5. PROBLEM SESSION

Exercise 5.1.

a) Prove that the bundle map $\pi\colon\,M\times\mathbb{R}^k\to TM$ defined by orthogonal projections

$$\pi_x \colon \mathbb{R}^k \to TM$$

is a submersion.

b) Prove that for any section $v: M \to TM$ the map

$$V\colon M\times\mathbb{R}^k\to TM$$

given by $V(x,s) = v(x) + \pi_x(s)$ is also a submersion.

Exercise 5.2. Problem 5 in Milnor.

Exercise 5.3.

a) Prove that for any smooth map $f\colon \mathbb{R}^n\to \mathbb{R}^n$ with no zero's the winding number

$$W(f_{|S^{n-1}},0)$$

is zero.

b) Let

 $f(z) = z^{n} + a_{n-1}z^{n-1} + \dots + a_{1}z + a_{0}$

be a complex polynomial with n > 0. Prove that f has a root.

Exercise 5.4. Prove that the function f defined in the proof of Lemma 33.4 does, indeed, have 1 as a regular value.

Exercise 5.5. Problem 1 in Milnor.

Exercise 5.6. Problem 6 i Milnor.

Exercise 5.7. Prove that for closed M and N we have $\chi(M \times N) = \chi(M) \cdot \chi(N)$.

Hint: Prove that vector fields $v_M: M \to TM$ and $v_N: N \to TN$ has a product vector field $v_M \times v_N: M \times N \to T(M \times N)$ which is transversal to the zero-section if v_M and v_N are. Then prove that the sign of an intersection point is the product of the signs for the two.

Exercise 5.8. Problem 2 in Milnor.