2. PROBLEM SESSION

Exercise 2.4. A smooth embedding $f: M \to N$ is proper precisely when it has closed image.

This exercise anoyed me a little when solving - it felt somehow difficult to turn it the right way in my head. Here is a short and concise solution.

Proof. First we replace smooth embedding by a homeomorphism onto its image (to emphasize that this is all we need).

" \Leftarrow ": Assume im f is closed and $K \subset N$ is compact.

im f is closed
$$\Rightarrow K \cap \text{im } f$$
 is closed - hence compact \Rightarrow

 $\Rightarrow f^{-1}(K) = f^{-1}(K \cap \operatorname{im} f) \cong K \cap \operatorname{im} f$ is compact.

" \Rightarrow ": Now assume that f is proper, and $K \subset N$ is any compact set

$$f \text{ is proper } \Rightarrow f(f^{-1}(K)) \text{ is compact } \Rightarrow$$
$$\Rightarrow K \cap \text{ im } f \text{ is compact } \Rightarrow$$
$$\Rightarrow K \cap \text{ im } f \text{ is closed}$$

We thus conclude that $\operatorname{im} f \subset K$ is closed in any compact K - hence $\operatorname{im} f \subset \mathring{K}$ is closed. Since N is locally compact we see that $\operatorname{im} f$ is locally closed hence closed.

Originally when I possed this problem I Thought the solution would be nicer, and if I missed an easier solution I am sorry. However, the fact that this was more difficult than I thought made me dislike the problem.

Exercise 2.10. Prove that the union of $\mathbb{R}^n \times \{0\}$ and $\{0\} \times \mathbb{R}^n$ in \mathbb{R}^{2n} is not a topological manifold.

This went very fast in class because we ran out of time. So, here is the detailed proof:

Proof. A pointed neighborhood of x is $U - \{x\}$ where U is a neighborhood of x. Let $X_n = \mathbb{R}^n \times \{0\} \cup \{0\} \times \mathbb{R}^n$.

- Any point in a 1-dimensional manifold has a pointed neighborhood with two components. Indeed, ℝ¹ − {0} has two components.
- Any point in a *n*-dimensional manifold (n > 1) has a connected pointed neighborhood. Indeed, $\mathbb{R}^n \{0\}$ is connected.
- X_1 is not a manifold because: any pointed neighborhood of $\{0\}$ has at least four components. Indeed, $X_1 \{0\}$ has four components so in the subspace toplogy $U \{0\}$ has at least 4 components.
- $X_n, n \ge 2$ is not an *n*-manifold for n > 1 because any pointed neighborhood around $\{0\}$ has at least two components. Indeed, $X_n \{0\}$ has two components.
- $X_n, n \ge 2$ is not a 1-manifold because:

- For any point x in a 1-manifold there is a neighborhood $V \ni x$ such that any pointed neighborhood around x in V has at least two components. Indeed, let $V \cong \mathbb{R}^1$ then $V - \{x\}$ has two components.
- This fact does not hold for X_n . Indeed, any neighborhood V around $\{0\} \neq x \in X_n$ has a smaller neighborhood homeomorphic to \mathbb{R}^n and \mathbb{R}^n minus a point is connected.