4. Problem session

Exercise 4.5.

b) Prove that the tangent bundle $T M$ of M is defined as an n dimensional bundle over all of M (precisely the same definition as before with our extended notion of what a smooth chart is) and that canonically $T_{x} \partial M$ is a sub-bundle of $T M_{\mid \partial M}$.

Proof. The following uses some of the conclusions from part a). Let

$$
\psi: H^{k} \supset U \cong U^{\prime} \subset M
$$

be any smooth chart. This defines a local trivialization of $T M$ by

$$
\Psi: T M_{\mid U^{\prime}} \rightarrow U^{\prime} \times \mathbb{R}^{k}
$$

by

$$
\Psi(x, v)=\left(x, D_{x} \psi^{-1}(v)\right) .
$$

Indeed, the differentials $D_{x} \psi^{-1}=D_{x}\left(\psi^{-1}\right)$ are invertible also at boundary points $x \in \partial M$. The transition maps between two such trivializations Ψ_{1} and Ψ_{2} given two charts $\psi_{1}: U_{1} \cong U_{1}^{\prime} \subset M$ and $\psi_{2}: U_{2} \cong U_{2}^{\prime} \subset M$ are

$$
\left(\Psi_{2} \circ \Psi_{1}^{-1}\right)(x, v)=\left(x,\left(D_{x} \psi_{2}^{-1}\right)\left(D_{x} \psi_{1}^{-1}\right)^{-1}(v)\right), \quad x \in U_{1}^{\prime} \cap U_{2}^{\prime}, v \in \mathbb{R}^{k}
$$

and satisfies the cocycle condition (by chain rule) - hence defines a vector bundle. Note that the equivalence relation given by these transition maps is fiber-wise the same as the one we originally used (for a manifold without boundary) to define the fiber-wise tangent spaces $T_{x} M$.

Going back to the one chart $\psi: H^{k} \supset U \cong \mathrm{U}^{\prime} \subset M$ we can also restrict to the boundary $V=U \cap \partial H^{k}$ and get a chart on ∂M. We denote $V^{\prime}=$ $U^{\prime} \cap \partial M=\psi(V)$. Note that we may restrict $T M$ to V^{\prime} and thus we have a bundle $T M_{\mid V^{\prime}}$ which is one dimensionen higher than the manifold it is defined on. As above we have a trivialization

$$
\Phi: T(\partial M)_{\mid V^{\prime}} \rightarrow V^{\prime} \times \mathbb{R}^{k-1}
$$

by

$$
\Phi(x, v)=\left(x, D_{x}\left(\psi_{\mid V^{\prime}}^{-1}\right)(v)\right)
$$

Using the standard inclusion $\mathbb{R}^{k-1} \subset \mathbb{R}^{k}$ (which is [the differential of] the inclusion of the boundary of H^{k} into \mathbb{R}^{k}) we locally define a sub bundle:

This does not depend on the choice of chart. Indeed, for two charts as above - also with notation $V_{i}^{\prime}=\partial M \cap U_{i}^{\prime}$ and Φ_{i} for the induced trivializations of $T \partial M$ - we see that

commutes. Indeed, the middle square commutes because; for $(x, v) \in\left(V_{1}^{\prime} \cap\right.$ $\left.V_{2}^{\prime}\right) \times \mathbb{R}^{k-1}$ we have

$$
\begin{aligned}
\left(\Psi_{2} \circ \Psi_{1}^{-1}\right)(x, v) & =\left(x,\left(D_{x} \psi_{2}^{-1}\right)\left(D_{x} \psi_{1}^{-1}\right)^{-1}(v)\right)= \\
& =\left(x,\left(D_{\psi_{1}^{-1}(x)}\left(\psi_{2}^{-1} \circ \psi_{1}\right)\right)(v)\right)= \\
& =\left(x,\left(D_{\psi_{1 \mid V_{1}}^{-1}(x)}\left(\psi_{2 \mid V_{2}}^{-1} \circ \psi_{1 \mid V_{1}}\right)\right)(v)\right)= \\
& =\left(x,\left(D_{x} \psi_{2 \mid V_{2}}^{-1}\right)\left(D_{x} \psi_{1 \mid V_{1}}^{-1}\right)^{-1}(v)\right)=\left(\Phi_{2} \circ \Phi_{1}^{-1}\right)
\end{aligned}
$$

Here we are using that the restriction of the diffeomorphism

$$
\psi_{2}^{-1} \circ \psi_{1}: R^{k} \supset U_{1} \rightarrow U_{2} \subset \mathbb{R}^{k}
$$

in both source and target to the diffeomorphism

$$
\psi_{2 \mid V_{2}}^{-1} \circ \psi_{1 \mid V_{1}}: R^{k-1} \supset V_{1} \rightarrow V_{2} \subset \mathbb{R}^{k-1}
$$

has differential equal to the similar restriction of the differential. This simply relies on the fact that the diffeomorphism takes \mathbb{R}^{k-1} to \mathbb{R}^{k-1}.

