2. Problem session

Exercise 2.4. A smooth embedding $f: M \rightarrow N$ is proper precisely when it has closed image.

This exercise anoyed me a little when solving - it felt somehow difficult to turn it the right way in my head. Here is a short and concise solution.

Proof. First we replace smooth embedding by a homeomorphism onto its image (to emphasize that this is all we need).
" \Leftarrow ": Assume $\operatorname{im} f$ is closed and $K \subset N$ is compact.

$$
\begin{aligned}
\operatorname{im} f \text { is closed } & \Rightarrow K \cap \operatorname{im} f \text { is closed - hence compact } \Rightarrow \\
& \Rightarrow f^{-1}(K)=f^{-1}(K \cap \operatorname{im} f) \cong K \cap \operatorname{im} f \text { is compact. }
\end{aligned}
$$

" \Rightarrow ": Now assume that f is proper, and $K \subset N$ is any compact set

$$
\begin{aligned}
f \text { is proper } & \Rightarrow f\left(f^{-1}(K)\right) \text { is compact } \Rightarrow \\
& \Rightarrow K \cap \operatorname{im} f \text { is compact } \Rightarrow \\
& \Rightarrow K \cap \operatorname{im} f \text { is closed }
\end{aligned}
$$

We thus conclude that $\operatorname{im} f \subset K$ is closed in any compact K - hence $\operatorname{im} f \subset$ \grave{K} is closed. Since N is locally compact we see that $\operatorname{im} f$ is locally closed hence closed.

Originally when I possed this problem I Thought the solution would be nicer, and if I missed an easier solution I am sorry. However, the fact that this was more difficult than I thought made me dislike the problem.

Exercise 2.10. Prove that the union of $\mathbb{R}^{n} \times\{0\}$ and $\{0\} \times \mathbb{R}^{n}$ in $\mathbb{R}^{2 n}$ is not a topological manifold.

This went very fast in class because we ran out of time. So, here is the detailed proof:

Proof. A pointed neighborhood of x is $U-\{x\}$ where U is a neighborhood of x. Let $X_{n}=\mathbb{R}^{n} \times\{0\} \cup\{0\} \times \mathbb{R}^{n}$.

- Any point in a 1-dimensional manifold has a pointed neighborhood with two components. Indeed, $\mathbb{R}^{1}-\{0\}$ has two components.
- Any point in a n-dimensional manifold ($n>1$) has a connected pointed neighborhood. Indeed, $\mathbb{R}^{n}-\{0\}$ is connected.
- X_{1} is not a manifold because: any pointed neighborhood of $\{0\}$ has at least four components. Indeed, $X_{1}-\{0\}$ has four components so in the subspace toplogy $U-\{0\}$ has at least 4 components.
- $X_{n}, n \geq 2$ is not an n-manifold for $n>1$ because any pointed neighborhood around $\{0\}$ has at least two components. Indeed, $X_{n}-\{0\}$ has two components.
- $X_{n}, n \geq 2$ is not a 1-manifold because:
- For any point x in a 1-manifold there is a neighborhood $V \ni x$ such that any pointed neighborhood around x in V has at least two components. Indeed, let $V \cong \mathbb{R}^{1}$ then $V-\{x\}$ has two components.
- This fact does not hold for X_{n}. Indeed, any neighborhood V around $\{0\} \neq x \in X_{n}$ has a smaller neighborhood homeomorphic to \mathbb{R}^{n} and \mathbb{R}^{n} minus a point is connected.

