3. Problem session

Exercise 3.5. Show that $f: S^{2} \rightarrow \mathbb{R}^{4}$ given by

$$
f(x, y, z)=\left(y z, x z, x y, a x^{2}+b y^{2}+c z^{2}\right)
$$

for distinct $a, b, c \in \mathbb{R}$ defines a smooth embedding of the quotient $\mathbb{R} P^{2} \rightarrow$ \mathbb{R}^{4}. (You may use that the quotient map $S^{2} \rightarrow \mathbb{R} P^{2}$ is a local diffeomorphism).
Proof. Let $\pi: S^{2} \rightarrow \mathbb{R} P^{2}$ be the quotient. There are Several things we need to check for f.

- Well-defined: We check that f is defined on the quotient

$$
\begin{aligned}
f(x, y, z) & =\left(y z, x z, x y, a x^{2}+b y^{2}+c z^{2}\right)= \\
& =\left((-y)(-z),(-x)(-z),(-x)(-y), a(-x)^{2}+b(-y)^{2}+c(-z)^{2}\right)= \\
& =f(-x,-y,-z) .
\end{aligned}
$$

Call \tilde{f} the map defined on the quotient.

- Smooth: The restriction π_{i}^{+}of the projection π to $U_{i}^{+}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in\right.$ $\left.S^{2} \mid x_{i}>0\right\}$ is a diffiomorphism onto its image, and these cover $\mathbb{R} P^{2}$. So the compositions $f \circ\left(\pi_{i}^{+}\right)^{-1}$ which equals the restritions of \tilde{f} are smooth.
- Injective: Recall that

$$
\begin{aligned}
\mathbb{R} P^{2} & =S^{2} /(x \sim-x)= \\
& =\left(\mathbb{R}^{3}-\{0\}\right) /((x, y, z) \sim(t x, t y, t z)) \quad(\text { for all } t \in \mathbb{R})
\end{aligned}
$$

So reconstructing a point in $\mathbb{R} P^{2}$ means reconstructing $(x, y, z) \in S^{2}$ up to scaling by a real number $t \in \mathbb{R}$. Denote the coordinates of f by $f(x, y, z)=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$.

If all f_{1}, f_{2} and f_{3} are non-zero we reconstruct $[x, y, z]$ as

$$
[x, y, z]=\left[1, f_{1} / f_{2}, f_{1} / f_{3}\right]=[1, y / x, z / x]
$$

If precisely one of f_{1}, f_{2} and f_{3} is zero we get a contradiction because one of x, y and z has to be zero which implies that at least two of f_{1}, f_{2} and f_{3} is zero.

If precisely two of f_{1}, f_{2} and f_{3} are zero, say assume by symmetry f_{2} and f_{3}, then we see that $x=0, y \neq 0, z \neq 0$ and that we can reconstruct both y^{2} and z^{2} uniquely by the linear equations:

$$
\begin{array}{r}
y^{2}+z^{2}=1 \\
b y^{2}+c z^{2}=f_{4}
\end{array}
$$

Indeed, the determinant of the coefficient matrix is non-zero because $b \neq c$. Now

$$
[0, y, z]=\left[0,1, z^{2} / y z\right]=\left[0,1, z^{2} / f_{1}\right] .
$$

If all $f_{1}=f_{2}=f_{3}=0$ we get that precisely two of x, y, z is nonzero. So (x, y, z) is either $(0,0,1),(0,1,0)$ or $(1,0,0)$, and which is determined by whether f_{4} is a, b or c.

- f (and hence \tilde{f}) is an immersion: This is equivalent to the differential being injective. Let $(x, y, z) \in S^{2}$ be given. If we think of f as defined on all of \mathbb{R}^{3} we see that

$$
D_{(x, y, z)} f=\left(\begin{array}{ccc}
0 & z & y \\
z & 0 & x \\
y & x & 0 \\
2 a x & 2 b y & 2 c z
\end{array}\right)
$$

This has rank 3 when $x y z \neq 0$ (due to the determinant of the top 3 rows). So in this case it is injective, and thus also injective when restricted to $T_{(x, y, z)} S^{2}$. By symmetry we thus assume that $x=0$, then the kernel of the above matrix is given by vectors (v_{1}, v_{2}, v_{3}) such that $v_{1}=0$ and

$$
\begin{equation*}
z v_{2}+y v_{3}=0 \quad \text { and } \quad 2 b y v_{2}+2 c z v_{3}=0 . \tag{3.1}
\end{equation*}
$$

In addition the tangent space is given by those vectors which are orthogonal to the point in question $(0, y, z)$ - that is $y v_{2}+z v_{3}=0$. So we se that the kernel intersected with the tangent space is the kernel of the matrix

$$
\left(\begin{array}{cc}
z & y \\
2 b y & 2 c z \\
y & z
\end{array}\right)
$$

The first and last row are linearly independent unless $z= \pm y$, but then the last two rows are linearly independent (unless $z=y=0$, which is not the case since $y^{2}+z^{2}=1$). So the kernel restricted to the tangent space is 0 .

- \tilde{f} is an embedding. It is an injective immersion from a closed manifold. We have seen before that this means it is an embedding.

