3. PROBLEM SESSION

Exercise 3.5. Show that $f: S^2 \to \mathbb{R}^4$ given by

 $f(x, y, z) = (yz, xz, xy, ax^{2} + by^{2} + cz^{2})$

for distinct $a, b, c \in \mathbb{R}$ defines a smooth embedding of the quotient $\mathbb{R}P^2 \to$ \mathbb{R}^4 . (You may use that the quotient map $S^2 \to \mathbb{R}P^2$ is a local diffeomorphism).

Proof. Let $\pi: S^2 \to \mathbb{R}P^2$ be the quotient. There are Several things we need to check for f.

• Well-defined: We check that f is defined on the quotient

$$\begin{aligned} f(x,y,z) &= (yz,xz,xy,ax^2 + by^2 + cz^2) = \\ &= ((-y)(-z),(-x)(-z),(-x)(-y),a(-x)^2 + b(-y)^2 + c(-z)^2) = \\ &= f(-x,-y,-z). \end{aligned}$$

- Call \tilde{f} the map defined on the quotient. Smooth: The restriction π_i^+ of the projection π to $U_i^+ = \{(x_1, x_2, x_3) \in S^2 \mid x_i > 0\}$ is a diffiomorphism onto its image, and these cover $\mathbb{R}P^2$. So the compositions $f \circ (\pi_i^+)^{-1}$ which equals the restrictions of \tilde{f} are smooth.
- Injective: Recall that

$$\mathbb{R}P^2 = S^2/(x \sim -x) = \\ = (\mathbb{R}^3 - \{0\})/((x, y, z) \sim (tx, ty, tz)) \qquad \text{(for all } t \in \mathbb{R})$$

So reconstructing a point in $\mathbb{R}P^2$ means reconstructing $(x, y, z) \in S^2$ up to scaling by a real number $t \in \mathbb{R}$. Denote the coordinates of f by $f(x, y, z) = (f_1, f_2, f_3, f_4)$.

If all f_1, f_2 and f_3 are non-zero we reconstruct [x, y, z] as

$$[x, y, z] = [1, f_1/f_2, f_1/f_3] = [1, y/x, z/x]$$

If precisely one of f_1, f_2 and f_3 is zero we get a contradiction because one of x, y and z has to be zero which implies that at least two of f_1, f_2 and f_3 is zero.

If precisely two of f_1, f_2 and f_3 are zero, say assume by symmetry f_2 and f_3 , then we see that $x = 0, y \neq 0, z \neq 0$ and that we can reconstruct both y^2 and z^2 uniquely by the linear equations:

$$y^2 + z^2 = 1$$
$$by^2 + cz^2 = f_4$$

Indeed, the determinant of the coefficient matrix is non-zero because $b \neq c$. Now

$$[0, y, z] = [0, 1, z^2/yz] = [0, 1, z^2/f_1].$$

If all $f_1 = f_2 = f_3 = 0$ we get that precisely two of x, y, z is nonzero. So (x, y, z) is either (0, 0, 1), (0, 1, 0) or (1, 0, 0), and which is determined by whether f_4 is a, b or c.

• f (and hence f) is an immersion: This is equivalent to the differential being injective. Let $(x, y, z) \in S^2$ be given. If we think of f as defined on all of \mathbb{R}^3 we see that

$$D_{(x,y,z)}f = \begin{pmatrix} 0 & z & y \\ z & 0 & x \\ y & x & 0 \\ 2ax & 2by & 2cz \end{pmatrix}$$

This has rank 3 when $xyz \neq 0$ (due to the determinant of the top 3 rows). So in this case it is injective, and thus also injective when restricted to $T_{(x,y,z)}S^2$. By symmetry we thus assume that x = 0, then the kernel of the above matrix is given by vectors (v_1, v_2, v_3) such that $v_1 = 0$ and

$$zv_2 + yv_3 = 0$$
 and $2byv_2 + 2czv_3 = 0.$ (3.1)

In addition the tangent space is given by those vectors which are orthogonal to the point in question (0, y, z) - that is $yv_2 + zv_3 = 0$. So we se that the kernel intersected with the tangent space is the kernel of the matrix

$$\left(\begin{array}{cc}z&y\\2by&2cz\\y&z\end{array}\right)$$

The first and last row are linearly independent unless $z = \pm y$, but then the last two rows are linearly independent (unless z = y = 0, which is not the case since $y^2 + z^2 = 1$). So the kernel restricted to the tangent space is 0.

• \tilde{f} is an embedding. It is an injective immersion from a closed manifold. We have seen before that this means it is an embedding.