On Roots of Eigenpolynomials for Degenerate Exactly-Solvable Differential Operators

Tanja Bergkvist \& Jan-Erik Björk
Department of Mathematics, University of Stockholm, S-106 91 Stockholm, Sweden
e-mail: tanjab@math.su.se \& jeb@math.su.se

Abstract

In this paper we partially settle our conjecture from [1] on the roots of eigenpolynomials for degenerate exactly-solvable operators. Namely, for any such operator we establish a lower bound (which supports our conjecture) for the largest modulus of all roots of its unique and monic eigenpolynomial p_{n} as the degree n tends to infinity. The main theorem below thus extends earlier results obtained in [1] for a restrictive class of operators.

1 Introduction

We are interested in roots of eigenpolynomials satisfying certain linear differential equations. Namely, consider an operator

$$
T=\sum_{j=1}^{k} Q_{j} D^{j}
$$

where $D=d / d z$ and the Q_{j} are complex polynomials in one variable satisfying the condition $\operatorname{deg} Q_{j} \leq j$, with equality for at least one j, and in particular $\operatorname{deg} Q_{k}<k$ for the leading term. Such operators are referred to as degenerate exactly-solvable operators ${ }^{1}$, see [1]. We are interested in eigenpolynomials of T, that is polynomials satisfying

$$
\begin{equation*}
T\left(p_{n}\right)=\lambda_{n} p_{n} \tag{1}
\end{equation*}
$$

for some value of the spectral parameter λ_{n}, where n is a positive integer and $\operatorname{deg} p_{n}=n$. The importance of studying eigenpolynomials for these operators is among other things motivated by numerous examples coming from classical orthogonal polynomials, such as the Laguerre and Hermite polynomials, which

[^0]appear as solutions to (1) for certain choices on the polynomials Q_{j} when $k=2$. Note however that for the operators considered here the sequence of eigenpolynomials $\left\{p_{n}\right\}$ is in general not an orthogonal system.
Let us briefly recall our previous results:
A. In [2] we considered eigenpolynomials of non-degenerate exactly-solvable operators, that is operators of the above type but with the condition $\operatorname{deg} Q_{k}=k$ for the leading term. We proved that when the degree n of the unique and monic eigenpolynomial p_{n} tends to infinity, the roots of p_{n} stay in a compact set in \mathbb{C} and are distributed according to a certain probability measure which is supported by a tree and which depends only on the leading polynomial Q_{k}.
B. In [1] we studied eigenpolynomials of degenerate exactly-solvable operators ($\operatorname{deg} Q_{k}<k$). We proved that there exists a unique and monic eigenpolynomial p_{n} for all sufficiently large values on the degree n, and that the largest modulus of the roots of p_{n} tends to infinity when $n \rightarrow \infty$. We also presented an explicit conjecture and partial results on the growth of the largest root. Namely,

Conjecture (from [1]). Let $T=\sum_{j=1}^{k} Q_{j} D^{j}$ be a degenerate exactly-solvable operator of order k and denote by j_{0} the largest j for which $\operatorname{deg} Q_{j}=j$. Let $r_{n}=\max \left\{|\alpha|: p_{n}(\alpha)=0\right\}$, where p_{n} is the unique and monic nth degree eigenpolynomial of T. Then

$$
\lim _{n \rightarrow \infty} \frac{r_{n}}{n^{d}}=c_{0}
$$

where $c_{0}>0$ is a positive constant and

$$
d:=\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)
$$

Extensive computer experiments listed in [1] confirm the existence of such a constant c_{0}. Now consider the scaled eigenpolynomial $q_{n}(z)=p_{n}\left(n^{d} z\right)$. We construct the probability measure μ_{n} by placing a point mass of size $1 / n$ at each zero of q_{n}. Numerical evidence indicates that for each degenerate exactly-solvable operator T, the sequence $\left\{\mu_{n}\right\}$ converges weakly to a probability measure μ_{T} which is (compactly) supported by a tree. In [1] we deduced the algebraic equation satisfied by the Cauchy transform of $\mu_{T} .^{2}$ Namely, let $T=\sum_{j=1}^{k} Q_{j}(z) D^{j}=\sum_{j=1}^{k}\left(\sum_{i=0}^{\operatorname{deg} Q_{j}} q_{j, i} z^{i}\right) D^{j}$ and denote by j_{0} the largest j for which $\operatorname{deg} Q_{j}=j$. Assuming wlog that $Q_{j_{0}}$ is monic, i.e. $q_{j_{0}, j_{0}}=1$, we have

$$
z^{j_{0}} C^{j_{0}}(z)+\sum_{j \in A} q_{j, \operatorname{deg} Q_{j}} z^{\operatorname{deg} Q_{j}} C^{j}(z)=1,
$$

where $C(z)=\int \frac{d \mu_{T}(\zeta)}{z-\zeta}$ is the Cauchy transform of μ_{T} and $A=\left\{j:\left(j-j_{0}\right) /(j-\right.$ $\left.\left.\operatorname{deg} Q_{j}\right)=d\right\}$, where d is defined in the conjecture. Below we present some

[^1]typical pictures of the roots of the scaled eigenpolynomial $q_{n}(z)=p_{n}\left(n^{d} z\right)$.

Fig.1:

roots of
$q_{100}(z)=p_{100}(100 z)$

Fig.2:

roots of
$q_{100}(z)=p_{100}(100 z)$

Fig.3:

roots of $q_{100}(z)=p_{100}(100 z)$

Fig.1: $T_{1}=z D+z D^{2}+z D^{3}+z D^{4}+z D^{5}$.
Fig.2: $T_{2}=z^{2} D^{2}+D^{7}$.
Fig.3: $T_{3}=z^{3} D^{3}+z^{2} D^{4}+z D^{5}$.
In this paper we extend the results from [1] by establishing a lower bound for r_{n} for all degenerate exactly-solvable operators and which supports the above conjecture. ${ }^{3}$ This is our main result:

Main Theorem. Let $T=\sum_{j=1}^{k} Q_{j} D^{j}$ be a degenerate exactly-solvable operator and denote by j_{0} the largest j for which $\operatorname{deg} Q_{j}=j$. Let p_{n} be the unique and monic nth degree eigenpolynomial of T and $r_{n}=\max \left\{|\alpha|: p_{n}(\alpha)=0\right\}$. Then there exists a positive constant $c>0$ such that

$$
\lim _{n \rightarrow \infty} \frac{r_{n}}{n^{d}} \geq c
$$

where

$$
d:=\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right) .
$$

Acknowledgements. The authors are greatly obliged to Professor Boris Shapiro for introducing us to this very fascinating subject. Our research was supported by Stockholm University.

2 Proofs

Lemma 1. For any monic polynomial $p(z)$ of degree $n \geq 2$ for which all the zeros are contained in a disc of radius $A \geq 1$, there exists an integer $n(j)$ and an absolute constant C_{j} depending only on j, such that for every $j \geq 1$ and

[^2]every $n \geq n(j)$ we have
\[

$$
\begin{equation*}
\frac{1}{C_{j}} \cdot \frac{n^{j}}{A^{j}} \leq\left\|\frac{p^{(j)}(z)}{p(z)}\right\|_{2 A} \leq C_{j} \cdot \frac{n^{j}}{A^{j}} \tag{2}
\end{equation*}
$$

\]

where $p^{(j)}(z)$ denotes the j th derivative of $p(z)$, and where we have used the maximum norm $\|p(z)\|_{2 A}=\max _{|z|=2 A}|p(z)|$.

Remark. The right-hand side of the above inequality actually holds for all $n \geq 2$, whereas the left-hand side holds for all $n \geq n(j)$.

Proof. To obtain the inequality on the right-hand side we use the notation $p(z)=\prod_{i=1}^{n}\left(z-\alpha_{i}\right)$ where by assumption $\left|\alpha_{i}\right| \leq A$ for every complex root of $p(z)$. Then $p^{(j)}(z)$ is the sum of $n(n-1) \cdots(n-j+1)$ terms, each being the product of $(n-j)$ factors $\left(z-\alpha_{i}\right) .{ }^{4}$ Thus $p^{(j)}(z) / p(z)$ is the sum of $n(n-1) \cdots(n-j+1)$ terms, each equal to 1 divided by a product consisting of $n-(n-j)=j$ factors $\left(z-\alpha_{i}\right)$. If $|z|=2 A$ we get $\left|z-\alpha_{i}\right| \geq A \Rightarrow \frac{1}{\left|z-\alpha_{i}\right|} \leq \frac{1}{A}$, and thus

$$
\left\|\frac{p^{(j)}}{p}\right\|_{2 A} \leq \frac{n(n-1) \cdots(n-j+1)}{A^{j}} \leq C_{j} \cdot \frac{n^{j}}{A^{j}}
$$

Here we can choose $C_{j}=1$ for all j, but we refrain from doing this since we will need C_{j} large enough to obtain the constant $1 / C_{j}$ in the left-hand side inequality. To prove the left-hand side inequality we will need inequalities (i)-(iv) below, where we need (i) to prove (ii), and we need (ii) and (iii) to prove (iv), from which the left-hand side inequality of this lemma follows.

For every $j \geq 1$ we have

$$
\begin{equation*}
\left\|\frac{d}{d z}\left(\frac{p^{(j)}(z)}{p(z)}\right)\right\|_{2 A} \leq j \cdot \frac{n^{j}}{A^{j+1}} . \tag{i}
\end{equation*}
$$

For every $j \geq 1$ there exists a positive constant C_{j}^{\prime} depending only on j, such that
(ii) $\left\|\frac{p^{(j)}}{p}-\frac{\left(p^{\prime}\right)^{j}}{p^{j}}\right\|_{2 A} \leq C_{j}^{\prime} \cdot \frac{n^{j-1}}{A^{j}}$.
(iii) $\left\|\frac{p^{\prime}}{p}\right\|_{2 A} \geq \frac{n}{3 A}$.

For every $j \geq 1$ there exists a positive constant $C_{j}^{\prime \prime}$ and some integer $n(j)$ such that for all $n \geq n(j)$ we have
(iv) $\left\|\frac{p^{(j)}}{p}\right\|_{2 A} \geq C_{j}^{\prime \prime} \cdot \frac{n^{j}}{A^{j}}$.

To prove (i), let $p(z)=\prod_{i=1}^{n}\left(z-\alpha_{i}\right)$, where $\left|\alpha_{i}\right| \leq A$ for each complex root

[^3]α_{i} of $p(z)$. Then again $p^{(j)}(z) / p(z)$ is the sum of $n(n-1) \cdots(n-j+1)$ terms and each term equals 1 divided by a product consisting of j factors $\left(z-\alpha_{i}\right)$. Differentiating each such term we obtain a sum of j terms each being on the form (-1) divided by a product consisting of $(j+1)$ factors $\left(z-\alpha_{i}\right) .{ }^{5}$ Thus $\frac{d}{d z}\left(\frac{p^{(j)}(z)}{p(z)}\right)$ is a sum consisting of $j \cdot n(n-1) \cdots(n-j+1)$ terms, each on the form (-1) divided by $(j+1)$ factors $\left(z-\alpha_{i}\right)$. Using $\frac{1}{\left|z-\alpha_{i}\right|} \leq \frac{1}{A}$ for $|z|=2 A$ since $\left|\alpha_{i}\right| \leq A$ for all $i \in[1, n]$, we thus get
$$
\left\|\frac{d}{d z}\left(\frac{p^{(j)}(z)}{p(z)}\right)\right\|_{2 A} \leq \frac{j \cdot n(n-1) \cdots(n-j+1)}{A^{j+1}} \leq j \cdot \frac{n^{j}}{A^{j+1}}
$$

To prove (ii) we use (i) and induction over j. The case $j=1$ is trivial since $\frac{p^{\prime}}{p}-\frac{\left(p^{\prime}\right)^{1}}{p^{1}}=0$. If we put $j=1$ in (i) we get $\left\|\frac{d}{d z}\left(\frac{p^{\prime}}{p}\right)\right\|_{2 A} \leq \frac{n}{A^{2}}$. But $\frac{d}{d z}\left(\frac{p^{\prime}}{p}\right)=\frac{p^{(2)}}{p}-\frac{\left(p^{\prime}\right)^{2}}{p^{2}}$, and thus $\left\|\frac{p^{(2)}}{p}-\frac{\left(p^{\prime}\right)^{2}}{p^{2}}\right\| \leq \frac{n}{A^{2}}$, so (ii) holds for $j=2$. We now proceed by induction. Assume that (ii) holds for some $j=p \geq 2$, i.e. $\left\|\frac{p^{(p)}}{p}-\frac{\left(p^{\prime}\right)^{p}}{p^{p}}\right\|_{2 A} \leq C_{p}^{\prime} \cdot \frac{n^{p-1}}{A^{p}}$. Also note that with $j=p$ in (i) we have

$$
\left\|\frac{p^{(p+1)}}{p}-\frac{p^{(p)} \cdot p^{\prime}}{p^{2}}\right\|_{2 A}=\left\|\frac{d}{d z}\left(\frac{p^{(p)}}{p}\right)\right\|_{2 A} \leq p \cdot \frac{n^{p}}{A^{p+1}},
$$

and also $\left\|\frac{p^{\prime}}{p}\right\|_{2 A} \leq \frac{n}{A}$ (from the right-hand side inequality of this lemma). Thus we have

$$
\begin{aligned}
\left\|\frac{p^{(p+1)}}{p}-\frac{\left(p^{\prime}\right)^{p+1}}{p^{p+1}}\right\|_{2 A} & =\left\|\frac{p^{(p+1)}}{p}-\frac{p^{(p)} \cdot p^{\prime}}{p^{2}}+\frac{p^{(p)} \cdot p^{\prime}}{p^{2}}-\frac{\left(p^{\prime}\right)^{p+1}}{p^{p+1}}\right\|_{2 A} \\
& \leq\left\|\frac{p^{(p+1)}}{p}-\frac{p^{(p)} \cdot p^{\prime}}{p^{2}}\right\|_{2 A}+\left\|\frac{p^{\prime}}{p}\left(\frac{p^{(p)}}{p}-\frac{\left(p^{\prime}\right)^{p}}{p^{p}}\right)\right\|_{2 A} \\
& \leq p \cdot \frac{n^{p}}{A^{p+1}}+\frac{n}{A} \cdot C_{p}^{\prime} \cdot \frac{n^{p-1}}{A^{p}} \\
& =\left(p+C_{p}^{\prime}\right) \cdot \frac{n^{p}}{A^{p+1}}=C_{p+1}^{\prime} \cdot \frac{n^{p}}{A^{p+1}}
\end{aligned}
$$

To prove (iii) observe that $\frac{p^{\prime}(z)}{p(z)}=\sum_{i=1}^{n} \frac{1}{\left(z-\alpha_{i}\right)}=\sum_{i=1}^{n} \frac{1}{z} \cdot \frac{1}{1-\frac{\alpha_{i}}{z}}$. By assumption $\left|\alpha_{i}\right| \leq A$ for all complex roots α_{i} of $p(z)$, so for $|z|=2 A$ we have $\left|\frac{\alpha_{i}}{z}\right| \leq \frac{A}{2 A}=\frac{1}{2}$ for all $i \in[1, n]$. Writing $w_{i}=\frac{1}{1-\frac{\alpha_{i}}{z}}$ we obtain

$$
\left|w_{i}-1\right|=\left|\frac{1}{1-\frac{\alpha_{i}}{z}}-\frac{1-\frac{\alpha_{i}}{z}}{1-\frac{\alpha_{i}}{z}}\right|=\frac{\left|\frac{\alpha_{i}}{z}\right|}{\left|1-\frac{\alpha_{i}}{z}\right|} \leq \frac{1}{2}\left|w_{i}\right|,
$$

[^4]which implies
$$
\operatorname{Re}\left(\frac{1}{1-\frac{\alpha_{i}}{z}}\right)=\operatorname{Re}\left(w_{i}\right) \geq \frac{2}{3} \quad \forall i \in[1, n] \Rightarrow \operatorname{Re}\left(\sum_{i=1}^{n} \frac{1}{1-\frac{\alpha_{i}}{z}}\right) \geq \frac{2 n}{3} .
$$

Thus

$$
\begin{aligned}
\left\|\frac{p^{\prime}(z)}{p(z)}\right\|_{2 A} & =\max _{|z|=2 A}\left|\frac{p^{\prime}(z)}{p(z)}\right|=\max _{|z|=2 A} \frac{1}{|z|} \cdot\left|\sum_{i=1}^{n} \frac{1}{1-\frac{\alpha_{i}}{z}}\right| \\
& \geq \frac{1}{2 A} \cdot\left|\sum_{i=1}^{n} \frac{1}{1-\frac{\alpha_{i}}{z}}\right|_{2 A} \geq \frac{1}{2 A} \cdot \operatorname{Re}\left(\sum_{i=1}^{n} \frac{1}{1-\frac{\alpha_{i}}{z}}\right) \\
& \geq \frac{n}{3 A} .
\end{aligned}
$$

To prove (iv) we note that from (iii) we obtain $\left\|\left(\frac{p^{\prime}}{p}\right)^{j}\right\|_{2 A} \geq \frac{n^{j}}{3^{j} A^{j}}$, and this together with (ii) yields

$$
\begin{aligned}
\left\|\frac{p^{(j)}}{p}\right\|_{2 A} & =\left\|\left(\frac{p^{\prime}}{p}\right)^{j}+\frac{p^{(j)}}{p}-\left(\frac{p^{\prime}}{p}\right)^{j}\right\|_{2 A} \geq\left\|\left(\frac{p^{\prime}}{p}\right)^{j}\right\|_{2 A}-\left\|\frac{p^{(j)}}{p}-\left(\frac{p^{\prime}}{p}\right)^{j}\right\|_{2 A} \\
& \geq \frac{n^{j}}{3^{j} A^{j}}-C_{j}^{\prime} \cdot \frac{n^{j-1}}{A^{j}}=\frac{n^{j}}{A^{j}}\left(\frac{1}{3^{j}}-\frac{C_{j}^{\prime}}{n}\right) \geq C_{j}^{\prime \prime} \cdot \frac{n^{j}}{A^{j}},
\end{aligned}
$$

where $C_{j}^{\prime \prime}$ is a positive constant such that $C_{j}^{\prime \prime} \leq\left(\frac{1}{3^{j}}-\frac{C_{j}^{\prime}}{n}\right)$ for all $n \geq n(j)$.
The left-hand side inequality in this lemma now follows from (iv) if we choose the constant C_{j} on right-hand side inequality so large that $\frac{1}{C_{j}} \leq C_{j}^{\prime \prime}$.

To prove Main Theorem we will need the following lemma, which follows from Lemma 1:

Lemma 2. Let $0<s<1$ and $d>0$ be real numbers. Let $p(z)$ be any monic polynomial of degree $n \geq 2$ such that all its zeros are contained in a disc of radius $A=s \cdot n^{d}$, and let $Q_{j}(z)$ be arbitrary polynomials. Then there exists some positive integer n_{0} and positive constants K_{j} such that
$\frac{1}{K_{j}} \cdot n^{d\left(\operatorname{deg} Q_{j}-j\right)+j} \cdot \frac{s^{\operatorname{deg} Q_{j}}}{s^{j}} \leq\left\|Q_{j}(z) \cdot \frac{p^{(j)}}{p}\right\|_{2 s n^{d}} \leq K_{j} \cdot n^{d\left(\operatorname{deg} Q_{j}-j\right)+j} \cdot \frac{s^{\operatorname{deg} Q_{j}}}{s^{j}}$
for every $j \geq 1$ and all $n \geq \max \left(n_{0}, n(j)\right)$, where $n(j)$ is as in Lemma 1 .
Proof. Let $Q_{j}(z)=\sum_{i=0}^{\operatorname{deg} Q_{j}} q_{j, i} z^{i}$. Then for $|z|=2 A \gg 1$ we have

$$
|Q(z)|_{2 A}=\left|q_{j, \operatorname{deg} Q_{j}}\right| 2^{\operatorname{deg} Q_{j}} A^{\operatorname{deg} Q_{j}}\left(1+O\left(\frac{1}{A}\right)\right)
$$

Since $A=s \cdot n^{d}$ there exists some integer n_{0} such that $n \geq n_{0} \Rightarrow A \geq A_{0} \gg 1$, and thus by Lemma 1 there exists a positive constant K_{j} such that the following inequality holds for all $n \geq \max \left(n(j), n_{0}\right)$ and all $j \geq 1$:

$$
\frac{1}{K_{j}} \cdot \frac{n^{j}}{A^{j}} \cdot A^{\operatorname{deg} Q_{j}} \leq\left\|Q_{j}(z) \cdot \frac{p^{(j)}}{p}\right\|_{2 A} \leq K_{j} \cdot \frac{n^{j}}{A^{j}} \cdot A^{\operatorname{deg} Q_{j}}
$$

Inserting $A=s \cdot n^{d}$ in this inequality we obtain
$\frac{1}{K_{j}} \cdot \frac{n^{j}}{s^{j} n^{d j}} \cdot s^{\operatorname{deg} Q_{j}} n^{d \cdot \operatorname{deg} Q_{j}} \leq\left\|Q_{j}(z) \cdot \frac{p^{(j)}}{p}\right\|_{2 s n^{d}} \leq K_{j} \cdot \frac{n^{j}}{s^{j} n^{d j}} \cdot s^{\operatorname{deg} Q_{j}} n^{d \cdot \operatorname{deg} Q_{j}}$
$\frac{1}{K_{j}} \cdot n^{d\left(\operatorname{deg} Q_{j}-j\right)+j} \cdot \frac{s^{\operatorname{deg} Q_{j}}}{s^{j}} \leq\left\|Q_{j}(z) \cdot \frac{p^{(j)}}{p}\right\|_{2 s n^{d}} \leq K_{j} \cdot n^{d\left(\operatorname{deg} Q_{j}-j\right)+j} \cdot \frac{s^{\operatorname{deg} Q_{j}}}{s^{j}}$ for every $j \geq 1$ and all $n \geq \max \left(n_{0}, n(j)\right)$.

Proof of Main Theorem. Let $d=\max _{j \in\left[j_{0}+1, k\right]}\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}\right)$ where j_{0} is the largest j for which $\operatorname{deg} Q_{j}=j$ in the degenerate exactly-solvable operator $T=\sum_{j=1}^{k} Q_{j} D^{j}$, where $Q_{j}(z)=\sum_{i=0}^{\operatorname{deg} Q_{j}} q_{j, i} z^{i}$. Let $p_{n}(z)$ be the nth degree unique and monic eigenpolynomial of T and denote by λ_{n} the corresponding eigenvalue. Then the eigenvalue equation can be written

$$
\begin{equation*}
\sum_{j=1}^{k} Q_{j}(z) \cdot \frac{p_{n}^{(j)}(z)}{p_{n}(z)}=\lambda_{n} \tag{3}
\end{equation*}
$$

where $\lambda_{n}=\sum_{j=1}^{j_{0}} q_{j, j} \cdot \frac{n!}{(n-j)!}$. We will now use the result in Lemma 2 to estimate each term in (3).

* Denote by j_{m} the largest j for which d is attained. Then $d=\left(j_{m}-\right.$ $\left.j_{0}\right) /\left(j_{m}-\operatorname{deg} Q_{j_{m}}\right) \Rightarrow d\left(\operatorname{deg} Q_{j_{m}}-j_{m}\right)+j_{m}=j_{0}$, and $j_{m}-\operatorname{deg} Q_{j_{m}}=\left(j_{m}-j_{0}\right) / d$. By Lemma 2 we have:

$$
\begin{equation*}
\frac{1}{K_{j_{m}}} \cdot n^{j_{0}} \cdot \frac{1}{s^{\frac{j_{m}-j_{0}}{d}}} \leq\left\|Q_{j_{m}}(z) \cdot \frac{p^{\left(j_{m}\right)}}{p}\right\|_{2 s n^{d}} \leq K_{j_{m}} \cdot n^{j_{0}} \cdot \frac{1}{s^{\frac{j_{m}-j_{0}}{d}}} \tag{4}
\end{equation*}
$$

Note that the exponent of s is positive since $j_{m}>j_{0}$ and $d>0$. In what follows we will only need the left-hand side of the above inequality.

* Consider the remaining (if there are any) $j_{0}<j<j_{m}$ for which d is attained. For such j we have (using the right-hand side inequality of Lemma $2)$:

$$
\begin{align*}
\left\|Q_{j}(z) \cdot \frac{p^{(j)}}{p}\right\|_{2 s n^{d}} & \leq K_{j} n^{j_{0}} \cdot \frac{1}{s^{\frac{j-j_{0}}{d}}}=K_{j} n^{j_{0}} \cdot \frac{1}{s^{\frac{j_{m-j_{0}}}{d}}} \cdot s^{\frac{j_{m}-j}{d}} \\
& \leq K_{j} n^{j_{0}} \cdot \frac{1}{s^{\frac{j_{m-j_{0}}}{d}}} \cdot s^{1 / d} \tag{5}
\end{align*}
$$

where we have used that $\left(j_{m}-j\right) \geq 1$ and $s<1 \Rightarrow s^{\left(j_{m}-j\right) / d} \leq s^{1 / d}$.

* Consider all $j_{0}<j \leq k$ for which d is not attained. Then $\left(j-\operatorname{deg} Q_{j}\right)>0$ and $\left(j-j_{0}\right) /\left(j-\operatorname{deg} Q_{j}\right)<d \Rightarrow d\left(\operatorname{deg} Q_{j}-j\right)+j<j_{0}$ and we can write $d\left(\operatorname{deg} Q_{j}-j\right)+j \leq j_{0}-\delta$ where $\delta>0$. Then we have:

$$
\begin{align*}
\left\|Q_{j}(z) \cdot \frac{p^{(j)}}{p}\right\|_{2 s n^{d}} & \leq K_{j} \cdot n^{d\left(\operatorname{deg} Q_{j}-j\right)+j} \cdot \frac{s^{\operatorname{deg} Q_{j}}}{s^{j}} \leq K_{j} \cdot n^{j_{0}-\delta} \cdot \frac{s^{\operatorname{deg} Q_{j}}}{s^{j}} \\
& \leq K_{j} \cdot n^{j_{0}-\delta} \cdot \frac{1}{s^{k}} \tag{6}
\end{align*}
$$

where the last inequality follows since $\operatorname{deg} Q_{j} \geq 0 \Rightarrow s^{\operatorname{deg} Q_{j}} \leq s^{0}=1$ and $j \leq k \Rightarrow s^{j} \geq s^{k}$ since $0<s<1$.

* For $j=j_{0}$ by definition $\operatorname{deg} Q_{j_{0}}=j_{0}$ and thus:

$$
\begin{equation*}
\left\|Q_{j_{0}}(z) \cdot \frac{p^{\left(j_{0}\right)}}{p}\right\|_{2 s n^{d}} \leq K_{j_{0}} \cdot n^{d\left(\operatorname{deg} Q_{j_{0}}-j_{0}\right)+j_{0}} \cdot \frac{s^{\operatorname{deg} Q_{j_{0}}}}{s^{j_{0}}}=K_{j_{0}} \cdot n^{j_{0}} \tag{7}
\end{equation*}
$$

* Now consider all $1 \leq j \leq j_{0}-1$. Since $n \geq n_{0} \Rightarrow A=s n^{d} \gg 1$ we get $\left(s n^{d}\right)^{j-\operatorname{deg} Q_{j}} \geq 1$ and thus:

$$
\begin{align*}
\left\|Q_{j}(z) \cdot \frac{p^{(j)}}{p}\right\|_{2 s n^{d}} & \leq K_{j} \cdot n^{d\left(\operatorname{deg} Q_{j}-j\right)+j} \cdot \frac{s^{\operatorname{deg} Q_{j}}}{s^{j}}=K_{j} \cdot n^{j} \cdot\left(s n^{d}\right)^{\left(\operatorname{deg} Q_{j}-j\right)} \\
& =K_{j} \cdot n^{j} \cdot \frac{1}{\left(s n^{d}\right)^{j-\operatorname{deg} Q_{j}}} \leq K_{j} \cdot n^{j} \leq K_{j} \cdot n^{j_{0}-1} \tag{8}
\end{align*}
$$

* Finally we estimate the eigenvalue $\lambda_{n}=\sum_{i=1}^{j_{0}} q_{j, j} \cdot \frac{n!}{(n-j)!}$, which grows as $n^{j_{0}}$ for large n, since there exists an integer $n_{j_{0}}$ and some positive constant $K_{j_{0}}^{\prime}$ such that for all $n \geq n_{j_{0}}$ we obtain:

$$
\begin{align*}
\left|\lambda_{n}\right| & \leq \sum_{j=1}^{j_{0}}\left|q_{j, j}\right| \cdot \frac{n!}{(n-j)!}=\left|q_{j_{0}, j_{0}}\right| \cdot \frac{n!}{\left(n-j_{0}\right)!}\left[1+\sum_{1 \leq j<j_{0}}\left|\frac{q_{j, j}}{q_{j_{0}, j_{0}}}\right| \cdot \frac{\left(n-j_{0}\right)!}{(n-j)!}\right] \\
& \leq K_{j_{0}}^{\prime} \cdot n^{j_{0}} \tag{9}
\end{align*}
$$

Finally we rewrite the eigenvalue equation (3) as follows:

$$
Q_{j_{m}}(z) \cdot \frac{p_{n}^{\left(j_{m}\right)}(z)}{p_{n}(z)}=\lambda_{n}+\sum_{j \neq j_{m}} Q_{j}(z) \frac{p_{n}^{(j)}(z)}{p_{n}(z)}
$$

Applying inequalities (5)-(9) to this we obtain

$$
\begin{align*}
\left\|Q_{j_{m}} \cdot \frac{p_{n}^{\left(j_{m}\right)}(z)}{p_{n}(z)}\right\|_{2 s n^{d}} & \leq\left|\lambda_{n}\right|+\sum_{j \neq j_{m}}\left\|Q_{j} \frac{p_{n}^{(j)}(z)}{p_{n}(z)}\right\|_{2 s n^{d}} \\
& \leq K_{j_{0}}^{\prime} n^{j_{0}}+K_{j_{0}} n^{j_{0}}+\sum_{1 \leq j<j_{0}} K_{j} n^{j_{0}-1} \\
& \left.\left.+\sum_{\substack{j_{0}<j \leq k: \\
\left(\frac{j j_{0}}{j-\operatorname{deg} Q_{j}<d}\right.}}\right) K_{j} \frac{n^{j_{0}-\delta}}{s^{k}}+\sum_{\substack{j_{0}<j<j_{m} \\
\left(\frac{j-j_{0}}{j-\operatorname{deg} Q_{j}}=d\right.}}\right) K_{j} n^{j_{0}} \frac{s^{1 / d}}{s^{\frac{j_{m}-j_{0}}{d}}} \\
& \leq K \cdot n^{j_{0}}+K \cdot \frac{n^{j_{0}-\delta}}{s^{k}}+K \cdot n^{j_{0}} \frac{s^{1 / d}}{s^{\frac{j_{m}-j_{0}}{d}}} \tag{10}
\end{align*}
$$

for all $n \geq \max \left(n_{0}, n(j), n_{j_{0}}\right)$, where K is some positive constant and $0<s<1$. For the term on the left-hand side of the rewritten eigenvalue equation above we obtain using (4) the following estimation:

$$
\begin{equation*}
\frac{1}{K} \cdot n^{j_{0}} \cdot \frac{1}{s^{\frac{j_{m}-j_{0}}{d}}} \leq \frac{1}{K_{j_{m}}} \cdot n^{j_{0}} \cdot \frac{1}{s^{\frac{j_{m}-j_{0}}{d}}} \leq\left\|Q_{j_{m}} \cdot \frac{p_{n}^{\left(j_{m}\right)}(z)}{p_{n}(z)}\right\|_{2 s n^{d}} \tag{11}
\end{equation*}
$$

for some constant $K \geq K_{j_{m}}$ which also satisfies (10). Now combining (10) and (11) we get

$$
\frac{1}{K} \cdot n^{j_{0}} \cdot \frac{1}{s^{\frac{j_{m-j_{0}}}{d}}} \leq K \cdot n^{j_{0}}+K \cdot \frac{n^{j_{0}-\delta}}{s^{k}}+K \cdot n^{j_{0}} \frac{s^{1 / d}}{s^{\frac{j_{m}-j_{0}}{d}}}
$$

Dividing this inequality by $n^{j_{0}}$ and multiplying by K we have

$$
\begin{gather*}
\frac{1}{s^{\frac{j_{m-j_{0}}}{d}}} \leq K^{2}+K^{2} \cdot \frac{1}{n^{\delta}} \cdot \frac{1}{s^{k}}+K^{2} \cdot \frac{s^{1 / d}}{s^{\frac{j_{m-j_{0}}}{d}}} . \\
\Leftrightarrow \\
\frac{1}{s^{w}} \leq K^{2}+\frac{K^{2}}{s^{k}} \cdot \frac{1}{n^{\delta}}+K^{2} \cdot \frac{s^{1 / d}}{s^{w}} \\
\Leftrightarrow \\
\frac{1}{s^{w}}\left[1-K^{2} \cdot s^{1 / d}\right] \leq K^{2}+\frac{K^{2}}{s^{k}} \cdot \frac{1}{n^{\delta}} . \tag{12}
\end{gather*}
$$

where $w=\left(j_{m}-j_{0}\right) / d>0$.
In what follows we will obtain a contradiction to this inequality for some small properly chosen $0<s<1$ and all sufficiently large n. Since $j_{m} \in\left[j_{0}+1, k\right]$ we have $w=\left(j_{m}-j_{0}\right) / d \geq 1 / d$, and since $s<1$ we get $s^{w} \leq s^{1 / d} \Rightarrow 1 / s^{w} \geq$ $1 / s^{1 / d}$. Now choose $s^{1 / d}=\frac{1}{4 K^{2}}$, where K is the constant in (12). Then estimating the left-hand side of (12) we get

$$
\frac{1}{s^{w}}\left[1-K^{2} \cdot s^{1 / d}\right] \geq \frac{1}{s^{1 / d}}\left[1-K^{2} \cdot s^{1 / d}\right]=4 K^{2}-K^{2}=3 K^{2}
$$

and thus from (12) we have

$$
\begin{gathered}
3 K^{2} \leq \frac{1}{s^{w}}\left[1-K^{2} \cdot s^{1 / d}\right] \leq K^{2}+\frac{K^{2}}{s^{k}} \cdot \frac{1}{n^{\delta}} \\
\Leftrightarrow \\
2 K^{2} \leq \frac{K^{2}}{s^{k}} \cdot \frac{1}{n^{\delta}} \\
\Leftrightarrow \\
n^{\delta} \leq \frac{1}{2} \cdot \frac{1}{s^{k}}=\frac{1}{2}(2 K)^{2 d k} .
\end{gathered}
$$

We therefore obtain a contradiction to this inequality, and hence to inequality (12) and thus to the eigenvalue equation (3), if $n^{\delta}>\frac{1}{2}(2 K)^{2 d k}$ and $s=$ $1 /(2 K)^{2 d}$, and consequently all roots of p_{n} cannot be contained in a disc of radius $s \cdot n^{d}$ for such choices on s and n, whence $r_{n}>s \cdot n^{d}$ where r_{n} denotes the largest modulus of all roots of p_{n}, so clearly there exists some positive constant c such that $\lim _{n \rightarrow \infty} \frac{r_{n}}{n^{d}} \geq c$.

3 Open Problems and Conjectures

3.1 The upper bound

Based upon numerical evidence from computer experiments (some of which is presented in [1]) we are led to assert that there exists a constant C_{0}, which depends on T only, such that

$$
\begin{equation*}
r_{n} \leq C_{0} \cdot n^{d} \tag{13}
\end{equation*}
$$

holds for all sufficiently large integers n. We refer to this as the upper-bound conjecture. Computer experiments confirm that the zeros of the scaled eigenpolynomial $q_{n}(z)=p_{n}\left(n^{d} z\right)$ are contained in a compact set when $n \rightarrow \infty$.

3.2 The measures $\left\{\mu_{n}\right\}$

Consider the sequence of discrete probability measures

$$
\mu_{n}=\frac{1}{n} \sum_{\nu=1}^{\nu=n} \delta\left(\frac{\alpha_{\nu}}{n^{d}}\right)
$$

where $\alpha_{1}, \ldots, \alpha_{n}$ are the roots of the eigenpolynomial p_{n} and d is as in Definition 1. Assuming (13) the supports of $\left\{\mu_{n}\right\}$ stay in a compact set in \mathbb{C}. Next, by a tree we mean a connected compact subset Γ of \mathbb{C} which consists of a finite union of real-analytic curves and where $\hat{\mathbb{C}} \backslash \Gamma$ is simply connected (here $\hat{\mathbb{C}}=\mathbb{C} \cup \infty$ is the extended complex plane). Computer experiments from [1] lead us to the following

Conjecture 1. For each operator T the sequence $\left\{\mu_{n}\right\}$ converges weakly to a probability measure μ_{T} which is supported on a certain tree Γ_{T}.

3.3 The determination of μ_{T}

Given $T=\sum_{j=1}^{k} Q_{j}(z) D^{j}$ and $Q_{j}(z)=\sum_{i=0}^{\operatorname{deg} Q_{j}} q_{j, i} z^{i}$ we obtain an algebraic function $y_{T}(z)$ which satisfies the following algebraic equation (also see [1]):

$$
q_{j_{0}, j_{0}} \cdot z^{j_{0}} \cdot y_{T}^{j_{0}}(z)+\sum_{j \in J} q_{j, \operatorname{deg} Q_{j}} \cdot z^{\operatorname{deg} Q_{j}} \cdot y_{T}^{j}(z)=q_{j_{0}, j_{0}}
$$

where $J=\left\{j:\left(j-j_{0}\right) /\left(j-\operatorname{deg} Q_{j}\right)=d\right\}$, i.e. the sum is taken over all j for which d is attained. In addition y_{T} is chosen to be the unique single-valued branch which has an expansion

$$
y_{T}(z)=\frac{1}{z}+\frac{c_{2}}{z^{2}}+\frac{c_{3}}{z^{3}}+\ldots
$$

at $\infty \in \hat{\mathbb{C}}$. Let \mathbb{D}_{T} be the discriminant locus of y_{T}, i.e. this is a finite set in \mathbb{C} such that the single-valued branch of y_{T} in an exterior disc $|z|>R$ can be continued to an (in general multi-valued) analytic function in $\widehat{\mathbb{C}} \backslash \mathbb{D}_{T}$. If Γ_{T} is a tree which contains \mathbb{D}_{T}, we obtain a single-valued branch of y_{T} in the simply connected set $\Omega_{\Gamma_{T}}=\widehat{\mathbb{C}} \backslash \Gamma_{T}$. It is easily seen that this holomorphic function in $\Omega_{\Gamma_{T}}$ defines a locally integrable function in the sense of Lebesgue outside the nullset Γ_{T}. A tree Γ_{T} which contains \mathbb{D}_{T} is called T-positive if the distribution defined by

$$
\nu_{\Gamma_{T}}=\frac{1}{\pi} \cdot \bar{\partial} y_{T} / \bar{\partial} \bar{z}
$$

is a probability measure.

3.4 Main conjecture

Now we announce the following which is experimentally confirmed in [1]:
For each operator T, the limiting measure μ_{T} in Conjecture 1 exists. Moreover, its support is a T-positive tree Γ_{T} and one has the equality $\mu_{T}=\nu_{\Gamma_{T}}$ which means that when $z \in \hat{\mathbf{C}} \backslash \Gamma_{T}$ the following holds:

$$
y_{T}(z)=\int_{\Gamma_{T}} \frac{d \mu_{T}(\zeta)}{z-\zeta}
$$

Remark. For non-degenerate exactly-solvable operators (i.e. when $\operatorname{deg} Q_{k}=k$) it was proved in [2] that the roots of all eigenpolynomials stay in a compact set of \mathbb{C}, and the unscaled sequence of probability measures $\left\{\mu_{n}\right\}$ converge to a measure supported on a tree, i.e. the analogue of the main conjecture above holds in the non-degenerate case.

References

[1] T. Bergkvist: On Asymptotics of Polynomial Eigenfunctions for ExactlySolvable Differential Operators, math.SP/0701143, to appear in J. Approx. Th.
[2] T. Bergkvist and H. Rullgård: On polynomial eigenfunctions for a class of differential operators, Math. Research Letters 9, 153-171 (2002).
[3] T. Bergkvist, H. Rullgård and B. Shapiro: On Bochner-Krall Orthogonal Polynomial Systems, Math.Scand 94, no. 1, 148-154 (2004).
[4] T. Bergkvist: On generalized Laguerre Polynomials with Real and Complex Parameter, Research Reports in Mathematics, Stockholm University No. 2 (2003), available at http://www.math.su.se/reports/2003/2/.
[5] J. Borcea, R. B $ø$ gvad, B. Shapiro: On Rational Approximation of Algebraic Functions, to appear in Adv. Math, math. CA /0409353.
[6] G. Másson and B. Shapiro: A note on polynomial eigenfunctions of a hypergeometric type operator, Experimental Mathematics, 10, 609-618.
[7] A. Martinez-Finkelshtein, P. Martinez-Gonzalez, A. Zarzo: WKB approach to zero distribution of solutions of linear second order differential equations, J. Comp. Appl. Math. 145 (2002), 167-182.
[8] A. Martinez-Finkelshtein, P. Martinez-Gonzalez, R. Orive: On asymptotic zero distribution of Laguerre and generalized Bessel polynomials with varying parameters. Proceedings of the Fifth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Patras 1999), J. Comput. Appl. Math. 133 (2001), no. 1-2, p. 477-487.
[9] A. Turbiner: Lie-Algebras and Linear Operators with Invariant Subspaces, Lie Algebras, Cohomologies and New Findings in Quantum Mechanics AMS Contemporary Mathematics' series, N. Kamran and P. Olver (Eds.), vol 160, 263-310 (1994).
[10] A. Turbiner: On Polynomial Solutions of differential equations, J. Math. Phys. 33 (1992) p.3989-3994.
[11] A. Turbiner: Lie algebras and polynomials in one variable, J. Phys. A: Math. Gen. 25 (1992) L1087-L1093.

[^0]: ${ }^{1}$ Correspondingly, operators for which $\operatorname{deg} Q_{k}=k$ are called non-degenerate exactlysolvable operators. We have treated roots of eigenpolynomials for these operators in [2].

[^1]: ${ }^{2}$ It remains to prove the existence of μ_{T} and to describe its support explicitly.

[^2]: ${ }^{3}$ It is still an open problem to prove the upper bound.

[^3]: ${ }^{4}$ Differentiating $p(z)=\prod_{i=1}^{n}\left(z-\alpha_{i}\right)$ once yields $\binom{n}{1}=n$ terms each term being a product of ($n-1$) factors $\left(z-\alpha_{i}\right)$, differentiating once again we obtain $n\binom{n-1}{1}=n(n-1)$ terms, each being the product of $(n-2)$ factors $\left(z-\alpha_{i}\right)$, etc.

[^4]: ${ }^{5}$ With $D=d / d z$ consider for example $D \frac{1}{\prod_{i=1}^{j}\left(z-\alpha_{i}\right)}=\frac{-1 \cdot D \prod_{i=1}^{j}\left(z-\alpha_{i}\right)}{\prod_{i=1}^{j}\left(z-\alpha_{i}\right)^{2}}$, which is a sum of j terms, each being on the form (-1) divided by a product consisting of $2 j-(j-1)=(j+1)$ factors $\left(z-\alpha_{i}\right)$.

