L, be the maximum length of all paths in G[0,n]. There
exists a constant k > 0 such that

by(t) i = ————, t>0,neN,

converges weakly, as n — oo, in the Skorokhod space D[0, 00) equipped with the
topology of uniform convergence on compacta, to the stochastic process Z defined
in (34)—(35).

PROOF. Since the .#"), i € I, are independent aperiodic renewal processes,
we have that

S = {x €l:x e ﬂy("),a(x,,-),(x,j) =1foralli, j el withi < j}
iel

is also a renewal process. Indeed, Lindvall [27] shows that (), .7 @) is a station-
ary renewal process. Now .# is obtained from (0);; ") by a further independent
thinning with positive probability due to the convenient assumption (D3). Condi-
tion (D2) implies that the rate of each ./!) is positive and this implies that the
rate of ;<; V) is positive. Hence, the rate of .# is also positive. Call this rate A.
We have 0 < A < 1. Moreover, . is stationary: . o = .%. Enumerate now the
points of . by

o<y <Tp<0<sTl <y <---.
We have E(I', — T')) =1/A. If
q)n =|yﬂ[0’n]|5

we have lim,— o ®,/n = A, as. Furthermore, C = AEL[I"}, I';] < 1. Condi-
tion (D2’) implies that E(I"; — I'1)? < 0o and, hence, ELO [, — I'1]? < o0. By
Corollary 1, the random variables

(M2 =Ty, LOMM,Tal), (T3 =T, L[, 1)), ...

are i.i.d., and since .7 is obtained by independent thinning of (;; ., we fur-
ther have that the rows of the last display are also independent when i ranges in /.

Consider next a path ¢ = (¢, (1, ..., {), of length |¢| = r in the Hasse diagram
H (I, <), and define the quantities
L*(), = max [LYO[Dy, T 1+ LT, Tj 1+

l<jo<j1<<jr=n

_}_L(Lr)[l'\ Fjr]}’

Jr—12
L= max L*()p,
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FI1G. 2.  The skeleton for the slab graph and a longest path.

where the last maximum is taken over all paths ¢ from the minimum to the maxi-
mum element of the Hasse diagram.

We now argue that the quantity of interest L, is of order L} + 04q(1) when n
is large by providing an upper and a lower bound. The key observation is that
when 7 is large, the number of points I'; < n grows at a positive rate (and hence
to infinity). At each of these points, say, I, the graph G[I";, I';] (being a vertical
slice of G—see Figure 2) is precisely the Hasse diagram:

G[I';,T';]=H(, =), J€L.

Fix ¢ <" in I. Since I'; is a point in the skeleton of G, any x < I'; is connected

to I'; in G, Similarly, I"; is connected to any y in G“". Since ¢ is connected
to (" in G[I';, I';], it follows that, almost surely, there is a path in G from any
(x,)toany (y,/"),if x <T; <yforsomeI'; €. andif /' <",

Assume that &, > 2. Let ¢t = (9, t1,...,() be a path in H (I, <) with (o =0,
t, = M and consider integers

(36) I<jo<j=<-<jr=1=Jjr=n.
Keep in mind that
I, <n.
By the construction of the set ., the following is true:
(I'1,0) = ("1, 00) ~ (T, t0) ~ (Fjg, 1) ~ (L, 0q) ~ - -
~ (L, 40) ~ (T, 4) = To,, M),

where (x, (') ~ (y, () means that there is a path from (x, (') to (y, (") in G. There-
fore,

Ly > LU[Ty, Tl 4 LYo, T 14+ LT, T,

because the right-hand side is a lower bound on the length of the specific path
chosen in the last display. By keeping ¢ fixed and maximizing over the jy, ..., j,
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F1G. 3. Construction used in obtaining the upper bound.

satisfying (36), we obtain L, > L*(1),, and by maximizing over ¢, we obtain the
lower bound

Ly>Ly, .

To obtain an upper bound, let 7* be a path that achieves the maximum in L,.
Assume that ®,, > 1 so that, by the key observation above, (0, 0) is connected to
(n, M) in G. See Figure 3. Hence, 7 * is necessarily a path from (0, 0) to (n, M).

Let

O=w=<iyy<---<t3=M

be the distinct values of the 7-components of the elements of 7* in order of ap-
pearance in 7t *. [The sequence (tg, (1, ..., ts) is not necessarily a path in H(/, <).]
So for each k =0, ...,s — 1, there are vertices (xg, tx), (Vk, tk+1) Which are con-
secutive in the path 7*. Hence,

Xk < Vi < Xg+1 forallk=0,1,...,5s — 1,

where, by convention, we set x; = n. The point of . prior to xj is Iy, and, since
7* has maximum length, (Te,, , t) is an element of *. By the maximality of 7 *
again, we have that x; and y, are contained between two successive points of .%
(otherwise we would be able to strictly increase the length of the path). Hence,

37 F‘ka kafykfl—‘l_;_q%k < Xk+1 forallk=0,1,...,s — 1.
We thus have

Ly =|7*=L“[0,T1]+ L“W[), Te, ]

s—1
+ Z{L(Lk)[r¢xk’xk] +1+ L(lk+l)[yk’ I‘%Hl]} + L(Ls)[rq)n’ n).
k=0
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Due to (37), we have
(38) LWl ,x]1 < L™W[Te, ,Tite,],

(39) LU[y, T, 1<L%[Te, . To, 1, k=0,...s—1L

Moreover,
(40) LU0, 1] < LYI[Ty, Ty,
(41) L[, ,n] < L“[Tg,, Tite,l.

Each of the right-hand sides of (38), (40) and (41) is bounded above by
maxo<;<o, L(‘)[Fj, F1+j]. If we then define

Cn -—Zogjlax LOMT;, T4l

and use (39), we obtain

s—1
(k1)
Ly §§n+M+kX;)L [Ty, ,T

1.

':I)Xk+1

Since for each sequence 0 =9 < (] < --- <ty = M of distinct ordered elements
of I we can find a path in the Hasse diagram containing these elements, it follows
easily that

Ly <t +M+Lg,,

which gives the upper bound. The upper bound is close to L, in the sense that
the sequence ¢, are of order 1 in distribution, that is, that (£,) is a tight random
sequence. On the other hand, nt = Loy, — T+ 04(1). It is thus clear that the
weak limit of £,, and that of

. LcD[mJ C(Fq)[m] Fl)

(1) = , t>0,
(1) P >
if it exists, will be identical. Setting
—Cc( ') D
s e 1 B ] PP . 14
N n
we have
(42) £, (1) =€, (on (1)),

and so the weak limit of £ is equal to that of £;;* (if this exists) composed by the
function {Az}.
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To show that the weak limit of £} exists and to find it, define the function
¥ : D[0, 0c0)! — D[0, c0) by

V(O ie N =max  sup {00) + [ 1)~ B ()] + -
<to<ty <--<tr=t
|t|l=r

+[B“ ) — B t—1)]},

where the maximum is taken over all paths ¢ from the minimum to the maximum
element in the Hasse diagram H (I, <). The function ¢ is continuous (with respect
to the topology of uniform convergence). Let

LOIT, Tl — C (T — T)
o/n ’

st (1) = t>0,iel,

where
o2 :=var{LV[T}, ] — C(M = T)).

2

Since L(i)[Fj, Ujy1l, j = 1,0 €1, are i.i.d. with common variance o, we have

(Theorem 2) that
(43) sViel)=(BY,iel),
where BY) i € I, are i.i.d. standard Brownian motions. Let
K :=21"2c

and observe that

ery =212y (s, i e 1)(@).
By (43) and the invariance principle,

e = a7V y(BDie ).
By the relation (42) and the remark following it, we have
=y (BDiel),
and the right-hand side is equal in distribution to Z [defined by (34)—(35)]. U
The remarks at the end of Section 8 also apply in the current case. We can easily

conclude that 7;,, the maximum length of all paths from (0, 0) to (n, M), has the
same asymptotics as L. In particular, Theorem 5 holds if we replace L, by T,,.
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11. Connection to last passage percolation. Consider now the case
I1={0,1,...,M}
with the usual ordering. Assumption (D3) can be substituted by
(D3') foralll <i <M wehaverg,;_j;>0.

Let G be the corresponding random directed cylinder graph, referred to as slab
graph here. In particular, we can think of Gy as the restriction of a graph G, on
the vertex set Z x Z., where two vertices (x,7) and (y, j), with (x,i) < (y, j),
are connected with probability py_ ;—; that depends on the relative position of
the two vertices on the 2-dimensional lattice.

The problem here becomes that of a last passage percolation, although the model
is not the standard nearest-neighbor one. Physically, we can think of tunnels which
run upward (or in directions southwest to northeast) and fluid moving in tunnels.
It takes one unit of time to cross a specific tunnel. We are interested in the particle
that starts from (0, 0) and reaches (n, M) in the largest possible time. Since the
Hasse diagram of the set {0, 1, ..., M} with the natural ordering is the linear graph
with edges fromi —1toi, 1 <i < M, the limit process Z is given by the simplified
expression

zt)=_max {BOQw)+[BV 1) - BV )]+

0<to<--<ty=t
+[BM(tyy) — B (1y-1)]},  t>0.

The latter process is a Brownian last passage percolation process. As was shown
in [6, 22, 33], it is a non-Gaussian process with marginal distribution

ZWOL Vi .

for each r > 0, where Ay is the largest eigenvalue of a random (M + 1) x (M + 1)
matrix from the Gaussian Unitary Ensemble (GUE) [30].

Tracy and Widom [35, 36] showed that, as M — oo, the following weak limit
holds:

M1/6()\.M — QA/M) = Frw,

with Frw being the Tracy—Widom distribution whose hazard rate equals
ftoo q(x)2 dx, where g (x) satisfies a Painlevé Il equation; see [2], equation (3.1.7).
For an account on the universality of this distribution, see, for example, [17].
A number of interesting results have been proved relating this limiting distribution
with certain stochastic models. These models include longest increasing subse-
quence [4], last passage percolation, noncolliding particles, tandem queues [6, 22]
and random tilings [25]. For the last passage percolation, in particular, this limit is
known to appear in two cases. The first is the Brownian last passage percolation.
The second is the last passage percolation model with exponential (or geometric)



LIMIT THEOREMS FOR A RANDOM DIRECTED SLAB GRAPH 731

weights. In this model one puts independent and identically distributed exponen-
tial random variables in the vertices of Z%r and considers the maximum L (M, N)
of the sums of the weights over all directed paths from (0, 0) to (M, N). It was
shown in [24] that the random variable L(N, N), properly normalized, converges
to the Tracy—Widom distribution as N goes to infinity. In [8], more general weights
were considered and an analogous result for the random variable L(N, N¢) (for
an appropriate a depending on moment conditions) was obtained. It is then natural
to conjecture that a similar phenomenon occurs in our slab graph too. We also
note that results similar to that of Theorem 5 hold in various classes of stochastic
networks and, in particular, for the stationary sojourn time in tandem queues (see,
e.g., [21]).
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