3. Problem session

Exercise 3.1. Show that any submersion $f: M \rightarrow N$ is an open map.

Exercise 3.2.

a) Show that if M is closed (and non-empty) and N is connected then any submersion $f: M \rightarrow N$ is surjective.
b) Conclude that there are no submersions $f: M \rightarrow \mathbb{R}^{n}$ when M is closed (and $n>0$). Describe (intuitively - meaning low on notational details) an indirect argument using a maximum of $\|f(x)\|$ for $x \in M$.

Exercise 3.3.

a) Assume that M is closed. Show that for a local diffeomorphism $f: M \rightarrow N$ the pre-image of a point $y \in N$ is a finite set.
b) Prove that the number of elements in this set is locally constant depending on $y \in N$.
Exercise 3.4. Let $p: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a homogeneous real polynomial. I.e.

$$
p\left(t x_{1}, \ldots, t x_{n}\right)=t^{k} p\left(x_{1}, \ldots, x_{n}\right)
$$

for some $k \in \mathbb{N}_{0}$. Prove that $p^{-1}(a)$ are diffeomorphic sub-manifolds for $a>0$ (hint: Prove that the set $S^{n} \cap\{x \mid p(x)>0\}$ is diffeomorphic to this for any $a>0$).
Exercise 3.5. Show that $f: S^{2} \rightarrow \mathbb{R}^{4}$ given by

$$
f(x, y, z)=\left(y z, x z, x y, a x^{2}+b y^{2}+c z^{2}\right)
$$

defines a smooth embedding of the quotient $\mathbb{R} P^{2} \rightarrow \mathbb{R}^{4}$. (You may use that the quotient map $S^{2} \rightarrow \mathbb{R} P^{2}$ is a local diffeomorphism).
Exercise 3.6. Let $\zeta \rightarrow \mathbb{R} P^{n}$ be the quotient of the trivial 1 dimensional vector bundle $S^{n} \times \mathbb{R}$ where points (x, t) and $(-x,-t)$ are identified (with the obvious projection to $\left.\mathbb{R} P^{n}\right)$.
a) Argue that ζ is canonically a smooth vector bundle over $\mathbb{R} P^{n}$, and show that it is not isomorphic to the trivial 1 dimensional vector bundle. (hint: restrict the bundle to $\mathbb{R} P^{1} \subset \mathbb{R} P^{n}$ [corresponding to the quotient of $S^{1} \subset$ S^{n}] and identify it with the Moebius bundle, which we saw in class was not trivial).
This is called the tautological line bundle on $\mathbb{R} P^{n}$. Line bundle is short for 1 dimensional vector bundle.

Let $\nu_{S^{n}} \rightarrow S^{n}$ denote the 1 dimensional normal bundle of $S^{n} \subset \mathbb{R}^{n+1}$. This is a sub-bundle of the trivial bundle $S^{n} \times \mathbb{R}^{n+1}$. Define $\epsilon=\nu_{S^{n}} / \sim$ where we identify points (x, y) with $(-x,-y)$.
b) Argue that $\epsilon \rightarrow \mathbb{R} P^{n}$ is canonically a smooth vector bundle over $\mathbb{R} P^{n}$, and show that it is isomorphic to the trivial bundle $\mathbb{R} P^{n} \times \mathbb{R}$.
c) Let $\epsilon^{1}=\mathbb{R} P^{n}$ denote the trivial 1-dimensional bundle. Prove that $T \mathbb{R} P^{n} \oplus$ $\epsilon^{1} \cong \zeta^{\oplus(n+1)}$ as vector bundles over $\mathbb{R} P^{n}$ (i.e. there is an isomorphism of vector bundles over the identity on $\left.\mathbb{R} P^{n}\right)$. Hint: identify both as the same quotient of trivial bundles on S^{n}.

