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Abstract. The following expository paper is based on two lectures given by the
author at a workshop on Symplectic Field Theory in Leipzig, August 2006. First, a
version of rational Symplectic Field Theory for an exact Lagrangian submanifold L

of a symplectization of a 1-jet space with components subdivided into k subsets is
outlined. The theory associates to L a Z-graded chain complex of vector spaces over
Z2, filtered with k filtration levels. The corresponding k-level spectral sequence is
invariant under deformations and its functorial properties lead to Legendrian isotopy
invariants. Second, the theory outlined is computed in basic examples.

1. Introduction

In this paper we give an expository description of a version of rational SFT for exact
Lagrangian cobordisms of symplectizations of 1-jet spaces and compute it in basic
examples. We restrict attention to 1-jet spaces because of the technical simplifications
this leads to. The theory in more general settings is described in [3], which also serves
as the main reference for proofs and details left out in Sections 2 – 5 of this paper. In
fact, these sections follow [3] quite closely, whereas the material in Sections 6 has not
appeared elsewhere.

Let M be a smooth manifold. The 1-jet space of M is the space J1(M) = T ∗M ×R.
It carries a standard contact structure given by the contact form λ = dz − p dq, where
z is a linear coordinate on the R-factor and where p dq denotes the canonical 1-form on
T ∗M : a point P in T ∗M represents a form on TQM for some Q ∈M and p dq at P is
the pull-back of that form to TP (T ∗M). The Reeb vector field Rλ of λ is simply ∂z , the
unit vector field along the R-factor. The symplectization of J1(M) is the symplectic
manifold J1(M) × R with symplectic form ω0 = dα, where α = etλ and where t is a
coordinate in the additional R-factor.

An exact Lagrangian cobordism in J1(M)× R consists of the following data.

• A 1-form β on J1(M) × R such that dβ is a symplectic form and such that
β = α for |t| > T , some T > 0.
• An exact Lagrangian submanifold L ⊂ (J1(M)×R, dβ) such that, in the regions
{t > T} and {t < −T}, L = Λ+ × R+ and L = Λ− × R−, respectively,
where R+ = [0,∞) and R− = (−∞, 0], and where Λ+ and Λ− are Legendrian
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submanifolds. (The submanifold L being exact means that β|L = df for some
function f : L→ R.)

We will call Λ+ × R+ and Λ− × R− positive- and negative ends of L, respectively,
and Λ+ and Λ−, (+∞)- and (−∞)-boundaries of L, respectively.

To define SFT in this setting one should count J-holomorphic curves in J1(M)×R

with boundary on L asymptotic to Reeb chord strips of L at boundary punctures, where
J is an almost complex structure adjusted to the symplectic form on J1(M) × R. (A
Reeb chord of L is a flow segment of the Reeb vector field in J1(M) which begins and
ends on Λ±. No holomorphic curves in J1(M)×R have interior punctures since the Reeb
vector field in J1(M) does not have any closed orbits.) Turning such curve counts into
algebra is however not straightforward because of a phenomenon often called boundary
bubbling. For holomorphic curves without boundary in a symplectic manifold, generic
bubbling off is described by the following local model: {(z, w) ∈ C2 : z2 ± w2 = ǫ},
where ǫ ∈ C, ǫ → 0. Hence it is a codimension two phenomenon and can often be
disregarded when setting up homology theories. Boundary bubbling for holomorphic
curves with boundary on a Lagrangian submanifold can be modeled by a restricted
version of this local model as follows. The Lagrangian submanifold corresponds to
R

2 ⊂ C
2, the deformation parameter is constrained to be real, ǫ ∈ R ⊂ C, and the

curve is half of the curve in the model for curves without boundary. Thus, bubbling off
at the boundary is a codimension one phenomenon which cannot be disregarded when
setting up homology theories. In Lagrangian Floer homology, techniques for dealing
with boundary bubbling have been developed in [12] and in [2]. In the present paper we
will construct a version of SFT counting only rational curves. Although our treatment
of boundary bubbling differs from those of [12] and [2] the end result is closely related,
see the discussion at the beginning of Section 6.

In order to formulate our main results we introduce the following notation. Let
(L, β) be an exact Lagrangian cobordism in J1(M)×R (we often suppress the 1-form
β from the notation ). Let Λ± ×R± be the ends of L and write (J1(M)× [−T, T ], L̄)
for the finite part obtained by cutting the infinite parts of the cylindrical ends off at
|t| = T . We will sometimes think of Reeb chords of Λ± in the (±∞)-boundary as
lying in J1(M) × {±T} with endpoints on ∂L̄. A formal disk of L is a homotopy
class of maps of the 2-disk D, with m marked disjoint closed subintervals in ∂D, into
J1(M)× [−T, T ], where the m marked intervals are required to map in an orientation
preserving (reversing) manner to Reeb chords of ∂L̄ in the (+∞)-boundary (in the
(−∞)-boundary) and where remaining parts of the boundary ∂D map to L̄. Assume
that the set of connected components of L has been subdivided into subsets (we call
such subsets pieces). In Subsection 2.1, we define the notion of an admissible formal
disk of L in this situation. A J-holomorphic disk in J1(M) × R with boundary on L
determines a formal disk and if this formal disk is admissible then boundary bubbling
is impossible for topological reasons.

Let V(L) denote the Z-graded vector space over Z2 generated by admissible formal
disks of L with the following grading: the degree of a formal disk is the formal dimen-
sion of the moduli space of J-holomorphic disks homotopic to the formal disk. The
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degree of a formal disk is thus computed in terms of the Maslov index of the boundary
condition it determines and the number of Reeb chords it has, see Subsection 3.1. We
use the filtration 0 ⊂ F kV(L) ⊂ · · · ⊂ F 2V(L) ⊂ F 1V(L) = V(L), where k is the
number of pieces of L and where the filtration level is determined by the number of Reeb
chords of a formal disk which are in the (+∞)-boundary of L. (By Lemma 3.2, an ad-
missible formal disk has at most k Reeb chords at the positive end). In Subsection 3.5,
using the collections of all rigid admissible J-holomorphic disks and of all 1-parameter
families of admissible J-holomorphic disks in the symplectizations of the Legendrian
manifolds in the (±∞)-boundary of L, we define a differential d : V(L)→ V(L). The
differential increases grading by 1 and respects the filtration. Define the rational ad-

missible SFT spectral sequence
{
Ep,q

r (L)
}k

r=1
as the spectral sequence induced by the

filtration preserving differential d : V(L)→ V(L), see Subsection 3.6.

Theorem 1.1. Let L be an exact cobordism in J1(M)×R with a subdivision L = L1∪
· · · ∪Lk into pieces. Then

{
Ep,q

r (L)
}

does not depend on the choice of adjusted almost
complex structure J , and is invariant under compactly supported exact deformations of
L and β.

Theorem 1.1 is proved in Section 5. The spectral sequence in Theorem 1.1 share
many of the familiar properties of rational SFT in the non-relative case, see Sections 3
and 4.

If Λ ⊂ J1(M) is a Legendrian submanifold which is subdivided into pieces Λ =
Λ1 ∪ Λ2 ∪ · · · ∪ Λk then (Λ× R, α) is an exact cobordism with Λ× R subdivided into
pieces. We define the rational admissible SFT-invariant of Λ as

{
Ep,q

r (Λ)
}

=
{
Ep,q

r (Λ× R)
}
,

where the right hand side is the spectral sequence described as above.

Theorem 1.2. If Λ ⊂ J1(M) is a Legendrian submanifold of J1(M) then
{
Ep,q

r (Λ)
}

is invariant under Legendrian isotopies of Λ.

Theorem 1.2 is proved in Section 5. In Section 6 we discuss how to apply it in general
and illustrate this by computing the theory for three parallel copies of the 0-section in
J1(M).

2. The vector space of an exact cobordism

In this section we introduce admissible formal disks. Using them, we associate a
graded filtered vector space to an exact Lagrangian cobordism.

2.1. Admissible formal disks. Let L be an exact cobordism in J1(M) × R with
(±∞)-boundary Λ±. Recall the subdivision L = L̄ ∪ (Λ+ × R+) ∪ (Λ− × R−) into
a finite part in J1(M) × [−T, T ] and ends. Make the identification ∂L̄ = Λ+ ∪ Λ−.
Assume that L comes equipped with a subdivision L = L1 ∪ · · · ∪Lk into pieces where
each piece Lj is a union of connected components of L. This subdivision induces a
subdivision of the ends, Λ± = Λ±

1 ∪ · · · ∪ Λ±
k . Let R+ and R− denote the sets of Reeb

chords of Λ+ and Λ−, respectively. We write R± = R±
pu ∪ R

±
mi. Here R±

pu contains
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all pure Reeb chords with both endpoints on the same piece in the subdivision of Λ±,
and R±

mi contains all mixed Reeb chords with endpoints on distinct pieces. Note that
a Reeb chord is oriented (by the Reeb flow).

A formal disk map is a map from a 2-disk D with m marked disjoint boundary
segments into J1(M)× [−T, T ] with the following properties. Each marked boundary
segment either maps in an orientation preserving way to a Reeb chord of Λ+ ⊂ ∂L̄, or
maps in an orientation reversing way to a Reeb chord of Λ− ⊂ ∂L̄. Each unmarked
boundary segment maps to L̄. We say that two formal disk maps are homotopic if
they are homotopic through formal disk maps. In particular, two formal disk maps are
homotopic only if they have the same Reeb chords and the respective induced cyclic
orderings on these Reeb chords agree. Furthermore, if two formal disk maps have the
same Reeb chords in the same cyclic order then their unmarked boundary arcs which
connect corresponding Reeb chord endpoints form difference-loops (i.e., the path of one
disk followed by the inverse path of the other) in L̄ and the two formal disk maps are
homotopic only if all these difference-loops are contractible in L̄. Finally, in case all
the difference-loops are contractible, choosing homotopies between the boundary loops,
the two formal disk maps together with these homotopies give a difference-map of a 2-
sphere into J1(M)× [−T, T ] and the formal disk maps are homotopic if and only if the
homotopy class of this difference-map lies in the image of π2(L̄

′)→ π2(J
1(M)×[−T, T ]),

where L̄′ = L̄′
1 ∪ · · · ∪ L̄′

m ⊂ L̄ is the union of the connected components of L̄ which
contain some boundary component of the formal disk.

In conclusion, if for a fixed cyclic word of Reeb chords there is a formal disk map
which realizes this word then the homotopy classes of formal disk maps is a prin-
cipal homogeneous space over the product of the kernel of a map π1(L̄

′
1) × · · · ×

π1(L̄
′
m) → π1(J

1(M) × [−T, T ]) determined by the Reeb chord endpoints and the
quotient π2(J

1(M)× [−T, T ])/ im(π2(L̄
′)→ π2(J

1(M)× [−T, T ])). A formal disk is a
homotopy class of formal disk maps.

We call the Reeb chords of the formal disk its punctures. When speaking of formal
disks we will contract the marked intervals which map to the Reeb chords to points
and call them punctures as well. A component of the complement of the punctures
in the boundary of a formal disk will be called a boundary component. We say that a
puncture of a formal disk is positive if it maps to a chord in R+ and that it is negative
if it maps to a chord in R−. We say that a puncture of a formal disk is mixed if it
maps to a chord in R±

mi and that it is pure if it maps to a chord in R±
pu.

Remark 2.1. Any J-holomorphic disk in J1(M)×R with boundary on L is asymptotic
to Reeb chord strips near its punctures. (See [3] Proposition 6.2, and references listed
there.) It follows in particular that any holomorphic disk determines a formal disk.

Let D be the source of a formal disk and let ∂D denote the union of the boundary
components of D (i.e. ∂D consists of the points on the boundary which are not punc-
tures). A collapsing arc in D is an embedding a : [0, 1]→ D such that a−1(∂D) = {0, 1}
and such that a is transverse to ∂D at a(0) and a(1). Note that a collapsing arc a
subdivides D into two components D1(a) and D2(a).
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Definition 2.2. A formal disk parametrized by D is admissible if it meets the following
two conditions.

(a1) D has at least one puncture which is positive.
(a2) For every collapsing arc a in D with endpoints on boundary components map-

ping to the same piece of L̄, one component D1(a) or D2(a) has either no
punctures or only pure negative punctures.

Remark 2.3. Definition 2.2 is not the only possible choice. All technical results below
hold true if one uses the following alternative definition instead: keep (a2) and change
(a1) to

(a1′) D has at least one puncture which is positive or mixed.

This gives rise to a somewhat different theory briefly discussed in Subsection 6.1.

Lemma 2.4. An admissible disk with a pure positive puncture can neither have mixed
punctures nor have other positive punctures.

Proof. If it did, a small collapsing arc cutting the pure positive puncture off from the
rest of the disk contradicts (a2). �

Remark 2.5. Let L be an exact Lagrangian cobordism and let L̂ be one of its pieces.
Then the punctures of an admissible formal disk w which map to a pure or mixed
L̂-chord are ordered in a natural way as follows.

• If w is a pure admissible disk then the orientation of the boundary of the disk
induces an ordering of the punctures of w as follows. The first puncture in the
order is the first puncture in the direction of the orientation of the boundary as
seen from the positive puncture, continuing in the direction of this orientation
we meet all the other negative punctures in a certain order, and finally we meet
the positive puncture as the last one in the order.
• If w is a mixed admissible disk with some boundary component mapping to L̂

then the orientation of the boundary of the disk induces an ordering as follows.
At exactly one puncture mapping to a mixed L̂-chord the boundary orientation
points into the boundary component mapping to L̂, this is the first puncture.
Then follow all negative punctures mapping to pure L̂-chords in the order of
the boundary orientation, and finally the second puncture mapping to a mixed
L̂-chord where the boundary orientation points out of the boundary component
mapping to L̂.

Furthermore, once the L̂-punctures of the boundary of an admissible formal disk are
ordered in this way, we order the remaining punctures in the order they appear as
the boundary of the disk is traversed in the positive direction starting at the last
L̂-puncture.

2.2. Joining exact cobordisms and gluing formal disks. Let Lb be an exact
cobordism in J1(M) × R with (+∞)-boundary equal to Λ and let La be an exact
cobordism with (−∞)-boundary equal to Λ. Then we can join the exact cobordisms
over Λ to an exact cobordism Lba in J1(M)×R. Since Λ ⊂ ∂L̄b and Λ ⊂ ∂L̄a, we may
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view Λ as a submanifold of Lba ⊂ J1(M) × R. A partial formal disk of Lba is defined
as a formal disk except that it is allowed to have punctures also at Reeb chords of
Λ ⊂ L̄ba.

Let R denote the set of Reeb chords of Λ. Let gb be a formal disk of Lb with one of
its positive punctures at a Reeb chord c ∈ R. Let ga be a formal disk of La with one
of its negative punctures at c. Then we can attach gb to ga at c in an obvious way, to
form a partial formal disk gba

1 of Lba. This construction can be repeated: at a positive-
or negative puncture of gba

1 which lies in R, a formal disk of La or Lb, respectively, can
be attached to gba

1 to form a new partial formal disk gba
2 , etc. We say that the formal

disks of La and Lb used to build a partial formal disk of Lba in this way are its factors.

Lemma 2.6. Let w be a formal disk of Lba with factors which are formal disks in
La and Lb, all with at least one mixed- or positive puncture. If some partial formal
sub-disk of w is non-admissible then so is w.

Proof. No formal disk has only one mixed puncture. Consider a collapsing arc of
the sub-disk with mixed- or positive punctures on both sides. Attaching at a mixed
puncture leaves a mixed puncture and attaching at a positive puncture leaves a positive
puncture. Thus, the collapsing arc of the sub-disk shows also that the final formal disk
is non-admissible. �

2.3. The vector space of formal disks. If γ is curve in J1(M) with contact form
λ, then the action of γ is

A(γ) =

∫

γ

λ.

Let Λ ⊂ J1(M) be a Legendrian submanifold. Reeb chords of Λ are critical points for
the action functional acting on curves with endpoints on Λ. If Λ is chosen sufficiently
generic then the tangent spaces at the endpoints of any Reeb chord project to transverse
Lagrangian subspaces in the tangent space of T ∗M . In particular, if Λ is compact there
are only finitely many Reeb chords.

Let L be an exact cobordism with (±∞)-boundary Λ±. If g is a formal disk of L with
positive punctures at Reeb chords a1, . . . , ap and negative punctures at Reeb chords
b1, . . . , bq then define the (+)-action of g as

(2.1) A+(g) =

p∑

j=1

A(aj),

the (−)-action of g as

(2.2) A−(g) =

q∑

j=1

A(bj),

and the action of g as

(2.3) A(g) = A+(g)−A−(g),

where the (±)-actions are measured with respect to the contact form α = e±T λ in the
respective cut-off slices.
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Let τ = (τ1, . . . , τm) be a vector of m formal variables. Define the module V(L; τ)
over the polynomial ring Z2[τ ] as the free Z2[τ ]-module generated by admissible formal
disks of L. Define V+(L; τ) ⊂ V(L; τ) as the submodule generated by all formal disks
of positive action.

2.4. Gluing pairing. As in Subsection 2.2, let Lb and La be exact cobordisms such
that Λ is the (+∞)-boundary of Lb and the (−∞)-boundary of La, and let Lba be the
joined cobordism. We define gluing pairings

V(Lb; τ b)×V(La; τa)→ V(Lba; τ b, τa),

as follows. If vb ∈ V(Lb; τ b) and va ∈ V(La; τa) then the gluing pairing of vb and va

(2.4)
(
vb| va

)
∈ V(Lba; τ b, τa)

is the vector of all admissible formal disks, with factors from va and vb, weighted by
the product of the weights of its factors. In order to make this definition precise we
discuss properties of the gluing operation and explain how to count glued disks.

Lemma 2.7. Let u be a mixed formal disk (i.e. a disk with at least one mixed puncture)
in Lb or in La with at least one positive puncture. Consider a formal disk w in Lba

with factors which are formal disks in Lb or in La. Assume that all factors of w have
at least one positive puncture and that w has at least two factors which both equal u.
Then w is non-admissible.

Proof. The formal disk w has a tree structure where its factors are the nodes and glued
punctures are edges. Pick the shortest path in the tree of w which connects two distinct
u-factors and consider the corresponding sub-disk w′ of w. Lemma 2.6 implies that it
is enough to show that w′ is non-admissible. We write w′ = w′′♯ u1♯ u2, where w′′ is the
sub-disk of w′ obtained by removing the two u-factors u1 and u2.

If there exists some mixed puncture p of u such that the corresponding punctures p1

in u1 and p2 in u2 are both punctures of w′, then an arc in w′ starting on the incoming
boundary component near p1 and ending at the incoming boundary component near
p2 gives a collapsing arc separating p1 from p2 and hence w′ is non-admissible. If u is a
formal disk of La then such a puncture always exists: take p equal to any of the positive
punctures of u. If u is a formal disk in Lb and if there is no such puncture p, then u
must have two mixed positive punctures and no other mixed punctures. Since w′′ must
contain some La-disk, w′ has at least one more mixed positive puncture. (For example,
the positive puncture of an La-factor, which must be mixed since it connects to mixed
disks, see Lemmas 2.4 and 2.6.) At least one of the arcs in w′ connecting matching
boundary components of u1 and u2 is then a collapsing arc with mixed punctures on
both sides showing that w′ is non-admissible, see Figure 1. �

Lemma 2.8. Let va ∈ V(La) and vb ∈ V(Lb). Then there are only finitely many
admissible formal disks gba of Lba with factors from va and vb. Furthermore each such
admissible formal disk gba has only finitely many factorizations into factors from va

and vb.
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II II

I I

u1 u2

Figure 1. I and II label pieces of Lba. If the collapsing arc connecting
I to I does not have mixed punctures on both sides then the collapsing
arc connecting II to II does.

Proof. Lemma 2.7 implies that any mixed formal disk in va or vb can appear only
once as a factor in gba. If a factor from va is pure then all factors of gba are pure by
admissibility. Hence the total number of negative punctures of disks in va where pure
factors from vb can be attached is finite. The lemma follows. �

We use Lemma 2.8 to define the gluing pairing (2.4) as follows. Let vb ∈ V(Lb; τ b)
and va ∈ V(La; τa). In order to find the coefficient of one of the finitely many formal
disks gba which may contribute to

(
vb| va

)
, we count disks as follows. Each formal

admissible disk of Lba with factors in va and vb has a tree structure: vertices correspond
to disk factors and edges to glued Reeb chords. Label the vertices in the tree of a formal
disk of Lba by the corresponding formal disk from va or vb and weight the formal
admissible disk of Lba by the product over the vertices in the tree of the polynomials
which are the weights at its vertices. Summing the weighted disks corresponding to all
such trees with vertices from va and vb (there are only finitely many) in V(Lba; τ b, τa)
gives

(
vb| va

)
∈ V(Lba; τ b, τa).

We next consider compositions of gluing pairings. Let Lc be an exact cobordism
with (+∞)-boundary Λ0, let Lb be an exact cobordism with (−∞)-boundary Λ0 and
(+∞)-boundary Λ1, and let La be an exact cobordism with (−∞)-boundary Λ1. Let
v∗ ∈ V(L∗; τ ∗), ∗ ∈ {c, b, a}. Let Lcba denote the exact cobordism in J1(M) × R

obtained by joining these three cobordisms.

Lemma 2.9. The following equation holds
(
vc|

(
vb| va

))
=

((
vc| vb

)
| va

)
∈ V(Lcba; τ),

where τ = (τa, τ b, τ c).

Proof. Consider any formal disk of Lcba which arises after gluing according to the
prescription in the left hand side. By subdividing it differently we see that it also
arises after gluing as prescribed in the right hand side. Moreover, the weights are in
both cases the product of the weights of all the factors. The same argument shows
that any formal disk contributing to the right hand side also contributes to the left
hand side. The lemma follows. �

We will often use linearized versions of the gluing pairing (2.4) defined as follows. Let
Lb and La be as above. Fix f b ∈ V(Lb) and consider for va ∈ V(La), va 7→

(
f b| va

)
as a
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function V(La)→ V(Lba). We define the linearization of this function at fa ∈ V(La)

(2.5)
[
∂fa

(
f b|

]
: V(La)→ V(Lba),

through the following equation
(
f b| fa + ǫwa

)
=

(
f b| fa

)
+ ǫ

[
∂fa

(
f b|

]
(wa) +O(ǫ2) ∈ V(Lba; ǫ),

for wa ∈ V(La).
In a similar way, fixing fa ∈ V(La), we consider

(
vb| fa

)
as a function V(Lb) →

V(Lba). Its linearization at f b ∈ V(Lb)

(2.6)
[
∂fb | fa)

]
: V(Lb)→ V(Lba),

is defined through
(
f b + ǫwb| fa

)
=

(
f b| fa

)
+ ǫ

[
∂fb | fa)

]
(wb) +O(ǫ2) ∈ V(Lba; ǫ),

for wb ∈ V(Lb).

Lemma 2.10. Let L∗, ∗ ∈ {c, b, a}, be exact cobordisms as in Lemma 2.9 and let
f ∗ ∈ V(L∗). Then

[
∂fc

∣∣∣
(
f b| fa

))]
(wc) =

[
∂(fc| fb) | f

a)
] ([

∂fc| f b
)]

(wc)
)
, wc ∈ V(Lc), and

[
∂fa

((
f c| f b

)∣∣∣
]
(wa) =

[
∂(fb| fa)(f

c|
] ([

∂fa

(
f b|

]
(wa)

)
, wa ∈ V(La).

Proof. Let wc ∈ V(Lc). Lemma 2.9 implies that
((

f c + ǫwc| f b
) ∣∣∣ fa

)
=

(
f c + ǫwc

∣∣∣
(
f b| fa

))
.

The left hand side of this equation can be rewritten as
((

f c| f b
)

+ ǫ
[
∂fc | f b

)]
(wc) +O(ǫ2)

∣∣∣ fa
)

=
((

f c| f b
) ∣∣∣ fa

)
+ ǫ

[
∂(fc|fb)

∣∣∣ fa
)] ([

∂fc| f b
)]

(wc)
)

+O(ǫ2)

and the right hand side as
(
f c

∣∣∣
(
f b| fa

))
+ ǫ

[
∂fc

∣∣∣
(
f b| fa

))]
(wc) +O(ǫ).

The first equation follows. The second equation is proved in a similar way. �

3. Grading, filtration, and differential

In this section we introduce grading and filtration on the vector space of an exact
cobordism. We also define a filtration preserving differential on this space using the
gluing pairing in combination with properties of moduli spaces of J-holomorphic disks.
The filtration preserving differential determines a spectral sequence and we show that
if two exact cobordisms are joined at a common end then there are induced filtra-
tion preserving chain maps and hence morphisms of spectral sequences. We assume
throughout this section, that every exact cobordism comes equipped with a sufficiently
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generic almost complex structure J which is adjusted to its symplectic form. For sim-
plicity and to conform with the notation in more general situations (see [3], Appendix
B.4 – 6) we will leave out J from the notation, writing “holomorphic disk” instead
of “J-holomorphic disk”. Below we will frequently use properties of moduli spaces of
holomorphic curves. We refer to [3, Appendix B] and references therein for details.

3.1. Grading. Let L be an exact Lagrangian cobordism in J1(M)×R and let g be a
formal disk of L. The moduli spaceM(g) of holomorphic disks in L which determines
the formal disk g (i.e., the formal disk map associated to the holomorphic disks in
M(g) belong to the homotopy class g, see [3, Remark B.2]) has formal dimension
dim(M(g)), which we explain how to compute below.

Definition 3.1. The Z-grading on the vector space V(L) is induced by the following
grading of formal disks: the grading of a formal disk g ∈ V(L) is

|g| = dim(M(g)).

We say that an element v ∈ V(L) is homogeneous if it is a formal sum of admissible
formal disks which all have the same degree.

If g is a formal disk then dim(M(g)) equals the Fredholm index of the the linearized
∂̄J -operator at a map u : Dm → J1(M) × R which is asymptotic to Reeb chord strips
of the Reeb chords c1, . . . , cm at the m boundary punctures of the punctured disk Dm,
and which induces a formal disk map representing g. The source space of this linearized
operator splits into a sum of the tangent space of the space of conformal structures on
Dm, which is (m−3)-dimensional, and an infinite dimensional functional analytic space
U of vector fields along u which are tangent to L along the boundary. The Fredholm
index of the linearized ∂̄J -operator restricted to U can be computed by relating it to the
Riemann-Hilbert problem, see e.g. [8, 9], as follows. Pick a symplectic trivialization
of the tangent bundle of J1(M) × R along u such that the linearized Reeb flow in
this trivialization equals the identity along all Reeb chords. The tangent planes of L
along u(∂Dm) give m paths γ1, . . . , γm of a Lagrangian subspaces of Cn (where Cn is
determined by the trivialization) where γj connects the tangent space Te1

j
L of L at the

Reeb chord endpoint e1
j where the formal disk leaves the Reeb chord cj to the tangent

space Te0
j+1

L at the Reeb chord endpoint e0
j+1 where the formal disk enters the Reeb

chord cj+1. (Here we use the convention m+1 = 1). The tangent space of L at a Reeb
chord endpoint eσ

j , σ = 0, 1, splits as Teσ
j
Λ± × R, where Λ± is the (±∞)-boundary of

L. Let ΠC : J1(M)×R→ T ∗M denote the projection. Our genericity assumptions on
Λ± imply that the linearized Reeb flow along cj takes the projection into T ∗M of the
tangent space of Λ± at the Reeb chord endpoint eσ

j , where the Reeb field points into
cj, ΠC(Teσ

j
Λ±) to a Lagrangian subspace which is transverse to the projection of the

tangent space ΠC(Teτ
j
Λ±) at the other endpoint eτ

j of cj (σ 6= τ ∈ {0, 1}). We close the
paths γ1, . . . , γm to a loop using paths γ̂1, . . . , γ̂m, where γ̂j−1 connects the endpoint
Te0

j
Λ± ×R of γj−1 to the start-point Te1

j
Λ± ×R of γj, as follows. The path γ̂j−1 leaves

the R-factor fixed. If e0
j is the endpoint of a Reeb chord in the (+∞)-boundary, then
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rotate ΠC(Te0
j
Λ+) in the negative direction to ΠC(Te1

j
Λ+). If e0

j is the endpoint of a

Reeb chord in the (−∞)-boundary, then rotate ΠC(Te0
j
Λ−) in the negative direction

to ΠC(Te1
j
Λ−). (Here we use the following notation: if W is a symplectic vector space

then a negative rotation of a Lagrangian subspace V0 ⊂ W to a Lagrangian subspace
V1 ⊂ W transverse to V0, is a path of the form e−s π

2
IV0, 0 ≤ s ≤ 1, where I is a

complex structure compatible with the symplectic structure and such that IV0 = V1.)
The concatenation γ = γ1 ∗ γ̂1 ∗ · · · γm ∗ γ̂m is a a loop of Lagrangian subspaces of
Cn. The index of the restriction of the linearized ∂̄J -operator to U is n + µ(γ) and the
formal dimension is consequently

|g| = dim(M(g)) = n− 3 + µ(γ) + m,

where 2n = dim(J1(M) × R), where µ denotes Maslov index, and where m is the
number of punctures, see [7, 9].

The dimension is additive in the following sense. With notation as in Section 2.3, if
va ∈ V(Λa) and vb ∈ V(Λb) then the dimension of a formal disk contributing to

(
vb| va

)

equals the sum of the dimensions of its factors. To see this one uses the following fact:
at each Reeb chord where disks are glued, (n − 1) negative half-turns are lost (since
the closing up rotations at the punctures were erased by the gluing operation) and two
punctures are erased.

3.2. Filtration. Let L be an exact cobordism in J1(M) × R and assume that L =
L1 ∪ · · · ∪ Lk is subdivided into k pieces.

Lemma 3.2. No admissible formal disk in L has more than k mixed punctures and
consequently no more than k positive punctures.

Proof. Assume that D is the source of a formal disk with more than k mixed punctures.
Then there exists a pair of boundary components of D which map to the same piece Lj

of L and such that both complementary arcs in ∂D of these two boundary components
must contain boundary components mapping to some piece of L other than Lj . An arc
connecting the two boundary components in the pair then contradicts (a2) of Definition
2.2. Lemma 2.4 implies that any admissible formal disk either has one pure positive
puncture or all its positive punctures are mixed. The lemma follows. �

If g is a formal disk then let pos(g) denote the number of positive punctures of g.

Definition 3.3. For 1 ≤ p ≤ k, let F pV(L) denote the subspace of V(L) generated by
all admissible formal disks with at least p positive punctures. The filtration of V(L) is

0 ⊂ F kV(L) ⊂ F k−1V(L) ⊂ · · · ⊂ F 1V(L) = V(L).

3.3. The potential vector. Let L be an exact cobordism in J1(M)×R. For generic
almost complex structure J , the moduli space of 0-dimensional admissible holomorphic
disks with boundary on L is a 0-dimensional compact manifold. In other words, it is a
finite collection of points and to each point is associated a formal disk g, see Remark
2.1. Furthermore, if a formal disk g has a holomorphic representative then A(g) ≥ 0
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by Stokes theorem. Define the potential vector f ∈ V+(L) as

f =
∑

dim(M(g))=0

|M(g)| g,

where |M(g)| denotes the modulo 2 number of points in the 0-dimensional moduli
space M(g). Note that f ∈ V+(L) is a homogeneous element of grading 0.

In the special case when the cobordism is trivial, because of the translational in-
variance along the R-factor, for generic adjusted almost complex structure, the only
holomorphic disks of formal dimension 0 are Reeb chord strips with one positive and
one negative puncture (at the same Reeb chord). Thus for a trivial concordance the
potential vector f is extremely simple: if Λ ⊂ J1(M) is a Legendrian submanifold then

f =
∑

c∈R

gc ∈ V(Λ×R),

where gc is the formal disk represented by the Reeb chord strip of the Reeb chord c.

3.4. The Hamiltonian vector of a symplectization. Consider the trivial cobor-
dism Λ×R associated to a Legendrian submanifold Λ ⊂ J1(M). Using the fact, pointed
out above, that R acts on the moduli spaces of holomorphic disks and that for generic
adjusted almost complex structure, the only 0-dimensional holomorphic disks are Reeb
chord strips, we conclude that that the moduli spaceM of holomorphic disks of formal
dimension 1, when divided out by this R-action, forms a compact 0-dimensional mani-

fold. Write M̂ =M/R and call M̂ the reduced moduli space. Define the Hamiltonian
vector h ∈ V(Λ× R) of a trivial cobordism as

h =
∑

dim( cM(g))=0

|M̂(g)| g,

where the sum ranges over admissible formal disks g. Note that h ∈ V(Λ × R) is a

homogeneous element of grading 1 and that A(g) > 0 for any g for which M̂(g) is
non-empty and hence h ∈ V+(Λ× R).

3.5. The differential. Let L be an exact cobordism in J1(M)×R with ends Λ±×R±.
Gluing the trivial cobordisms Λ± × R to L does not change L. In particular, if v± ∈
V(Λ± × R; τ) and w ∈ V(L; τ) then (v−|w) ∈ V(L; τ) and (w| v+) ∈ V(L; τ), see
Subsection 2.4 for notation.

Let f ∈ V+(L) and f± ∈ V+(Λ± × R) be the potential vectors and let h± ∈
V+(Λ±×R) be the Hamiltonian vectors. We associate operators h± : V(L; ǫ)→ V(L; ǫ)
to the Hamiltonian vectors (for simplicity, we denote these operators by the same
symbols as the vectors themselves) through the following equations

(
v| f+ + τh+

)
= v + τ h+(v) +O(τ 2) ∈ V(L; τ, ǫ),

(
f− + τh−| v

)
= v + τ h−(v) +O(τ 2) ∈ V(L; τ, ǫ),

where v ∈ V(L; ǫ) ⊂ V(L; τ, ǫ) and f± + τh± ∈ V+(Λ± × R; τ) ⊂ V(Λ± × R; τ, ǫ).
Define

h = h+ + h− : V(L; ǫ)→ V(L; ǫ).
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Lemma 3.4. If f ∈ V+(L) is the potential vector then h(f) = 0.

Proof. To see this we note that any admissible formal disk contributing to h(f) can
be viewed as a broken disk which is an endpoint of a 1-dimensional moduli space
of holomorphic disks in J1(M) × R with boundary on L. By compactness and by
uniqueness of gluing, the other endpoint of this 1-dimensional moduli space correspond
to some other broken admissible disk with one factor from h+ or h− and remaining
factors from f . Hence also the other endpoint contributes to h(f). The lemma follows.

�

We next consider the linearization of the Hamiltonian operator h at the potential
vector f . This linearization is a map df : V(L)→ V(L) defined through the following
equation for v ∈ V(L),

h(f + ǫv) = ǫ df(v) +O(ǫ2) ∈ V(L; ǫ).

Lemma 3.5. The map df : V(L)→ V(L) is a filtration preserving differential of degree
1. That is, df ◦ df = 0, df(F pV(L)) ⊂ F pV(L), and if v ∈ V(L) is homogeneous of
degree k then df(v) is homogeneous of degree k + 1. Furthermore, df is (+)-action
non-decreasing: if v ∈ V(L) is a formal disk then the (+)-action A+(w) of any formal
disk w contributing to df(v) satisfies A+(w) ≥ A+(v).

Proof. Let v ∈ V(L) and let h+ and h− denote the Hamiltonian vectors at the positive
and negative ends of L, respectively. We first show df ◦ df = 0. By linearity of df and
since for each fixed formal disk g of L there is only a finite number of formal disks in
v, in f , and in h± which can contribute to the coefficient of g in df ◦ df(v), see Lemma
2.8, it suffices to show that df ◦ df(v) = 0 in the case when v is a single formal disk.
In other words, we must show

(3.1) h
(
f + h(f + ǫv)

)
= O(ǫ2),

for formal disks v.
The constant term of the left hand side in (3.1) vanishes by Lemma 3.4. Consider

the linear term. Any formal disk contributing to the linear term in (3.1) has one v-
factor, two h±-factors, and all other factors f -factors. We distinguish the h±-factor
corresponding to the outer Hamiltonian operator h and call it charged. Note that
the non-charged h±-factor is connected to v. Below we will make use of slightly more
general disks. We therefore define an lt-disk (lt for “linear term”) as a formal disk with
one v-factor, two h±-factors one which is connected to v and the other one distinguished
as charged, and remaining factors f -factors.

Consider the positive- or negative end (i.e., all positive- or negative punctures) of the
charged h±-factor of an lt-disk. We say that this end is un-obstructed if either there
is some h±-factor attached at the end, or if there are only f -factors attached at the
end. An end which is not un-obstructed is called obstructed. We say that an lt-disk is
isolated, boundary, or interior if its charged h±-factor has two, one, or zero obstructed
ends, respectively.

We first show that the contribution to (3.1) from isolated lt-disks vanishes. Both h±-
factors of an isolated lt-disk are connected to v. Changing the factorization by moving
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the charge from one h±-factor to the other we see that the formal disk appears in two
ways as an lt-disk in (3.1). Thus the contribution from isolated lt-disks vanishes.

Consider a non-isolated lt-disk with an un-obstructed end of its charged h±-factor
distinguished and called active. We define the following propagation law for such an
lt-disk.

• If there are only f -factors attached at the active end of the charged h±-factor,
then view the broken disk consisting of the charged h±-factor and all these f -
factors as the boundary of a 1-dimensional moduli space of holomorphic disks
with boundary on L. Moving to the other end of this moduli space we get
another broken disk with f -factors and one h±-factor. Charge the new h±-
factor and activate the end of it where the new f -factors are not attached.
• If there is an h±-factor attached at the active end of the charged h±-factor, then

one of these two h±-factors is attached to v. View the broken disk consisting
of the two h±-factors as the boundary of a 1-dimensional reduced moduli space
in the symplectization of the (±∞)-boundary. Moving to the other end of the
reduced moduli space we get another broken disk with two h±-factors. Charge
the one of them which is not attached to v and activate the end of it where the
other h±-factor is not attached.

This propagation law associates to an lt-disk with an un-obstructed end of its charged
h±-factor activated a unique non-isolated lt-disk with an end of its charged h±-factor
activated. In particular, using this propagation law repeatedly starting at a bound-
ary lt-disk the process stops at some other uniquely determined boundary lt-disk,
see Figure 2. Noting that every non-isolated lt-disk which contributes to (3.1) is a
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Figure 2. The propagation law, the charged h±-factor is shaded.

boundary lt-disk and that any boundary lt-disk contributes to (3.1) it follows that
also the contribution from non-isolated lt-disks to (3.1) vanishes. We conclude that
df ◦ df = 0.

The fact that df increases grading by 1 follows from Subsection 3.1 since f is homo-
geneous of degree 0 and h± are homogeneous of degree 1. To see that df(F pV(L)) ⊂
F p(V(L)), note that gluing operations of admissible disks never decreases the number
of positive punctures: since each admissible disk has at least one positive puncture, a
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positive puncture erased by gluing is compensated by at least one new positive punc-
ture.

To see that df is (+)-action non-decreasing we argue as follows. Formal disks con-
tributing to df(v) have one v-factor and remaining factors from h± and from f . Formal
disks in h± and in f have holomorphic representatives and hence have non-negative
action. If g is a partial formal disk and some factor is added to it from below giving a
new formal disk g′ then obviously A+(g′) ≥ A+(g). If g is a partial formal disk and a
disk h is added to it from above giving a new disk g′ then A+(g′) ≥ A+(g) +A(h) so
that A+(g′) ≥ A+(g) if A(h) ≥ 0. It follows that df does not decrease (+)-action. �

Remark 3.6. In the case that L = Λ × R is a trivial cobordism, the argument in
the proof of Lemma 3.5 shows that the first order terms d+ and d− in h+(f + ǫg) and
h−(f + ǫg), respectively are both differentials, separately. Moreover, it is immediate
that d+ ◦ d− = d− ◦ d+. (In this case the vectors h+ = h and h− = h are identical.
However, the operators h+ and h− are not: one corresponds to attaching h from above,
the other to attaching h from below.)

3.6. The rational admissible SFT spectral sequence. Let L ⊂ J1(M)×R be an
exact cobordism where L = L1 ∪ · · · ∪ Lk is subdivided into k pieces.

Definition 3.7. The rational admissible SFT spectral sequence of the exact cobordism
L is the cohomological spectral sequence

{
Ep,q

r (L)
}k

r=1
,

induced by the filtration respecting differential df : V(L) → V(L), where f is the
potential vector of L, which has E1-term

Ep,q
1 (L) = Hp+q

(
F pV(L)/F p+1V(L)

)
.

Let Λ = Λ1∪ · · ·∪Λk ⊂ J1(M) be a Legendrian submanifold subdivided into pieces.
Since the potential vector of Λ×R acts as the identity in gluing pairings, we suppress
it from notation and write d : V(Λ× R)→ V(Λ×R) for the differential in this case.

Definition 3.8. The rational admissible SFT invariant of Λ is the spectral sequence
{
Ep,q

r (Λ)
}k

r=1
=

{
Ep,q

r (Λ× R)
}k

r=1
.

3.7. Joining cobordisms and filtration preserving chain maps. Let Lb and La

be exact cobordisms and assume that Λ0 is the (+∞)-boundary of Lb and the (−∞)-
boundary of La. Consider the exact cobordism Lba obtained by joining the ends cor-
responding to Λ0. Write fa, f b, and f ba for the potential vectors in V+(La), V+(Lb),
and V+(Lba), respectively.

Lemma 3.9. The potential vectors satisfy

f ba =
(
f b| fa

)
.

Proof. Stretching Lba along Λ0 it follows by compactness, that any admissible rigid
holomorphic disk of Lba breaks into admissible rigid disks of La and Lb. Conversely,
any such broken configuration can be glued uniquely to an admissible rigid disk of the
joined cobordism. Thus the left- and the right hand sides count the same objects. �
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Consider the linearizations
[
∂fa

(
f b|

]
: V(La)→ V(Lba) and

[
∂fb | fa)

]
: V(Lb)→ V(Lba),

introduced in (2.5) and (2.6), respectively.

Lemma 3.10. The maps
[
∂fa

(
f b|

]
and

[
∂fb | fa)

]
are (+)-action non-decreasing, fil-

tration preserving chain maps,
[
∂fa

(
f b|

]
◦ dfa

= dfba

◦
[
∂fa

(
f b|

]
,(3.2)

[
∂fb | fa)

]
◦ dfb

= dfba

◦
[
∂fb | fa)

]
.(3.3)

Proof. The proof is similar to the proof of Lemma 3.5: one identifies isolated broken
disks and uses a propagation law to show that non-isolated broken disks cancel. �

4. Deformations and chain homotopies

In this section we show that the rational admissible SFT spectral sequence is invari-
ant under deformations of exact cobordisms and that morphisms induced by joining
cobordisms have similar invariance properties.

4.1. Increment disks. Let Lb and La be exact cobordisms in J1(M) × R. Assume
that Λ0 is the (+∞)-boundary of Lb and the (−∞)-boundary of La. Let Lba denote

the cobordism obtained by joining Lb and La at Λ0. Let Λ̂0 be a piece of Λ0, let L̂a and
L̂b be corresponding pieces of La and Lb, respectively, and let L̂ba be the corresponding
piece of Lba. Let ha ∈ V(La), let kb ∈ V(Lb) be such that every formal disk in kb

has some boundary component mapping to L̂b. We define the
{
kb → ha

}
split gluing

operation {
kb → ha

}
: V(Lb; ǫ)×V(Lb; ǫ)×V(La; ǫ)→ V(Lba; ǫ)

in the following way. The vector
{
kb → ha

}(
vb
0, v

b
1, v

a
)

is the sum of all admissible

disks constructed as follows. First pick a disk in ha and attach a disk in kb to it. If the
resulting (partial) disk is admissible then the L̂ba-component of its boundary induces
an ordering of its punctures, see Remark 2.5. Second attach vb

0-factors at the negative
punctures at Reeb chords in Λ0 of the partial formal disk which lie after the kb-factor,
and attach vb

1-factors at such punctures which lie before the kb-factor. Third attach
va-factors at the positive punctures at Reeb chords in Λ0 which arise from the attached
vb
0- and vb

1-disks. Continue like this, in each step attaching vb
0 after the kb-factor and

vb
1-factors before it at Reeb chords of Λ0 which arose from the va-disks attached in the

previous step. As for the gluing pairing in Subsection 2.3, we see that this is a finite
process.

Similarly, if hb ∈ V(Lb) and if ka ∈ V(La) are such that every formal disk in ka has

some boundary component mapping to L̂a, then we define the
{
hb ← ka

}
split gluing

operation {
hb ← ka

}
: V(Lb; ǫ)×V(La; ǫ)×V(La; ǫ)→ V(Lba; ǫ)



A VERSION OF RATIONAL SFT . . . 17

as follows. The vector
{
hb ← ka

}
(vb, va

0 , v
a
1) is the sum of all admissible disks con-

structed as follows. Pick a disk in hb and attach a disk in ka to it. If the resulting
(partial) disk is admissible then the L̂ba-component of its boundary induces an order-
ing of its punctures. Attach va

0-factors at the positive punctures at Reeb chords in
Λ0 of the partial formal disks which lie after the ka-factor, and attach va

1-factors at
such punctures which lie before the ka-factor. Then attach vb-factors at punctures at
Reeb chords in Λ0. Continue like this, in each step attaching va

0 after the kb-factor and
va
1-factors before it. Again this is a finite process.

Consider an exact cobordism L, let L̂ be one of the pieces of L, let u, v ∈ V(L), and
let k ∈ V(L) be a vector such that every formal disk in k has a boundary component

mapping to L̂. Let the (±∞)-boundary of L be Λ±, with Hamiltonian vectors h± and
potential vectors f± in V+(Λ± ×R). Since the potential vector of a trivial cobordism
acts as the identity in gluing pairings we suppress it from the notation for split gluing
pairings writing simply

{
k → h+

}
(u, v) :=

{
k → h+

}
(u, v, f+),

{
h− ← k

}
(u, v) :=

{
k → h+

}
(f−, u, v).

Define the k-increment of u inductively as follows. First let

ρ(1)(u) = du(k) =
{
k → h+

}
(u, u) +

{
h− ← k

}
(u, u)

(where, as usual, du(k) is defined by h(u) + h(u + ǫk) = ǫ du(k) + O(ǫ2)). For j > 1,
define inductively,

ρ(j)(u) =
{
k → h+

}(
u, u + ρ(j−1)(u)

)
+

{
h− ← k

}(
u, u + ρ(j−1)(u)

)
,(4.1)

δ(j)(u, k) = ρ(j)(u) + ρ(j−1)(u), j > 1,

where we take ρ(0)(u) = 0. Finally, the k-increment of u is

(4.2) ∆(u, k) =

∞∑

j=1

δ(j)(u, k),

where this sum is in fact finite for the following reason. Mixed disks in u, v, k, h± can
only be used once in the construction by Lemma 2.7. A factor of ∆(u, k) which is a
pure k-disk has at most one h−-disk attached at its negative punctures and a factor
of ∆(u, k) which is a pure u-disk has no h−-disk attached at its negative punctures.
Furthermore, if a pure factor of ∆(u, k) is a k- or a u-disk with positive puncture
attached at a negative puncture of an h+-disk then the sum of the actions of the Reeb
chords at the positive punctures of that h+-disk is larger than the action of the Reeb
chord at the positive puncture of the k- or u-disk. In particular, if the h+-disk is pure
then the action at the positive puncture of the pure disk consisting of all disks attached
to that h+-disk (which is a disk that can be used in later steps of the construction)
exceeds that of the pure k- or u-disk by an amount A0 > 0. Combining this with the
fact that there are only finitely many Reeb chords at the positive end of L, finiteness
follows much like in Lemma 2.8.
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We next relate the above algebraic construction of increment disks to geometry. As
explained in [3, Appendix B.3], in a generic 1-parameter family (Ls, βs), 0 ≤ s ≤ 1, of
exact cobordisms there is a finite number of distinct moments ŝ ∈ [0, 1] for which there

exists a holomorphic disk k̂ of formal dimension −1 with boundary on Lŝ (we will call
such a disk a (−1)-disk below), and the potential vector of Ls changes only when s
passes one of these isolated moments. Below we describe algebraically how the passage
of one such (−1)-disk moment affects the potential vector. The analytical study of
moduli spaces behind this algebraic description involves solving transversality problems
by introducing, so called, abstract perturbations. In particular, such perturbations give
rise to new (−1)-disks near the original one. The perturbation scheme is described in
[3, Appendix B.4 – 6].

Consider a 1-parameter family of exact cobordisms Ls, 0 ≤ s ≤ 1, with a (−1)-disk

k̂ at s = 1
2

which maps some boundary component to the piece L̂ of L and with no

other (−1)-disks. Let k ∈ V+(Ls) be the following vector. If k̂ is mixed, as in [3,

Appendix B.5], then k = k̂, if k̂ is pure then k is the vector of (−1) disks which arises
from the perturbation described in [3, Appendix B.6]. Note that all formal disks in k

have some boundary component mapping to L̂, see [3, Remark B.13].

Lemma 4.1. The potential vectors fs ∈ V+(Ls), s = 0, 1, are related as follows

f1 = f0 + ∆(f0, k) := φ(f0).

Proof. See [3, Lemmas B.9 and B.15]. �

We next consider 1-parameter families obtained by joining stationary and moving
cobordisms. Let Lb

s, 0 ≤ s ≤ 1, be a 1-parameter family with a (−1)-disk k̂, with
a (+∞)-boundary Λ0 and let La be an exact cobordism with a (−∞)-boundary Λ0.
Let Lba

s be the 1-parameter family obtained by joining the two, let f b
s and fa denote

the potential vectors of Lb
s and La, respectively, and let k ∈ V+(Lb

s) be the vector of

(−1)-disks as in [3, Appendix B.5] if k̂ is mixed or as in [3, Appendix B.6] if k̂ is pure.
Define the vector K ∈ V+(Lba

s ) as

K =
{
k → fa

}(
f b

0 , f
b
1 , f

a
)

=
{
k → fa

}(
f b

0 , f
b
0 + ∆(f b

0 , k), fa
)
.

If k̂ has a boundary component mapping to the piece L̂b
s of Lb

s then every disk con-

tributing to k has too. Consequently, if L̂ba
s is the piece of Lba

s corresponding to L̂b

then every disk contributing to K has some boundary component mapping to L̂ba
s .

Lemma 4.2. The potential vectors Fs of (Xba
s , Lba

s ), s = 0, 1, are related by

F1 = F0 + ∆(F0, K) := Φ(F0).

Proof. See [3, Lemma 4.3]. �

Similarly, let Lb be an exact cobordism with a (+∞)-boundary Λ0 and let La
s , 0 ≤

s ≤ 1, be a 1-parameter family of cobordisms with a (−1)-disk k̂, with a (−∞)-
boundary Λ0. Let Lba

s be the 1-parameter family obtained by joining the two, let f b

and fa
s denote the potential vectors of Lb and La

s , respectively, and let k ∈ V+(La
s) be
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the vector of (−1)-disks constructed in as in [3, Appendix B.5] or as in [3, Appendix

B.6] according to whether k̂ is mixed or pure. Define the vector K ∈ V+(Lba
s ) as

K =
{
f b ← k

}(
f b, fa

0 , fa
1

)
=

{
f b ← k

}(
f b, fa

0 , fa
0 + ∆(fa

0 , k)
)
.

If k̂ has a boundary component mapping to the piece L̂a
s of La

s then every disk con-

tributing to k has too. Consequently, if L̂ba
s is the piece of Lba

s corresponding to L̂b

then every disk contributing to K has some boundary component mapping to L̂ba
s .

Lemma 4.3. The potential vectors Fs of Lba
s , s = 0, 1, are related by

F1 = F0 + ∆(F0, K) := Ψ(F0).

Proof. See [3, Lemma 4.4]. �

4.2. Chain isomorphisms. Consider a 1-parameter family Lb
s, 0 ≤ s ≤ 1, with a

(+∞)-boundary Λ0 and a stationary cobordism La with a (−∞)-boundary Λ0 as in
Lemma 4.2. We use notation as there. Considering F0 in the definition of Φ(F0)
as a variable we obtain a function Φ: V(Lba

0 ; ǫ) → V(Lba
1 ; ǫ). For F ∈ V(Lba

0 ), let
[∂F Φ] : V(Lba

0 )→ V(Lba
1 ) denote the linearization of this function at F defined by

Φ(F + ǫV ) = Φ(F ) + ǫ [∂F Φ] (V ) +O(ǫ2) ∈ V(Lba
1 ; ǫ),

for V ∈ V(Lba
0 ).

Lemma 4.4. The map [∂F0
Φ] : V(Lba

0 ) → V(Lba
1 ) is a (+)-action non-decreasing,

filtration preserving chain map,

(4.3) dF1 ◦ [∂F0
Φ] = [∂F0

Φ] ◦ dF0.

Furthermore [∂F0
Φ] induces an isomorphism of spectral sequences,

{
Ep,q

r (Lba
0 )

} [∂F0
Φ]

∗−−−−→
∼=

{
Ep,q

r (Lba
1 )

}
.

Proof. The chain map property is proved using an argument similar to the proof of
Lemma 3.5. The fact that the map is an isomorphism follows by considering the (+)-
action. The map can be written id +B where B increases (+)-action by at least α0 > 0
and we have (because of Z2-coefficients)

(id +B) ◦
N
· · · ◦ (id+B) = id +BN .

Since BN increases (+)-action by at least Nα0 > α, where α is the sum of the actions
of all Reeb chords at the positive end, we find that BN = 0. We conclude that
[∂F0

Φ] = id +B satisfies [∂F0
Φ]N = id. In particular, the filtration preserving chain map

[∂F0
Φ] : V(Lba

0 ) → V(Lba
1 ) has a filtration preserving inverse [∂F0

Φ]N−1 : V(Lba
1 ) →

V(Lba
0 ) (we use the fact that V(Lba

0 ) and V(Lba
1 ) are canonically isomorphic as vector

spaces) which is easily seen to be a chain map. It follows that [∂F0
Φ] induces an

isomorphism of spectral sequences. �
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Consider a 1-parameter family La
s , 0 ≤ s ≤ 1, with a negative end at Λ0 and a

stationary cobordism Lb with positive end at Λ0. Considering F0 in the definition of
Ψ(F0), see Lemma 4.3, as a variable we obtain a function Ψ: V(Lba

0 ; ǫ) → V(Lba
1 ; ǫ).

For F ∈ V(Lba
0 ), let [∂F Ψ] : V(Lba

0 )→ V(Lba
1 ) denote the linearization of this function

at F defined by

Ψ(F + ǫV ) = Ψ(F ) + ǫ [∂F Ψ] (V ) +O(ǫ2) ∈ V(Lba
1 ; ǫ).

Lemma 4.5. The map [∂F0
Ψ] is a (+)-action non-decreasing, filtration preserving

chain map,

(4.4) dF1 ◦ [∂F0
Ψ] = [∂F0

Ψ] ◦ dF0.

Furthermore [∂F0
Ψ] induces an isomorphism of spectral sequences,

{
Ep,q

r (Xba
0 , Lba

0 )
} [∂F0

Ψ]
∗−−−−→

∼=

{
Ep,q

r (Xba
1 , Lba

1 )
}
.

Proof. Analogous to Lemma 4.4. �

4.3. Chain homotopy. We consider the same situations as in Subsection 4.2, now
focusing on how the deformation affects chain maps. We will first treat the case when
a stationary cobordism is joined to a moving one from above and second the case when
the stationary cobordism is joined to the moving one from below.

Let La be a stationary cobordism joined to a moving one Lb
s, 0 ≤ s ≤ 1, from above

along Λ0 forming a new 1-parameter family Lba
s . With notation as in Subsection 4.2,

we have

F1 = Φ(F0) = F0 + ∆(F0, K)(4.5)

=
(
f b

0 + ∆(f b
0 , k)| fa

)
,(4.6)

where K ∈ V+(Lba
s ) is given by

(4.7) K =
{
k → fa

}(
f b

0 , f
b
1 , f

a
)

=
{
k → fa

}(
f b

0 , f
b
0 + ∆(f b

0 , k), fa
)
.

Subsections 3.7 and 4.2 give the following diagram of chain maps

V(La)
[∂fa(fb

0
| ]

−−−−−→ V(Lba
0 )

id

y
y[∂F0

Φ]

V(La)
[∂fa(fb

1
| ]

−−−−−→ V(Lba
1 )

.

Starting at the upper left corner of this diagram, going right and then down corresponds
to linearizing (4.5) with respect to fa-factors in F0. Starting at the upper left corner,
going down and then right corresponds to linearizing (4.6) with respect to fa. We show
below that these two filtration preserving chain maps induce the same morphism of
spectral sequences. In order to do so we will make use of chain homotopies which are
built from the following maps constructed using the split gluing pairing, see Subsection
4.1. For v ∈ V(La), define

θ(v) =
{
k → v

}(
f b

0 , f
b
0 + ∆(f b

0 , k), 0
)
∈ V(Lba

s ).
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Let W ∈ V(Lba
s ; ǫ) and let K be as above. Recall the inductive construction of the K-

increment disks of F ∈ V(Lba
0 ). We consider a deformed version of that construction as

follows. With h+ and h− denoting the Hamiltonian vectors at the positive and negative
ends of (Lba

s ), define

ρ
(1)
W (F ) = dF (K) + W =

{
K → h+

}
(F, F ) +

{
h− ← K

}
(F, F ) + W,

and inductively

ρ
(j)
W (F ) =

{
K → h+

}(
F, F + ρ

(j−1)
W (F )

)
+

{
h− ← K

}(
F, F + ρ

(j−1)
W (F )

)
+ W.

Let

δ
(j)
W (F ) = ρ

(j)
W (F ) + ρ

(j−1)
W (F ), j > 0,

where we take ρ
(0)
W (F ) = 0, and finally

(4.8) ∆W (F, K) =

∞∑

j=1

δ
(j)
W (F ).

The map we will use to construct chain homotopies is Θ: V(La) → V(Lba
1 ) defined

through the following equation

(4.9) ∆ǫ θ(v)(F0, K) = ∆(F0, K) + ǫ Θ(v) +O(ǫ2) ∈ V(Lba
1 ; ǫ).

Recall the notation L̂ba
s for the piece of Lba

s where all K-disks have a boundary compo-
nent.

Lemma 4.6. The (+)-action non-decreasing, filtration preserving chain maps [∂F0
Φ]◦[

∂fa

(
f b

0 |
]

and
[
∂fa

(
f b

1 |
]

induce the same morphism of spectral sequences. In other
words the following diagram commutes

(4.10)

{
Ep,q

r (La)
} [∂fa(fb

0
| ]

∗−−−−−−→
{
Ep,q

r (Lba
0 )

}

id

y
y[∂F0

Φ]
∗

{
Ep,q

r (La)
} [∂fa(fb

1
| ]

∗−−−−−−→
{
Ep,q

r (Lba
1 )

}
.

Proof. A chain homotopy is provided by the map in (4.9). It shows that the chain maps
induce identical maps on the E1-term of the spectral sequences. Since morphisms of
spectral sequences which agree on the E1-term agree everywhere the lemma follows.
The proof of the chain homotopy equation is similar to the proof of Lemma 3.5. �

Let Lb be a stationary cobordism joined to a moving one La
s , 0 ≤ s ≤ 1, from below

along Λ0 forming a new 1-parameter family Lba
s . With notation as in Subsection 4.2,

we have

F1 = Ψ(F0) = F0 + ∆(F0, K)(4.11)

=
(
f b| fa

0 + ∆(fa
0 , k)

)
,(4.12)
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where K ∈ V+(Lba
s ) is given by

(4.13) K =
{
f b ← k

}(
f b, fa

0 , fa
1

)
=

{
f b ← k

}(
f b, fa

0 , fa
0 + ∆(fa

0 , k)
)
.

Subsections 3.7 and 4.2 give the following diagram of chain maps

V(Lb)
[∂fb | f

a
0 )]

−−−−−→ V(Lba
0 )

id

y
y[∂F0

Ψ]

V(La)
[∂fb | f

a
1 )]

−−−−−→ V(Lba
1 )

.

Define Ω: V(Lb)→ V(Lba
1 ) as follows. For v ∈ V(Lb) let

Ω(v) =
{
v ← k

}(
f b, fa

0 , fa
0 + ∆(fa

0 , k)
)
∈ V(Lba

1 ).

Lemma 4.7. The (+)-action non-decreasing, filtration preserving chain maps [∂F0
Ψ]◦[

∂fb | fa
0 )

]
and

[
∂fb | fa

1 )
]

induce the same morphism of spectral sequences. In other
words the following diagram commutes

(4.14)

{
Ep,q

r (Lb)
} [∂fb | f

a
0 )]

∗−−−−−−→
{
Ep,q

r (Lba
0 )

}

id

y
y[∂F0

Φ]
∗

{
Ep,q

r (Lb)
} [∂fb | f

a
1 )]

∗−−−−−−→
{
Ep,q

r (Lba
1 )

}

.

Proof. The proof is analogous to the proof of Lemma 4.6. A chain homotopy is given
by Ω. �

5. Proofs

Proof of Theorem 1.1. If Ls, 0 ≤ s ≤ 1, is a 1-parameter family of exact cobordisms
fixed outside a compact set then, after small perturbation, the differential is inde-
pendent of s except when values of s for which there are (−1)-disks are passed. It
follows from Lemmas 4.4 and 4.5 that the spectral sequence remains unchanged at
such instances. �

Proof of Theorem 1.2. Let Λ0 and Λ1 be Legendrian submanifolds of J1(M) which are
Legendrian isotopic through Λs, 0 ≤ s ≤ 1. Such an isotopy determines an exact
cobordism L01 with (+∞)-boundary Λ1 and (−∞)-boundary Λ0, see e.g. [3, Appendix
A]. Using the inverse isotopy we get a cobordism L10 with (+∞)-boundary Λ0 and
(−∞)-boundary Λ1. Joining the negative end of L01 to the positive end of L10 we
obtain a cobordism L11 which admits a compactly supported isotopy deforming it
to Λ1 × R. Let f j, j = 0, 1, denote the potential vectors in V+(Λj × R) and let F ij,
i, j ∈ {0, 1} denote the potential vectors in V+(Lij). Then there are grading respecting
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chain maps as follows

V(Λ1 × R)
[∂f1(F 01| ]
−−−−−−→ V(L01)

id

y
y[∂F01(F 11| ]

V(Λ1 × R)
Φ
←−−− V(L11),

where Φ is the chain map from Theorem 1.1, see also Lemma 4.4, induced by the
deformation of L11. Lemma 2.10 implies that the composition of the first two maps
equals [∂f1(F 11| ] which, after composition with Φ, by Lemma 4.6, is chain homotopic
to [∂f1(f 1| ] = id. It follows that the composition

Φ ◦
[
∂F 01

(
F 11|

]
◦

[
∂f1

(
F 01|

]

induces an isomorphism of spectral sequences. Theorem 1.1 implies that Φ induces
an isomorphism. Thus, the map induced by [∂f1(F 01| ] is a monomorphism and that
induced by [∂F 01(F 11| ] is an epimorphism.

Gluing L11 at its negative end to the positive end of L01 we get a cobordism L011,
with potential vector F 011 ∈ V+(L011), which can be deformed to (L01) inducing a
chain map Ψ. Arguing as above using the diagram

V(L01)
[∂F01(F 11| ]
−−−−−−−→ V(L11)

id

y
y[∂F11(F 011| ]

V(L01)
Ψ
←−−− V(L011),

we find that the map induced by [∂F 01(F 11| ] is also a monomorphism and it follows
that

(5.1)
[
∂f1

(
F 01|

]
: V(Λ1 × R)→ V(Λ01)

induces an isomorphism of spectral sequences. We find

{
Ep,q

r (Λ1)
}

=
{
Ep,q

r (L01)
}
.

A similar argument, which uses Lemmas 4.5 and 4.7 instead of Lemmas 4.4 and 4.6,
shows that

(5.2)
[
∂f0 |F 01

)]
: V(Λ0 ×R)→ V(Λ01).

induces an isomorphism of spectral sequences. We find that

{
Ep,q

r (Λ0)
}

=
{
Ep,q

r (L01)
}
.

as well. This proves the theorem. �
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6. Examples

In this section, we first study consequences of different definitions of admissible
disks in a simple example. Second, we compute the rational admissible SFT spectral
sequence for three parallel copies of the 0-section in J1(M) where M is an n-manifold.

The second example is the first instance of a local version of the following general
approach which shows that the resolution of the boundary bubbling problem presented
in this paper is closely related to those of [12] and [2] in the setting of Lagrangian
Floer homology. If Λ ⊂ J1(M) is a Legendrian submanifold (possibly connected),

then we consider the many component Legendrian submanifold Λ̃ consisting of finitely
many nearby parallel (i.e., parallel along the Reeb flow) copies of Λ. Partitioning
the collection of parallel copies into pieces we can apply the rational admissible SFT
invariant. In fact, much like in [5], the differential on V(Λ̃ × R) can in this case be
computed in terms of (all) moduli spaces of holomorphic disks in J1(M) × R with
boundary on Λ×R in combination with the spaces of Morse flow trees in Λ, see [11, 3],
determined by a finite collection of Morse functions on Λ. In this sense, the method
for dealing with boundary bubbling in the present paper is related to [12] and to [2],
though in [2], only one Morse function and flow lines appears, rather than as here and
in [12], many Morse functions and flow trees.

6.1. A comparison in a simple example. Consider the Legendrian two component
link Λr ⊂ J1(R) = R3 in Figure 3. As mentioned in Remark 2.3, there are two possible

a1

a2

b12
1

b21
1

b12
2

...

b21
r

Figure 3. The Lagrangian projection of Λr.

definitions of admissible disks, one including formal disks with only negative punctures,
as long as at least one of them is mixed, and one excluding such formal disks requiring
that all disks have at least one positive puncture. The latter is the definition used
in this paper. We denote vector spaces of the latter version V and of the former Ṽ

and the corresponding differentials d and d̃, respectively. The corresponding spectral
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sequences are denoted Ep,q
r and Ẽp,q

r , respectively. Consider the two components of the
link as distinct pieces. In our treatment below we will forget the distinct homotopy
classes of formal disks and simply represent them as cyclic words of Reeb chords. If c
is a Reeb chord we write pc for a positive puncture at c and qc for a negative puncture
at c.

By Lemma 2.4, the pure admissible disks in V(Λr × R) and Ṽ(Λr ×R) are

paσqaσ
k. . . qaσ , σ = 0, 1, 0 ≤ k.

The grading of such a disk is 1− k. The mixed admissible disks in V(Λr × R) are

pb12j
qa2

t. . . qa2pb21
k

qa1
s. . . qa1 j, k ∈ {1, . . . , r},(6.1)

pb12j
qa2

t. . . qa2qb12
k

qa1
s. . . qa1 j, k ∈ {1, . . . , r},(6.2)

pb21j
qa1

s. . . qa1qb21
k

qa2
t. . . qa2 j, k ∈ {1, . . . , r}.(6.3)

The formal dimension of the disks in (6.1) is 1− (s + t) and the formal dimension of

the disks in (6.2) and (6.3) is −(s + t). In Ṽ(Λr × R) there are also the elements

(6.4) qb12j
qa1

t. . . qa1qb21
k

qa2
s. . . qa2 j, k ∈ {1, . . . , r},

of dimension −(s + t)− 1.
The Hamiltonian vector is easily computed. We have

h =

r∑

j=1

pb12j
pb21j

+

r−1∑

j=1

pb21j
pb12j+1

.

Since the Hamiltonian does not contain any pure formal disks the differential it induces
does not affect pure punctures qaσ , σ = 1, 2 in the admissible formal disks above.
Consequently, the differential d on V(Λr) is determined by the following calculation

d(pb12j
pb21

k
) = 0,(6.5)

d(pb12j
qb12

k
) = pb12j

pb21
k

+ pb12j
pb21

k−1
,

d(pb21j
qb21

k
) = pb21j

pb12
k

+ pb21j
pb12

k+1
.

To compute d̃ on Ṽ(Λr), we note that it agrees with d on the generators in (6.5) and
that

(6.6) d̃(qb12
j

qb21
k

) = qb12
j

pb21
k

+ pb21
j−1

qb21
k

+ pb12
k

qb12
j

+ pb12
k+1

qb12
j

.

In order to compare the consequences of the two different definitions of admissible
formal disks we will compute Ep,q

r and Ẽp,q
r . Since the Hamiltonian vector does not

involve any pure disks the parts of V(Λr) and Ṽ(Λr) generated by pure disks survive
in homology and give copies of the homology of a trivial two component link. In our
computations below we quotient out by the piece generated by pure formal disks. The
corresponding quotients of V(Λr) and Ṽ(Λr) are spanned by mixed admissible disks.
For simplicity, we keep the same notation for these quotients as for the corresponding
full spaces.
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We first consider Ep,q
r . Since the differential strictly increases the number of positive

punctures we find that the differential, the homology of which is the E1-term, is trivial
and that E1,m

1 satisfies the following. If m > −1 then

dim(E1,m
1 ) = 0.

If m ≤ −1 then
dim(E1,m

1 ) = 2(r2 −m),

and E1,m
1 is generated by the elements

pb12j
qa2

t. . . qa2qb12
k

qa1
s. . . qa1 j, k = 1, . . . , r, s + t = −1−m

pb21
j

qa1
s. . . qa1qb21

k
qa2

t. . . qa2 j, k = 1, . . . , r, s + t = −1−m.

Similarly, the E2,m
1 -term satisfies the following. If m > −1 then

dim(E2,m
1 ) = 0.

If m ≤ −1 then
dim(E2,m

1 ) = r2 −m,

and E2,m
1 is generated by the elements

pb12
j

qa2
t. . . qa2pb21

k
qa1

s. . . qa1 j, k = 1, . . . , r, s + t = −1−m.

The differential on the E1-term is trivial on E2,m
1 since all disks in the Hamiltonian

have at least two positive punctures, see Lemma 3.2. Furthermore, for m ≤ −1, the
differential

E1,m
1 → E2,m

1

has rank r2 −m and its kernel is generated by the elements

k∑

v=1

pb12j
qa2

s. . . qa2qb12v
qa1

t. . . qa1 +
r∑

v=j

pb21
k

qa1
t. . . qa1qb21v

qa2
s. . . qa2 ,

where j, k ∈ {1, . . . , r} and where s + t = −1−m.
Consequently,

dim
(
Ep,m

2 (Λr)
)

=

{
0, if p 6= 1 or m > −1,

r2 −m, if p = 1 and m ≤ −1.

In order to calculate Ẽp,q
r we need only modify the above slightly. First, Ẽl,m

1 agrees

with El,m
1 as described above for l ≥ 1. However, there is in this case also the term

Ẽ0,m
1 which satisfies the following. If m > −1 then

dim(Ẽ0,m
1 ) = 0.

If m ≤ −1 then
dim(Ẽ0,m

1 ) = r2 −m

and Ẽ0,m
1 is generated by

qb12j
qa1

t. . . qa1qb21
k

qa2
s. . . qa2 j, k = 1, . . . , r, s + t = −1−m
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As in the previous case the differential on Ẽ1 is trivial on Ẽ2,m
1 and it has the same

kernel on Ẽ1,m
1 , of dimension r2−m, as that of the differential on E1,m

1 described above.
A straightforward calculation shows that the differential

Ẽ0,m
1 → Ẽ1,m

1 ,

is injective and maps onto the kernel of the differential of Ẽ1,m
1 and we find that

dim(Ẽl,m
2 ) = 0

for all l, m.
This computation shows that the choice of definition of admissible disk gives rise to

quite different theories: E2(Λr) detects r whereas Ẽ2(Λr) does not.

6.2. Three parallel copies of the zero-section. Let M be an n-manifold and con-
sider the 0-section Λ0 ⊂ J1(M) and two parallel copies Λ1 and Λ2 which are the graphs
of two Morse functions f1 and f2 on M where 0 < f1 < f2. We will compute the
rational SFT invariant of the Legendrian submanifold Λ = Λ0 ∪ Λ1 ∪ Λ2, where the
pieces of Λ are its connected components, in terms of the cohomology ring of M . As in
Subsection 6.1, we work on the quotient of V(Λ×R) obtained by forgetting the homo-
topy classes of the admissible formal disks. As there, we keep the notation V(Λ× R)
for the quotient vector space and note that the Z-grading descends to the quotient
since c1(T

∗M) = 0 and since the Maslov class of the 0-section vanishes.

6.2.1. Reeb chords of Λ. All Reeb chords of Λ are mixed. Reeb chords connecting Λ0

and Λj correspond to critical points of fj, j = 1, 2 and Reeb chords connecting Λ1 and
Λ2 correspond to critical points of f2−f1. We use the following notation: if c is a Reeb
chord then we write Morse-index(c) for the index of the corresponding critical point of
the positive function difference.

6.2.2. Admissible disks. Since we disregard homotopy classes, any formal disk is uniquely
determined by its punctures. As in Subsection 6.1, we write qc and pc to denote a
negative- respectively positive puncture at the Reeb chord c and identify formal disks
with words of punctures up to cyclic permutation. It is straightforward to show that
admissible formal disks of Λ are of the following types.

(21) Disks with two punctures of one of the forms pbqc, where both the incoming
and the outgoing components at the endpoints of b and c agree.

(31) Disks with three punctures of the form pcqaqb, where c connects Λ0 to Λ2, a
connects Λ1 to Λ2, and b connects Λ0 to Λ1 .

(32) Disks with three punctures of the form papbqc, where a connects Λ0 to Λ1, b
connects Λ1 to Λ2, and c connects Λ0 to Λ2 .

In order to compute the dimension of a formal disk we note that there is a 1 − 1
correspondence between R-families of holomorphic disks in J1(M)×R with boundary
on Λ × R and holomorphic disks in T ∗M with boundary on the projection of Λ, see
[8]. As shown in [4] the dimensions of the formal disks above are as follows (note
however that we are considering the dimension in symplectization here whereas that
in [4] corresponds to the dimension in the Lagrangian projection).
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(21)

dim(pbqc) = Morse-index(b)−Morse-index(c),

.
(31)

dim(pcqaqb) = Morse-index(c)−Morse-index(a)−Morse-index(b) + 1,

(32)

dim(papbqc) = Morse-index(a) + Morse-index(b)−Morse-index(c)− n + 1.

6.2.3. The Hamiltonian vector and the spectral sequence. Using the relation between
rigid holomorphic disks and rigid flow trees lines, see [11, 4], it is straightforward to
describe the Hamiltonian vector. We write

h = h21
+ h31

+ h32
,

where h21
denotes the sum of all disks of type (21) etc. Then

• h21
counts rigid flow lines for the respective functions.

• h31
counts rigid flow trees in which the negative gradient flow at the vertex

which is a critical of f2 is outgoing and the negative gradient flows at the other
two vertices are incoming.
• h32

counts rigid flow trees in which the negative gradient flow at the vertex
which is a critical of f2 is incoming and the negative gradient flows at the other
two vertices are outgoing.

It is then straightforward to compute the E1-term of the spectral sequence: if
f : M → R is a Morse function let C∗(f) denote the corresponding Morse-Witten ho-
mology complex and let C∗(f) denote the corresponding cohomology complex. From
the above description of admissible disks and of the Hamiltonian vector it follows that
we can identify F 2(V(Λ× R)) with the chain complex

C∗(f1)⊗ C∗(f2)⊗ C∗(f2 − f1)

with the standard differential. Hence

E2,∗
1 (Λ) = H∗(M)⊗H∗(M)⊗H∗(M).

Similarly, we identify F 1(V(Λ×R)) with

C∗(f1)⊗ C∗(f1)⊕ C∗(f2 − f1)⊗ C∗(f2 − f1)

⊕ C∗(f2)⊗ C∗(f2)⊕ C∗(f2)⊗ C∗(f1)⊗ C∗(f2).

Here the differential can be computed in two steps, filtering by the number of negative
punctures. After the first step we pass to homology in each complex. In the second
step there is only one non-trivial component of the differential:

1⊗D : H∗(f2)⊗H∗(f2)→ H∗(f2)⊗H∗(f1)⊗H∗(f2).
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It follows from the intersection product interpretation of flow trees γ1 ⊗ γ2 appears
with coefficient 1 in the expansion of D(γ) if and only if γ1 • γ2 = γ where • denotes
the intersection product on homology. Hence

E1,∗
1 (Λ) =H∗(M)⊗H∗(M)⊕H∗(M)⊗H∗(M)

⊕H∗(M)⊗ ker(D)⊕H∗(M)⊗ coker(D).

Here ker(D) correspond to indecomposable homology classes.
Finally, in order to compute the E2-term (which trivially equals the E3-term since

there are no admissible disks with three positive punctures) the only non-trivial differ-
ential to be considered is

D′ × ι : H∗(M)⊗ ker(D)→ H∗(M)⊗H∗(M)⊗H∗(M),

where ι is the inclusion ker(D) ⊂ H∗(M) and where α1⊗α2 appears with coefficient 1
in the expansion of D′(α) if and only if α1 ∪ α2 = α where ∪ denotes the cup product
on cohomology. Hence

E1,∗
2 (Λ) =H∗(M)⊗H∗(M)⊕H∗(M)⊗H∗(M)

⊕ ker(D′)⊗ ker(D)⊕H∗(M)⊗ coker(D).

and
E2,∗

2 = coker(D′ ⊗ ι).
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