On Asymptotics of Polynomial Eigenfunctions for Exactly-Solvable Differential Operators

Tanja Bergkvist
Department of Mathematics, University of Stockholm, S-106 91 Stockholm, Sweden
e-mail: tanjab@math.su.se

August 15, 2006

Abstract

In this paper we study the class of differential operators $T=\sum_{j=1}^{k} Q_{j} D^{j}$ with polynomial coefficients Q_{j} and $\operatorname{deg} Q_{j} \leq j$ with equality for at least one j. We show that if $\operatorname{deg} Q_{k}<k$ then the root of the nth degree eigenpolynomial p_{n} of T with the largest absolute value tends to infinity when $n \rightarrow \infty$, as opposed to the case when $\operatorname{deg} Q_{k}=k$. Moreover we present an explicit conjecture and partial results on the growth of the largest root. Based on this conjecture we deduce the algebraic equation satisfied by the asymptotic Cauchy transform of the appropriately scaled eigenpolynomials.

1 Introduction

In this paper we study asymptotic properties of zeros in families of polynomials satisfying certain linear differential equations. Namely, consider a linear differential operator

$$
T=\sum_{j=1}^{k} Q_{j} D^{j}
$$

where $D=d / d z$ and the Q_{j} are complex polynomials in a single variable z. We are interested in the case when $\operatorname{deg} Q_{j} \leq j$ for all j, and in particular $\operatorname{deg} Q_{k}<k$ for the leading term. Such operators are referred to as degenerate exactly-solvable operators, see Definition 1 below. In this paper we study the polynomial eigenfunctions of this operator, that is polynomials satisfying

$$
\begin{equation*}
T\left(p_{n}\right)=\lambda_{n} p_{n} \tag{1}
\end{equation*}
$$

for some value of the spectral parameter λ_{n}, where n is a nonnegative integer and $\operatorname{deg} p_{n}=n$.

The basic motivation for this study comes from two sources: 1) a classical question going back to S. Bochner, and 2) the generalized Bochner problem, which we describe below.

1) In 1929 Bochner asked about the classification of differential equations (1) having an infinite sequence of orthogonal polynomial solutions, see [11]. Such a system of polynomials $\left\{p_{n}\right\}_{n=0}^{\infty}$ which are both eigenpolynomials of some finite order differential operator and orthogonal with respect to some suitable inner product, are referred to as Bochner-Krall orthogonal polynomial systems (BKS), and the corresponding operators are called Bochner-Krall operators. It is an open problem to classify all BKS - a complete classification is only known for Bochner-Krall operators of order $k \leq 4$, and the corresponding BKS are various classical systems such as the Jacobi type, the Laguerre type, the Legendre type and the Bessel and Hermite polynomials (see [5]).

Notice that for the operators considered below, the sequence of eigenpolynomials is in general not an orthogonal system of polynomials, and can therefore not be studied by means of the extensive theory known for such systems.
2) The problem of a general classisfication of linear differential operators for which the eigenvalue problem (1) has a certain number of eigenfunctions in the form of a finite-order polynomial in some variables, is referred to as the generalized Bochner problem, see [15] and [16]. In the former paper a classification of operators possessing infinitely many finite-dimensional subspaces with a basis in polynomials is presented, and in the latter paper a general method has been formulated for generating eigenvalue problems for linear differential operators in one and several variables possessing polynomial solutions.

Definition 1. We call a linear differential operator T of the k th order exactlysolvable if it preserves the infinite flag $\mathcal{P}_{0} \subset \mathcal{P}_{1} \subset \mathcal{P}_{2} \subset \cdots \subset \mathcal{P}_{n} \subset \cdots$, where \mathcal{P}_{n} is the linear space of all polynomials of degree less than or equal to $n .{ }^{1}$ Or, equivalently, the problem (1) has an infinite sequence of polynomial eigenfunctions if and only if the operator T is exactly-solvable (see [17]).

The exactly-solvable operators $T=\sum_{j=1}^{k} Q_{j} D^{j}$ with $\operatorname{deg} Q_{j} \leq j$ for all j, split into two major classes: non-degenerate and degenerate, where in the former case $\operatorname{deg} Q_{k}=k$, and in the latter case $\operatorname{deg} Q_{k}<k$ for the leading term. The major difference between these two classes is that in the non-degenerate case the union of all roots of all eigenpolynomials of T is contained in a compact set, contrary to the degenerate case, which we will prove in this paper.

Let us briefly recall our previous results for eigenpolynomials of the nondegenerate exactly-solvable operators. In [1] we proved that asymptotically as

[^0]$n \rightarrow \infty$, the zeros of the nth degree eigenpolynomials p_{n} of the non-degenerate exactly-solvable operators are distributed according to a certain probability measure which has compact support and which depends only on the leading polynomial Q_{k}. These are our main results from [1]:

Theorem A. Let Q_{k} be a monic polynomial of degree k. Then there exists a unique probability measure $\mu_{Q_{k}}$ with compact support whose Cauchy transform $C(z)=\int \frac{d \mu_{Q_{k}}(\zeta)}{z-\zeta}$ satisfies $C(z)^{k}=1 / Q_{k}(z)$ for almost all $z \in \mathbb{C}$.

Theorem B. Let Q_{k} and $\mu_{Q_{k}}$ be as in Theorem A. Then supp $\mu_{Q_{k}}$ is the union of finitely many smooth curve segments, and each of these curves is mapped to a straight line by the locally defined mapping $\Psi(z)=\int Q_{k}(z)^{-1 / k} d z$. Moreover, supp $\mu_{Q_{k}}$ contains all the zeros of Q_{k}, is contained in the convex hull of the zeros of Q_{k}, is connected and has connected complement.

If p_{n} is a polynomial of degree n we construct the probability measure μ_{n} by placing the point mass of size $\frac{1}{n}$ at each zero of p_{n}, and we call μ_{n} the root measure of p_{n}. We then have the (main) result:

Theorem C. Let p_{n} be the monic degree n eigenpolynomial of a non-degenerate exactly solvable operator T and let μ_{n} be the root measure of p_{n}. Then μ_{n} converges weakly to $\mu_{Q_{k}}$ when $n \rightarrow \infty$.

To illustrate, we show the zeros of the polynomial eigenfunctions p_{50}, p_{75} and p_{100} for the non-degenerate exactly-solvable operator $T=Q_{5} D^{5}$ where $Q_{5}=(z-2+2 i)(z+1-2 i)(z+3+i)(z+2 i)(z-2 i-2)$. In the pictures below, the large dots represent the zeros of Q_{5} and the small dots represent the zeros of the eigenpolynomials p_{50}, p_{75} and p_{100} respectively:

$\mathrm{n}=75$

$\mathrm{n}=100$.

As a result of this study, we were then able to prove a special case of a general conjecture describing the leading terms of all Bochner-Krall operators, see [2].

In the present paper we are interested in the class of degenerate exactlysolvable operators, that is operators $T=\sum_{j=1}^{k} Q_{j} D^{j}$ where $\operatorname{deg} Q_{j} \leq j$ for all j with equality for at least one j, and $\operatorname{deg} Q_{k}<k$. Without loss of generality we
assume that the nth degree eigenpolynomial p_{n} of T is monic. Some well-known classical polynomials, such as the Laguerre polynomials, appear as polynomial solutions to the eigenvalue problem (1) for certain choices on the polynomials coefficients Q_{j}. Studies on the asymptotic zero behaviour for these polynomials can be found in [4], [7], [9], [13] and [14].

Computer experiments indicate the existence of a limiting measure for the asymptotic zero distribution of the nth degree polynomial eigenfunction p_{n} of any degenerate exactly-solvable operator after an appropriate scaling. Without such a scaling the roots of p_{n} tend to infinity when $n \rightarrow \infty$, see Theorem 1 . Based on calculations involving the Cauchy transform we conjecture how the largest modulus of all roots of p_{n} grows as $n \rightarrow \infty$ for any given degenerate exactly-solvable operator, see Main Conjecture. All experiments performed by the author are consistent with this conjecture (see numerical evidence in Section 4), and we also prove it partially (lower bounds on the largest roots) for some classes of degenerate exactly-solvable operators, see Theorems 3 and 4.

The appropriately scaled eigenpolynomials will then (conjecturally) have nice compactly supported zero distribution in the limit as $n \rightarrow \infty$. Under the same assumptions as in Main Conjecture, we then derive the algebraic equation satisfied by the asymptotic Cauchy transform of the scaled eigenpolynomials for any given degenerate exactly-solvable operator (see Main Corollary). From this equation it is possible to obtain detailed information on the asymptotic zero distribution of the scaled eigenpolynomials.

These are our main results:
Theorem 1. ${ }^{2}$ Let $T=\sum_{j=1}^{k} Q_{j} D^{j}$ be a degenerate exactly-solvable operator of order k, and let r_{n} be the largest modulus of all roots of the unique and monic nth degree eigenpolynomial p_{n} of T. Then $r_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

Main Conjecture. Let $T=\sum_{j=1}^{k} Q_{j} D^{j}$ be a degenerate exactly-solvable operator of order k, and denote by j_{0} the largest j for which $\operatorname{deg} Q_{j}=j$. Denote by r_{n} be the largest modulus of all roots of the unique and monic nth degree eigenpolynomial p_{n} of T. Then

$$
\lim _{n \rightarrow \infty} \frac{r_{n}}{n^{d}}=c_{0}
$$

where $c_{0}>0$ is a positive constant and

$$
d:=\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right) .
$$

Based on this Main Conjecture, we now introduce the scaled eigenpolynomial $q_{n}(z)=p_{n}\left(n^{d} z\right)$, for which the union of all roots are (conjecturally) contained

[^1]in a compact set. We then make the following basic assumption: assume that $C_{n}(z):=C_{n, 0}(z)=C_{n, 1}(z)=\ldots=C_{n, k-1}(z)$ as $n \rightarrow \infty$ for the Cauchy transforms ${ }^{3}$ of the scaled eigenpolynomial $q_{n}(z)$ and its derivatives. This means that we assume that the root measures $\mu_{n}^{0}, \mu_{n}^{1}, \mu_{n}^{2} \ldots, \mu_{n}^{k-1}$ of $q_{n}, q_{n}^{(1)}, q_{n}^{(2)} \ldots, q_{n}^{(k-1)}$ respectively, are all equal as $n \rightarrow \infty$, and let $C(z):=\lim _{n \rightarrow \infty} C_{n}(z)$ (computer experiments strongly indicate that this assumption is true, see Section 4.3).

Now let $T=\sum_{j=1}^{k} Q_{j} D^{j}=\sum_{j=1}^{k}\left(\sum_{i=0}^{j} \alpha_{j, i} z^{i}\right) D^{j}$ be a degenerate exactlysolvable operator and denote by j_{0} the largest j such that $\operatorname{deg} Q_{j}=j$. Moreover, with no loss of generality, we make a normalization by assuming that $Q_{j_{0}}$ is monic, i.e. $\alpha_{j_{0}, j_{0}}=1$. Consider the scaled polynomial $q_{n}(z)=p_{n}\left(n^{d} z\right)$, where $p_{n}(z)$ is the unique and monic nth degree eigenpolynomial of T, and $d:=\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)$. We then have the following:

Main Corollary. Assume that $C_{n}(z):=C_{n, 0}(z)=C_{n, 1}(z)=\ldots=C_{n, k-1}(z)$ when $n \rightarrow \infty$ for the Cauchy transforms of the scaled eigenpolynomial $q_{n}(z)$ and its derivatives. Then, for almost all complex z in the usual Lebesgue measure on \mathbb{C}, the function $C(z):=\lim _{n \rightarrow \infty} C_{n}(z)$ satisfies the following equation:

$$
z^{j_{0}} C^{j_{0}}(z)+\sum_{j \in A} \alpha_{j, \operatorname{deg} Q_{j}} z^{\operatorname{deg} Q_{j}} C^{j}(z)=1
$$

Here A is the set consisting of all j for which the maximum
$d:=\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)$ is attained, i.e. $A=\left\{j:\left(j-j_{0}\right) /\left(j-\operatorname{deg} Q_{j}\right)=d\right\}$ where d is as above.

In the following theorem we prove a lower bound for the largest modulus of all roots of p_{n} when $n \rightarrow \infty$ for any degenerate exactly-solvable operator:

Theorem 2. Let $T=\sum_{j=1}^{k} Q_{j} D^{j}=\sum_{j=1}^{k}\left(\sum_{i=0}^{j} \alpha_{j, i} z^{i}\right) D^{j}$ be a degenerate exactly-solvable operator of order k. Let z_{n} be the root with the largest modulus, $\left|z_{n}\right|=r_{n}$, of the unique and monic nth degree eigenpolynomial p_{n} of T. Then there exists a positive constant $c_{0}>0$ such that

$$
\lim _{n \rightarrow \infty} \frac{r_{n}}{(n-k+1)^{\gamma}}>c_{0}
$$

[^2]for any $\gamma<b$ where
$$
b:=\min _{j \in[1, k-1]}^{+}\left(\frac{k-j}{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}}\right),
$$
where the notation $\min ^{+}$means that the minimum is taken only over positive terms $\left(k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}\right)$.

The following two theorems are partial results supporting Main Conjecture:
Theorem 3. Let T be a degenerate exactly solvable operator of order k consisting of precisely two terms: $T=Q_{j_{0}} D^{j_{0}}+Q_{k} D^{k}$. Let z_{n} be the root with the largest modulus of the unique and monic nth degree eigenpolynomial p_{n} of T, and let $\left|z_{n}\right|=r_{n}$. Then there exists a positive constant $c>0$ such that

$$
\lim _{n \rightarrow \infty} \frac{r_{n}}{(n-k+1)^{d}} \geq c
$$

where $d:=\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)=\frac{k-j_{0}}{k-\operatorname{deg} Q_{k}}$.
This result can be generalized, but with certain conditions on the polynomials Q_{j} for $j>j_{0}$:

Theorem 4. Let T be a degenerate exactly-solvable operator of order k. Denote by j_{0} the largest j such that $\operatorname{deg} Q_{j}=j$. Furthermore, let $\left(j-\operatorname{deg} Q_{j}\right) \geq$ $\left(k-\operatorname{deg} Q_{k}\right)$ for every $j>j_{0}$. Let z_{n} be the root with the largest modulus of the unique and monic nth degree eigenpolynomial p_{n} of T, and let $\left|z_{n}\right|=r_{n}$. Then there exists a positive constant $c>0$ such that

$$
\lim _{n \rightarrow \infty} \frac{r_{n}}{(n-k+1)^{d}} \geq c,
$$

where $d:=\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)=\frac{k-j_{0}}{k-\operatorname{deg} Q_{k}}$.
Conjecturally, for any degenerate exactly-solvable operator T, the support of the asymptotic zero distribution of the scaled eigenpolynomial q_{n} is the union of a finite number of analytic curves in the complex plane, which we denote by Ξ_{T}. We then have the following conjecture:

Conjecture 1. ${ }^{4}$ [Interlacing property] For any family $\left\{q_{n}\right\}$ of appropriately ${ }^{5}$ scaled polynomial eigenfunctions of any degenerate exactly-solvable operator T, the zeros of any two consecutive polynomials q_{n+1} and q_{n} interlace along Ξ_{T} for all sufficiently large integers $n .{ }^{6}$

[^3]We now present some typical pictures of the zero distribution of the scaled eigenpolynomials for some degenerate exactly-solvable operators. Below, p_{n} denotes the nth degree monic polynomial eigenfunction of a given operator T, and q_{n} denotes the corresponding (appropriately) scaled polynomial.

Fig.1: $T_{1}=z D+z D^{2}+z D^{3}+z D^{4}+z D^{5}$.

Fig.2: $T_{2}=z^{2} D^{2}+D^{7}$.

roots of
$q_{50}(z)=p_{50}\left(50^{5 / 7} z\right)$

roots of
$q_{75}(z)=p_{75}\left(75^{5 / 7} z\right)$

roots of $q_{100}(z)=p_{100}\left(100^{5 / 7} z\right)$

Fig.3: $T_{3}=z^{3} D^{3}+z^{2} D^{4}+z D^{5}$.

roots of
$q_{50}(z)=p_{50}\left(50^{1 / 2} z\right)$

roots of
$q_{75}(z)=p_{75}\left(75^{1 / 2} z\right)$

roots of $q_{100}(z)=p_{100}\left(100^{1 / 2} z\right)$

The algebraic equation satisfied by the asymptotic Cauchy transform in Main Corollary indicates that the asymptotic zero distribution of the scaled eigenpolynomials depends only on the term $z^{j_{0}} D^{j_{0}}$ and the term(s) $\alpha_{j, \operatorname{deg} Q_{j}} z^{\operatorname{deg} Q_{j}} D^{j}$ of
T for which $d=\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)$ is attained. To illustrate this fact we present below some pictures of the zero distributions of the scaled eigenpolynomials for some distinct operators for which the asymptotic Cauchy transform $C(z)$ of the scaled eigenpolynomials satisfy the same equation.

As a first example, consider the operator $T_{4}=z^{3} D^{3}+z^{2} D^{5}$. Clearly $d=\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)=(5-3) /(5-2)=2 / 3$ and the asymptotic Cauchy transform of the scaled eigenpolynomial $q_{n}(z)=p_{n}\left(n^{2 / 3} z\right)$ satisfies the equation $z^{3} C^{3}+z^{2} C^{5}=1$ in the limit when $n \rightarrow \infty$. Now consider the slightly modified operator $\widetilde{T}_{4}=z^{2} D^{2}+z^{3} D^{3}+z D^{4}+z^{2} D^{5}+D^{6}$ and note that $d=\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)$ is obtained again (only) for $j=5$ (for $j=4$ we have $(4-3) /(4-1)=1 / 3<2 / 3$ and for $j=6$ we have $(6-3) /(6-0)=3 / 6=1 / 2<2 / 3)$. We therefore obtain the same asymptotic equation in $C(z)$ for the scaled eigenpolynomials of \widetilde{T}_{4} as for the scaled eigenpolynomials of T_{4}; hence we can consider the added terms $z^{2} D^{2}, z D^{4}$ and D^{6} in \widetilde{T}_{4} as "irrelevant" for the asymptotic zero distribution. The pictures below clearly illustrate this:

$T_{4}=z^{3} D^{3}+z^{2} D^{5}$,
roots of $q_{100}(z)=p_{100}\left(100^{2 / 3} z\right)$

$$
\widetilde{T}_{4}=z^{2} D^{2}+z^{3} D^{3}+z D^{4}+z^{2} D^{5}+D^{6},
$$

$$
\text { roots of } q_{100}(z)=p_{100}\left(100^{2 / 3} z\right)
$$

As a second example, consider the operators $T_{5}=z^{5} D^{5}+z^{4} D^{6}+z^{2} D^{8}$ and $\widetilde{T}_{5}=z^{2} D^{2}+z^{5} D^{5}+z^{4} D^{6}+z D^{7}+z^{2} D^{8}$ whose scaled eigenpolynomials $q_{n}(z)=$ $p_{n}\left(n^{1 / 2} z\right)$ both satisfy the Cauchy transform equation $z^{5} C^{5}+z^{4} C^{6}+z^{2} C^{8}$ in the limit when $n \rightarrow \infty$. In the pictures below one can see that the "irrelevant" terms $z^{2} D^{2}$ and $z D^{7}$ of \widetilde{T}_{5} seem to have no affect on the zero distribution of the scaled eigenpolynomials for sufficiently large n.

$$
T_{5}=z^{5} D^{5}+z^{4} D^{6}+z^{2} D^{8}
$$

$$
\text { roots of } q_{100}(z)=p_{100}\left(100^{1 / 2} z\right)
$$

$$
\begin{aligned}
\widetilde{T}_{5}= & z^{2} D^{2}+z^{5} D^{5}+z^{4} D^{6}+z D^{7}+z^{2} D^{8} \\
& \text { roots of } q_{100}(z)=p_{100}\left(100^{1 / 2} z\right)
\end{aligned}
$$

In the sequel we will settle our Main Conjecture for some special classes of degenerate exactly-solvable operators, and then describe the asymptotic zero distribution of the scaled polynomial eigenfunctions for these operators in detail.

Let us finally mention some possible applications of our results and directions for further reasearch. Operators of the type we consider occur, as was mentioned earlier, in the theory of Bochner-Krall orthogonal systems. A great deal is known about the asymptotic zero distribution of orthogonal polynomials, and by comparing such results with results on the asymptotic zero distribution of eigenpolynomials of degenerate exactly-solvable operators, we believe it will be possible to gain new insight into the nature of BKS.

Acknowledgements. I am sincerely greatful to my PhD advisor Professor B. Shapiro for introducing me to this very fascinating problem and for his constant support during my work. I would also like to thank Professor J-E. Björk and H. Rullgård for stimulating discussions on the topic. My research was supported by Stockholm University.

2 Proofs

We start with the following
Lemma 1. Let $T=\sum_{j=1}^{k} Q_{j} D^{j}$ be a degenerate exactly-solvable operator of order k. Then, for a sufficiently large integer n, there exists a unique constant λ_{n} and a unique monic polynomial p_{n} of degree n which satisfy $T\left(p_{n}\right)=\lambda_{n} p_{n}$. If $\operatorname{deg} Q_{j}=j$ for precisely one value $j<k$, then there exists a unique constant λ_{n} and a unique monic polynomial p_{n} of degree n which satisfy $T\left(p_{n}\right)=\lambda_{n} p_{n}$ for every $n=1,2, \ldots$.

Proof of Lemma 1. In [1] we proved that for any exactly-solvable operator T, the eigenvalue problem $T\left(p_{n}\right)=\lambda_{n} p_{n}$ can be written as a linear system $M X=Y$, where X is the coefficient vector of the monic nth degree eigenpolynomial p_{n} with components $a_{n, 0}, a_{n, 1}, a_{n, 2}, \ldots, a_{n, n-1}, Y$ is a vector and M is an upper triangular $n \times n$ matrix, both with entries expressible in the coefficients of T. With $T=\sum_{j=1}^{k} Q_{j} D^{j}, Q_{j}=\sum_{i=0}^{j} \alpha_{j, i} z^{i}$, and $p_{n}(z)=\sum_{i=0}^{n} a_{n, i} z^{i}$, the eigenvalue λ_{n} is given by

$$
\lambda_{n}=\sum_{j=1}^{k} \alpha_{j, j} \frac{n!}{(n-j)!},
$$

and the diagonal elements of M are given by

$$
M_{i+1, i+1}=\sum_{1 \leq j \leq \min (i, k)} \alpha_{j, j} \frac{i!}{(i-j)!}-\lambda_{n}=\sum_{j=1}^{k} \alpha_{j, j}\left[\frac{i!}{(i-j)!}-\frac{n!}{(n-j)!}\right]
$$

for $i=0,1, \ldots, n-1$. The last equality follows since $i!/(i-j)!=0$ for $i<j \leq k$ by definition (see Lemma 2 in [1]). In order to prove that p_{n} is unique we only need to check that the determinant of M is nonzero, which implies that M is invertible and the system $M X=Y$ will have a unique solution. Notice that M is upper triangular, whence its determinant equals the product of its diagonal elements. We now prove that every diagonal element $M_{i+1, i+1}$ is nonzero for all sufficiently large n for all T as above, and for every n if $\operatorname{deg} Q_{j}=j$ for exactly one j.

From the expression

$$
-M_{i+1, i+1}=\sum_{j=1}^{k} \alpha_{j, j}\left[\frac{n!}{(n-j)!}-\frac{i!}{(i-j)!}\right]
$$

it is clear that $M_{i+1, i+1} \neq 0$ for every $i \in[0, n-1]$ and every n if $\alpha_{j, j} \neq 0$ for precisely one j, that is if $\operatorname{deg} Q_{j}=j$ for precisely one j - thus we have proved the second part of Lemma 1.

Now assume that $\operatorname{deg} Q_{j}=j$ for more than one j and denote by j_{0} the largest such j (clearly $\alpha_{j_{0}, j_{0}} \neq 0$). We then have

$$
\begin{aligned}
& -M_{i+1, i+1}=\sum_{j=1}^{j_{0}} \alpha_{j, j}\left[\frac{n!}{(n-j)!}-\frac{i!}{(i-j)!}\right] \\
& =\frac{n!}{\left(n-j_{0}\right)!}\left[\alpha_{j_{0}, j_{0}}\left(1-\frac{i!/\left(i-j_{0}\right)!}{n!/\left(n-j_{0}\right)!}\right)+\sum_{1 \leq j<j_{0}} \alpha_{j, j} \frac{\left(n-j_{0}\right)!}{(n-j)!}-\sum_{1 \leq j<j_{0}} \frac{\left(n-j_{0}\right)!i!}{n!(i-j)!}\right]
\end{aligned}
$$

The last two sums on the right-hand side of the equality above tend to zero as $n \rightarrow \infty$, since $j_{0}>j$ and $i \leq n-1$. Thus for sufficiently large n we have

$$
-M_{i+1, i+1}=\frac{n!}{\left(n-j_{0}\right)!}\left[\alpha_{j_{0}, j_{0}}\left(1-\frac{i!/\left(i-j_{0}\right)!}{n!/\left(n-j_{0}\right)!}\right)\right] \neq 0
$$

for every $i \in[0, n-1]$, and we have proved the first part of Lemma 1 .

To prove Theorem 1 we need the following lemma. Recall that $\frac{p_{n}^{(j+1)}(z)}{(n-j) p_{n}^{(j)}(z)}=$ $\int \frac{d \mu_{n}^{(j)}(\zeta)}{z-\zeta}=: C_{n, j}(z)$. Then we have:

Lemma 2. Let z_{n} be the root of p_{n} with the largest modulus, say $\left|z_{n}\right|=r_{n}$. Then, for any complex number z_{0} such that $\left|z_{0}\right|=r_{0} \geq r_{n}$, we have $\left|C_{n, j}\left(z_{0}\right)\right| \geq$ $\frac{1}{2 r_{0}}$ for all $j \geq 0$.

Proof. With ζ being some root of $p_{n}^{(j)}$ we have $|\zeta| \leq\left|z_{0}\right|$ by Gauss Lucas' Theorem. Thus $\frac{1}{z_{0}-\zeta}=\frac{1}{z_{0}} \cdot \frac{1}{1-\zeta / z_{0}}=\frac{1}{z_{0}} \cdot \frac{1}{1-\theta}$ where $|\theta|=\left|\zeta / z_{0}\right| \leq 1$. With
$w=\frac{1}{1-\theta}$ we obtain

$$
|w-1|=\frac{|\theta|}{|1-\theta|}=|\theta||w| \leq|w| \Leftrightarrow|w-1| \leq|w| \Rightarrow \operatorname{Re}(w) \geq 1 / 2
$$

Thus

$$
\begin{aligned}
\left|C_{n, j}\left(z_{0}\right)\right| & =\left|\int \frac{d \mu_{n}^{(j)}(\zeta)}{z_{0}-\zeta}\right|=\frac{1}{r_{0}}\left|\int \frac{d \mu_{n}^{(j)}(\zeta)}{1-\theta}\right|=\frac{1}{r_{0}}\left|\int w d \mu_{n}^{(j)}(\zeta)\right| \\
& \geq \frac{1}{r_{0}}\left|\int \operatorname{Re}(w) d \mu_{n}^{(j)}(\zeta)\right| \geq \frac{1}{2 r_{0}} \int d \mu_{n}^{(j)}(\zeta)=\frac{1}{2 r_{0}} .
\end{aligned}
$$

Proof of Theorem 1. Take $T=\sum_{j=1}^{k} Q_{j} D^{j}$ and denote by j_{0} the largest j such that $\operatorname{deg} Q_{j}=j$ (clearly $j_{0}<k$). From the definition $C_{n, j}=\frac{p_{n}^{(j+1)}(z)}{(n-j) p_{n}^{(j)}(z)}$ we get

$$
\begin{aligned}
\frac{p_{n}^{(j)}(z)}{p_{n}(z)} & =C_{n, 0}(z) C_{n, 1}(z) \cdots C_{n, j-1}(z) \cdot n(n-1) \cdots(n-j+1) \\
& =\frac{n!}{(n-j)!} \prod_{m=0}^{j-1} C_{n, m}(z)
\end{aligned}
$$

With $Q_{j}(z)=\sum_{i=0}^{\operatorname{deg} Q_{j}} \alpha_{j, i} z^{i}$ we have $\lambda_{n}=\sum_{j=1}^{j_{0}} \alpha_{j, j} \frac{n!}{(n-j)!}$, and dividing the eigenvalue equation $T\left(p_{n}(z)\right)=\lambda_{n} p_{n}(z)$ by $p_{n}(z)$ we thus obtain

$$
\begin{align*}
& Q_{k}(z) \frac{p_{n}^{(k)}}{p_{n}(z)}+Q_{k-1}(z) \frac{p_{n}^{(k-1)}}{p_{n}(z)}+\ldots+Q_{1}(z) \frac{p_{n}^{\prime}}{p_{n}(z)}=\sum_{j=1}^{j_{0}} \alpha_{j, j} \frac{n!}{(n-j)!} \\
& \Leftrightarrow \\
& Q_{k}(z) \frac{n!}{(n-k)!} \prod_{m=0}^{k-1} C_{n, m}(z)+Q_{k-1}(z) \frac{n!}{(n-k+1)!} \prod_{m=0}^{k-2} C_{n, m}(z)+\ldots \\
& \ldots+Q_{1}(z) \frac{n!}{(n-1)!} C_{n, 0}(z)=\sum_{j=1}^{j_{0}} \alpha_{j, j} \frac{n!}{(n-j)!} \tag{2}
\end{align*}
$$

Now assume that the largest modulus r_{n} of all roots of p_{n} (and hence, by Gauss Lucas' Theorem, of any derivative $p_{n}^{(j)}$) is (strictly) less than some fixed constant $R<\infty$. We can always assume that R is (strictly) larger than the largest absolute value of all roots of Q_{k}. Now let \tilde{z} be such that $|\tilde{z}|=R$. Then $\frac{1}{2 R} \leq\left|C_{n, j}(\tilde{z})\right|$ by Lemma 2 . Inserting \tilde{z} in equation (2) we obtain:

$$
\begin{aligned}
& Q_{k}(\tilde{z}) \frac{n!}{(n-k)!} \prod_{m=0}^{k-1} C_{n, m}(\tilde{z})+Q_{k-1}(\tilde{z}) \frac{n!}{(n-k+1)!} \prod_{m=0}^{k-2} C_{n, m}(\tilde{z})+\ldots \\
& \ldots+Q_{1}(\tilde{z}) \frac{n!}{(n-1)!} C_{n, 0}(\tilde{z})=\sum_{j=1}^{j_{0}} \alpha_{j, j} \frac{n!}{(n-j)!}
\end{aligned}
$$

Note that by the choice of \tilde{z} clearly $Q_{k}(\tilde{z}) \neq 0$ and $p_{n}(\tilde{z}) \neq 0$. Dividing both sides of this equation by $\frac{n!}{(n-k)!}$ we get

$$
\begin{align*}
& Q_{k}(\tilde{z}) \prod_{m=0}^{k-1} C_{n, m}(\tilde{z})\left[1+\frac{(n-k)!}{(n-k+1)!} \frac{1}{C_{n, k-1}(\tilde{z})} \frac{Q_{k-1}(\tilde{z})}{Q_{k}(\tilde{z})}+\right. \\
& \left.\frac{(n-k)!}{(n-k+2)!} \frac{1}{C_{n, k-1}(\tilde{z}) C_{n, k-2}(\tilde{z})} \frac{Q_{k-2}(\tilde{z})}{Q_{k}(\tilde{z})}+\ldots+\frac{(n-k)!}{(n-1)!} \frac{1}{\prod_{m=1}^{k-1} C_{n, m}(\tilde{z})} \frac{Q_{1}(\tilde{z})}{Q_{k}(\tilde{z})}\right] \\
= & \sum_{j=1}^{j_{0}} \alpha_{j, j} \frac{(n-k)!}{(n-j)!} . \tag{3}
\end{align*}
$$

In this equation, the right-hand side tends to zero when $n \rightarrow \infty$ since $j_{0}<k$. On the other hand, in the left-hand side of (3), the terms in the bracket (except for the constant term 1) all tend to zero when $n \rightarrow \infty$, since $\frac{1}{\left|C_{n, m}(\tilde{z})\right|} \leq 2 R$ and $R<\infty$ by assumption. Thus, for sufficiently large n, we can find a positive constant K_{n}, with $\lim _{n \rightarrow \infty} K_{n}=1$, such that the modulus of the left-hand side of equation (3) equals

$$
|\mathrm{LHS}|=K_{n} \cdot\left|Q_{k}(\tilde{z})\right| \prod_{m=0}^{k-1}\left|C_{n, m}(\tilde{z})\right| \geq K_{n} \cdot\left|Q_{k}(\tilde{z})\right| \frac{1}{2^{k} R^{k}}=K_{0}>0
$$

when $n \rightarrow \infty$ for some positive constant $K_{0}>0$, since $R<\infty$. Thus we obtain the contradiction $K_{0} \leq 0$ when $n \rightarrow \infty$, and therefore the largest modulus r_{n} of all roots of p_{n} must tend to infinity when $n \rightarrow \infty$.

In order to prove Theorem 2 we need the following lemma:
Lemma 3. Let $T=\sum_{j=1}^{k} Q_{j} D^{j}=\sum_{j=1}^{k}\left(\sum_{i=0}^{j} \alpha_{j, i} z^{i}\right) D^{j}$ be a degenerate exactly-solvable operator of order k. With no loss of generality we assume that Q_{k} is monic, i.e. $\alpha_{k, \operatorname{deg} Q_{k}}=1$. Let z_{n} be the root with the largest modulus of all roots of the unique and monic nth degree eigenpolynomial p_{n} of T, and let $\left|z_{n}\right|=r_{n}$. Then the following inequality holds:

$$
1 \leq \sum_{j=1}^{k-1} \sum_{i=0}^{j}\left|\alpha_{j, i}\right| 2^{k-j} \frac{r_{n}^{k-j-\operatorname{deg} Q_{k}+i}}{(n-k+1)^{k-j}}+\sum_{0 \leq i<\operatorname{deg} Q_{k}} \frac{\left|\alpha_{k, i}\right|}{r_{n}^{\operatorname{deg} Q_{k}-i}} .
$$

Proof of Lemma 3. From the definition $C_{n, j}(z)=\frac{p_{n}^{(j+1)}(z)}{(n-j) p^{(j)}(z)}$ we easily derive

$$
\begin{equation*}
p^{(j)}(z)=\frac{p_{n}^{(k)}(z)}{(n-k+1)(n-k+2) \cdots(n-j) \prod_{m=j}^{k-1} C_{n, m}(z)} \quad \forall \quad j<k \tag{4}
\end{equation*}
$$

Inserting z_{n} in our eigenvalue equation $T\left(p_{n}(z)\right)=\lambda_{n} p_{n}(z)$ we obtain

$$
\sum_{j=1}^{k-1}\left(\sum_{i=0}^{j} \alpha_{j, i} z_{n}^{i}\right) p_{n}^{(j)}\left(z_{n}\right)+\left(\sum_{i=0}^{\operatorname{deg} Q_{k}} \alpha_{k, i} z_{n}^{i}\right) p_{n}^{(k)}\left(z_{n}\right)=\lambda_{n} p_{n}\left(z_{n}\right)=0
$$

Dividing this equation by $z_{n}^{\operatorname{deg} Q_{k}} p_{n}^{(k)}\left(z_{n}\right)$ we get

$$
\sum_{j=1}^{k-1}\left(\sum_{i=0}^{j} \alpha_{j, i} \frac{1}{z_{n}^{\operatorname{deg} Q_{k}-i}}\right) \frac{p_{n}^{(j)}\left(z_{n}\right)}{p_{n}^{(k)}\left(z_{n}\right)}+\sum_{0 \leq i<\operatorname{deg} Q_{k}} \alpha_{k, i} \frac{1}{z_{n}^{\operatorname{deg} Q_{k}-i}}+1=0
$$

and from this, using (4) and Lemma 2, we obtain the following inequality:

$$
\begin{aligned}
1 & =\left|\sum_{j=1}^{k-1}\left(\sum_{i=0}^{j} \alpha_{j, i} \frac{1}{z_{n}^{\operatorname{deg} Q_{k}-i}}\right) \frac{p_{n}^{(j)}\left(z_{n}\right)}{p_{n}^{(k)}\left(z_{n}\right)}+\sum_{0 \leq i<\operatorname{deg} Q_{k}} \alpha_{k, i} \frac{1}{z_{n}^{\operatorname{deg} Q_{k}-i}}\right| \\
& \leq \sum_{j=1}^{k-1}\left|\sum_{i=0}^{j} \alpha_{j, i} \frac{1}{z_{n}^{\operatorname{deg} Q_{k}-i}}\right| \frac{\left|p_{n}^{(j)}\left(z_{n}\right)\right|}{\left|p_{n}^{(k)}\left(z_{n}\right)\right|}+\sum_{0 \leq i<\operatorname{deg} Q_{k}} \frac{\left|\alpha_{k, i}\right|}{r_{n}^{\operatorname{deg} Q_{k}-i}} \\
& \leq \sum_{j=1}^{k-1} \sum_{i=0}^{j} \frac{\left|\alpha_{j, i}\right|}{r_{n}^{\operatorname{deg} Q_{k}-i}} \frac{1}{(n-k+1) \cdots(n-j) \prod_{m=j}^{k-1}\left|C_{n, m}\left(z_{n}\right)\right|}+\sum_{0 \leq i<\operatorname{deg} Q_{k}} \frac{\left|\alpha_{k, i}\right|}{r_{n}^{\operatorname{deg} Q_{k}-i}} \\
& \leq \sum_{j=1}^{k-1} \sum_{i=0}^{j} \frac{\left|\alpha_{j, i}\right|}{r_{n}^{\operatorname{deg} Q_{k}-i}} \frac{\left(2 r_{n}\right)^{k-j}}{(n-k+1)^{k-j}}+\sum_{0 \leq i<\operatorname{deg} Q_{k}} \frac{\left|\alpha_{k, i}\right|}{r_{n}^{\operatorname{deg} Q_{k}-i}} \\
& =\sum_{j=1}^{k-1} \sum_{i=0}^{j}\left|\alpha_{j, i}\right| 2^{k-j} \frac{r_{n}^{k-j-\operatorname{deg} Q_{k}+i}}{(n-k+1)^{k-j}}+\sum_{0 \leq i<\operatorname{deg} Q_{k}} \frac{\left|\alpha_{k, i}\right|}{r_{n}^{\operatorname{deg} Q_{k}-i}} .
\end{aligned}
$$

Now, using Theorem 1 and Lemma 3, we can prove Theorem 2:

Proof of Theorem 2. Consider the inequality in Lemma 3. Applying Theorem 1 we see that the last sum on the right-hand side of this inequality tends to zero as $n \rightarrow \infty$.

Now consider the double sum on the right-hand side of the inequality in Lemma 3. If the exponent $\left(k-j-\operatorname{deg} Q_{k}+i\right)$ of r_{n} for given i and j is negative or zero, the corresponding term tends to zero when $n \rightarrow \infty$ by Theorem 1 . Consider the remaining terms in the double sum, namely those for which the exponent $\left(k-j-\operatorname{deg} Q_{k}+i\right)$ of r_{n} is positive. Assume that $r_{n} \leq c_{0}(n-k+1)^{\gamma}$ where $c_{0}>0$ is a positive constant and $\gamma<\frac{k-j}{k-j+i-\operatorname{deg} Q_{k}}$ for given $j \in[1, k-1]$ and given $i \in[0, j]$. Then for the corresponding term in the double sum we get

$$
\frac{r_{n}^{k-j+i-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j}}=\left(\frac{r_{n}}{(n-k+1)^{\frac{k-j}{k-j+i-\operatorname{deg} Q_{k}}}}\right)^{k-j+i-\operatorname{deg} Q_{k}} \rightarrow 0
$$

when $n \rightarrow \infty$. Assume that $r_{n} \leq c_{0}(n-k+1)^{\gamma}$ where $c_{0}>0$ is a positive constant and $\gamma<b$, where

$$
b=\min _{\substack{j \in[1, k-1] \\ i \in[0, j]}}^{+} \frac{k-j}{k-j+i-\operatorname{deg} Q_{k}}=\min _{j \in[1, k-1]} \frac{k-j}{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}} .
$$

The notation $\min ^{+}$means that we only take the minimum over positive terms $\left(k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}\right)$. (Above we have written the minimum over $i \in[0, j]$, but actually $i \in\left[0, \operatorname{deg} Q_{j}\right]$ for any given j, so since we look for the minimal value we can put $i=\operatorname{deg} Q_{j}$ in this expression). Then $\gamma<\frac{k-j}{k-j+i-\operatorname{deg} Q_{k}}$ for every $j \in[1, k-1]$ and every $i \in[0, j]$; thus every term with positive exponent ($k-j+i-\operatorname{deg} Q_{k}$) will tend to zero when $n \rightarrow \infty$. Therefore, assuming that $r_{n} \leq c_{0}(n-k+1)^{\gamma}$ and $\gamma<b$ where b is as above, we get that every term on the right-hand side of the inequality in Lemma 3 tends to zero as $n \rightarrow \infty$, and we arrive at the contradiction $1 \leq 0$. From this we conclude that for sufficiently large choices on n there must exist a positive constant $c_{0}>0$ such that $r_{n}>c_{0}(n-k+1)^{\gamma}$ for all $\gamma<b$, where b is as above, and hence $\lim _{n \rightarrow \infty} \frac{r_{n}}{(n-k+1)^{\gamma}}>c_{0}$ for any $\gamma<b$.

We have conjectured that $\lim _{n \rightarrow \infty} \frac{r_{n}}{n^{d}}=c_{0}>0$ for the largest modulus r_{n} of all roots of p_{n} for all degenerate exactly-solvable operators, where $d:=$ $\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)$ and j_{0} is the largest j such that $\operatorname{deg} Q_{j}=j$. Thus, if the following condition is fulfilled:

$$
b:=\min _{j \in[1, k-1]}^{+}\left(\frac{k-j}{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}}\right)=\max _{j \in[1, k]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right):=d
$$

then there exists a positive constant $c_{0}>0$ such that $\lim _{n \rightarrow \infty} \frac{r_{n}}{(n-k+1)^{\gamma}}>c_{0}$ for any $\gamma<d$.

Below we describe two classses of degenerate exactly-solvable operators for which the above condition is satisfied, namely:

Corollary 1. Let $T=\sum_{j=1}^{k} Q_{j} D^{j}$ be a degenerate exactly-solvable operator of order k such that $\operatorname{deg} Q_{j} \leq j_{0}$ for all $j>j_{0}$, and in particular $\operatorname{deg} Q_{k}=j_{0}$, where j_{0} is the largest j such that $\operatorname{deg} Q_{j}=j$. If r_{n} is the largest modulus of all roots of the unique and monic nth degree eigenpolynomial p_{n} of T, then there exists a positive constant $c_{0}>0$ such that $\lim _{n \rightarrow \infty} \frac{r_{n}}{(n-k+1)^{\gamma}}>c_{0}$ for any $\gamma<1$.

Proof of Corollary 1. For this class of operators it is conjectured that $\lim _{n \rightarrow \infty} \frac{r_{n}}{n}=c_{0}>0$, since

$$
d:=\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)=\frac{k-j_{0}}{k-j_{0}}=1 .
$$

The maximum is attained by choosing any $j>j_{0}$ with $\operatorname{deg} Q_{j}=j_{0}$, e.g. $j=k$. Also, for this class of operators we have

$$
\begin{aligned}
b & :=\min _{j \in[1, k-1]}^{+} \frac{k-j}{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}} \\
& =\min _{j \in[1, k-1]}^{+} \frac{k-j}{k-j+\operatorname{deg} Q_{j}-j_{0}}=\frac{k-j_{0}}{k-j_{0}}=1,
\end{aligned}
$$

and the proof is complete by applying Theorem 2.
Corollary 2. Let $T=\sum_{j=1}^{k} Q_{j} D^{j}$ be a degenerate exactly-solvable operator of order k such that $\operatorname{deg} Q_{j}=0$ for all $j>j_{0}$, where j_{0} is the largest j such that $\operatorname{deg} Q_{j}=j$. Let r_{n} be the largest modulus of all roots of the unique and monic nth degree eigenpolynomial p_{n} of T. Then there exists a positive constant $c_{0}>0$ such that $\lim _{n \rightarrow \infty} \frac{r_{n}}{(n-k+1)^{\gamma}}>c_{0}$ for any $\gamma<\frac{k-j_{0}}{k}$.

Proof of Corollary 2. For this class of operators it is conjectured that $\lim _{n \rightarrow \infty} \frac{r_{n}}{n^{\left(k-j_{0}\right) / k}}=c_{0}>0$, since

$$
d:=\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)=\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j}\right)=\frac{k-j_{0}}{k} .
$$

Also, for this class of operators we have

$$
\begin{aligned}
b & :=\min _{j \in[1, k-1]}\left(\frac{k-j}{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}}\right) \\
& =\min _{j \in[1, k-1]}^{+}\left(\frac{k-j}{k-j+\operatorname{deg} Q_{j}}\right)=\min _{j \in\left[1, j_{0}\right]} \frac{k-j}{k}=\frac{k-j_{0}}{k}
\end{aligned}
$$

where the third equality follows choosing any j such that $\operatorname{deg} Q_{j}=j$, and the minimum is attained for $j=j_{0}$ (for $j>j_{0}$ we get $(k-j) /\left(k-j+\operatorname{deg} Q_{j}\right)=$ $\left.1>\left(k-j_{0}\right) / k\right)$, and the proof is complete by applying Theorem 2.

Remark. For the classes of operators considered in Corollary 1 and Corollary 2 we can actually prove that $\lim _{n \rightarrow \infty} \frac{r_{n}}{n^{d}} \geq c_{0}$, where d is as in Main Conjecture, if we assume that we already have the upper bound $\lim _{n \rightarrow \infty} \frac{r_{n}}{n^{d}} \leq c_{1}$ for some positive constant c_{1}, see Section 5 .

Proof of Theorem 3. First we note that $\operatorname{deg} Q_{j_{0}}=j_{0}$ since there must exist at least one such $j<k$. Let

$$
T=Q_{j_{0}} D^{j_{0}}+Q_{k} D^{k}=\sum_{i=0}^{j_{0}} \alpha_{j_{0}, i} z^{i} D^{j_{0}}+\sum_{i=0}^{\operatorname{deg} Q_{k}} \alpha_{k, i} z^{i} D^{k}
$$

where $\alpha_{j_{0}, j_{0}} \neq 0$, and where we wlog assume that Q_{k} is monic. From Lemma 3 we get:

$$
\begin{aligned}
1 & \leq \sum_{i=0}^{j_{0}}\left|\alpha_{j_{0}, i}\right| 2^{k-j_{0}} \frac{r_{n}^{i-\operatorname{deg} Q_{k}+k-j_{0}}}{(n-k+1)^{k-j_{0}}}+\sum_{0 \leq i<\operatorname{deg} Q_{k}}\left|\alpha_{k, i}\right| \frac{1}{r_{n}^{\operatorname{deg} Q_{k}-i}} \\
& \leq \sum_{i=0}^{j_{0}}\left|\alpha_{j_{0}, i}\right| 2^{k-j_{0}} \frac{r_{n}^{i-\operatorname{deg} Q_{k}+k-j_{0}}}{(n-k+1)^{k-j_{0}}}+\epsilon,
\end{aligned}
$$

where we choose n large enough that $\epsilon<1$ (this is possible since $\epsilon \rightarrow 0$ when
$n \rightarrow \infty)$. Thus for sufficiently large n we have the following inequality:

$$
\begin{aligned}
c_{0} & \leq \sum_{i=0}^{j_{0}}\left|\alpha_{j_{0}, i}\right| 2^{k-j_{0}} \frac{r_{n}^{i-\operatorname{deg} Q_{k}+k-j_{0}}}{(n-k+1)^{k-j_{0}}} \\
& \leq \sum_{i=0}^{j_{0}}\left|\alpha_{j_{0}, i}\right| 2^{k-j_{0}} \frac{r_{n}^{k-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j_{0}}} \\
& =K \frac{r_{n}^{k-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j_{0}}}
\end{aligned}
$$

where $1-\epsilon=c_{0}>0$ and $K>0$ since $\alpha_{j_{0}, j_{0}} \neq 0$ (the last inequality follows since $i \leq j_{0}$). Thus

$$
r_{n} \geq \frac{c_{0}}{K}(n-k+1)^{\frac{k-j_{0}}{k-\operatorname{deg} g Q_{k}}}
$$

for sufficiently large n, and hence

$$
\lim _{n \rightarrow \infty} \frac{r_{n}}{(n-k+1)^{\frac{k-j_{0}}{k-\operatorname{deg} Q_{k}}}} \geq \frac{c_{0}}{K}=c>0
$$

Finally, it is clear that for this two-term operator we have

$$
d:=\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)=\frac{k-j_{0}}{k-\operatorname{deg} Q_{k}},
$$

and we are done.
Remark. If Q_{k} is a monomial $\left(Q_{k}=z^{\operatorname{deg} Q_{k}}\right)$, then there exists a positive constant c such that $r_{n} \geq c(n-k+1)^{d}$ for every n, where $d:=\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)$ $=\frac{k-j_{0}}{k-\operatorname{deg} Q_{k}}$. This is easily seen from the calculations in the proof of Theorem 3 above. Note that the sum $\sum_{0 \leq i<\operatorname{deg} Q_{k}}\left|\alpha_{k, i}\right| \frac{1}{r_{n}^{\operatorname{deg} Q_{k}-i}}$ on the right-hand side of the inequality in Lemma 3 vanishes, and therefore $1 \leq K \frac{r_{n}^{k-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j_{0}}}$ for every n. Also, from the second part of Lemma 1 we know that for this class of operators there exists a unique monic nth degree eigenpolynomial for every n, and the conclusion follows.

Proof of Theorem 4. First, since $j \leq k$ and $\left(j-\operatorname{deg} Q_{j}\right) \geq\left(k-\operatorname{deg} Q_{k}\right)$ for every $j>j_{0}$ for this class of operators, it is clear that

$$
d:=\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)=\frac{k-j_{0}}{k-\operatorname{deg} Q_{k}} .
$$

We assume, with no loss of generality, that Q_{k} is monic, i.e. $\alpha_{k, \operatorname{deg} Q_{k}}=1$. From Lemma 3 we then have the inequality

$$
\begin{equation*}
1 \leq \sum_{j=1}^{k-1} \sum_{i=0}^{j}\left|\alpha_{j, i}\right| 2^{k-j} \frac{r_{n}^{k-j+i-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j}}+\sum_{0 \leq i<\operatorname{deg} Q_{k}} \frac{\left|\alpha_{k, i}\right|}{r_{n}^{\operatorname{deg} Q_{k}-i}} . \tag{5}
\end{equation*}
$$

Clearly the last sum here tends to zero as $n \rightarrow \infty$ by Theorem 1. Considering the double sum on the right-hand side of the inequality above it is clear that for every j we have, using $i \leq \operatorname{deg} Q_{j}$, that

$$
\begin{align*}
& \sum_{i=0}^{j}\left|\alpha_{j, i}\right| 2^{k-j} \frac{r_{n}^{k-j+i-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j}}=\sum_{i=0}^{\operatorname{deg} Q_{j}}\left|\alpha_{j, i}\right| 2^{k-j} \frac{r_{n}^{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j}} r_{n}^{i-\operatorname{deg} Q_{j}} \\
= & \frac{r_{n}^{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j}}\left(2^{k-j}\left|\alpha_{j, \operatorname{deg} Q_{j}}\right|+\sum_{i<\operatorname{deg} Q_{j}} 2^{k-j}\left|\alpha_{j, i}\right| r_{n}^{i-\operatorname{deg} Q_{j}}\right) \\
= & K_{j}^{n} \frac{r_{n}^{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j}}, \tag{6}
\end{align*}
$$

where

$$
K_{j}^{n}=2^{k-j}\left|\alpha_{j, \operatorname{deg} Q_{j}}\right|+\sum_{i<\operatorname{deg} Q_{j}} 2^{k-j}\left|\alpha_{j, i}\right| r_{n}^{i-\operatorname{deg} Q_{j}}>0
$$

since $\alpha_{j, \operatorname{deg} Q_{j}} \neq 0$. Also, $K_{n}^{j}<\infty$, since $i \in\left[0, \operatorname{deg} Q_{j}\right]$ and thus $\left(i-\operatorname{deg} Q_{j}\right)<0$ for every j (note that $K_{j}^{n} \rightarrow 2^{k-j}\left|\alpha_{j, \operatorname{deg} Q_{j}}\right|$ when $n \rightarrow \infty$ due to Theorem 1). Thus, with the decomposition
$A=\left\{j: \operatorname{deg} Q_{j}=j\right\}$,
$B=\left\{j: \operatorname{deg} Q_{j}<j \quad\right.$ and $\left.\quad\left(k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}\right)>0\right\}$, $C=\left\{j: \operatorname{deg} Q_{j}<j \quad\right.$ and $\left.\quad\left(k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}\right) \leq 0\right\}$, and using (6), inequality (5) is equivalent to:

$$
\begin{aligned}
1 & \leq \sum_{j=1}^{k-1} \sum_{i=0}^{j}\left|\alpha_{j, i}\right|^{k-j} \frac{r_{n}^{k-j+i-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j}}+\sum_{0 \leq i<\operatorname{deg} Q_{k}} \frac{\left|\alpha_{k, i}\right|}{r_{n}^{\operatorname{deg} Q_{k}-i}} \\
& =\sum_{j \in A} K_{j}^{n} \frac{r_{n}^{k-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j}}+\sum_{j \in B} K_{j}^{n} \frac{r_{n}^{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j}} \\
& +\sum_{j \in C} K_{j}^{n} \frac{r_{n}^{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j}}+\sum_{0 \leq i<\operatorname{deg} Q_{k}} \frac{\left|\alpha_{k, i}\right|}{r_{n}^{\operatorname{deg} Q_{k}-i}} .
\end{aligned}
$$

Consider the last two sums on the right hand side of this inequality. They both tend to zero as $n \rightarrow \infty$, the last one due to Theorem 1 , and the sum over C since we have $\left(j-\operatorname{deg} Q_{j}\right) \geq\left(k-\operatorname{deg} Q_{k}\right) \Leftrightarrow\left(k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}\right) \leq 0$ for every $j \in C$ by assumption, and then applying Theorem 1.
Therefore, in the limit when $n \rightarrow \infty$, we get the inequality

$$
\begin{equation*}
c_{0} \leq \sum_{j \in A} K_{j}^{n} \frac{r_{n}^{k-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j}}+\sum_{j \in B} K_{j}^{n} \frac{r_{n}^{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j}} \tag{7}
\end{equation*}
$$

where

$$
0<c_{0}=1-\sum_{j \in C} K_{j}^{n} \frac{r_{n}^{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j}}-\sum_{0 \leq i<\operatorname{deg} Q_{k}} \frac{\left|\alpha_{k, i}\right|}{r_{n}^{\operatorname{deg} Q_{k}-i}}
$$

for sufficiently large n.
Now assume that the set B is empty. This corresponds to an operator with $\left(j-\operatorname{deg} Q_{j}\right) \geq\left(k-\operatorname{deg} Q_{k}\right)$ for every j for which $\operatorname{deg} Q_{j}<j$. Then the inequality (7) above becomes

$$
\begin{align*}
c_{0} & \leq \sum_{j \in A} K_{j}^{n} \frac{r_{n}^{k-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j}} \\
& =\frac{r_{n}^{k-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j_{0}}}\left(K_{j_{0}}^{n}+\sum_{j \in A \backslash\left\{j_{0}\right\}} K_{j}^{n} \frac{1}{(n-k+1)^{j_{0}-j}}\right) \\
& \leq K_{A} \frac{r_{n}^{k-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j_{0}}} \tag{8}
\end{align*}
$$

where $K_{A}>0$ is a positive constant (since A is nonempty) which is finite when $n \rightarrow \infty$, since $j_{0}-j>0$ for every $j \in A \backslash\left\{j_{0}\right\}$ (recall that j_{0} is the largest element in A by definition). Thus for sufficiently large n there exists a positive constant $c=c_{0} / K_{A}>0$ such that

$$
r_{n} \geq c(n-k+1)^{\frac{k-j_{0}}{k-\operatorname{deg} Q_{k}}},
$$

and thus

$$
\lim _{n \rightarrow \infty} \frac{r_{n}}{(n-k+1)^{\frac{k-j_{0}}{k-\operatorname{deg} Q_{k}}}} \geq c>0 .
$$

Now assume that B is nonempty. Then for sufficiently large n there exists a positive constant $c_{0}>0$ such that (as in the case of empty B) inequality (7) above holds:

$$
c_{0} \leq \sum_{j \in A} K_{j}^{n} \frac{r_{n}^{k-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j}}+\sum_{j \in B} K_{j}^{n} \frac{r_{n}^{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j}}
$$

For the sum over A we previously concluded in (8) that there exists a positive and finite constant K_{A} such that

$$
\sum_{j \in A} K_{j}^{n} \frac{r_{n}^{k-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j}} \leq K_{A} \frac{r_{n}^{k-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j_{0}}}
$$

for sufficiently large n, whence we get the following inequality from (7):

$$
\begin{aligned}
c_{0} & \leq \sum_{j \in A} K_{j}^{n} \frac{r_{n}^{k-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j}}+\sum_{j \in B} K_{j}^{n} \frac{r_{n}^{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j}} \\
& \leq K_{A} \frac{r_{n}^{k-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j_{0}}}+\sum_{j \in B} K_{j}^{n} \frac{r_{n}^{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j}} \\
& =\frac{r_{n}^{k-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j_{0}}}\left(K_{A}+\sum_{j \in B} K_{j}^{n} \frac{r_{n}^{\operatorname{deg} Q_{j}-j}}{(n-k+1)^{j_{0}-j}}\right) \\
& \leq K_{A B} \frac{r_{n}^{k-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j_{0}}} .
\end{aligned}
$$

Here $K_{A B}$ is a positive and finite constant for sufficiently large n (note that $K_{A B} \rightarrow K_{A}$ when $n \rightarrow \infty$, since $\left(\operatorname{deg} Q_{j}-j\right)<0$ and $j_{0}-j>0$ for every $j \in B)$. Thus there exists a positive constant $c=c_{0} / K_{A B}>0$ such that

$$
r_{n} \geq c(n-k+1)^{\frac{k-j_{0}}{k-\operatorname{deg} Q_{k}}}
$$

for sufficiently large choices on n, and thus

$$
\lim _{n \rightarrow \infty} \frac{r_{n}}{(n-k+1)^{\frac{k-j_{0}}{k-\operatorname{deg} Q_{k}}}} \geq c>0 .
$$

3 How did we arrive at Main Conjecture?

Our Main Conjecture is based on calculations involving the Cauchy transform and is consistent with all experiments we have performed concerning the zero distribution of eigenpolynomials of degenerate exactly-solvable operators.

With p_{n} being the unique monic nth degree eigenpolynomial of T, we define the corresponding scaled polynomial $q_{n}(z)=p_{n}\left(n^{d} z\right)$, where we need to find the positive number d specific for each operator. For a polynomial q_{n} of degree n, the Cauchy transform $C_{n, j}$ of the root measure μ_{n}^{j} for the j th derivative $q_{n}^{(j)}$ is given by

$$
C_{n, j}(z):=\frac{q_{n}^{(j+1)}(z)}{(n-j) q_{n}^{(j)}(z)}=\int \frac{d \mu_{n}^{(j)}(\zeta)}{z-\zeta}
$$

From this definition we obtain

$$
\begin{aligned}
\prod_{i=0}^{j-1} C_{n, i}(z)= & \prod_{i=0}^{j-1} \frac{q_{n}^{(i+1)}(z)}{(n-j) q_{n}^{(i)}(z)} \\
= & \frac{q_{n}^{(1)}(z)}{n q_{n}(z)} \cdot \frac{q_{n}^{(2)}(z)}{(n-1) q^{(1)}(z)} \cdot \frac{q_{n}^{(3)}(z)}{(n-2) q_{n}^{(2)}(z)} \cdots \\
& \cdots \frac{q_{n}^{(j-1)}(z)}{(n-j+2) q_{n}^{(j-2)}(z)} \cdot \frac{q_{n}^{(j)}(z)}{(n-j+1) q_{n}^{(j-1)}(z)} \\
= & \frac{q_{n}^{(j)}(z)}{n(n-1) \cdots(n-j+1) q_{n}(z)} .
\end{aligned}
$$

Now the basic assumption (see also section 4.3) we make to get our conjecture is the following. Assume that the Cauchy transforms of the scaled polynomial $q_{n}(z)$ and its derivatives are all equal when $n \rightarrow \infty$, i.e. $C_{n}(z):=C_{n, 0}(z)=$ $C_{n, 1}(z)=\ldots=C_{n, k-1}(z)$ when $n \rightarrow \infty$. This means that we assume that the
root measures $\mu_{n}^{0}, \mu_{n}^{1}, \mu_{n}^{2} \ldots, \mu_{n}^{k-1}$ of $q_{n}, q_{n}^{(1)}, q_{n}^{(2)} \ldots, q_{n}^{(k-1)}$ respectively, are all equal as $n \rightarrow \infty$. Then

$$
\begin{equation*}
C_{n}^{j}(z)=\prod_{i=0}^{j-1} C_{n, i}(z)=\frac{q_{n}^{(j)}(z)}{n(n-1) \cdots(n-j+1) q_{n}(z)} \tag{9}
\end{equation*}
$$

and with $C(z):=\lim _{n \rightarrow \infty} C_{n}(z)$ (we call this function the asymptotic Cauchy transform of q_{n}), we get

$$
\begin{equation*}
C^{j}(z)=\lim _{n \rightarrow \infty} C_{n}^{j}(z)=\lim _{n \rightarrow \infty} \prod_{i=0}^{j-1} C_{n, i}(z)=\frac{q_{n}^{(j)}(z)}{n(n-1) \cdots(n-j+1) q_{n}(z)} \tag{10}
\end{equation*}
$$

With $q_{n}(z)=p_{n}\left(n^{d} z\right)$ the scaling factor n^{d} is now appropriately chosen in the sense that we obtain a "nice" equation in the asymptotic Cauchy transform $C(z)$ for the scaled polynomials. Then the asymptotic zero distribution of the scaled polynomials will (conjecturally) be compactly supported.

Let $T=\sum_{j=1}^{k}\left(\sum_{i=0}^{j} \alpha_{j, i} z^{i}\right) D^{j}$ be a degenerate exactly-solvable operator and denote by j_{0} the largest j such that $\operatorname{deg} Q_{j}=j$. Consider the equation $T\left(p_{n}(z)\right)=\lambda_{n} p_{n}(z)$ where

$$
\lambda_{n}=\sum_{j=1}^{k} \alpha_{j, j} \frac{n!}{(n-j)!}=\sum_{j=1}^{j_{0}} \alpha_{j, j} \frac{n!}{(n-j)!}=\sum_{j=1}^{j_{0}} \alpha_{j, j} n(n-1) \cdots(n-j+1)
$$

Clearly this sum ends at j_{0} since $\alpha_{j, j}=0$ for all $j>j_{0}$ by definition of j_{0}. We then have

$$
\begin{gathered}
T\left(p_{n}(z)\right)=\lambda_{n} p_{n}(z) \\
\Leftrightarrow \\
\sum_{j=1}^{k}\left(\sum_{i=0}^{j} \alpha_{j, i} z^{i}\right) p_{n}^{(j)}(z)=\sum_{j=1}^{j_{0}} \alpha_{j, j} n(n-1) \cdots(n-j+1) p_{n}(z)
\end{gathered}
$$

Now letting $z \rightarrow n^{d} z$ in this equation we obtain

$$
\sum_{j=1}^{k}\left(\sum_{i=0}^{j} \alpha_{j, i} n^{d i} z^{i}\right) p_{n}^{(j)}\left(n^{d} z\right)=\sum_{j=1}^{j_{0}} \alpha_{j, j} n(n-1) \cdots(n-j+1) p_{n}\left(n^{d} z\right)
$$

and making the substitution $q_{n}(z)=p_{n}\left(n^{d} z\right)$ the equation above will be equivalent to the following:

$$
\sum_{j=1}^{k}\left(\sum_{i=0}^{j} \alpha_{j, i} \frac{z^{i}}{n^{d(j-i)}}\right) q_{n}^{(j)}(z)=\sum_{j=1}^{j_{0}} \alpha_{j, j} n(n-1) \cdots(n-j+1) q_{n}(z)
$$

Dividing this equation by $\frac{n!}{\left(n-j_{0}\right)!} q_{n}(z)=n(n-1) \cdots\left(n-j_{0}+1\right) q_{n}(z)$ we get

$$
\begin{align*}
\mathrm{LHS} & =\sum_{j=1}^{k}\left(\sum_{i=0}^{j} \alpha_{j, i} \frac{z^{i}}{n^{d(j-i)}}\right) \frac{q_{n}^{(j)}(z)}{n(n-1) \cdots\left(n-j_{0}+1\right) q_{n}(z)} \\
& =\sum_{j=1}^{j_{0}} \alpha_{j, j} \frac{n(n-1) \cdots(n-j+1)}{n(n-1) \cdots\left(n-j_{0}+1\right)}=\mathrm{RHS} \tag{11}
\end{align*}
$$

where $\alpha_{j_{0}, j_{0}} \neq 0$. Consider the right-hand side (RHS) of equation (11). Since $j \leq j_{0}$, all terms for which $j<j_{0}$ (if not already zero, which is the case if $\alpha_{j, j}=0$, i.e. if $\left.\operatorname{deg} Q_{j}<j\right)$ tend to zero when $n \rightarrow \infty$, and therefore

$$
\mathrm{RHS}=\sum_{j=1}^{j_{0}} \alpha_{j, j} \frac{n(n-1) \cdots(n-j+1)}{n(n-1) \cdots\left(n-j_{0}+1\right)} \rightarrow \alpha_{j_{0}, j_{0}}=1 \quad \text { as } \quad n \rightarrow \infty
$$

Here we wlog have made a normalization by assuming that $Q_{j_{0}}$ is monic, i.e. $\alpha_{j_{0}, j_{0}}=1$.

Now consider the j th term in the sum on the left-hand side (LHS) of equation (11). Using (9) and (10) we get, for any given j :

$$
\begin{aligned}
& \sum_{i=0}^{j} \alpha_{j, i} \frac{z^{i}}{n^{d(j-i)}} \cdot \frac{q_{n}^{(j)}(z)}{n(n-1) \cdots\left(n-j_{0}+1\right) q_{n}(z)}= \\
= & \sum_{i=0}^{j} \alpha_{j, i} \frac{z^{i}}{n^{d(j-i)}} \cdot \frac{q_{n}^{(j)}(z)}{n(n-1) \cdots(n-j+1) q_{n}(z)} \cdot \frac{n(n-1) \cdots(n-j+1)}{n(n-1) \cdots\left(n-j_{0}+1\right)} \\
= & \sum_{i=0}^{j} \alpha_{j, i} \frac{z^{i}}{n^{d(j-i)}} \cdot C_{n}^{j}(z) \cdot \frac{n(n-1) \cdots(n-j+1)}{n(n-1) \cdots\left(n-j_{0}+1\right)} \\
= & \sum_{i=0}^{j} \alpha_{j, i} \frac{z^{i}}{n^{d(j-i)+j_{0}-j}} \cdot C_{n}^{j}(z) \cdot \frac{n(n-1) \cdots(n-j+1)}{n^{j}} \frac{n^{j_{0}}}{n(n-1) \cdots\left(n-j_{0}+1\right)} \\
\rightarrow & \sum_{i=0}^{j} \alpha_{j, i} \frac{z^{i}}{n^{d(j-i)+j_{0}-j}} C^{j}(z) \quad \text { when } \quad n \rightarrow \infty .
\end{aligned}
$$

Thus, for the left-hand side of (11) we have

$$
\begin{aligned}
\text { LHS } & =\sum_{j=1}^{k}\left(\sum_{i=0}^{j} \alpha_{j, i} \frac{z^{i}}{n^{d(j-i)}}\right) \frac{q_{n}^{(j)}(z)}{n(n-1) \cdots\left(n-j_{0}+1\right) q_{n}(z)} \\
& \rightarrow \sum_{j=1}^{k}\left(\sum_{i=0}^{j} \alpha_{j, i} \frac{z^{i}}{n^{d(j-i)+j_{0}-j}}\right) C^{j}(z) \quad \text { when } \quad n \rightarrow \infty
\end{aligned}
$$

Adding up we have the following equation satisfied by the asymptotic Cauchy transform C for the scaled eigenpolynomial $q_{n}(z)=p_{n}\left(n^{d} z\right)$:

$$
\begin{equation*}
\sum_{j=1}^{k}\left(\sum_{i=0}^{j} \alpha_{j, i} \frac{z^{i}}{n^{d(j-i)+j_{0}-j}}\right) C^{j}(z)=1 \tag{12}
\end{equation*}
$$

In order to make (12) a "nice" equation we need to (in order to avoid infinities in the denominator) impose the following condition on the exponent d of n :

$$
d(j-i)+j_{0}-j \geq 0 \quad \Leftrightarrow \quad d \geq \frac{j-j_{0}}{j-i}
$$

for all $j \in[1, k]$ and all $i \in[0, j]$. Therefore we take $d=\max _{\substack{j \in[1, k] \\ i \in[0, j]}}\left(\frac{j-j_{0}}{j-i}\right)$, but this maximum is clearly obtained for the maximum value of i for a given j. Since $i \in\left[0, \operatorname{deg} Q_{j}\right]$ for any given j, we may as well put $i=\operatorname{deg} Q_{j}$. Our condition then becomes ${ }^{7} d=\max _{j \in[1, k]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)$. But clearly we need only take this maximum over $j \in\left[j_{0}+1, k\right]$, since $j_{0}<k$ and therefore there always exists a positive value on d for any operator of the type we consider; thus our condition becomes:

$$
d=\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right) .
$$

This is how we arrived at the scaling factor n^{d}. If we put this d into equation (12) and let $n \rightarrow \infty$ we obtain an equation satisfied by the asymptotic Cauchy transform of the scaled polynomial $q_{n}(z)=p_{n}\left(n^{d} z\right)$ - namely the algebraic equation in Main Corollary.

Arriving at Main Corollary. We insert d in (12), where d is as above (i.e. as in Main Conjecture). We then get the following equation:

$$
\begin{equation*}
\sum_{j=1}^{k}\left(\sum_{i=0}^{\operatorname{deg} Q_{j}} \alpha_{j, i} \frac{z^{i}}{n^{\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)(j-i)+j_{0}-j}}\right) C^{j}(z)=1 . \tag{13}
\end{equation*}
$$

Denote by $N_{j, i}$ the exponent of n in (13) for given j and i. Thus

$$
N_{j, i}=\max _{j \in[j=+1, k]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)(j-i)+j_{0}-j
$$

The terms for which this exponent is positive tend to zero as $n \rightarrow \infty$.
First we consider j for which $\operatorname{deg} Q_{j}=j$, and denote, as usual, by j_{0} the largest such j. If $j=j_{0}$, then $i \leq \operatorname{deg} Q_{j_{0}}=j_{0}$; thus for $j=j_{0}$ and $i=j_{0}$ we

[^4]get
\[

$$
\begin{aligned}
N_{j_{0}, j_{0}} & =\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)(j-i)+j_{0}-j \\
& =\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)\left(j_{0}-j_{0}\right)+j_{0}-j_{0}=0,
\end{aligned}
$$
\]

and for $j=j_{0}$ and $i<j_{0}$ we have

$$
\begin{aligned}
N_{j_{0}, i} & =\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)(j-i)+j_{0}-j \\
& >\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)\left(j_{0}-j_{0}\right)+j_{0}-j_{0}=0
\end{aligned}
$$

Thus $N_{j_{0}, j_{0}}=0$ and $N_{j_{0}, i}>0$ for $i<j_{0}$, and for the term corresponding to $j=j_{0}$ in (13) we get
$\sum_{i=0}^{j_{0}} \alpha_{j_{0}, i} \frac{z^{i}}{n^{\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)\left(j_{0}-i\right)+j_{0}-j_{0}}} C^{j_{0}}(z) \rightarrow \alpha_{j_{0}, j_{0}} z^{j_{0}} C^{j_{0}}(z)=z^{j_{0}} C^{j_{0}}(z)$
in the limit when $n \rightarrow \infty$, assuming that $Q_{j_{0}}$ is monic $\left(\alpha_{j_{0}, j_{0}}=1\right)$.
Now let j be such that $\operatorname{deg} Q_{j}=j$ and $j<j_{0}$. Then $i \leq \operatorname{deg} Q_{j}=j$ and

$$
\begin{aligned}
N_{j, j} & =\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)(j-i)+j_{0}-j \\
& =\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)(j-j)+j_{0}-j=j_{0}-j>0
\end{aligned}
$$

and for $i<j$ we get

$$
\begin{aligned}
N_{j, i} & =\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)(j-i)+j_{0}-j \\
& >\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)(j-j)+j_{0}-j=j_{0}-j>0
\end{aligned}
$$

that is $N_{j, i}>0$ for all $j<j_{0}$ such that $\operatorname{deg} Q_{j}=j$ and for all $i \leq j$. Thus the corresponding terms in (13) tend to zero:

$$
\sum_{j \in\left\{j<j_{0}: \operatorname{deg} Q_{j}=j\right\}} \sum_{i=0}^{\operatorname{deg} Q_{j}} \alpha_{j, i} \frac{z^{i}}{n^{\max _{j \in\left[j_{0}+1, j\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)(j-i)+j_{0}-j}} C^{j}(z) \rightarrow 0
$$

when $n \rightarrow \infty$ for every $j<j_{0}$ such that $\operatorname{deg} Q_{j}=j$.
Now denote by j_{m} the j for which the maximum $d=\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)$ is attained. Note that there may be several distinct j for which this maximum
is attained! ${ }^{8}$ Then

$$
\begin{aligned}
N_{j_{m}, \operatorname{deg} Q_{j_{m}}} & =\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)(j-i)+j_{0}-j \\
& =\left(\frac{j_{m}-j_{0}}{j_{m}-\operatorname{deg} Q_{j_{m}}}\right)\left(j_{m}-\operatorname{deg} Q_{j_{m}}\right)+j_{0}-j_{m} \\
& =j_{m}-j_{0}+j_{0}-j_{m}=0,
\end{aligned}
$$

and for $i<\operatorname{deg} Q_{j_{m}}$ we get

$$
\begin{aligned}
N_{j_{m}, i} & =\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)(j-i)+j_{0}-j \\
& >\left(\frac{j_{m}-j_{0}}{j_{m}-\operatorname{deg} Q_{j_{m}}}\right)\left(j_{m}-\operatorname{deg} Q_{j_{m}}\right)+j_{0}-j_{m} \\
& =j_{m}-j_{0}+j_{0}-j_{m}=0,
\end{aligned}
$$

i.e. $N_{j_{m}, \operatorname{deg} Q_{j_{m}}}=0$ and $N_{j_{m}, i}>0$ for $i<\operatorname{deg} Q_{j_{m}}$, and for the term corresponding to $j=j_{m}$ in (13) we get

$$
\sum_{i=0}^{\operatorname{deg} Q_{j_{m}}} \alpha_{j_{m}, i} \frac{z^{i}}{n^{\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)\left(j_{m}-i\right)+j_{0}-j_{m}}} C^{j_{m}}(z) \rightarrow \alpha_{j_{m}, \operatorname{deg} Q_{j_{m}}} z^{\operatorname{deg} Q_{j_{m}}} C^{j_{m}}(z)
$$

when $n \rightarrow \infty$. In case of several j for which d is attained, we put $A=\{j$: $\left.\left(j-j_{0}\right) /\left(j-\operatorname{deg} Q_{j}\right)=d:=\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)\right\}$, and for the corresponding terms in (13) we get

$$
\sum_{j \in A} \sum_{i=0}^{\operatorname{deg} Q_{j}} \alpha_{j, i} \frac{z^{i}}{n^{\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)(j-i)+j_{0}-j}} C^{j}(z) \rightarrow \sum_{j \in A} \alpha_{j, \operatorname{deg} Q_{j}} z^{\operatorname{deg} Q_{j}} C^{j}(z)
$$

when $n \rightarrow \infty$. Now consider the remaining terms in (13), namely terms for which $j<j_{0}$ such that $\operatorname{deg} Q_{j}<j$, terms for which $j_{0}<j<j_{m}$, and terms for which $j_{m}<j \leq k$, (clearly this last case does not exist if $j_{m}=k$). We start with $j<j_{0}$ for which $\operatorname{deg} Q_{j}<j$. Then $i \leq \operatorname{deg} Q_{j}<j$ and

$$
\begin{aligned}
N_{j, i} & =\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)(j-i)+j_{0}-j \\
& >\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)(j-j)+j_{0}-j=j_{0}-j>0,
\end{aligned}
$$

[^5]and the corresponding terms in (13) for which $j<j_{0}$ such that $\operatorname{deg} Q_{j}<j$ tend to zero when $n \rightarrow \infty$:
$$
\sum_{j \in\left\{j<j_{0}: \operatorname{deg} Q_{j}<j\right\}} \sum_{i=0}^{\operatorname{deg} Q_{j}} \alpha_{j, i} \frac{z^{i}}{n^{\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)(j-i)+j_{0}-j}} C^{j}(z) \rightarrow 0
$$
when $n \rightarrow \infty$.

Now assume that $j_{m}<k$ and consider $j_{m}<j \leq k$. Clearly $j_{m}>j_{0}$ since the maximum is taken over $j \in\left[j_{0}+1, k\right]$, and therefore $i \leq \operatorname{deg} Q_{j}<j$ for $j_{m}<j \leq k$. Also,

$$
\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)=\left(\frac{j_{m}-j_{0}}{j_{m}-\operatorname{deg} Q_{j_{m}}}\right)>\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)
$$

since the maximum is attained for j_{m} by assumption. Thus we get

$$
\begin{aligned}
N_{j, i} & =\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)(j-i)+j_{0}-j=\left(\frac{j_{m}-j_{0}}{j_{m}-\operatorname{deg} Q_{j_{m}}}\right)(j-i)+j_{0}-j \\
& >\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)(j-i)+j_{0}-j \geq\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)\left(j-\operatorname{deg} Q_{j}\right)+j_{0}-j \\
& =j-j_{0}+j_{0}-j=0,
\end{aligned}
$$

i.e. $N_{j, i}>0$ for every $j_{m}<j \leq k$ and every $i \leq \operatorname{deg} Q_{j}$. The corresponding terms in (13) therefore tend to zero when $n \rightarrow \infty$:.

$$
\sum_{j_{m}<j \leq k} \sum_{i=0}^{\operatorname{deg} Q_{j}} \alpha_{j, i} \frac{z^{i}}{n^{\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)(j-i)+j_{0}-j}} C^{j}(z) \rightarrow 0
$$

as $n \rightarrow \infty$.
Finally we consider $j_{0}<j<j_{m}$. Note that this also covers the case $j_{m_{1}}<$ $j<j_{m_{2}}$ where the maximum $d=\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)$ is attained for $j_{m_{1}}$ and $j_{m_{2}}$. Since $i \leq \operatorname{deg} Q_{j}<j$ we get

$$
\begin{aligned}
N_{j, i} & =\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)(j-i)+j_{0}-j=\left(\frac{j_{m}-j_{0}}{j_{m}-\operatorname{deg} Q_{j_{m}}}\right)(j-i)+j_{0}-j \\
& >\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)(j-i)+j_{0}-j \geq\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)\left(j-\operatorname{deg} Q_{j}\right)+j_{0}-j \\
& =j-j_{0}+j_{0}-j=0,
\end{aligned}
$$

i.e. $N_{j, i}>0$ for every $j_{0}<j<j_{m}$ and every $i \leq \operatorname{deg} Q_{j}$. Thus the corresponding terms in (13) tend to zero when $n \rightarrow \infty$:

$$
\sum_{j_{0}<j<j_{m}} \sum_{i=0}^{\operatorname{deg} Q_{j}} \alpha_{j, i} \frac{z^{i}}{n^{\max _{j \in[j=+1, k] 0}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)(j-i)+j_{0}-j}} C^{j}(z) \rightarrow 0
$$

when $n \rightarrow \infty$.
Adding up these results we get the following equation from (13) for the asymptotic Cauchy transform $C(z)$ of the scaled eigenpolynomial $q_{n}(z)=p_{n}\left(n^{d} z\right)$ where d is as in Main Conjecture:

$$
z^{j_{0}} C^{j_{0}}(z)+\sum_{j \in A} \alpha_{j, \operatorname{deg} Q_{j}} z^{\operatorname{deg} Q_{j}} C^{j}(z)=1,
$$

where j_{0} is the largest j such that $\operatorname{deg} Q_{j}=j$, and A is the set consisting of all j for which the maximum $d=\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)$ is attained, i.e. $A=\left\{j:\left(j-j_{0}\right) /\left(j-\operatorname{deg} Q_{j}\right)=d\right\}$ where d is as above.

4 Numerical evidence

4.1 Evidence for Main Conjecture

On page 30 we present numerical evidence for Main Conjecture on the asymptotic root growth. We have performed similar computer experiments for a large number of other degenerate exactly-solvable operators, and the results are in all cases consistent with this conjecture.

4.2 Comments on Main Corollary

We here present and comment some pictures of the zero distribution for some properly (according to Main Conjecture) scaled eigenpolynomials of some degenerate exactly-solvable operators. In Section 1 we presented pictures of the zero distributions of the scaled eigenpolynomials for some distinct operators for which the Cauchy transform C of the scaled eigenpolynomials satisfy the same equation in the limit as $n \rightarrow \infty$. We considered the operator $T_{4}=z^{3} D^{3}+z^{2} D^{5}$ for which $d=2 / 3$ and for which the asymptotic Cauchy transform of the scaled eigenpolynomial $q_{n}(z)=p_{n}\left(n^{2} / 3 z\right)$ satisfies the equation $z^{3} C^{3}+z^{2} C^{5}=1$. For the slightly modified operator $\widetilde{T}_{4}=z^{2} D^{2}+z^{3} D^{3}+z D^{4}+z^{2} D^{5}+D^{6}$ we noted that d is obtained again (only) for $j=5$ and we therefore obtain the same equation in C for the scaled eigenpolynomials of \widetilde{T}_{4} as for the scaled eigenpolynomials of T_{4}, whence we can consider the added terms $z^{2} D^{2}, z D^{4}$ and D^{6} as irrelevant for the zero distribution.

However, instead of D^{6}, we may add the "more disturbing" term $z D^{6}$ to T_{4}. Consider the operator $\widetilde{\widetilde{T}}_{4}=z^{2} D^{2}+z^{3} D^{3}+z D^{4}+z^{2} D^{5}+z D^{6}$ and note that for $j=6$ we have $(6-3) /(6-1)=3 / 5=0.6<2 / 3$ - it is clear that the closer the value $\left(j-j_{0}\right)\left(j-\operatorname{deg} Q_{j}\right)$ of the added term $Q_{j} D^{j}$ is to $d=2 / 3$, the more disturbing is this term, since, besides the term for which $j=j_{0}$, it is precisely the terms for which $\left(j-j_{0}\right) /\left(j-\operatorname{deg} Q_{j}\right)=d=2 / 3$ that are involved in the asymptotic Cauchy transform equation. Se pictures below.

The term $z D^{6}$ should however be irrelevant in the limit when $n \rightarrow \infty$ (according to the asymptotic Cauchy transform equation), and experiments indicate that for sufficiently large n the zero distributions for the scaled eigenpolynomials of T_{4} and $\widetilde{\widetilde{T}}_{4}$ coincide, as they (conjecturally) should.

Note also that it is only the term of highest degree in a given (relevant) Q_{j}, i.e. $\alpha_{j, \operatorname{deg} Q_{j}} z^{\operatorname{deg} Q_{j}}$, that is relevant for the zero distribution of the scaled polynomials in the limit when $n \rightarrow \infty$. This is illustrated by the following example, where adding lower degree terms in the (relevant) Q_{j} clearly does not affect the zero distribution of the scaled eigenpolynomials for large n. Below, $T_{6}=z^{3} D^{3}+z^{2} D^{6}$, and $\widetilde{T}_{6}=\left[(1+13 i)+(24 i-3) z+11 i z^{2}+z^{3}\right] D^{3}+[(22 i-$ $\left.13)+(-9-14 i) z+z^{2}\right] D^{6}$ (note the difference in scaling between the pictures).

T_{6}, roots of $q_{100}(z)=p_{100}\left(100^{3 / 4} z\right)$

\widetilde{T}_{6}, roots of $q_{100}(z)=p_{100}\left(100^{3 / 4} z\right)$

\widetilde{T}_{6}, roots of $q_{500}(z)=p_{500}\left(500^{3 / 4} z\right)$

4.3 On the basic assumption

Finally, we show some pictures which support the basic assumption upon which Main Conjecture and Main Corollary are built, namely that the Cauchy transforms for the scaled eigenpolynomial and its derivatves are all equal when $n \rightarrow \infty$, i.e. $C_{n, 0}=C_{n, 1}=\ldots=C_{n, k-1}$ in the limit when $n \rightarrow \infty$. This means that we assume that the zero distributions $\mu_{n}, \mu_{n}^{(1)}, \ldots, \mu_{n}^{(k)}$ of the scaled eigenpolynomial and its derivatives $q_{n}, q_{n}^{\prime}, \ldots, q_{n}^{(k)}$ respectively, are all equal when $n \rightarrow \infty$. Below, p_{n} denotes the nth degree monic eigenpolynomial of the given operator, and $q_{n}=p_{n}\left(n^{d} z\right)$ denotes the corresponding appropriately scaled polynomial.

Fig. 1: $T_{7}=z D+D^{3}$ and $q_{n}(z)=p_{n}\left(n^{2 / 3} z\right)$.

roots of $q_{100}^{\prime \prime}(z)$

roots of $q_{100}^{\prime \prime \prime}(z)$

Fig. 2: $T_{8}=z^{2} D^{2}+D^{5}$ and $q_{n}(z)=p_{n}\left(n^{3 / 5} z\right)$.

roots of $q_{100}(z)$

$$
\text { roots of } q_{100}^{\prime \prime \prime}(z)
$$

roots of $q_{100}^{\prime}(z)$

roots of $q_{100}^{(\mathrm{iv})}(z)$

roots of $q_{100}^{\prime \prime}(z)$

roots of $q_{100}^{(\mathrm{v})}(z)$

Fig. 3: $T_{9}=z D+z D^{4}+z^{3} D^{7}$ and $q_{n}(z)=p_{n}\left(n^{3 / 2} z\right)$.

4.4 Interlacing property

We now state the exact meaning of interlacing on curves in the complex plane. Conjecturally the support of the asymptotic zero distribution of the scaled eigenpolynomial q_{n} of T is the union of a finite number of analytic curves in the complex plane, which we denote by Ξ_{T}. When defining the interlacing property some caution is required since the zeros of q_{n} do not lie exactly on Ξ_{T}. Thus, identify some sufficiently small neighbourhood $N\left(\Xi_{T}\right)$ of Ξ_{T} with the normal bundle to Ξ_{T} by equipping $N\left(\Xi_{T}\right)$ with the projection onto Ξ_{T} along the fibres which are small curvilinear segments orthogonal to Ξ_{T}. Then we say that two sets of points in $N\left(\Xi_{T}\right)$ interlace if their (orthogonal) projections on Ξ_{T} interlace in the usual sense. If Ξ_{T} has singularities one should first remove some sufficiently small neighbourhoods of these singularities and the proceed in the above way on the remaining part of Ξ_{T}. Conjecture 1 then states that for any sufficiently small neighbourhood $N\left(\Xi_{T}\right)$ of Ξ_{T} there exists N such that the interlacing property holds for the roots of q_{n} and q_{n+1} for all $n \geq N$. Below, small dots are roots of q_{n+1} and large dots are roots of q_{n} for some fixed n.

Operator	n	r_{n} experimental	r_{n} conjectured
$T_{1}=z D+z D^{2}+z D^{3}+z D^{4}+z D^{5}$	50	$2.7 \cdot 50^{0.967595}$	$c_{1} \cdot 50^{1}$
	100	$2.7 \cdot 100^{0.984180}$	$c_{1} \cdot 100^{1}$
	200	$2.7 \cdot 200^{0.992557}$	$c_{1} \cdot 200^{1}$
	250	$2.7 \cdot 250^{0.994272}$	$c_{1} \cdot 250^{1}$
$T_{2}=z^{2} D^{2}+D^{7}$	50	$1.3 \cdot 50^{0.671977}$	$c_{2} \cdot 50^{5 / 7}$
	100	$1.3 \cdot 100^{0.694847}$	$c_{2} \cdot 100^{5 / 7}$
	200	$1.3 \cdot 200^{0.706226}$	$c_{2} \cdot 200^{5 / 7}$
	300	$1.3 \cdot 300^{0.710085}$	$c_{2} \cdot 300^{5 / 7}$
	400	$1.3 \cdot 400^{0.712043}$	$c_{2} \cdot 400^{5 / 7}$
$T_{3}=z^{3} D^{3}+z^{2} D^{4}+z D^{5}$	50	$4 / 3 \cdot 50^{0.469007}$	$c_{3} \cdot 50^{1 / 2}$
	100	$4 / 3 \cdot 100^{0.484824}$	$c_{3} \cdot 100^{1 / 2}$
	200	$4 / 3 \cdot 200^{0.492832}$	$c_{3} \cdot 200^{1 / 2}$
	300	$4 / 3 \cdot 300^{0.495592}$	$c_{3} \cdot 300^{1 / 2}$
	400	$4 / 3 \cdot 400^{0.497009}$	$c_{3} \cdot 400^{1 / 2}$
$T_{4}=z^{3} D^{3}+z^{2} D^{5}$	50	$1.4 \cdot 50^{0.633226}$	$c_{4} \cdot 50^{2 / 3}$
	100	$1.4 \cdot 100^{0.652141}$	$c_{4} \cdot 100^{2 / 3}$
	200	$1.4 \cdot 200^{0.661412}$	$c_{4} \cdot 200^{2 / 3}$
	300	$1.4 \cdot 300^{0.664511}$	$c_{4} \cdot 300^{2 / 3}$
	400	$1.4 \cdot 400^{0.666066}$	$c_{4} \cdot 400^{2 / 3}$
$\widetilde{T}_{4}=z^{2} D^{2}+z^{3} D^{3}+z D^{4}+z^{2} D^{5}+D^{6}$	50	$1.4 \cdot 50^{0.632811}$	$\tilde{c}_{4} \cdot 50^{2 / 3}$
	100	$1.4 \cdot 100^{0.651960}$	$\tilde{c}_{4} \cdot 100^{2 / 3}$
	200	$1.4 \cdot 200^{0.661332}$	$\tilde{c}_{4} \cdot 200^{2 / 3}$
	300	$1.4 \cdot 300^{0.664461}$	$\tilde{c}_{4} \cdot 300^{2 / 3}$
	400	$1.4 \cdot 400^{0.666030}$	$\tilde{c}_{4} \cdot 400^{2 / 3}$
$T_{5}=z^{5} D^{5}+z^{4} D^{6}+z^{2} D^{8}$	50	$1.5 \cdot 50^{0.462995}$	$c_{5} \cdot 50^{1 / 2}$
	100	$1.5 \cdot 100^{0.481684}$	$c_{5} \cdot 100^{1 / 2}$
	200	$1.5 \cdot 200^{0.491066}$	$c_{5} \cdot 200^{1 / 2}$
	300	$1.5 \cdot 300^{0.494304}$	$c_{5} \cdot 300^{1 / 2}$
	400	$1.5 \cdot 400^{0.495971}$	$c_{5} \cdot 400^{1 / 2}$
$\widetilde{T}_{5}=z^{2} D^{2}+z^{5} D^{5}+z^{4} D^{6}+z D^{7}+z^{2} D^{8}$	50	$1.5 \cdot 50^{0.463391}$	$\tilde{c}_{5} \cdot 50^{1 / 2}$
	100	$1.5 \cdot 100^{0.481837}$	$\tilde{c}_{5} \cdot 100^{1 / 2}$
	200	$1.5 \cdot 200^{0.491129}$	$\tilde{c}_{5} \cdot 200^{1 / 2}$
	300	$1.5 \cdot 300^{0.494342}$	$\tilde{c}_{5} \cdot 300^{1 / 2}$
	400	$1.5 \cdot 400^{0.495998}$	$\tilde{c}_{5} \cdot 400^{1 / 2}$
$T_{6}=z^{3} D^{3}+z^{2} D^{6}$	50	$1.4 \cdot 50^{0.702117}$	$c_{6} \cdot 50^{3 / 4}$
	100	$1.4 \cdot 100^{0.725715}$	$c_{6} \cdot 100^{3 / 4}$
	200	$1.4 \cdot 200^{0.737541}$	$c_{6} \cdot 200^{3 / 4}$
	300	$1.4 \cdot 300^{0.741614}$	$c_{6} \cdot 300^{3 / 4}$
	400	$1.4 \cdot 400^{0.743713}$	$c_{6} \cdot 400^{3 / 4}$
$\begin{aligned} & \widetilde{T}_{6}=\left[(1+13 i)+(24 i-3) z+11 i z^{2}+z^{3}\right] D^{3} \\ & +\left[(22 i-13)-(9+14 i) z+z^{2}\right] D^{6} \end{aligned}$	50	$1.4 \cdot 50^{0.769260}$	$\tilde{c}_{6} \cdot 50^{3 / 4}$
	100	$1.4 \cdot 100^{0.760399}$	$\tilde{c}_{6} \cdot 100^{3 / 4}$
	200	$1.4 \cdot 200^{0.756161}$	$\tilde{c}_{6} \cdot 200^{3 / 4}$
	300	$1.4 \cdot 300^{0.754590}$	$\tilde{c}_{6} \cdot 300^{3 / 4}$
	400	$1.4 \cdot 400^{0.753765}$	$\tilde{c}_{6} \cdot 400^{3 / 4}$

5 Appendix

For the classes of degenerate exactly-solvable operators considered in Corollary 1 and Corollary 2, what we really want is the lower bound $\lim _{n \rightarrow \infty} \frac{r_{n}}{(n-k+1)^{d}} \geq$ $c_{0}>0$, since we have conjectured $\lim _{n \rightarrow \infty} \frac{r_{n}}{n^{d}}=c_{0}>0$, where $d:=\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)$ and j_{0} is the largest j such that $\operatorname{deg} Q_{j}=j$. Recall that in Corollary land 2 we obtained the result $\lim _{n \rightarrow \infty} \frac{r_{n}}{(n-k+1)^{\gamma}}>c_{0}>0$ for any $\gamma<d$.

Here we prove that for a class of operators containing the operators considered in Corollary 1 and 2 , the lower bound $r_{n} \geq c_{0}(n-k+1)^{d}$ follows automatically from the inequality in Lemma 3, if we assume that the upper bound $r_{n} \leq c_{1}(n-k+1)^{d}$ holds for large n, where $c_{1}>0$ is a positive contant and $c_{0} \leq c_{1}$.

Theorem 5. Let T be a degenerate exactly-solvable operator which satisfies the following condition:

$$
b:=\min _{j \in[1, k-1]}^{+}\left(\frac{k-j}{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}}\right)=\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)=: d
$$

where the notation $\min ^{+}$means that the minimum is taken only over positive values of $\left(k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}\right)$. Assume that $r_{n} \leq c_{1}(n-k+1)^{d}$ holds for large n, where $c_{1}>0$ is a positive constant. Then there exists a positive constant $c_{0}>0$ such that $c_{0} \leq c_{1}$ and $r_{n} \geq c_{0}(n-k+1)^{d}$ for sufficiently large n, and thus $\lim _{n \rightarrow \infty} \frac{r_{n}}{(n-k+1)^{d}}=\tilde{c}$, where $c_{0} \leq \tilde{c} \leq c_{1}$ and $d:=\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)$.

Proof. From Lemma 3 and using $i \leq \operatorname{deg} Q_{j}$ for every given j, we have

$$
\begin{align*}
1 & \leq \sum_{j=1}^{k-1} \sum_{i=0}^{j}\left|\alpha_{j, i}\right| 2^{k-j} \frac{r_{n}^{k-j+i-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j}}+\sum_{0 \leq i<\operatorname{deg} Q_{k}} \frac{\left|\alpha_{k, i}\right|}{r_{n}^{\operatorname{deg} Q_{k}-i}} \\
& \leq \sum_{j=1}^{k-1} K_{j} \frac{r_{n}^{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j}}+\sum_{0 \leq i<i_{k}} \frac{\left|\alpha_{k, i}\right|}{r_{n}^{i_{k}-i}} \tag{14}
\end{align*}
$$

where $K_{j}>0$ is a positive constant. The second sum on the right-hand side of this inequality tends to zero as $n \rightarrow \infty$ due to Theorem 1 . To prove our theorem we decompose the first sum on the right-hand side of the inequality above into three parts:

- j for which $\frac{k-j}{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}}=d$, (note that $\left(k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}\right)>0$ here since $d>0$),
- j for which $\frac{k-j}{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}}>d$,
(note that $\left(k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}\right)>0$ here since $d>0$),
- j for which $\left(k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}\right) \leq 0$,
where $d:=\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)$. Clearly there are no terms for which $\frac{k-j}{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}}<d$ and $\left(k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}\right)>0$, due to the condition $b=d$.

In the first case, for any term for which $(k-j) /\left(k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}\right)=d$, we have

$$
\frac{r_{n}^{k-j+\operatorname{deg} Q_{k}-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j}}=\left(\frac{r_{n}}{(n-k+1)^{d}}\right)^{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}}
$$

The second part we consider consists of terms for which $(k-j) /\left(k-j+\operatorname{deg} Q_{j}-\right.$ $\left.\operatorname{deg} Q_{k}\right)>d$, i.e. $d\left(k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}\right)<(k-j)$, and this inequality together with the upper bound $r_{n} \leq c_{1}(n-k+1)^{d}$ gives the following estimation of the corresponding terms in (14):

$$
\frac{r_{n}^{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j}} \leq \frac{c_{1}(n-k+1)^{d\left(k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}\right)}}{(n-k+1)^{k-j}} \rightarrow 0
$$

when $n \rightarrow \infty$.
The third part we consider consists of the remaining terms, namely terms for which $\left(k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}\right) \leq 0$, since $(k-j)>0$. But clearly the corresponding terms $r_{n}^{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}} /(n-k+1)^{k-j}$ in (14) tend to zero when $n \rightarrow \infty$, using Theorem 1 .

Thus, decomposing the first sum on the right-hand side of the last inequality in (14) in this way, we obtain the following inequality :

$$
\begin{aligned}
1 & \leq \sum_{j=1}^{k-1} K_{j} \frac{r_{n}^{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j}}+\sum_{0 \leq i<i_{k}} \frac{\left|\alpha_{k, i}\right|}{r_{n}^{i_{k}-i}} \\
& \leq \sum_{j \in A} K_{j}\left(\frac{r_{n}}{(n-k+1)^{d}}\right)^{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}} \\
& +\sum_{j \in B} K_{j} \frac{c_{1}(n-k+1)^{d\left(k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}\right)}}{(n-k+1)^{k-j}} \\
& +\sum_{j \in C} K_{j} \frac{r_{n}^{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}}}{(n-k+1)^{k-j}}+\sum_{0 \leq i<i_{k}} \frac{\left|\alpha_{k, i}\right|}{r_{n}^{i_{k}-i}}
\end{aligned}
$$

where $A=\left\{j: \frac{k-j}{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}}=d\right\}, B=\left\{j: \frac{k-j}{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}}>d\right\}$ and $C=\left\{j:\left(k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}\right) \leq 0\right\}$. The last three sums in on the right-hand
side of this inequality tend to zero when $n \rightarrow \infty$, the last one due to Theorem 1 , the sum over B since $d\left(k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}\right)<(k-j)$, and the sum over C due to Theorem 1.

Thus, when $n \rightarrow \infty$, there exists a positive constant $c^{\prime}>0$ such that

$$
\begin{equation*}
c^{\prime} \leq \sum_{j \in A} K_{j}\left(\frac{r_{n}}{(n-k+1)^{d}}\right)^{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}} \tag{15}
\end{equation*}
$$

where $A=\left\{j: \frac{k-j}{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}}=d\right\}$ and A is nonempty. If A contains precisely one element, then the sum in the inequality (15) consists of one single term, and we are done; there exists a positive constant c_{0} such that $r_{n} \geq c_{0}(n-$ $k+1)^{d}$ for sufficiently large n. But clearly for some operators A will contain more elements. ${ }^{9}$ If this is the case, let $m=\min _{j \in A}\left(k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}\right)$ and denote by j_{m} the corresponding j. Using the upper bound $r_{n} \leq c_{1}(n-k+1)^{d}$ we then get the following inequality from (15):

$$
\begin{aligned}
c^{\prime} & \leq \sum_{j \in A} K_{j}\left(\frac{r_{n}}{(n-k+1)^{d}}\right)^{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}} \\
& \leq K_{j_{m}}\left(\frac{r_{n}}{(n-k+1)^{d}}\right)^{m} \\
& +\sum_{j \in A \backslash\left\{j_{m}\right\}} K_{j}\left(\frac{r_{n}}{(n-k+1)^{d}}\right)^{m} \cdot\left(\frac{r_{n}}{(n-k+1)^{d}}\right)^{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}-m} \leq
\end{aligned}
$$

${ }^{9}$ Consider for example the operator $T=z D+D^{2}+z D^{3}+z D^{4}$. Then, from Lemma 3, we get the following inequality (here $k=4$ and $\operatorname{deg} Q_{k}=1$):

$$
1 \leq \sum_{j=1}^{3} \frac{2^{4-j} r_{n}^{3-j+\operatorname{deg} Q_{j}}}{(n-3)^{4-j}}=8 \frac{r_{n}^{3}}{(n-3)^{3}}+4 \frac{r_{n}}{(n-3)^{2}}+2 \frac{r_{n}}{(n-3)}
$$

where r_{n} is the largest modulus of all roots of the unique and monic eigenpolynomial of T. For this operator $d=1$ and we see that $\frac{4-j}{3-j+\operatorname{deg} Q_{j}}=d$ for the first $(j=1)$ and the last $(j=3)$ term. Now assuming that $r_{n} \leq c_{1}(n-3)$ our inequality becomes

$$
\begin{aligned}
1 & \leq 8 \frac{r_{n}^{3}}{(n-3)^{3}}+4 \frac{r_{n}}{(n-3)^{2}}+2 \frac{r_{n}}{(n-3)} \\
& \leq 8 \frac{r_{n}}{(n-3)} \cdot \frac{c_{1}^{2}(n-3)^{2}}{(n-3)^{2}}+4 \frac{c_{1}(n-3)}{(n-3)^{2}}+2 \frac{r_{n}}{(n-3)} \\
& =\left(8 c_{1}^{2}+2\right) \frac{r_{n}}{(n-3)}+\frac{4 c_{1}}{(n-3)}
\end{aligned}
$$

where the last term tends to zero as $n \rightarrow \infty$. Thus $r_{n} \geq c_{0}(n-3)$ for some positive constant c_{0} for sufficiently large choices on n.

$$
\begin{aligned}
& \leq K_{j_{m}}\left(\frac{r_{n}}{(n-k+1)^{d}}\right)^{m}+\sum_{j \in A \backslash\left\{j_{m}\right\}} K_{j}\left(\frac{r_{n}}{(n-k+1)^{d}}\right)^{m} \cdot c_{1}^{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}-m} \\
& =\left(\frac{r_{n}}{(n-k+1)^{d}}\right)^{m}\left(K_{j_{m}}+\sum_{j \in A \backslash\left\{j_{m}\right\}} K_{j} \cdot c_{1}^{k-j+\operatorname{deg} Q_{j}-\operatorname{deg} Q_{k}-m}\right) \\
& =\left(\frac{r_{n}}{(n-k+1)^{d}}\right)^{m} K
\end{aligned}
$$

where $K>0$. Thus there exists a positive constant $c_{0}=\left(c^{\prime} / K\right)^{1 / m}>0$ such that $r_{n} \geq c_{0}(n-k+1)^{d}$ for sufficiently large choices on n, i.e. $\lim _{n \rightarrow \infty} \frac{r_{n}}{(n-k+1)^{d}} \geq$ c_{0}, and thus $\lim _{n \rightarrow \infty} \frac{r_{n}}{(n-k+1)^{d}}=\tilde{c}$ for some positive contant \tilde{c} such that $c_{0} \leq$ $\tilde{c} \leq c_{1}$.

References

[1] T. Bergkvist and H. Rullgård: On polynomial eigenfunctions for a class of differential operators, Math. Research Letters 9, 153-171 (2002).
[2] T. Bergkvist, H. Rullgård and B. Shapiro: On Bochner-Krall Orthogonal Polynomial Systems, Math.Scand 94, no. 1, 148-154 (2004).
[3] J. Borcea, R. Bøgvad, B. Shapiro: On Rational Approximation of Algebraic Functions, to appear in Adv. Math, math. CA /0409353.
[4] H. Dette, W. Studden: Some new asymptotic properties for the zeros of Jacobi, Laguerre and Hermite polynomials, Constructive Approx. 11 (1995).
[5] W. N. Everitt, K. H. Kwon, L. L. Littlejohn and R. Wellman: Orthogonal polynomial solutions of linear ordinary differential equations, J. Comp. Appl. Math 133, 85-109 (2001).
[6] J. Faldey, W. Gawronski: On the limit distribution of the zeros of Jonquire polynomials and generalized classical orthogonal polynomials, Journal of Approximation Theory 81,231-249 (1995).
[7] W. Gawronski: On the asymptotic distribution of the zeros of Hermite, Laguerre and Jonquire polynomials, J. Approx. Theory 50 (1987), p. 214231
[8] A. Gonzalez-Lopez, N. Kamran, P.J. Olver: Normalizability of Onedimensional Quasi-exactly Solvable Schrdinger Operators, Comm. Math. Phys. 153 (1993), no 1, p.117-146.
[9] A.B.J. Kujilaars, K.T-R McLaughlin: Asymptotic zero behaviour of Laguerre polynomials with negative parameter, Constr. Approx. 20 (2004), no. 4, 497-523.
[10] K. H. Kwon, L. L. Littlejohn and G. J. Yoon: Bochner-Krall orthogonal polynomials, Special functions, 181-193, World Sci. Publ., River Edge, NJ, (2000).
[11] Littlejohn: Lecture Notes in Mathematics 1329 ed M Alfaro et al (Berlin: Springer), p. 98.
[12] G. Másson and B. Shapiro: A note on polynomial eigenfunctions of a hypergeometric type operator, Experimental Mathematics, 10, 609-618.
[13] A. Martinez-Finkelshtein, P. Martinez-Gonzalez, A. Zarzo: WKB approach to zero distribution of solutions of linear second order differential equations, J. Comp. Appl. Math. 145 (2002), 167-182.
[14] A. Martinez-Finkelshtein, P. Martinez-Gonzlez, R. Orive: On asymptotic zero distribution of Laguerre and generalized Bessel polynomials with varying parameters. Proceedings of the Fifth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Patras 1999), J. Comput. Appl. Math. 133 (2001), no. 1-2, p. 477-487.
[15] A. Turbiner: Lie-Algebras and Linear Operators with Invariant Subspaces, Lie Algebras, Cohomologies and New Findings in Quantum Mechanics AMS Contemporary Mathematics' series, N. Kamran and P. Olver (Eds.), vol 160, 263-310 (1994).
[16] A. Turbiner: On Polynomial Solutions of differential equations, J. Math. Phys. 33 (1992) p.3989-3994.
[17] A. Turbiner: Lie algebras and polynomials in one variable, J. Phys. A: Math. Gen. 25 (1992) L1087-L1093.

[^0]: ${ }^{1}$ Correspondingly, a linear differential operator of the k th order is called quasi-exactlysolvable if it preserves the space \mathcal{P}_{n} for some fixed n.

[^1]: ${ }^{2}$ This theorem is joint work with H. Rullgård.

[^2]: ${ }^{3}$ If q_{n} is a polynomial of degree n we construct the probability measure μ_{n} by placing a point mass of size $\frac{1}{n}$ at each zero of q_{n}. We call μ_{n} the root measure of q_{n}. By definition, for any polynomial q_{n}, the Cauchy transform $C_{n, j}$ of the root measure $\mu_{n}^{(j)}$ for the j th derivative $q_{n}^{(j)}$ is defined by

 $$
 C_{n, j}(z):=\frac{q_{n}^{(j+1)}(z)}{(n-j) q_{n}^{(j)}(z)}=\int \frac{d \mu_{n}^{(j)}(\zeta)}{z-\zeta}
 $$

 and it is well-known that the measure μ can be reconstructed from C by the formula $\mu=\frac{1}{\pi} \cdot \frac{\partial C}{\partial \bar{z}}$ where $\partial / \partial \bar{z}=\frac{1}{2}(\partial / \partial x+i \partial / \partial y)$.

[^3]: ${ }^{4}$ We believe the interlacing property also holds for the non-degenerate exactly-solvable operators, but without such a scaling of the eigenpolynomials.
 ${ }^{5}$ According to the scaling in Main Conjecture.
 ${ }^{6}$ The question concerning interlacing was raisedby B. Shapiro. For details see Section 4.4

[^4]: ${ }^{7}$ To make sure we do not take this maximum over nonexisting terms we can write $d=$ $\left\lvert\, \frac{\alpha_{j, \operatorname{deg} Q_{j}}^{\alpha_{j, \operatorname{deg} Q_{j}}} \left\lvert\, \max _{j \in[1, k]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)\right. \text {. } ~}{\text {. }}\right.$

[^5]: ${ }^{8}$ Consider, for example, the Laplace type operator (that is with all polynomial coefficients Q_{j} linear) $T=z D+z D^{2}+\ldots z D^{k}$. Here $j_{0}=1$ and the equation satisfied by the asymptotic Cauchy transform of the scaled eigenpolynomial $q_{n}(z)=p_{n}(n z)$ is given by $z C(z)+z C^{2}(z)+$ $\ldots z C^{k}(z)=1$, since the maximum $d=\max _{j \in[2, k]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)=1$ is attained for every $j=2,3, \ldots k$.

