5. Problem session

Exercise 5.1.

a) Prove that the bundle map $\pi: M \times \mathbb{R}^{k} \rightarrow T M$ defined by orthogonal projections

$$
\pi_{x}: \mathbb{R}^{k} \rightarrow T M
$$

is a submersion.
b) Prove that for any section $v: M \rightarrow T M$ the map

$$
V: M \times \mathbb{R}^{k} \rightarrow T M
$$

given by $V(x, s)=v(x)+\pi_{x}(s)$ is also a submersion.
Exercise 5.2. Problem 5 in Milnor.

Exercise 5.3.

a) Prove that for any smooth map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with no zero's the winding number

$$
W\left(f_{\mid S^{n-1}}, 0\right)
$$

is zero.
b) Let

$$
f(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}
$$

be a complex polynomial with $n>0$. Prove that f has a root.
Exercise 5.4. Prove that the function f defined in the proof of Lemma 33.4 does, indeed, have 1 as a regular value.

Exercise 5.5. Problem 1 in Milnor.
Exercise 5.6. Problem 6 i Milnor.
Exercise 5.7. Prove that for closed M and N we have $\chi(M \times N)=\chi(M)$. $\chi(N)$.

Hint: Prove that vector fields $v_{M}: M \rightarrow T M$ and $v_{N}: N \rightarrow T N$ has a product vector field $v_{M} \times v_{N}: M \times N \rightarrow T(M \times N)$ which is transversal to the zero-section if v_{M} and v_{N} are. Then prove that the sign of an intersection point is the product of the signs for the two.

Exercise 5.8. Problem 2 in Milnor.

